
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2019

sCompile: Critical path identification and analysis for smart sCompile: Critical path identification and analysis for smart

contracts contracts

Jialiang CHANG

Bo GAO

Hao XIAO

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yan CAI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
CHANG, Jialiang; GAO, Bo; XIAO, Hao; SUN, Jun; CAI, Yan; and YANG, Zijiang. sCompile: Critical path
identification and analysis for smart contracts. (2019). Proceedings of the 21st International Conference
on Formal Engineering Methods, ICFEM 2019, Shenzhen, China, November 5-9. 286-304.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4641

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4641&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jialiang CHANG, Bo GAO, Hao XIAO, Jun SUN, Yan CAI, and Zijiang YANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4641

https://ink.library.smu.edu.sg/sis_research/4641

sCompile: Critical Path Identification
and Analysis for Smart Contracts

Jialiang Chang1(B), Bo Gao2, Hao Xiao2, Jun Sun3, Yan Cai4,
and Zijiang Yang1

1 Department of Computer Science, Western Michigan University,
Kalamazoo, MI 49009, USA

{jialiang.chang,zijiang.yang}@wmich.edu
2 Pillar of Information System Technology and Design,

Singapore University of Technology and Design, Singapore, Singapore
bo gao@mymail.sutd.edu.sg, hao xiao@sutd.edu.sg

3 School of Information Systems,
Singapore Management University, Singapore, Singapore

junsun@smu.edu.sg
4 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
ycai.mail@gmail.com

Abstract. Ethereum smart contracts are an innovation built on top
of the blockchain technology, which provides a platform for automati-
cally executing contracts in an anonymous, distributed, and trusted way.
The problem is magnified by the fact that smart contracts, unlike ordi-
nary programs, cannot be patched easily once deployed. It is important
for smart contracts to be checked against potential vulnerabilities. In
this work, we propose an alternative approach to automatically iden-
tify critical program paths (with multiple function calls including inter-
contract function calls) in a smart contract, rank the paths according to
their criticalness, discard them if they are infeasible or otherwise present
them with user friendly warnings for user inspection. We identify paths
which involve monetary transaction as critical paths, and prioritize those
which potentially violate important properties. For scalability, symbolic
execution techniques are only applied to top ranked critical paths. Our
approach has been implemented in a tool called sCompile, which has
been applied to 36,099 smart contracts. The experiment results show
that sCompile is efficient, i.e., 5 s on average for one smart contract. Fur-
thermore, we show that many known vulnerabilities can be captured if
user inspects as few as 10 program paths generated by sCompile. Lastly,
sCompile discovered 224 unknown vulnerabilities with a false positive
rate of 15.4% before user inspection.

Keywords: Blockchain · Symbolic testing · Smart contract

1 Introduction

Built on top of cryptographic algorithms [1–3] and the blockchain technology
[4–6], cryptocurrency like Bitcoin has been developing rapidly in recent years.
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 286–304, 2019.
https://doi.org/10.1007/978-3-030-32409-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_18

sCompile: Critical Path Identification and Analysis for Smart Contracts 287

Many believe it has the potential to revolutionize the banking industry by allow-
ing monetary transactions. Smart contracts bring it one step further by providing
a framework which allows any contract to be executed in an autonomous, dis-
tributed, and trusted way. Smart contracts thus may revolutionize many indus-
tries. Ethereum [7], an open-source, blockchain-based cryptocurrency, is the first
to integrate the functionality of smart contracts. Due to its enormous potential,
its market cap reached at $29.1 billion as of Jun 17th, 2019.

In essence, smart contracts are computer programs which are automatically
executed on a distributed blockchain infrastructure. A majority of smart con-
tracts in Ethereum are written in a programming language called Solidity [8].
Like ordinary programs, Solidity programs may contain vulnerabilities, which
potentially lead to attacks. The problem is magnified by the fact that smart
contracts, unlike ordinary programs, cannot be patched easily once they are
deployed on the blockchain.

In recent years, these attacks exploit security vulnerabilities in Ethereum
smart contracts and often result in monetary loss. One notorious example is
the DAO attack [9], i.e., an attacker stole more than 3.5 million Ether (about
$45 million USD at the time) from the DAO contract on June 17, 2016.

The problem of analyzing and verifying smart contracts is far from being
solved. Some believe that it will never be, just as the verification problem of
traditional programs. Solidity is designed to be Turing-complete which intuitively
means that it is very expressive and flexible. The price to pay is that almost
all interesting problems associated with checking whether a smart contract is
vulnerable are undecidable [10]. Consequently, tools which aim to analyze smart
contracts automatically either are not scalable or produce many false alarms.
For instance, Oyente [11] is designed to check whether a program path leads
to a vulnerability or not using a constraint solver to check whether the path is
feasible or not. Due to the limitation of constraint solving techniques, if Oyente
is unable to determine whether the path is feasible or not, the choice is either
to ignore the path (which may result in a false negative, i.e., a vulnerability is
missed) or to report an alarm (which may result in a false alarm).

Besides, we believe that manual inspection is unavoidable given the expres-
siveness of Solidity. However, given that smart contracts often enclose many
behaviors (which manifest through different paths), manually inspecting every
path is overwhelming. Thus, sCompile further aims to reduce the manual effort
by identifying a small number of critical paths and presenting them to the user
with easy-to-digest information.

Overall, sCompile works as follows:

– sCompile firstly constructs a control flow graph (CFG) which captures all
possible control flow including those due to the inter-contract function calls.
sCompile then systematically generates paths (with a bounded sequence of
function calls).

– To address path explosion, sCompile then statically identifies paths which
are ‘critical’. In this work, we define paths involving monetary transactions
as critical paths, which is often sufficient in capturing vulnerabilities in smart
contracts.

