
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

Compositional verification of heap-manipulating programs Compositional verification of heap-manipulating programs

through property-guided learning through property-guided learning

Long H. PHAM
Singapore University of Technology and Design

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Quang LOC LE
Teesside University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
PHAM, Long H.; SUN, Jun; and LOC LE, Quang. Compositional verification of heap-manipulating programs
through property-guided learning. (2019). Programming Languages and Systems APLAS 2019:
Proceedings of the 17th Asian Symposium, Bali, December 1-4. 11893, 405-424.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4639

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4639&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4639&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4639&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Compositional Verification
of Heap-Manipulating Programs Through

Property-Guided Learning

Long H. Pham1(B), Jun Sun2, and Quang Loc Le3

1 Singapore University of Technology and Design, Singapore, Singapore
longph1989@gmail.com

2 Singapore Management University, Singapore, Singapore
3 School of Computing & Digital Technologies, Teesside University, Middlesbrough, UK

Abstract. Analyzing and verifying heap-manipulating programs automatically
is challenging. A key for fighting the complexity is to develop compositional
methods. For instance, many existing verifiers for heap-manipulating programs
require user-provided specification for each function in the program in order to
decompose the verification problem. The requirement, however, often hinders the
users from applying such tools. To overcome the issue, we propose to automat-
ically learn heap-related program invariants in a property-guided way for each
function call. The invariants are learned based on the memory graphs observed
during test execution and improved through memory graph mutation. We imple-
mented a prototype of our approach and integrated it with two existing program
verifiers. The experimental results show that our approach enhances existing veri-
fiers effectively in automatically verifying complex heap-manipulating programs
with multiple function calls.

1 Introduction

Analyzing and verifying heap-manipulating programs (hereafter heap programs) auto-
matically is challenging [45]. Given the complexity, the key is to develop compositional
methods which allow us to decompose a complex problem into smaller manageable
ones. One successful example is the Infer static analyzer [1], which applies techniques
like bi-abduction for local reasoning [36] to infer a specification for each function in a
program to be analyzed.

While Infer generates function specifications for identifying certain classes of pro-
gram errors, we aim to develop compositional methods for the more challenging task of
verifying heap programs with data structures. In recent years, there have been multiple
tools developed to verify heap programs in a compositional way, including Dafny [31],
GRASShopper [43,44] and HIP [10]. These tools are, however, far from being appli-
cable to real-world complex programs. One reason is that substantial user effort is
needed. In particular, besides providing a specification to verify against, users must pro-
vide auxiliary specification to decompose the verification problem. For instance, Dafny,
GRASShopper and HIP all require users to provide a specification for each function
used in the program. Writing the function specification is highly non-trivial. It is thus
desirable to develop approaches for verifying heap programs in a compositional way
which requires minimum user effort.
c© Springer Nature Switzerland AG 2019
A. W. Lin (Ed.): APLAS 2019, LNCS 11893, pp. 405–424, 2019.
https://doi.org/10.1007/978-3-030-34175-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34175-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-34175-6_21

406 L. H. Pham et al.

In this work, we propose to automatically generate function specifications for com-
positional verification of heap programs. Our approach differs from existing approaches
like Infer in three ways. Firstly, because our goal is to verify the correctness of heap
programs with data structures, our approach generates more expressive function speci-
fications than those generated by Infer.

Secondly, we learn a specification of each function call (rather than each function)
in a property-guided way. For instance, assume that we have the following verifica-
tion problem (expressed in the form of a Hoare triple) {pre}func(); func(); {post}
where pre is a precondition, post is a postcondition and func(); func() are two con-
secutive calls of the same function. We automatically generate a program invariant inv
after the first function call and before the second function call. As a result, we gener-
ate the specification {pre}func(){inv} for the first function call and the specification
{inv}func(){post} for the second function call. The (smaller) problems of verifying
these two Hoare triples thus replace the problem of verifying the original Hoare triple.

Thirdly, our invariant generation method is based on a novel technique, namely, a
combination of classification andmemory-graphmutation.We startwith generatingmul-
tiple random test cases (based on existingmethods [37]).We then instrument the program
and execute the test cases to obtain values of multiple features which are related to the
memory graphs before and after each function call in the program. The obtained fea-
ture vectors are labeled according to the testing results (i.e., whether the postcondition
is satisfied or not). Then we apply a classification algorithm [8] to find an invariant that
separates the feature vectors with different labels. The invariant is an arbitrary boolean
formula of the features, which is then used to decompose the verification problem.

There are two technical challenges which we must solve in order to make the above
approach work. First, what features of the memory graphs shall we use? In this work,
we adopt an expressive specification language for heap programs which combines sep-
aration logic, user-defined inductive predicates and arithmetic [10,23,27,45]. We then
define a set of features based on the specification language. In addition, our approach
allows users to define their own features. Secondly, how do we solve the problem of
the lack of labeled samples, i.e., the test cases which we learn from may be limited. To
overcome the problem, we mutate the memory graphs according to the learned invariant
to validate whether the learned invariant is correct. We refine the invariant based on the
validation result (if necessary) and repeat the process until the invariant is validated.

We implement our idea in a prototype, called SLearner, which takes a program to be
verified as input, generates multiple invariants and outputs a set of decomposed verifi-
cation tasks. We integrate SLearner with two existing state-of-the-art verifiers for heap
programs, i.e., GRASShopper and HIP. Experiments are then performed on 110 pro-
grams manipulating 10 challenging data structures. The experimental results show that,
enhanced with our approach, both GRASShopper and HIP are able to successfully ver-
ify programs with multiple function calls without user-provided function specifications.

The novelty of our work is in learning heap-related specification in a property-
guided way and applying graph mutation to improve the learning process. The rest of
the paper is organized as follows. Section 2 presents an illustrative example. Section 3
presents the details of our approach. Section 4 evaluates our approach. Section 5 reviews
related work. Finally, Sect. 6 concludes.

Compositional Verification of Heap-Manipulating Programs 407

Fig. 1. An illustrative example

2 An Illustrative Example

In this section, we illustrate our approach with an example. The program is shown
as function main in Fig. 1, where function createSLL(n) returns a singly-linked list
with length n and function getSum(x, y) returns the sum of the data in two disjoint
singly-linked list objects (pointed to by the two pointers x and y). Note that both func-
tions are recursively defined. The precondition and postcondition are shown at line 2
and 6 respectively. They are specified in an assertion language based on separation
logic (refer to details in Sect. 3). The precondition is self-explanatory. The postcondi-
tion sll(x,)∗sll(y,) intuitively means that x and y are two disjoint singly-linked
list objects, i.e., sll(x, n) is an inductive predicate denoting that x is a singly-linked
list object with n nodes, and ∗ is the separating conjunction predicate specifying the dis-
jointness in separation logic. Besides the postcondition, we assume that memory safety
is always implicitly asserted and thus must be verified. For instance, we aim to verify
that x.data at line 19 would not result in null-pointer de-referencing.

Our experiment shows that state-of-the-art verifiers like GRASShopper and HIP
cannot verify this program. Only after specifications for both functions createSLL
and getSum are provided manually, the program is verified. On one hand, providing a
specification for every function called by the given program is highly nontrivial. On the
other hand, part of the function specification may be irrelevant to verifying the given
program. For an extreme example, if we change the postcondition of the program shown
in Fig. 1 to true, a complete specification for singly-linked lists would not be necessary
to verify the program.