288 J. Chang et al.

– We then define a set of (configurable) money-related properties based on exist-
ing vulnerabilities and identify all paths that potentially violate our proper-
ties. Considering that different properties have different criticalness and a
long path may be unlikely feasible than a short one, sCompile ranks all paths
by computing a criticalness score for each path based on the two factors.

– Finally, for top ranked paths, sCompile automatically checks whether it is
feasible using symbolic execution techniques. And, the feasible paths are pre-
sented to the user for inspection.

We have implemented sCompile and applied it to 36,099 smart contracts gath-
ered from EtherScan [12]. Our experiment shows that sCompile can efficiently
analyze smart contracts, i.e., it spends 5 s on average to analyze a smart con-
tract (with a bound on the number of function calls 3). Furthermore, we show
that sCompile effectively prioritizes programs paths which reveal vulnerabili-
ties in smart contracts, i.e., it is often sufficient to capture the vulnerability by
inspecting the reported 10 or fewer critical paths. Overall, sCompile identified
224 vulnerabilities. The false positive rate of sCompile (before the results are
reported for user inspection) is 15.4%, which is also generally acceptable. A fur-
ther user study result shows that with sCompile’s help, users are more likely to
identify vulnerabilities in smart contracts.

contract toyDAO{
address owner;
mapping (address => uint) credit;
function toyDAO() payable public {

owner = msg.sender;
}
function donate() payable public{

credit[msg.sender] = 100;
}
function withdraw() public {

0 uint256 value = 20;
1 if (msg.sender.call.value(value)()) {
2 credit[msg.sender] = credit[msg.sender] - value;

}
}

}
contract Bitway is ERC20 {

function () public payable {
createTokens();

}
function createTokens() public payable {

require(msg.value > 300);
...

}
...

}

Fig. 1. Illustrative contracts

The rest of the paper is organized as follows. Section 2 illustrates how sCom-
pile works through a few simple examples. Section 3 presents the details of our
approach step-by-step. Section 4 shows evaluation results on sCompile. Section 5
reviews related work and lastly Sect. 6 concludes with a discussion on future
work.

sCompile: Critical Path Identification and Analysis for Smart Contracts 289

2 Illustrative Examples

In this section, we present multiple examples to illustrate vulnerabilities in smart
contracts and how sCompile helps to reveal them. The contracts are shown in
Fig. 1.

Example 1: Contract toyDAO is an invariant one of DAO contract. Mapping
credit is a map which records a user’s credit amount. Function donate() allows
user to top up its credit with 100 wei (which is a unit of Ether). Function
withdraw() by design sends 20 wei to message sender (at line 1) and then updates
credit. However, when line 1 is executed, message sender could call function
withdraw() through its fallback function, before line 2 is executed. Line 1 is then
executed again and another 20 wei is sent to message sender. Eventually, all
Ether in this contract’s wallet is sent to message sender.

In sCompile, inspired by common practice in banking industry, assume that
the user sets the limit to be 30. Given the contract, a critical path reported by
sCompile is one which executes line 0, 1, 0, and 1. The path is associated with
a warning message stating that the accumulated amount transferred along the
path is more than the limit. We remark that existing approaches often check
such vulnerability through a property called reentrancy, which often results in
false alarms [11,13].

Example 2: Contract Bitway is another token management contract. It
receives Ether (i.e., cryptocurrency in Ethereum) through function createTo-
kens(). Note that this is possible because function createTokens() is declared as
payable. However, there is no function in the contract which can send Ether out.
Given this contract, sCompile identifies a list of critical paths for user inspec-
tion. The most critical one is a path where function createTokens() is invoked.
Furthermore, it is labeled with a warning message stating that the smart con-
tract appears to be a “black hole” contract as there is no path for sending Ether
out, whereas this path allows one to transfer Ether into the wallet of the contract.
By inspecting this path and the warning message, the user can capture the vul-
nerability. In comparison, existing tools like Oyente [11] and MAIAN [14] report
no vulnerability given the contract. We remark that even although MAIAN is
designed to check similar vulnerability, it checks whether a contract can receive
Ether through testing1 and thus results in a false negative in this case.

Smart
contract

Step 1:
control flow graph

simulating construction

Step 2:
money-related paths

identification

Step 5:
feasibility checking

Step 6:
visualization report

generation

Report

Step 3:
suspicious monetary

properties violation checking

Step 4:
paths ranking

3 3

Fig. 2. Overall workflow of sCompile

1 MAIAN sends a value of 256 wei to the contract deployed in the private blockchain
network.

290 J. Chang et al.

3 Approach

Figure 2 shows the overall work flow of sCompile. Firstly, given a smart contract,
sCompile constructs a control flow graph (CFG) [15] and systematically enu-
merates all paths. Secondly, we identify the monetary paths based on the CFG
up to a user-defined bound on the number of function calls. Thirdly, we analyze
each path in order to check whether it potentially violates any of the pre-defined
monetary properties. Next, we compute a criticalness score for each and rank the
paths accordingly. Afterwards, we apply symbolic execution to filter infeasible
critical paths. Lastly, we present the results along with the associated paths to
the user for inspection.

3.1 Constructing CFG

sCompile constructs a CFG for a smart contract (the compiled EVM opcode
with a single entrance for whole and for each function) to capture all possible
paths. Formally, a CFG is a tuple (N, root, E) such that

– N is a set of nodes, where each node is a basic block of opcodes.
– root ∈ N is the first basic block of opcodes.
– E ⊆ N × N is a set of edges, where each edge (n, n′) corresponds to exactly

a control directly from flow n to n′.

We also consider inter-contract functions calls, where there is a CALL to a
foreign function that is assumed to call the current function including third-part
contract.

For instance, Fig. 3 shows the CFG of contract toyDAO shown in Fig. 1. Each
node is in the form of Node m n, where m and n are indices of the first and the
last opcodes of the basic block, respectively. The red diamond node at the top
is the root node; the blue rectangle nodes represent the first node of a function.
Note that a black oval represents a node that can be redirected to the root
due to inter-contract function calls. The black solid edges represent the normal
control flow. The red dashed edges represent control flow due to a new function
call, e.g., the edge from Node 88 91 to Node 0 12. That is, for every node n
such that n ends with a terminating opcode instruction (i.e., STOP, RETURN), we
introduce an edge from n to root. The red dotted edges represent control flow
due to the inter-contract function call. That is, for every node which ends with
a CALL instruction to an external function, an edge is added from the node to
the root.

Given a bound b on the number of function calls, we can systematically unfold
the CFG so as to obtain all paths during which only b or fewer functions are
called. For instance, with a bound 2, the set of paths include all of those which
visit Node 81 87 or Node 102 109 no more than twice.

Statically constructing the CFG is non-trivial due to indirect jumps in the
bytecode generated by the Solidity compiler. For instance, part of bytecode for
contract toyDAO is shown as follows.

........... |
92 JUMPDEST | 300 SHA3
93 PUSH2 0x0064 // 100 | 301 DUP2

sCompile: Critical Path Identification and Analysis for Smart Contracts 291

96 PUSH2 0x0070 // 112 | 303 SSTORE
99 JUMP | 304 POP

|
100 JUMPDEST | 305 JUMPDEST
101 STOP | 306 POP
....... | 307 JUMP
112 JUMPDEST |
113 PUSH1 0x00 |
115 PUSH1 0x14 |
....... |

Node_0_12

Node_13_64

Node_76_80

Node_81_87
withdraw() Node_65_75

Node_92_99Node_88_91

Node_112_162

Node_163_171

Node_305_307

Node_172_304

Node_100_101

Node_102_109
donate()

Node_308_378

Node_110_111

Fig. 3. Control flow graph of the contract toyDAO (Color figure online)

Considering that Solidity compiler use templates and often introduces indirect
jumps (e.g., PUSH), we actually construct CFGs from EVM opcode as follows:

– Disassemble the bytecode to a sequence of opcode instructions.
– Identify all basic blocks (BBL) from the opcode instructions as nodes of a

CFG, where the boundaries among BBLs are branching instructions JUMP
and JUMPI, JUMPDEST, call instructions CALL, and terminal instructions such
as RETURN, STOP, and REVERT.)

– Connect basic blocks with edges (e.g., direct jumps) which are statically
decided from the opcode instructions.

– Use stack simulation to complete the CFG with edges for indirect jumps.

In the above, whenever there are indirect jumps, their targets cannot be
decided by checking proceeding instructions and we have missing edges. These
nodes are known as dangling blocks and we introduce stack simulation to find
the successor of them. Stack simulation is similar to define-use analysis except
that dangling blocks which are reachable from the entry BBL are processed first.
That is, we find all paths from entry BBL to dangling blocks (e.g., the two
paths from Node 0 12 to Node 305 307) and simulate instructions in each path
following semantics of the instruction on the stack. Note that a dangling block

292 J. Chang et al.

ends with JUMP may have multiple successors in the CFG. When we reach the
JUMP or JUMPI in the dangling block, the content of the top stack entry shall
be determined and we connect the dangling block with BBL which starts at the
address as in the top stack entry. For instance, for dangling block Node 305 307,
there is only one successor Node 100 101 in both paths which is pushed by the
instruction at address 093. We repeat above steps until all dangling blocks are
processed.

3.2 Identifying Monetary Paths

Given a bound b on the number of call depth (i.e., the number of function calls)
and a bound on the loop iterations, there are still many paths in the CFG to
be analyzed. For instance, there are 6 paths in the toyDAO contract with a call
depth bound of 1 (and a loop bound of 5) and 1296 with a call depth bound
of 4. This is known as the path explosion problem [16]. In this work, we focus
on money-related paths to avoid path explosion as almost all vulnerabilities [17]
are ‘money’-related.

A node is money-related if and only if its BBL contains any of following opcode
instructions: CALL, CREATE, DELEGATECALL or SELFDESTRUCT. In general, one of
these instructions must be used when Ether is transferred from one account to
another. A path which traverses through a money-related node is considered
money-related.2

3.3 Identifying Property-Violating Paths

Next, sCompile prioritizes paths that violate critical properties. The objective
is to prioritize those paths which may trigger violation of critical properties for
user inspection. The properties are designed based on previously known vulner-
abilities and they can be configured and extended in sCompile.

Property: Respect the Limit. In sCompile, we allow users to set a limit on
the amount of Ether transferred out of the contract’s wallet. For each path, we
statically check whether Ether is transferred out of the wallet and whether the
transferred amount is potentially beyond the limit. To do so, for each path, we
use a symbolic variable to simulate the remaining limit. Each time an amount
is transferred out, we decrease the variable accordingly and check whether the
remaining limit is less than zero. If so, the path potentially violates the property.
Note that if we are unable to determine the exact amount to be transferred, we
conservatively assume the limit may be broken.