Our approach is to automatically learn a just-enough invariant before and after
each function call so that we can verify the program in a compositional way. For this
example, we learn two invariants: inv1 right after the first function call at line 3 and
inv2 right after the second function call at line 4. Next, we verify the program by
verifying the following three Hoare triples: {m ≤ n}createSLL(m){inv1[res/x]};
{inv1}createSLL(n){inv2[res/y]}; and {inv2}getSum{sll(x,)∗sll(y,)} with
res is a special variable for the return value of a function and inv1[res/x] is a sub-
stitution of all variable x in inv1 by variable res. As the program in each Hoare triple
involves only one function, existing verifiers like GRASShopper and HIP can automat-
ically verify the Hoare triples.

408 L. H. Pham et al.

Table 1. Collected feature vectors and labels

is sll(x) is sll(y) is sll(x) ∧ is sll(y) ∧ sep(x, y) len sll(x) ≤ len sll(y) label

m=1, n=0 true true true false negative

m=0, n=1 true true true true positive

To learn inv1 and inv2, we instrument the program to collect a set of features at
the learning points and collect their values during test executions. For instance, Table 1
shows a few of the features and their values for the above program after line 4 for
learning inv2. The first row shows the features and the second and third rows show
the values of the features given two test cases {m=1, n=0} and {m=0, n=1} respec-
tively. The features are designed based on our assertion language. In particular, feature
len sll(x) is a numeric value denoting the length of a singly-linked list x which is
extracted based on the user-defined predicate sll; feature is sll(x) denotes whether
x points to a singly-linked list, and feature sep(x, y) denotes whether x and y are dis-
joint in the heap. We label each feature vector with either negative or positive, where
negative means that a memory error is generated, the postcondition is violated, or the
test case likely runs into infinite loop (i.e., it does not stop after certain time units); and
positive means otherwise.

Next, we apply a classification algorithm [8] to generate a predicate which separates
the positive and negative feature vectors. The predicate takes the form of an arbitrary
boolean formula of the features. Given the feature vectors in Table 1, the generated
predicate is: len sll(x) ≤ len sll(y). Although this predicate is an invariant after
line 4, it is not strong enough to verify the postcondition. This is in general a problem
due to having a limited number of test cases. To solve the problem, we systematically
mutate the memory graphs obtained during the test executions to obtain more labeled
feature vectors with the aim to improve the predicate (see details in Sect. 3.5). In our
example, with the additional feature vectors, the classification algorithm generates the
following predicate for inv2.

(is sll(x) ∧ is sll(y) ∧ sep(x, y) ∧ x=null) ∨
(is sll(x) ∧ is sll(y) ∧ sep(x, y) ∧ len sll(x) ≤ len sll(y))

We obtain x=null ∨ (is sll(x) ∧ len sll(x) ≤ n) similarly for inv1 after line 3.
Afterwards, inv1 and inv2 are translated into the formulas in our assertion lan-

guage. Note that the translation is straightforward since the features are designed based
on the assertion language. The last step is to verify three verification problems. This
is done using state-of-the-art verifiers for heap programs. For instance, HIP solves the
three verification problems automatically, which verifies the program.

For efficiency, in the verification step we perform the following two simplifications.
First, for dead code detection, we invoke a separation logic solver (e.g., the one pre-
sented in [27,29]) to check the satisfiability of inferred invariant. Secondly, we identify
and eliminate the frame of a Hoare triple before sending them to the verifiers. For exam-
ple, for the Hoare triple {inv1}createSLL(n){inv2[res/y]}, we find that x has not
been accessed by the code, the occurrences of the singly-linked list x in both the pre-
condition and postcondition of the triple are eliminated before sending it to the verifiers.

Compositional Verification of Heap-Manipulating Programs 409

Fig. 2. Syntax: where c is a data type; k is an integer value; ti, v, r are variables; and t̄ is a
sequence of variables

3 Our Approach

3.1 Problem Definition

Our input is a Hoare triple {pre}prog{post}, where pre is a precondition, post is post-
condition and prog is a heap program which may invoke other functions. One exam-
ple is the function main shown in Fig. 1. The precondition and postcondition are in an
expressive specification language previously developed in [10,23,27,45]. The language
supports separation logic, inductive predicates and Presburger arithmetic [19], which is
shown to be expressive to capture many properties of heap programs.

The syntax of the language is presented in Fig. 2. In general, a predicate Φ in this
language is a disjunction of multiple symbolic heaps. A symbolic heap Δ is an exis-
tentially quantified conjunction of a heap formula κ (i.e., a predicate constraining the
memory structure) and a pure formula π (i.e., a predicate constraining numeric vari-
ables). A heap formula κ is an empty heap predicate emp, a points-to predicate r �→c(t̄)
(where r is its root variable), a user-defined predicate P(t̄), or a spatial conjunction of
two heap formulas κ1 ∗ κ2. User-defined predicates are defined in the same language.
A pure formula π can be true , an (in)equality on variables, a Presburger arithmetic
formula, negation of a formula, or their conjunction. We refer the readers to [19] for
details on Presburger arithmetic. We note that v1 �=v2 (resp. v �=null) is used to denote
¬(v1=v2) (resp. ¬(v=null)) and we may use to indicate “don’t care” values.

For instance, the following predicate sll(x,n) defines a singly-linked list (with a
root-pointer x and size n), which is used in the illustrative example.

sll(x, n) ≡(emp ∧ x=null ∧ n=0)
∨ (∃ q, n1· x�→Node(, q) ∗ sll(q, n1) ∧ n=n1+1)

Our problem is to automatically verify the Hoare triple. Different from existing
approaches, we aim to do that in a compositional way without user-provided function
specifications.

3.2 Test Generation and Code Instrumentation

Given {pre}prog{post}, we first automatically generate a test suite S using existing
test case generation methods like [37]. Note that we do not require the test cases to
satisfy the precondition because negative feature vectors from invalid test cases will be
filtered out by our learning process. Based on the testing results, we divide S into two
disjoint sets. One set includes passed test cases that terminate normally without any

410 L. H. Pham et al.

memory error or violation of the postcondition, denoted as S+. The other set contains
the remaining ones, denoted as S−. Note that we heuristically consider that a test case
does not terminate after waiting for a threshold number of time units. Afterwards, we
identify all function calls in prog and add learning points before and after each call. At
each learning point l, we identify a set of relevant variables, denoted as Vl. We apply
static program slicing to remove the variables which are visible at l but irrelevant to
the postcondition or memory safety. In the example shown in Fig. 1, the sets of relevant
variables at learning point 1 and 2 are {x, n} and {x, y} respectively. For each learning
point, we instrument the program to extract a vector of features from each test.

3.3 Feature Extraction

Central to our approach is the answer to the question: what features to extract? In this
work, we view a program state as a memory graph and systematically extract two groups
of features based on the memory graph. One group contains generic features of the
memory graph and the other contains features which are specific to the verification
task. Formally, a memory graph G is a tuple (M, init, E, Ty, L) such that

– M is a set of heap nodes including a special node null;
– init ∈ M is a special initial node;
– E is a set of labeled and directed edges such that (s, n, s′) ∈ E means that we can
access heap node s′ via a pointer named n from s. An edge starting from init is
always labeled with one of the variables in the program.

– Ty is a total labeling function which labels each heap node in M by a type;
– and L is a labeling function which labels a heap node of primitive type by a value.

Fig. 3. A memory graph

Given a test case and a learning point, we represent the
program state at the learning point during the test execu-
tion in the form of a memory graph (M, init, E, Ty, L).
Figure 3 shows the memory graph for our example at the
learning point 2 with test input m = 0 and n = 1. Note
that any rooted path of a memory graph represents a vari-
able, e.g., the path with the sequence of labels 〈y, next〉
in the above memory graph is a variable y.next at learn-
ing point 2. For complicated programs, the memory graph
might contain many paths and thus many variables from
which we can extract features. We thus set a bound on the
number of de-referencing to limit the number of variables.
For example, if we set the bound to be 2, we focus on vari-

ables {x, x.data, x.next, y, y.data, y.next} at learning point 2 and similarly variables
{x, x.data, x.next, n} at learning point 1. With length bounded to 1, we focus only on
{x, y} at learning point 2 and {x, n} at learning point 1.

We extract two groups of boolean features based on the memory graph. The first
group contains generic heap-related features, which include the following.

– For each reference type variable x, we extract two features which represent if it is
null or not, i.e, whether its corresponding path leads to the special node null.

Compositional Verification of Heap-Manipulating Programs 411

Table 2. Features

feature # feature # feature

1 x = null 10 x �→Node()∧is sll(y)∧sep(x, y) 19 len sll(x) + len sll(y) > 0

2 y = null 11 is sll(x)∧y �→Node()∧sep(x, y) 20 len sll(x) − len sll(y) > 0

3 x �→Node() (a.k.a. x �= null) 12 is sll(x)∧is sll(y)∧sep(x, y) 21 −len sll(x) + len sll(y) > 0

4 y �→Node() (a.k.a. y �= null) 13 len sll(x) > 0 22 −len sll(x) − len sll(y) > 0

5 x = y 14 len sll(y) > 0 23 len sll(x) + len sll(y) = 0

6 x �= y 15 len sll(x) < 0 24 len sll(x) − len sll(y) = 0

7 is sll(x) 16 len sll(y) < 0 25 −len sll(x) + len sll(y) = 0

8 is sll(y) 17 len sll(x) = 0 26 −len sll(x) − len sll(y) = 0

9 x �→Node()∧y �→Node()∧sep(x, y) 18 len sll(y) = 0

– For each pair of reference type variables, we extract two features which represent if
the two variables are aliasing or not, i.e., whether their corresponding paths
lead to the same non-null node.

– For each pair of reference type variables, we extract a feature which represents
whether two variables are separated in the memory. Assume that variables x and
y lead to nodes nx and ny , x and y are separated, denoted as sep(x, y), if and only
if all reachable nodes except null from nx (including nx) are not reachable from
ny and vice versa.

– For each pair of the numeric variables, we extract boolean features in difference
logic and the octagon abstract domain [34], e.g., ±x ±y >c, ±x ± y = c, ±x>c or
x=c where c is a constant. We apply a heuristic to collect constants in conditional
expressions in the given program as candidate values for c. The value 0 is chosen by
default.

While general heap-related features are often useful, some programs can only be proven
with features which are specific to the verification problem. Thus, we extract a second
group of features based on user-defined predicates used to assert the correctness of the
given program, which include the following.

– For every permutation of n variables, we extract a feature which represents whether
the variables satisfy the predicate. For instance, given the user-defined predicate
sll which has one reference type parameter, we extract a feature which represents
whether x satisfies the predicate, for each reference variable x.

– For a pair of two sequences of variables X and Y which satisfy some user-defined
predicates, we extract a feature which represents whether the variables are separated
in the memory, i.e., all nodes reachable from any variable in X (except null) are
not reachable from any node in Y and vice versa. This feature is inspired by the
separation conjunction operator ∗ in our assertion language. For instance, given x
and y which both satisfy is sll, this feature value is true if and only if all objects
in the singly-linked list x and singly-linked list y are disjoint in memory. Note that
this feature subsumes the feature sep(x, y) explained above.

– For each numeric parameter of the user-defined predicate, we use a variable to repre-
sent its value for each sequence of variables which satisfy the predicate. For instance,
as sll has a numeric parameter, if variable x satisfies sll, we use a fresh variable

412 L. H. Pham et al.

(denoted as len sll for readability) to represent the value of the numeric param-
eter. Boolean features of these numeric variables, together with existing numeric
variables, are then extracted in the chosen abstract domains.

In general, user-defined predicates can be complicated. Existing heap program veri-
fiers like GRASShopper and HIP maintain a library of commonly used predicates. We
adopt the predicates in their library and define the corresponding functions to extract the
above-mentioned features in the form of an extensible library for our approach. Note
that this is a one-time effort. For instance, Table 2 shows the list of 26 features which
we extract at learning point 2 for the program shown in Fig. 1.

3.4 Learning for Compositional Verification

In the following, we present our approach on learning an invariant based on the
extracted feature vectors. Recall that we systematically instrument the program at every
learning point, then extract a value for every feature we discussed above. In our imple-
mentation, each feature is extracted using a function which returns a boolean value.
Afterwards, each test case is executed so that we collect a vector of boolean values
(a.k.a. a feature vector) which represents an abstraction of the memory graph accord-
ing to the chosen features. If the test case finishes successfully, the feature vector is
labeled positive; otherwise, it is labeled negative. The labeled feature vectors can be
organized into a matrix M whose rows are feature vectors and whose columns are the
feature values in all test cases. To ensure all feature vectors have the same dimension,
if a feature does not apply (e.g., a variable is not accessible in the test case), we set the
corresponding feature value to a special default value. For instance, Table 3 shows the
matrix where the features are sequenced in the same order of Table 2.

The first step in our learning process is normalising the matrix M . If there are
two rows with the same feature values and same labels, one of them is redundant and
removed. Next, we apply the algorithm in [8] to learn a boolean combination of fea-
tures to separate positive and negative vectors. Informally, the algorithm considers each
feature vector as a point in space and every positive point is connected to every negative
point by a line. A feature ‘cuts’ a line if the corresponding positive point and negative
point have different values for the feature. The goal is to find a list of features that can
cut all the lines, i.e., separate all positive and negative points. The features are chosen
using a greedy algorithm. At each step, the feature which cuts the most number of uncut
lines is selected. After all lines are cut, the selected features partition the space into mul-
tiple regions, each of which contains either positive points only or negative points only.
Each region can be characterised by a conjunction of the features and the disjunction of
all the formulas characterising the positive regions is a boolean formula which separates
all the positive and negative feature vectors.