Property: Avoid Non-existing Addresses. Any hexadecimal string of length
no greater than 40 is considered a valid (well-formed) address in Ethereum. If a
2 Note that each opcode instruction in EVM is associated with some gas consump-

tion which technically makes them money-related. Gas [7] is the cost of any trans-
action that can be utilized to measure actions on Ethereum platform. However,
the gas consumption alone in most cases does not constitute vulnerabilities and
therefore we do not consider them money-related. In Fig. 3, we visualize money-
related nodes with black background (e.g., the node Node 112 162 with a CALL
statement msg.sender.call.value(value)()).

sCompile: Critical Path Identification and Analysis for Smart Contracts 293

non-existing address is used as the receiver of a transfer, the Solidity compiler
does not generate any warning and the contract can be deployed on Ethereum
successfully. If a transfer to a non-existing address is executed, Ethereum auto-
matically registers a new address (after padding 0s in front of address so that its
length becomes 160bits). Because this address is owned by nobody, no one can
withdraw Ether in it since no one has the private key.

For every path which contains instruction CALL or SELFDESTRUCT, sCom-
pile checks whether the address in the instruction exists or not. This is done
with the help of EtherScan Ethereum [12] (which can check whether an address
is registered or not). A path which sends Ether to a non-existing address is
considered to be violating the property. Currently, to minimize the number of
requests to EtherScan, we only query external transactions, thus may lead to
false positives when the address has only internal transactions. Of course, users
can configure sCompile to also check internal transactions.

Property: Guard Suicide. sCompile checks whether a path would result in
destructing the contract without constraints on the date or block number, or the
contract ownership. A contract may be designed to “suicide” (with the opcode
SELFDESTRUCT) after certain date or reaching certain number of blocks, and
often by transferring the Ether in the contract wallet to the owner. A notorious
example is Parity Wallet which resulted in an estimated loss of tokens worthy of
$155 million [18].

We thus check whether there exists a path which executes SELFDESTRUCT
and whether its path condition is constituted with constraints on date or block
number and contract owner address. While checking the former is straightfor-
ward, checking the latter is achieved by checking whether the path contains
constraints on instruction TIMESTAMP or BLOCK, and checking whether the path
condition compares the variables representing the contract owner address with
other addresses. A path which calls SELFDESTRUCT without such constraints is
considered a violation of the property.

contract StandardToken is Token {
1 function destroycontract(address _to) {
2 require(now > start + 10 days);
3 require(msg.sender != 0);
4 selfdestruct(_to);
5 }
6 ...
7 }
8 contract Problematic is StandardToken { ... }

Fig. 4. Guardless suicide

One example is the Problematic contract3 shown in Fig. 4. Contract Problem-
atic inherits contract StandardToken, where one of functions is destroycontract()
allowing one to destruct contract. sCompile can report that line 4 potentially
violates the property.

3 We hide the names of the contracts as some of them are yet to be fixed.

294 J. Chang et al.

Property: Be No Black Hole. In a few cases, sCompile analyzes paths which
do not contain CALL, CREATE, DELEGATECALL or SELFDESTRUCT. For instance, if
a contract has no money-related paths (i.e., never sends any Ether out), sCom-
pile then checks whether there exists a path which allows contract to receive
Ether. The idea is to check whether contract acts like a black hole for Ether. If
it does, it is considered a vulnerability.

To check whether the contract can receive Ether, we check whether there
is a payable function. Since Solidity version 0.4.x, a contract is allowed to
receive Ether only if one of its public functions is declared with the keyword
payable. When the Solidity compiler compiles a non-payable function, the follow-
ing sequence of opcode instructions are inserted before the function body.

1 CALLVALUE
2 ISZERO
3 PUSH XX
4 JUMPI
5 PUSH1 0x00
6 DUP1
7 REVERT

At line 1, the instruction CALLVALUE retrieves the message
value (to be received). Instruction ISZERO then checks if the
value is zero, if it is zero, it jumps (through the JUMPI instruc-
tion at line 4) to the address which is pushed into stack by the
instruction at line 3; or it goes to the block starting at line 5,
which reverts the transaction (by instruction REVERT at line 7).

Thus, to check whether the contract is allowed to receive Ether, we go through
every path to check whether it contains the above-mentioned sequence of instruc-
tions. If all of them do, we conclude that the contract is not allowed to receive
Ether. Otherwise, it is.

If the contract can receive Ether but cannot send any out, we identify the
path for receiving Ether as potentially violating the property and label it with
a warning messaging stating that the contract is a black hole.

Above properties are designed based on reported vulnerabilities. Of course,
sCompile is designed to be extensible, i.e., new properties can be easily supported
by providing a function which takes a path as input and reports whether the
property is violated.

To further help users understand paths of a smart contract, sCompile supports
additional analysis. For instance, sCompile provides analysis of gas consumption
of paths.

However, without trying out all possible inputs, users may not be aware of
the existence of certain particularly gas consuming paths. The gas consumption
of a path is estimated based on each opcode instruction in the path statically.

3.4 Ranking Program Paths

To allow user to focus on most critical paths and to save analyses efforts, we
prioritize paths according to the likelihood they reveal critical vulnerability. For
each path, we calculate a criticalness score and rank paths according to scores.
Criticalness scores are calculated as follows: let pa be a path and V be the set
of properties which pa violates.

criticalness(pa) =
Σpr∈V αpr

ε ∗ bound(pa)
(1)

where αpr is a constant which denotes the criticalness of violating property pr,
bound(pa) is the depth bound of path pa (i.e., the number of function calls) and

sCompile: Critical Path Identification and Analysis for Smart Contracts 295

ε is a positive constant. Intuitively, the criticalness is designed such that the
more critical a property the path violates, the larger the score is; and the more
properties it violates, the larger the score is. Furthermore, it penalizes long paths
so that short paths are presented first for user inspection.