The details are shown in Algorithms 1 and 2. In Algorithm 1, the input is a nor-
malised matrix M and the output is the list of features K which can classify all positive
and negative rows in M . K is initialised as an empty list (line 1). A list L is initial-
ized to contain all pairs of rows (i, j) such that i is the index of a positive row and j
is that of a negative row (line 1). During each iteration, the feature k that ‘cuts’ the
most number of pairs in L is identified (line 3). Note that we do not consider the case

Compositional Verification of Heap-Manipulating Programs 413

Table 3. Matrix of feature vectors

Vectors obtained from test cases
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Label
1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 positive
1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 positive
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 positive
0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 negative

Vectors obtained from memory graph mutation
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 positive
0 0 1 1 0 1 0 1 1 1 0 0 N 1 N 0 N 0 N N N N N N N N negative
0 1 1 0 0 1 0 1 0 1 0 0 N 0 N 0 N 1 N N N N N N N N negative
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 negative
1 0 0 1 0 1 1 0 0 0 1 0 0 N 0 N 1 N N N N N N N N N negative
0 0 1 1 0 1 1 0 1 0 1 0 1 N 0 N 0 N N N N N N N N N negative
0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 negative

Algorithm 1: Choose the list of features choose(M)

1 K = {}; L = {(i, j) | row i is positive and row j is negative};
2 while L is not empty do
3 Find k s.t. {(i, j) ∈ L | Mik = 1 ∧ Mjk = 0} is the largest;
4 if the number of pairs (i, j) that k can classify is 0 then
5 Stop and ask for user input for a new feature;

6 else
7 Remove (i, j) s.t. Mik = 1 ∧ Mjk = 0 from L;
8 Add k to K;

9 Return K;

Mik = 0 ∧ Mjk = 1 because it will create the negations of features, which may not
be easily transformed into separation logic. We then remove from L the pairs that are
classified correctly by k (line 7) and add the new feature k into K (line 8). The loop
stops when L is empty (line 2) or the best feature at the current iteration cannot classify
more pairs (line 4). In the former case, we return the list of features K (line 9). In the
latter case, it means the features are not sufficient to distinguish all positive and negative
rows. We thus stop and may ask users to provide a new feature (line 5).

Algorithm 2 then shows how a boolean formula that classifies all positive and neg-
ative rows in M is constructed from the chosen features. The input is a normalised
matrix M and a list of features K chosen using Algorithm 1 and the output is a boolean
combination of these features. Initially, the list of regions R is empty; PP and NP are
the set of indexes of positive and negative rows respectively (line 1). Recall that each
row can be seen as a point in space. All points in PP are marked as uncovered at line
2. Favoring simple hypothesis (which is a heuristics often applied in machine learning),

414 L. H. Pham et al.

Algorithm 2: Combine the features combine(M,K)
1 R = {}; PP = {p | row p is positive}; NP = {n | row n is negative};
2 Mark all p ∈ PP as uncovered;
3 for i = 1 to |K| do
4 Create all combinations C with i elements from the list of features K;
5 for each combination c ∈ C do
6 if ∀n ∈ NP ∃k ∈ c : Mnk = 0 then
7 CP = {p | p ∈ PP and ∀k ∈ c : Mpk = 1};
8 if CP contains at least one uncovered index then
9 Remove from R the combinations that have the covered indexes are

proper subsets of CP ;
10 Add c to R; Mark all p ∈ CP as covered;
11 if all p ∈ PP are covered then
12 Return R;

we try the combination from 1 feature to |K| (which is the number of features in K)
features (line 3). At line 4, all the combinations of i features are created. For each com-
bination (line 5), we check if the created region contains no negative points (line 6). If
it is the case, we find a list of positive points that are covered by the region (line 7). If
this region contains at least one uncovered point (line 8), we add this combination into
R and mark the positive points in the region as covered (line 10). Line 9 simplifies the
results by removing the chosen regions that only cover a proper subset of positive points
in the new region. When all positive points are covered, we return the set of combina-
tions R (lines 11 and 12). Each combination is a conjunction of features and the set of
combinations is the disjunction of these conjunctions.

For our example, at the learning point 2, after removing redundant rows, we have
a matrix with 4 rows and 26 columns, i.e., the bolded rows in Table 3. Rows 1, 2 and
3 are positive, whereas row 4 is negative. To separate these rows, two columns 1 and
4 are chosen. From this, we can form two regions, in particular, the first one with only
column 1, the second one with only column 4. These two columns represent feature
x = null (column 1) and y �= null (column 4). As a result, we learn the predicate
x = null ∨ y �= null. Note that this predicate is incorrect and it is to be improved
later.

It can be shown that Algorithms 1 and 2 always terminate. The worst-case complexity
of Algorithm 1 is O(Row4 ∗ Col) where Row and Col are the number of rows and
columns in the input matrix respectively. For Algorithm 2, the worst-case complexity
is O(2|K| ∗ (Row ∗ Col + Row3)). While the worst-case complexity is high, these
algorithms are often reasonably efficient (as we show in our empirical study). The main
reason is that the number of features K (which dominates the overall complexity) is
often small (average 1.05 in our experiments).

Compositional Verification of Heap-Manipulating Programs 415

3.5 Automatic Memory Graph Mutation

Recall that we only need a correct predicate, which is an invariant at the learning point
and sufficient to prove the postcondition. A fundamental limitation of using classifica-
tion techniques is that the learned predicate is likely incorrect if the feature vectors (i.e.,
test cases) are insufficient. One way to solve this problem is to use a program verifier
to check whether the predicate is correct. If it is not correct, the verifier would gener-
ate a counterexample and the learning process can continue with a new feature vector
obtained from the counterexample. This approach is not ideal for two reasons. One is
that verifying heap programs is often costly and thus we would like to avoid it as long
as possible. The other is that it is highly nontrivial to construct counterexamples when
verifying heap programs [5].

Because of that, in this work, to improve the learned predicate, we apply an idea
similar in spirit to [11] to automatically mutate the memory graphs obtained from the
test cases and generate more program states. For each learned predicate Φ, we system-
atically apply a set of mutation operators based on Φ. For each variable x in Φ, if it is a
reference type, the following mutation operators are applied.

1. Point x to a freshly constructed object of the right type.
2. Point x to a heap node of the right type in the memory graph (including null).
3. Swap x with another reference type variable.

If x is a primitive type, we follow the idea in [42] and mutate it by setting it to a
constant, increasing/decreasing its value with a pre-defined offset, or swapping it with
another primitive variable. The number of mutants we generate depends on the current
learned predicate.

These mutation operators are designed to create states which potentially invalidate
the learned predicate. For instance, if the current predicate is is sll(x) ∧ is sll(y)
∧ sep(x, y), where x and y are two reference variables, applying the mutation opera-
tors allows us to obtain memory graphs which invalidate is sll(x), is sll(y) and/or
sep(x, y). The expectation is that such a mutated program state would lead to violation
of the postcondition and thus be labeled with negative. If our expectation is met, the
predicate is now more likely to be correct; otherwise, the predicate is incorrect and is
refined with the new feature vector.

In the extreme cases when all feature vectors are labeled positive or negative, the
learned predicates are true or false respectively. We then apply all mutation opera-
tors to all variables at the learning point. In our implementation, the mutation is done
automatically by instrumenting statements which mutate the according variables at the
learning point. We then run the test suite with the mutated program, collect new feature
vectors and new test results. These new feature vectors are added into the matrix to
learn new predicates.

The mutation at a learning point in the middle of the program may result in program
states which may not be reachable. As a result, the final learned predicate, which is
expected to be an invariant, may be weaker than the actual one (if the mutated program
state is labeled as positive). However, a weaker invariant may still serve our goal of
verifying the program. To give an example, in the extreme case, if the postcondition is

416 L. H. Pham et al.

true (and there is no risk of memory error), it is sufficient to learn the invariant true.
We repeat this process of mutation and learning until the learned invariant converges.

For our example, at the learning point 2, after obtaining the first predicate x =
null∨ y �= null, we apply mutation and obtain more feature vectors. The new feature
vectors are shown in Table 3 where N is a special value denoting that the feature is not
applicable. Next, applying Algorithm 1, the chosen features this time are x = null,
is sll(x) ∧ is sll(y) ∧ sep(x, y), len sll(x) < len sll(y), and len sll(x) =
len sll(y) (column 1, 12, 21 and 24). From these 4 columns, we form 3 regions:
{12, 1}, {12, 21} and {12, 24}, which are transformed into the invariant inv2 we show
in Sect. 2. Similarly, with the help of state mutation, we improve the learned invariant
at l1 from x = null ∨ n > 0 to x = null ∨ (is sll(x) ∧ len sll(x) ≤ n).

The process of mutation and learning always terminates. As we only have a finite
set of variables and features, the set of feature vectors is finite and thus the process
of mutation converges eventually. Furthermore, matrix normalisation guarantees we do
not have redundant rows in the matrix and, hence, the matrix is finite and the learning
process always terminates.

3.6 Compositional Verification

Lastly, we show how we use the learned invariants to verify heap programs in a compo-
sitional way. Firstly, we transform each loop in the program into a fresh tail recursive
function. Then the loop is replaced with a call to the corresponding function. Note that
in the case of nested loops, we create multiple functions in which the function accord-
ing to the outer loop will call the function according to the inner loop. This is a standard
strategy adopted from existing program verifiers for heap programs [10]. We then treat
loops in the same way as (recursive) function calls.

Secondly, we identify the learning points, i.e., before and after each function call
statements and learn invariants at these points. Note that we do not learn before/after
recursive function calls. This is because program verifiers for heap programs like
GRASS-hopper and HIP support inductive reasoning and thus one specification for
each recursive function is sufficient. Assume that the invariant learned before function
call Ci is Ii and the one learned after Ci is Ii+1.

Thirdly, for each function call Ci, we generate a proof obligation in the form of
a Hoare triple {Ii}Ci{Ii+1}, to prove that calling function Ci with Ii being satisfied
results in a state satisfying Ii+1. Each proof obligation is submitted to a program ver-
ifier. Once the proof obligation is discharged, we replace the function call Ci with its
now-established specification, i.e., two statements assert Ii; assume Ii+1. That is,
we instrument the learned invariants into the program such that the invariant learned
before/after Ci becomes an assert/assume-statement respectively.

Finally, we use an existing program verifier to verify the transformed program. Note
that the program does not contain any function call (other than possibly a recursive call
of itself) now. It is straightforward to see that the program satisfies the postcondition
and is memory-safe with the precondition if all proof obligations are discharged and
the transformed program is verified. If any part is not proved and a counterexample is
constructed by the verifier, we use the counterexample to learn new invariants and then
try to prove new Hoare triples.

Compositional Verification of Heap-Manipulating Programs 417

Table 4. Results on GRASShopper (Gh)

Gh Gh+SLearner Gh+SLearner-Mutation

Data structure Functions #Calls #Progs #V Time(s) #V Time(s) L Time(s) #V Time(s) L Time(s)

Singly-linked
list

Traverse, Dispose, Insert,
Remove, Concat

1 5 5 1.50 5 1.50 0 5 1.50 0

2 12 0 - 12 4.97 202 0 - 32

3 18 0 - 18 10.74 610 0 - 99

Sorted list Traverse, Dispose, Insert 1 3 3 1.40 3 1.40 0 3 1.40 0

2 6 0 - 6 4.94 152 4 2.71 12

3 6 0 - 6 6.96 368 2 2.32 32

Binary tree Traverse, Dispose, Insert 1 3 3 43.63 3 43.63 0 3 43.63 0

2 6 0 - 4 90.23 134 4 90.23 12

3 6 0 - 2 89.26 313 2 89.26 30

4 Implementation and Evaluation

Our approach has been implemented as a prototype, called SLearner, with 3070 lines of
Java code. In the following, we evaluate SLearner to answer multiple research questions
(RQ). All experiments are conducted on a laptop with one 2.20 GHz CPU and 16 GB
RAM. To reduce the effect of randomness, we run each experiment 20 times with 10
random test cases each time.

RQ1: Can our approach enhance state-of-the-art verifiers for heap programs?We inte-
grate SLearner into two state-of-the-art verifiers for heap programs: GRASShopper
and HIP. Although GRASShopper and HIP target the same class of programs, their
approaches differ in multiple ways, e.g., they provide a different library of user-defined
predicates and they have different verification strategies. They thus allow us to check
whether SLearner is general enough to support different program verifiers. We remark
that alternative program verifiers like CPAChecker [6] and SeaHorn [20] target differ-
ent classes of programs or program properties and hence are not applicable. The only
other tool which is capable of verifying heap programs with heap-related specification
is jStar [12], which is, however, no longer maintained.

We conduct two sets of experiments based on these two verifiers. Our first experi-
ment is with GRASShopper. Although GRASShopper supports inductive predicates for
describing data structures, unlike HIP, it does not support reasoning about separation
logic directly. The inductive predicates in GRASShopper are defined based on first-
order logic with some built-in predefined predicates. Due to GRASShopper’s limitation,
we conduct an experiment based on a set of benchmark programs in its distribution. All
programs and experimental results are available at [2] and the tool is available at [3].

The GRASShopper distribution contains many functions for different types of data-
structures. We focus on those non-trivial recursive functions with precondition and post-
condition. To check howGRASShopper performs with and without SLearner, we gener-
ate a set of composite programs which randomly invoke one or more of these functions.
The function call sequence is formed such that the postcondition of a previous function
is identical (via syntactical checking) to the precondition of the subsequent function.
The precondition of the composite program is composed from preconditions of invoked

418 L. H. Pham et al.

functions and the postcondition of the last function in the call sequence is the postcondi-
tion of the composite program. In total, we generate 65 composite programs containing
1, 2 and 3 function calls.

Table 5. Results on HIP

HIP HIP+SLearner HIP+SLearner-Mutation

Data structure Program Result #Succ Time(s) Result #Succ Time(s) L Time(s) Result #Succ Time(s) L Time(s)