Table 1. Definition of αpr

Transfer limit Non-existing addr. Suicide Black hole

Likelihood 1 1 2 3

Severity 2 3 3 2

Difficulty 2 2 3 2

αpr 4 6 18 12

To assess the criticalness of each property, we use the technique called failure
mode and effects analysis (FMEA [19]) which is a risk management tool widely
used in a variety of industries. FMEA evaluates each property with 3 factors, i.e.,
Likelihood, Severity and Difficulty. Each factor is a value rating from 1 to 3, i.e.,
3 for Likelihood means the most likely; 3 for Severity means the most severe and
3 for Difficulty means the most difficult to detect. The criticalness αpr is then
set as the product of the three factors. After ranking, only paths which have a
criticalness score larger than certain threshold are subject to further analysis,
reducing the number of paths significantly.

In order to identify the threshold for criticalness, we adapt the k-fold cross-
validation [20,21] idea in statistical area. We collected a large set of smart con-
tracts and split them into a training data set (10,452 contracts) and a test data
set (25,678 contracts). We repeated the experiments 20 times which took more
than 5,700 total hours of all machines and optimizes those parameters. The
adapted parameters are shown in Table 1, and ε is set to be 1 and the threshold
for criticalness is set to be 10.

3.5 Feasibility Checking

Not all the paths are feasible. To avoid such false alarms, we filter infeasible paths
through symbolic execution [22]. The basic idea is to symbolically execute a given
program. Symbolic execution has been previously applied to Solidity programs
in Oyente [11] and MAIAN [14]. In this work, we apply symbolic execution to
reduce the paths which are to be presented for users’ inspection. Only if a path
is found to be infeasible by symbolic execution, we remove it. In comparison,
both Oyente and MAIAN aim to fully automatically analyze smart contracts
and thus when a path cannot be determined by symbolic execution, the result
may be a false positive or negative.

For instance, Fig. 5 shows a contract which is capable of receiving (since the
function is payable) and sending Ether (due to owner.transfer(msg.value) at line
5), and thus sCompile does not flag it to be a black hole contract. MAIAN
however claims that it is. A closer investigation reveals that because MAIAN

296 J. Chang et al.

contract GigsToken {
1 function createTokens() payable {
2 require(msg.value > 0);
3 uint256 tokens = msg.value.mul(RATE);
4 balances[msg.sender] = balances[msg.sender].add(tokens);
5 owner.transfer(msg.value);
6 }
7 ...

}

Fig. 5. A non-greedy contract

has trouble in solving path conditions for reaching line 5, and thus mistakenly
assumes the path is infeasible. As a result, it believes there is no way Ethers can
be sent out and thus the contract is a black hole.

4 Implementation and Evaluation

4.1 Implementation

sCompile is implemented in C++ with about 8 K lines of code. The symbolic
execution engine in sCompile is built based on the Z3 SMT solver [23].

4.2 Experiment

We aim to answer research questions (RQ) regarding sCompile’s efficiency, effec-
tiveness and usefulness in practice. Our test subjects contain all 36,099 contracts
(including both the training set and the test set) with Solidity source code down-
loaded from EtherScan. sCompile can directly take EVM code as input and the
source code is used for our manual inspection for experiment purpose.

All experiment are done on an Amazon EC2 C3 xlarge instance installed with
Ubuntu 16.04 and gcc 5.4. The timeout set for sCompile is: global wall time
is 60 s and Z3 solver timeout is 100 milliseconds. The limit on the maximum
number of blocks for a single path is set to be 60, and the limit on the maximum
iterations of loops is set to be 5, i.e., each loop is unfolded at most five times.

RQ1: Is sCompile Efficient Enough for Practical Usage? In this exper-
iment, we evaluate sCompile in terms of its execution time. We systematically
apply sCompile to all the benchmark programs in the training set.

The results are summarized in Fig. 6. In sub-table of Fig. 6, the second, third
and fourth row show the execution of sCompile with call depth bound 1, 2, and
3 respectively. For comparison, the fifth row shows the execution time of Oyente
(the latest version 0.2.7) with the same timeout. We remark that the comparison
should be taken with a grain of salt. Oyente does not consider sequences of
function calls, i.e., its bound on function calls is 1. Furthermore, it does not
consider initialization of variables in the constructor (or in the contract itself).
The next columns show the execution time of MAIAN (the latest commit version
on Mar 19). Although MAIAN is designed to analyze paths with multiple (by
default, 3) function calls, it does not consider the possibility of a third-party
contract calling any function in the contract through inter-contract function calls

sCompile: Critical Path Identification and Analysis for Smart Contracts 297

and thus often explores much fewer paths than sCompile. Furthermore, MAIAN
checks only one of the three properties (i.e., suicidal, prodigal and greedy) each
time. Thus, we must run MAIAN three times to check all three properties. The
different bounds used in all three tools are summarized in Table 2.

Table 2. Loop bound definitions among three tools

Tool Call bound Loop bound Timeout Other bound

sCompile 3 5 60 s 60 cfg nodes

Oyente 1 10 60 s N.A

MAIAN 3 (no inter-contract) N.A 60 s 60 cfg nodes

In sub-table of Fig. 6, the second column shows the median execution time
and the third column shows the number of times the execution time exceeds
the global wall time (60 s). We observe that sCompile almost always finishes
its analysis within 10 second. Furthermore, the execution time remains similar
with different call depth bounds. This is largely due to sCompile’s strategy on
applying symbolic execution only to a small number of top ranked critical paths.
We do however observe that the number of timeouts increases with an increased
call depth bound. A close investigation shows that this is mainly because the
number of paths extracted from CFG is much larger and it takes more time to
extract all paths for ranking. In comparison, although Oyente has a call depth
bound of 1, it times out on more contracts and spends more time on average.
MAIAN spends more time on each property than the total execution of sCompile.
For some property (such as Greedy), MAIAN times out fewer times, which is
mainly because it does not consider inter-contract function calls and thus works
with a smaller CFG.

The sub-figure in Fig. 6 visualizes the distribution of execution time of the
tools in plot-box. The x-axis represents the execution time (in seconds). From
the figure, we can conclude that sCompile is efficient.

Table 3 shows the statistics on the number of processed paths, including the
estimated total number of paths on average (in the second column), the number
of symbolic-executed (based on CFG), and the number passed to users. It can
be observed that only a small fraction of the paths are symbolically analyzed.
Furthermore, the number of symbolically executed paths remain small even when
the call depth bound is increased. This is because only the top ranked critical
paths are analyzed by symbolic execution.

RQ2: Is sCompile Effective to Practical Usage? In the second experi-
ment, we aim to investigate the effectiveness of sCompile. We apply sCompile to
all 36,099 contracts and manually inspect the critical paths reported by sCom-
pile to check whether the path, together with the associated warning message,
reveals a true vulnerability in the contract. Note that not all properties checked
by sCompile readily signals a vulnerability. We only focus on those results pro-
duced by sCompile which are directly related to vulnerabilities in the following,
i.e., paths which are deemed to violate property “avoid non-existing addresses”,

298 J. Chang et al.

Fig. 6. Execution time of sCompile vs. Oyente vs. MAIAN

Table 3. Average number of program paths

In total Symbolic-executed To user

Call depth 1 48.92 37.51 1.49

Call depth 2 6177.21 144.24 12.46

Call depth 3 31346.62 121.23 12.62

Table 4. Comparison on vulnerable contracts

sCompile MAIAN

Alarmed True
positive

False
positive

Alarmed True
positive

False
positive

Avoid non-existing
address

37 32 5 N.A N.A N.A

Be no black hole 57 57 0 141 56 85

Guard suicide 42 38 4 66 30 36

“be no black hole” and “guard suicide”. Note that two of the properties (i.e.,
the latter two) analyzed by sCompile are supported by MAIAN as well. We can
thus compare sCompile’s performance with that of MAIAN for these two prop-
erties. The results are shown in Table 4. In the following, we discuss the detailed
findings4.

For Property: Be no Black Hole, there are 57 contracts in the training set
are marked vulnerable by sCompile. We manually confirmed that they are all

4 We have informed all developers whose contact info are available about the vulnera-
bilities in their contracts and several have confirmed the vulnerabilities and deployed
new contracts to substitute the vulnerable ones. Some are yet to respond, although
the balance in their contracts are typically small.

sCompile: Critical Path Identification and Analysis for Smart Contracts 299

true positives. In comparison, MAIAN identified 141 black hole contracts and
56 contracts among them are true positives, 43 of which overlap with sCompile’s
results. For 13 missed contracts by sCompile but detected by MAIAN, all of them
took more than 60 s and thus sCompile timed out before finishing analyzing.

The other 85 identified by MAIAN are false positives and 62 of them are
library contracts. We randomly choose 5 contracts from the remaining for further
investigation. We find Z3 could not finish solving the path condition in time and
thus MAIAN conservatively marks the contract as vulnerable. After extending
the time limit for Z3 and total timeout, 4 of the 5 false positives are still reported.
The reason is that these contracts can only send Ether out after certain period,
and MAIAN could not find a feasible path to send Ether out for such cases, and
mistakenly flags contract as a black hole.

For Property: Guard Suicide, sCompile reports a program path if it leads to
SELFDESTRUCT, without a constraint on the ownership of the contract or the
date or the block number, i.e., a guard to prevent an unauthorized users from
killing the contract. Among the analyzed contracts, sCompile identified 42 con-
tracts which contain at least one path which violates the property. Many of the
identified contracts violate the property due to contract inheritance as shown in
Fig. 4.

The remaining 4 cases reported by sCompile are false positives. We manually
investigated into them and found that they belong to two uncommon coding
cases (where 3 of them are originated from the same contract) and three of them
can be detected by sCompile by slightly revising its implementation.

MAIAN identified 66 contracts violating the property. 30 of them are true
positives, 13 of which are also identified by sCompile. The other 36 are false
positives. The contract MiCarsToken shown in Fig. 7 shows a typical false alarm.
There are 2 constraints before SELFDESTRUCT in the contract. sCompile considers
such a contract safe for there is a guard of msg.sender == owner (or the other
condition), whereas MAIAN reports a vulnerability as the contract can also be
killed if the msg.sender is not the owner when the second condition is satisfied.

contract MiCarsToken {
function killContract () payable external {

if (msg.sender==owner ||
msg.value >=howManyEtherInWeiToKillContract)

selfdestruct(owner);
}
...

}

Fig. 7. Ambiguous cases between sCompile and MAIAN

We further analyzed the 17 cases which were neglected by sCompile. 6 of
them are alarmed for owner change as exemplified in Fig. 8. In this contract,
selfdestruct is well guarded, but the developer makes a mistake so that the
constructor becomes a normal function, and anyone can invoke mortal() to make
himself the owner of this contract and kill the contract.

For Property: Avoid Non-existing Address. For the contracts in the train-
ing set, all addresses identified are of length 160 bits. However, there are 37

300 J. Chang et al.

contract Mortal {
address public owner;
function mortal() { owner = msg.sender; }
function kill() {

if (msg.sender == owner) suicide(owner); }
}

Fig. 8. Contract of owner change

contracts identified as non-existing addresses (i.e., not registered in Ethereum
mainnet). They may be used for different reasons. For example, in contract
AmbrosusSale, the address of TREASURY does not exist before the function
specialPurchase() or processPurchase() is invoked (which will cost more
gas for its first user). And there are 5 addresses registered by internal transac-
tions.