Singly-linked list Clean Fail 0 - Succ 20 0.37 17 Fail 0 - 3

Clone Fail 0 - Succ 20 0.45 17 Fail 0 - 3

Min Fail 0 - Fail 0 - 17 Fail 0 - 2

Reverse Fail 0 - Fail 0 - 17 Fail 0 - 3

Sort Fail 0 - Fail 0 - 17 Fail 0 - 3

Insert Fail 0 - Succ 20 0.42 38 Fail 0 - 3

Delete Fail 0 - Succ 20 0.42 37 Fail 0 - 2

Append Fail 0 - Succ 20 0.45 90 Fail 0 - 6

GetLast Fail 0 - Succ 20 0.42 17 Fail 0 - 3

GetSum Fail 0 - Succ 15 1.02 77 Fail 0 - 6

ToDll Fail 0 - Succ 20 0.30 17 Fail 0 - 3

Doubly-linked list Clean Fail 0 - Succ 20 0.43 17 Succ 20 0.43 3

Clone Fail 0 - Succ 20 0.67 17 Succ 20 0.67 3

Min Fail 0 - Fail 0 - 17 Fail 0 - 3

Reverse Fail 0 - Fail 0 - 17 Fail 0 - 3

Sort Fail 0 - Fail 0 - 17 Fail 0 - 3

Insert Fail 0 - Succ 20 0.58 18 Succ 19 0.58 3

Delete Fail 0 - Succ 20 0.65 17 Succ 20 0.65 3

Append Fail 0 - Succ 20 0.40 92 Fail 5 - 6

Sorted list Clean Fail 0 - Succ 20 0.35 17 Succ 20 0.37 3

Clone Fail 0 - Succ 20 0.37 17 Succ 18 0.35 3

Min Fail 0 - Succ 20 0.37 17 Succ 19 0.37 3

Travel Fail 0 - Succ 20 0.54 17 Succ 18 0.54 2

Insert Fail 0 - Fail 0 - 16 Fail 0 - 3

Delete Fail 0 - Fail 0 - 18 Fail 0 - 3

Cycle list Clean Fail 0 - Fail 0 - 17 Fail 0 - 3

Min Fail 0 - Fail 0 - 17 Fail 0 - 3

Travel Fail 0 - Succ 20 0.30 17 Fail 0 - 3

ToSll Fail 0 - Fail 0 - 17 Fail 0 - 3

Binary tree InOrder Fail 0 - Succ 20 0.43 16 Succ 20 0.43 2

PreOrder Fail 0 - Succ 20 0.46 17 Succ 20 0.46 3

PostOrder Fail 0 - Succ 20 0.45 17 Succ 20 0.45 3

Min Fail 0 - Succ 20 0.51 17 Succ 20 0.51 3

Max Fail 0 - Succ 20 0.51 17 Succ 20 0.51 3

Prec Fail 0 - Succ 20 0.57 17 Succ 20 0.57 3

Succ Fail 0 - Succ 20 0.57 17 Succ 20 0.57 3

Insert Fail 0 - Succ 20 0.67 17 Succ 20 0.67 3

Delete Fail 0 - Fail 0 - 22 Fail 0 - 3

AVL tree Insert Fail 0 - Fail 0 - 17 Fail 0 - 3

Delete Fail 0 - Fail 0 - 24 Fail 0 - 3

Red-black tree Insert Fail 0 - Fail 0 - 22 Fail 0 - 3

Delete Fail 0 - Fail 0 - 38 Fail 0 - 3

MCF Travel Fail 0 - Fail 0 - 17 Fail 0 - 3

Rose tree Travel Fail 0 - Fail 0 - 17 Fail 0 - 3

Tll SetRight Fail 0 - Succ 20 2.40 16 Succ 19 2.40 2

Compositional Verification of Heap-Manipulating Programs 419

Table 4 shows the results, where the first four columns show the type of data struc-
ture, the involved functions, the number of function calls and the number of programs
in the category. The next column shows the result of GRASShopper without the help
of SLearner, i.e., the program is verified using GRASShopper without the specification
of each invoked function in the program. We measure the number of verified programs
(column #V) and the time taken. The next column shows the results of GRASShopper
enhanced with SLearner. No additional user-defined predicates besides those provided
in GRASShopper are used in our experiments. Note that we extract features automati-
cally based on the user-defined predicates in GRASShopper in the experiment.

Without SLearner, GRASShopper only verifies 11 (out of 65) programs with 1 func-
tion call. For the remaining 54 programs which have 2 or 3 function calls, GRASS-
hopper fails to verify any of them. This is expected as GRASShopper is unable to derive
the necessary function specification automatically. Enhanced with SLearner, GRASS-
hopper verifies 59 (out of 65) programs. For all these programs, we learn the correct
invariants in every one of the 20 runs.

The second experiment is with HIP. We generate 45 programs based on common
operations for 10 different data structures. Each program consists of multiple function
calls. Each program starts with a call of a constructor which creates an object of the tar-
get data structure (e.g., a singly-linked list), or a function which reads the data structure
(e.g., checking whether the root node is null, or traveling through the data structure).
Lastly, a function supported by HIP for this data structure is called which may modify
the data structure. The postcondition of the program is the postcondition of the last func-
tion. The precondition is manually written and checked to guarantee that the program
terminates and satisfies the postcondition without any memory error.

Table 5 shows the results, where column Program shows the last function called
in the program. Column HIP+SLearner shows the results using HIP enhanced with
SLearner. Note that we may not be able to learn the same invariants every time due
to randomness in generating the initial set of test cases. Thus, we add a column #Succ
to show how many times, out of 20, we are able to learn the invariant and verify the
program. No additional user-defined predicates besides those defined in HIP are used
in our experiments. Column HIP shows that without SLearner, none of these programs
is verified. With SLearner, HIP successfully verifies 27 programs. In all but 1 case
(highlighted with bold) we are able to learn the same invariant consistently.

RQ2: Which features are useful in verifying heap programs? We learn invariants based
on two groups of features, i.e., general heap-related features and those specific to user-
defined predicates. The question is whether these two groups of features are useful and
whether there are other features which we could learn based on.

In total, SLearner learned 104 invariants (74 with GRASShopper and 30 with HIP)
to help solving the verification tasks. Among them, 93 invariants (66 with GRASShop-
per and 27 with HIP) contain only features extracted based on the user-defined predi-
cates (e.g., ds(x) or ds(x)∗ds(y) with ds being a user-defined predicate). The remain-
ing 11 invariants are additionally constituted with generic features (e.g., x = null or
x �= null). None of the invariants is constituted with general heap-related features
only. The results show that the user-defined predicates are important and invariants spe-
cific to a verification problem are needed for proving the program. Generic heap-related
features are also necessary sometimes (in 11% of the cases).

420 L. H. Pham et al.

A total of 24 programs (6 with GRASShopper and 18 with HIP) are not verified.
There are two main reasons why they cannot be proved even with the help of SLearner.
Firstly, some programs can only be verified with complex function specifications which
require features that are not supported in SLearner. For example, to prove the remaining
6 programs in the experiment with GRASShopper, we need a feature characterizing the
paths in the tree, which cannot be derived from user-defined predicates. This is simi-
larly the case for experiments with HIP. One remedy is to extend our implementation
with additional features through automatic lemma learning [28]. Secondly, there are
programs that have a hierarchy of function calls, e.g., function calls within recursive
functions. Some of the function calls occur under strict condition which is never satis-
fied by the test cases and thus we are unable to learn the specification of those function
calls. This is a fundamental limitation of dynamic analysis approaches, which could be
overcome with a comprehensive test suite from a systematic test case generation app-
roach [39–41].

RQ3: Is memory graph mutation helpful?We compare the performance of the enhanced
GRASShopper and HIP with and without memory graph mutation. The results are
shown in the last columns of Tables 4 and 5. It can be observed that without memory
graph mutation, the number of verified programs by GRASShopper is reduced from
59 to 23, and the number of verified programs by HIP is reduced from 27 to 17. It
thus clearly shows that memory graph mutation helps to improve the correctness of the
learned invariants. Furthermore, we observe that without memory graph mutation, it is
more likely that different invariants are learned in different runs of the same experi-
ments (refer to column #Succ). This is expected as without memory graph mutation, we
cannot discard invariants which are the result of limited test cases.

RQ4: What is the overhead of invariant generation?Wemeasure the time taken to learn
the invariants. Columns L Time in Tables 4 and 5 show the results. In general, the learn-
ing time depends on the number of learning points, the complexity of the program and
the initial test suite. Overall, the time required for learning is reasonable, ranging from
seconds to minutes. In the most time consuming case, we spent 92 s to learn two invari-
ants for program “doubly-linked list append”. For most of the cases, the learning time
is about 20 s for each learning point.

RQ5: Does our invariant generation approach complement existing ones? The most
noticeable invariant generation tool for heap program is Infer [1]. However, Infer is
not designed to support verification task. Instead, it generates generic specifications to
capture the footprints of the pointers used in the functions based on bi-abduction. We
apply Infer to generate specifications (e.g., pre/postconditions) for every function exper-
imented above and notice that they are too weak for program verification.

Threats to Validity. Firstly, the set of programs used in our experiments are limited com-
pared to real-world data-structure libraries. This is because state-of-the-art verifiers for
heap programs are still limited to relatively simple programs due to the great difficulty
in verifying heap properties. As our experiments show, SLearner successfully enhances

Compositional Verification of Heap-Manipulating Programs 421

the capability of state-of-the-art heap program verifiers so that programs with multiple
functions can be automatically verified. Secondly, SLearner only works when we have
the right features in the learning process. We expect that applying lemma synthesis
could help us obtain more features and overcome this limitation.

5 Related Work

The closest to our work is approach for invariant inference using dynamic analysis
with separation logic abstraction [30]. Similar to our work, it generates invariant based
on user-defined predicates (i.e., features in our work). In contrast to ours, it made use
of positive features only and did not support mutation. Close to our work are propos-
als for automatic program verification using black-box techniques adopted from the
machine learning community. In particular, the method presented in [47] is based on
user-supplied templates. It is designed to learn specification for heap programs which
ensures no memory errors. The approach in [32] proposes to learn features from graph-
structured inputs based on neural networks. The authors showed an application on ver-
ifying memory safety using the learning results. In contrast to [32], our goal is to learn
invariants to compositionally verify the program against a given specification as well as
ensure no memory errors. In [25], the authors presented a method to learn shared mod-
ule codes and reuse them during an analysis. The work in [16] builds polynomial time
active learning algorithms for automaton model of array and list structures. Our pro-
posal also relies on a learning algorithm and actively improves the learned invariants.
In [35], the authors proposed a learning method targeted lists only. This method learns
the sequence of actions (remove or insert) from a program and infers the data structures
manipulated by the program. However, it is hard to extend the method to support arbi-
trary heap programs. Similarly to ours, [7] guesses invariants from concrete program
states and checks them by a theorem prover. However, their work only focuses on list-
based programs. The ICE method proposed in [17,18] supports inductive properties of
loop invariant learning. Besides using the positive and negative points, ICE proposes
additional implication points to encode the inductive checking for learning invariant. It
is our future work to integrate the idea of ICE learning with our graph-based learning.
The work in [38] presents an approach for precondition inference. The main contribu-
tion is feature learning for functional programs. It is interesting to apply the feature
learning techniques in our future work.

Our work is also related to automatic and static analyzers for the shape analysis
problems, e.g., TVLA [46] and separation logic [9,10,13,22,26], and for the verifica-
tion problem of programs that requires both heap and data reasoning, e.g., PDR [24],
interpolation [4] and template-based invariant generation [33]. To infer shape-based
specification, while tools [9,13,26] are based on the bi-abduction technique, we use
machine learning to obtain a generalized invariant from a set of concrete executions. In
our implementation, we use GRASSHopper and HIP as external verification engines.
As our approach is independent from the program verifiers, we plan to build a general
framework so that different verifiers can be used. Lastly, this work is related to previ-
ous works on invariant generation, e.g., Daikon [14], or Houdini [15]. However, those
works do not focus on learning invariants related to data structures like this one.

422 L. H. Pham et al.

6 Conclusion

We have presented a novel learning approach to the automated and compositional veri-
fication of heap programs. The essence of our approach is an algorithm to infer invari-
ants based on a set of memory graphs representing the program states obtained from
concrete executing traces. We further enhance the precision of learned invariant with
memory graph mutation. We have implemented a prototype tool and evaluated it over
a set of programs which manipulate complex data structures. The experimental results
show that our tool enhances the capability of existing program verifiers to verify non-
trivial heap programs. In the future, we might apply our tool to more verifiers and more
test subjects as well as compare our tool with other tools, e.g., Predator [13], Forester
[21,22], S2 [26], and SLING [30].

Acknowledgments. This research is supported by MOE research grant MOE2016-T2-2-123.

References

1. Facebook Infer. https://fbinfer.com
2. https://figshare.com/s/ba1c12ad90c138fbb240
3. https://github.com/sunjun-group/Ziyuan
4. Albarghouthi, A., Berdine, J., Cook, B., Kincaid, Z.: Spatial interpolants. In: Vitek, J. (ed.)

ESOP 2015, pp. 634–660 (2015). https://doi.org/10.1007/978-3-662-46669-8 26
5. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.M.: Diagnosing abstraction failure for sepa-

ration logic-based analyses. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012, pp. 155–173
(2012). https://doi.org/10.1007/978-3-642-31424-7 16

6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verification. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011, pp. 184–190 (2011). https://doi.org/10.
1007/978-3-642-22110-1 16

7. Brockschmidt, M., Chen, Y., Kohli, P., Krishna, S., Tarlow, D.: Learning shape analysis. In:
Ranzato, F. (ed.) SAS 2017, pp. 66–87 (2017). https://doi.org/10.1007/978-3-319-66706-
5 4

8. Bshouty, N.H., Goldman, S.A., Mathias, H.D., Suri, S., Tamaki, H.: Noise-tolerant
distribution-free learning of general geometric concepts. J. ACM 45(5), 863–890 (1998).
https://doi.org/10.1145/290179.290184

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional Shape Analysis by
Means of Bi-Abduction. J. ACM 58(6), 26:1–26:66 (2011). https://doi.org/10.1145/2049697.
2049700

10. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program 77(9),
1006–1036 (2012). https://doi.org/10.1016/j.scico.2010.07.004

11. Cleve, H., Zeller, A.: Locating causes of program failures. In: Roman, G., Griswold,
W.G., Nuseibeh, B. (eds.) ICSE 2005, pp. 342–351 (2005). https://doi.org/10.1145/1062455.
1062522

12. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In: Harris, G.E.
(ed.) OOPSLA 2008, pp. 213–226 (2008). https://doi.org/10.1145/1449764.1449782

13. Dudka, K., Peringer, P., Vojnar, T.: Predator: a practical tool for checking manipulation of
dynamic data structures using separation logic. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011, pp. 372–378 (2011). https://doi.org/10.1007/978-3-642-22110-1 29

https://fbinfer.com
https://figshare.com/s/ba1c12ad90c138fbb240
https://github.com/sunjun-group/Ziyuan
https://doi.org/10.1007/978-3-662-46669-8_26
https://doi.org/10.1007/978-3-642-31424-7_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-66706-5_4
https://doi.org/10.1007/978-3-319-66706-5_4
https://doi.org/10.1145/290179.290184
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/1449764.1449782
https://doi.org/10.1007/978-3-642-22110-1_29

Compositional Verification of Heap-Manipulating Programs 423

14. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:
The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program 69(1–
3), 35–45 (2007). https://doi.org/10.1016/j.scico.2007.01.015

15. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira,
J.N., Zave, P. (eds.) FME 2001, pp. 500–517 (2001). https://doi.org/10.1007/3-540-45251-
6 29

16. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quantified invariants
of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV 2013, pp. 813–829 (2013).
https://doi.org/10.1007/978-3-642-39799-8 57

17. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning
invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014, pp. 69–87 (2014). https://doi.org/10.
1007/978-3-319-08867-9 5

18. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and
implication counterexamples. In: Bodı́k, R., Majumdar, R. (eds.) POPL 2016, pp. 499–512
(2016). https://doi.org/10.1145/2837614.2837664

19. Ginsburg, S., Spanier, E.: Semigroups, presburger formulas, and languages. Pac. J. Math.
16(2), 285–296 (1966)

20. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework.
In: Kroening, D., Pasareanu, C.S. (eds.) CAV 2015, pp. 343–361 (2015). https://doi.org/10.
1007/978-3-319-21690-4 20

21. Holı́k, L., Hruska, M., Lengál, O., Rogalewicz, A., Simácek, J., Vojnar, T.: Forester: from
heap shapes to automata predicates - (competition contribution). In: Legay, A., Margaria, T.
(eds.) TACAS 2017, pp. 365–369 (2017). https://doi.org/10.1007/978-3-662-54580-5 24

22. Holı́k, L., Lengál, O., Rogalewicz, A., Simácek, J., Vojnar, T.: Fully automated shape anal-
ysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013, pp. 740–755
(2013). https://doi.org/10.1007/978-3-642-39799-8 52

23. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In:
Hankin, C., Schmidt, D. (eds.) POPL 2001, pp. 14–26 (2001)

24. Itzhaky, S., Bjørner, N., Reps, T.W., Sagiv, M., Thakur, A.V.: Property-directed shape anal-
ysis. In: Biere, A., Bloem, R. (eds.) CAV 2014, pp. 35–51 (2014). https://doi.org/10.1007/
978-3-319-08867-9 3

25. Kulkarni, S., Mangal, R., Zhang, X., Naik, M.: Accelerating program analyses by cross-
program training. In: Visser, E., Smaragdakis, Y. (eds.) OOPSLA 2016, pp. 359–377 (2016).
https://doi.org/10.1145/2983990.2984023

26. Le, Q.L., Gherghina, C., Qin, S., Chin, W.: Shape analysis via second-order bi-abduction.
In: Biere, A., Bloem, R. (eds.) CAV 2014, pp. 52–68 (2014). https://doi.org/10.1007/978-3-
319-08867-9 4

27. Le, Q.L., Sun, J., Chin, W.: Satisfiability modulo heap-based programs. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016, pp. 382–404 (2016). https://doi.org/10.1007/978-3-319-41528-
4 21

28. Le, Q.L., Sun, J., Qin, S.: Frame inference for inductive entailment proofs in separation logic.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018, pp. 41–60 (2018). https://doi.org/10.1007/
978-3-319-89960-2 3

29. Le, Q.L., Tatsuta, M., Sun, J., Chin, W.: A decidable fragment in separation logic with induc-
tive predicates and arithmetic. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017, pp. 495–517
(2017). https://doi.org/10.1007/978-3-319-63390-9 26

30. Le, T.C., Zheng, G., Nguyen, T.: SLING: using dynamic analysis to infer program invariants
in separation logic. In: McKinley, K.S., Fisher, K. (eds.) PLDI 2019, pp. 788–801 (2019).
https://doi.org/10.1145/3314221.3314634

https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-642-39799-8_52
https://doi.org/10.1007/978-3-319-08867-9_3
https://doi.org/10.1007/978-3-319-08867-9_3
https://doi.org/10.1145/2983990.2984023
https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-319-41528-4_21
https://doi.org/10.1007/978-3-319-41528-4_21
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-319-63390-9_26
https://doi.org/10.1145/3314221.3314634

424 L. H. Pham et al.

31. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010, pp. 348–370 (2010).https://doi.org/10.1007/978-3-
642-17511-4 20

32. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks.
CoRR abs/1511.05493 (2015)

33. Malı́k, V., Hruska, M., Schrammel, P., Vojnar, T.: Template-based verification of heap-
manipulating programs. In: Bjørner, N., Gurfinkel, A. (eds.) FMCAD 2018, pp. 1–9 (2018).
https://doi.org/10.23919/FMCAD.2018.8603009

34. Miné, A.: The octagon abstract domain. High. Order. Symbolic Comput. 19(1), 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

35. Mühlberg, J.T., White, D.H., Dodds, M., Lüttgen, G., Piessens, F.: Learning assertions to ver-
ify linked-list programs. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015, pp. 37–52 (2015).
https://doi.org/10.1007/978-3-319-22969-0 3

36. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001, pp. 1–19 (2001). https://doi.org/10.1007/3-540-
44802-0 1

37. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.
In: ICSE, vol. 2007, pp. 75–84 (2007). https://doi.org/10.1109/ICSE.2007.37

38. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with learned fea-
tures. In: Krintz, C., Berger, E. (eds.) PLDI 2016, pp. 42–56 (2016). https://doi.org/10.1145/
2908080.2908099

39. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J.: Concolic testing heap-manipulating programs. In:
FM 2019. To appear

40. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Enhancing symbolic execution of heap-
based programs with separation logic for test input generation. In: ATVA 2019. To appear

41. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Testing heap-based programs with Java
StarFinder. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.) ICSE 2018, pp.
268–269. ACM (2018). https://doi.org/10.1145/3183440.3194964

42. Pham, L.H., Thi, L.T., Sun, J.: Assertion generation through active learning. In: Duan, Z.,
Ong, L. (eds.) ICFEM 2017, pp. 174–191 (2017). https://doi.org/10.1007/978-3-319-68690-
5 11

43. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In: Biere,
A., Bloem, R. (eds.) CAV 2014, pp. 711–728 (2014). https://doi.org/10.1007/978-3-319-
08867-9 47

44. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with mixed
specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014, pp. 124–139 (2014).
https://doi.org/10.1007/978-3-642-54862-8 9

45. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS, vol.
2002, pp. 55–74 (2002). https://doi.org/10.1109/LICS.2002.1029817

46. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: Appel,
A.W., Aiken, A. (eds.) POPL 1999, pp. 105–118 (1999). https://doi.org/10.1145/292540.
292552

47. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications. In: Krintz,
C., Berger, E. (eds.) PLDI 2016, pp. 491–507 (2016). https://doi.org/10.1145/2908080.
2908125

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.23919/FMCAD.2018.8603009
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-319-22969-0_3
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/3183440.3194964
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/292540.292552
https://doi.org/10.1145/292540.292552
https://doi.org/10.1145/2908080.2908125
https://doi.org/10.1145/2908080.2908125

	Compositional verification of heap-manipulating programs through property-guided learning
	Citation

	Compositional Verification of Heap-Manipulating Programs Through Property-Guided Learning
	1 Introduction
	2 An Illustrative Example
	3 Our Approach
	3.1 Problem Definition
	3.2 Test Generation and Code Instrumentation
	3.3 Feature Extraction
	3.4 Learning for Compositional Verification
	3.5 Automatic Memory Graph Mutation
	3.6 Compositional Verification

	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion
	References