We further analyzed 25,647 contracts newly uploaded in EtherScan from
February 2018 to July 2018. For “Be no Black Hole”, there are 109 vulnera-
bilities out of 139 alarms generated by sCompile. Applying MAIAN on these
contracts, 84 of them are marked vulnerable, 77 of which are true vulnerabilities
overlapping with those found by sCompile and 7 library contracts are marked
vulnerable mistakenly. Among the 139 contracts, 25 vulnerable ones are missed
by MAIAN according to our manual check. For “Guard Suicide”, there are 83
vulnerabilities out of 114 alarms generated by sCompile. Applying MAIAN on
these contracts, 42 are marked vulnerable, all of which overlap with those found
by sCompile. For “Avoid Non-existing Addresses”, there are 80 vulnerabilities
out of 87 alarms generated by sCompile. The 7 false alarms are due to internal
transactions.

In total, sCompile identifies 224 vulnerabilities from the 36,099 contracts con-
sisting of 46 Black Hole vulnerabilities, 66 Guardless Suicide vulnerabilities and
112 Non-existing Address vulnerabilities.

RQ3: Is sCompile Useful to Contract Users? Different from other tools
which aim to fully automatically analyze smart contracts, sCompile is designed to
facilitate human users. We thus conduct a user study to see whether sCompile is
helpful to them.

The study takes the form of an online test. Once a user starts the test, first
the user is briefed with necessary background on smart contract vulnerabilities
(with examples). Then, 6 smart contracts (selected at random each time from a
pool of contracts) are displayed one by one. For each contract, the source code
is first shown. Afterwards, the user is asked to analyze the contract and answer
the two questions. The first question asks what is the vulnerability the contract
has. The second question requires user to identify the most gas consuming path
in contract (with one function call).

For the first three contracts, the outputs from sCompile are shown alongside
the contract source code as a hint to the user. For the remaining 3 contracts,
the hints are not shown. The contracts are randomized so that not the same
contracts are always displayed with the hint. The goal is to check whether users
can identify the vulnerabilities correctly and more efficiently with sCompile’s
results.

sCompile: Critical Path Identification and Analysis for Smart Contracts 301

We distribute the test through social networks and online professional forums.
We also distribute it through personal contacts who we know have some expe-
rience with Solidity smart contracts. In three weeks we collected 48 success-
ful responses to the contracts (without junk answers)5. Table 5 summarizes the
results. Recall that sCompile’s results are presented for the first three contracts.
Column LOC and #paths shows the number of lines and paths in each contract.
Note that in order to keep the test manageable, we are limited to relatively
small contracts in this study. Columns Q1 and Q2 show the number of correct
responses (the numerator) out of the number of valid responses (the denomina-
tor). We collect the time (in seconds) taken by each user in the Time column
to answer all the questions. In the end of the survey we ask the user to give us
a score (on the scale of 1 to 7, the higher the score the more useful our tool
is) on how useful the hints in helping them answer the questions. The value in
column Usefulness is the average score over all responses because all responses
are shown half the hints.

Table 5. Statistics and results of surveyed contracts

Contract LOC #paths Q1 Q2 Time Usefulness

C1 (w) 33 8 7/8 3/8 119 5

C2 (w) 52 16 7/8 2/8 98

C3 (w) 67 38 7/8 2/8 233

C4 (w/o) 87 59 2/8 1/8 414

C5 (w/o) 103 13 3/8 1/8 397

C6 (w/o) 107 27 4/8 1/8 420

The results show that for the first three contracts for which sCompile’s analy-
sis results are shown, almost all users are able to answer Q1 correctly using less
time. For the last three contracts without the hints, most of the users cannot
identify the vulnerability correctly and it takes more time for them to answer
the question. For identifying the most gas-consuming path, even with the hints
on which function takes the most gas, most of the users find it difficult in answer-
ing the question, although with sCompile’s help, more users are able to answer
the question correctly. The results show that gas consumption is not a well-
understood problem and highlight the necessity of reporting the condition under
which maximum gas consumption happens. All the users think our tool is useful
(average score is 5/7) in helping them identify the problems.

5 Related Work

sCompile is related to existing work on identifying vulnerabilities in smart con-
tracts that can be roughly categorized into 3 groups according to the level at
5 There are about 80 people who tried the test. Most of the respondents however leave

the test after the first question, which perhaps evidences the difficulty in analyzing
smart contracts.

302 J. Chang et al.

which the vulnerability resides at: Solidity-level, EVM-level, and blockchain-
level [17]. In addition, existing work can be categorized according to the tech-
niques they employ to find vulnerabilities: symbolic execution [11,14,24–26],
static-analysis based approaches [27] and formal verification [13,28]. Our app-
roach works at the EVM-level and is based on static analysis and symbolic
execution, and is thus closely related to the following work.

Oyente [11] formulates the security bugs as intra-procedural properties and
uses symbolic execution to check these properties. However, Oyente does not
perform inter-procedural analyses to check inter-procedural or trace properties
as did in sCompile.

MAIAN [14] is recently developed to find three types of problematic contracts
in the wild: prodigal, greedy and suicidal. It formulates the three types of prob-
lems as inter-procedural properties and performs bounded inter-procedural sym-
bolic execution. It builds a private testnet to valid whether the contracts found
by it are true positives by executing the contracts with data generated by sym-
bolic execution. However, sCompile differs from MAIAN in following aspects.
First, sCompile makes a much more conservative assumption about a call to
third-party contract which we assume can call back a function in current con-
tract. sCompile is designed to reduce user effort rather than to analyze smart
contracts fully automatically. Secondly, sCompile supports more properties than
MAIAN. Thirdly, sCompile checks properties in ways which are different from
MAIAN. Other symbolic execution based tools [24,25] perform intra-procedural
symbolic analysis directly on the EVM bytecode as what Oyente does.

The tool Securify [27] is based on static analysis to analyze contracts. It spec-
ifies both compliance and violation patterns for the property. The vulnerability
detection problem is then reduced to search the patterns on the inferred data
and control dependencies information. The use of compliance pattern reduces
the number of false positives in the reported warnings. In the ranking algorithm,
our approach rely on syntactic information to reduce paths for further symbolic
analysis to improve performance. We analyze the extracted paths with symbolic
execution which is more precise than the pure static analysis as adopted by
Securify.

Other attempts on analyzing smart contracts include formal verification using
either model-checking techniques [13] or theorem-proving approaches [28]. They
in theory can check arbitrary properties specified manually in a form accepted
by the model checker or the theorem prover. It is known that model checking has
limited scalability whereas theorem proving requires an overwhelming amount
of user effort.

6 Conclusion

We proposed a practical approach named sCompile to reveal “money-related“
paths in smart contract and to further detect vulnerabilities among critical ones.
In our experiment among 36,099 smart contracts, it detected 224 new vulnera-
bilities. All the new vulnerabilities are well defined in our approach and could
be presented to the user in well-organized information within a reasonable time
frame. A comparison with two existing approaches also demonstrated that sCom-
pile is both efficient and effective.

sCompile: Critical Path Identification and Analysis for Smart Contracts 303

Acknowledgement. This work is supported by the Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant, the Youth Innovation Promotion
Association of the Chinese Academy of Sciences (YICAS) (Grant No. 2017151), the
Young Elite Scientists Sponsorship Program by CAST (Grant No. 2017QNRC001),
and the Blockchain Technology and Application Joint Laboratory, Guiyang Academy
of Information Technology (Institute of Software Chinese Academy of Sciences Guiyang
Branch).

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006)

2. Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: Proceedings of
the June 7–10, 1976, National Computer Conference and Exposition, AFIPS 1976,
pp. 109–112. ACM, New York (1976)

3. Jorstad, N.D., Landgrave, T.S.: Cryptographic algorithm metrics. In: 20th National
Information Systems Security Conference (1997)

4. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 32

5. Brito , J., Castillo, A.: Bitcoin: a primer for policymakers. Mercatus Center at
George Mason University (2013)

6. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies: A Comprehensive Introduction. Princeton Univer-
sity Press, Princeton (2016)

7. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

8. Solidity, the contract-oriented programming language. https://github.com/
ethereum/solidity. Accessed 12 June 2019

9. Attack - the dao - the dao. https://daowiki.atlassian.net/wiki/spaces/DAO/pages/
7209155/Attack. Accessed 12 June 2019

10. Turing, A.M.: On computable numbers, with an application to the Entscheidungs
problem. Proc. London Math. Soc. 42, 230–265 (1937)

11. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

12. Ethereum (eth) blockchain explorer. https://etherscan.io/. Accessed 30 June 2018
13. Kalra, S., Goel, S., Dhawan, M., Sharmar, S.: Zeus: analyzing safety of smart

contracts. In: Network and Distributed Systems Security Symposium 2018, pp.
1–12. internetsociety (2018)

14. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. arXiv preprint arXiv:1802.06038 (2018)

15. Allen, F.E.: Control flow analysis. In: ACM Sigplan Notices, vol. 5, pp. 1–19. ACM
(1970)

16. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 28

17. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

https://doi.org/10.1007/3-540-38424-3_32
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://daowiki.atlassian.net/wiki/spaces/DAO/pages/7209155/Attack
https://daowiki.atlassian.net/wiki/spaces/DAO/pages/7209155/Attack
https://etherscan.io/
http://arxiv.org/abs/1802.06038
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

304 J. Chang et al.

18. Another parity wallet hack explained. https://medium.com/@Pr0Ger/another-
parity-wallet-hack-explained-847ca46a2e1c. Accessed 06 June 2018

19. Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Execu-
tion. ASQ Quality Press, Hardcover (2003)

20. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice
hall, Englewood Cliffs (1982)

21. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Ijcai, vol. 14, pp. 1137–1145. Montreal, Canada (1995)

22. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

24. ConsenSys. Mythril: Security analysis of ethereum smart contracts (2018). https://
github.com/ConsenSys/mythril. Accessed 30 May 2018

25. trailofbits. Manticore: Symbolic execution tool (2018). https://github.com/
trailofbits/manticore. Accessed 30 May 2018

26. Jiang, B., Liu, Y., Chan, W.K.: Contractfuzzer: Fuzzing smart contracts for vul-
nerability detection. arXiv preprint arXiv:1807.03932 (2018)

27. Tsankov, P., Dan, A., Cohen, D.D., Gervais, A., Buenzli, F., Vechev, M.: Secu-
rify: practical security analysis of smart contracts. arXiv preprint arXiv:1806.01143
(2018)

28. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS 2016, pp. 91–96. ACM (2016)

https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
http://arxiv.org/abs/1807.03932
http://arxiv.org/abs/1806.01143

	sCompile: Critical path identification and analysis for smart contracts
	Citation
	Author

	sCompile: Critical Path Identification and Analysis for Smart Contracts
	1 Introduction
	2 Illustrative Examples
	3 Approach
	3.1 Constructing CFG
	3.2 Identifying Monetary Paths
	3.3 Identifying Property-Violating Paths
	3.4 Ranking Program Paths
	3.5 Feasibility Checking

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Experiment

	5 Related Work
	6 Conclusion
	References

