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Adversarial Sample Detection for Deep Neural
Network through Model Mutation Testing

Jingyi Wang†, Guoliang Dong‡, Jun Sun†, Xinyu Wang‡, Peixin Zhang‡
†Singapore University of Technology and Design

‡Zhejiang University

Abstract—Deep neural networks (DNN) have been shown to
be useful in a wide range of applications. However, they are also
known to be vulnerable to adversarial samples. By transforming a
normal sample with some carefully crafted human imperceptible
perturbations, even highly accurate DNN make wrong decisions.
Multiple defense mechanisms have been proposed which aim to
hinder the generation of such adversarial samples. However, a
recent work show that most of them are ineffective. In this work,
we propose an alternative approach to detect adversarial samples
at runtime. Our main observation is that adversarial samples
are much more sensitive than normal samples if we impose
random mutations on the DNN. We thus first propose a measure
of ‘sensitivity’ and show empirically that normal samples and
adversarial samples have distinguishable sensitivity. We then
integrate statistical hypothesis testing and model mutation testing
to check whether an input sample is likely to be normal or
adversarial at runtime by measuring its sensitivity. We evaluated
our approach on the MNIST and CIFAR10 datasets. The results
show that our approach detects adversarial samples generated
by state-of-the-art attacking methods efficiently and accurately.

I. INTRODUCTION

In recent years, deep neural networks (DNN) have been
shown to be useful in a wide range of applications including
computer vision [16], speech recognition [52], and malware
detection [56]. However, recent research has shown that DNN
can be easily fooled [43], [14] by adversarial samples, i.e.,
normal samples imposed with small, human imperceptible
changes (a.k.a. perturbations). Many DNN-based systems like
image classification [30], [33], [7], [50] and speech recog-
nition [8] are shown to be vulnerable to such adversarial
samples. This undermines using DNN in safety critical appli-
cations like self-driving cars [5] and malware detection [56].

To mitigate the threat of adversarial samples, the machine
learning community has proposed multiple approaches to
improve the robustness of the DNN model. For example, an
intuitive approach is data augmentation. The basic idea is
to include adversarial samples into the training data and re-
train the DNN [35], [22], [44]. It has been shown that data
augmentation improves the DNN to some extent. However,
it does not help defend against unseen adversarial samples,
especially those obtained through different attacking methods.
Alternative approaches include robust optimization and adver-
sarial training [37], [45], [55], [28], which take adversarial
perturbation into consideration and solve the robust optimiza-
tion problem directly during model training. However, such
approaches usually increase the training cost significantly.

Meanwhile, the software engineering community attempts
to tackle the problem using techniques like software testing
and verification. In [44], neuron coverage was first proposed
to be a criteria for testing DNN. Subsequently, multiple testing
metrics based on the range coverage of neurons were pro-
posed [25]. Both white-box testing [34], black-box testing [44]
and concolic testing [41] strategies have been proposed to
generate adversarial samples for adversarial training. However,
testing alone does not help in improving the robustness of
DNN, nor does it provide guarantee that a well-tested DNN
is robust against new adversarial samples. The alternative
approach is to formally verify that a given DNN is robust (or
satisfies certain related properties) using techniques like SMT
solving [20], [47] and abstract interpretation [13]. However,
these techniques usually have non-negligible cost and only
work for a limited class of DNN (and properties).

In this work, we provide a complementary perspective
and propose an approach for detecting adversarial samples at
runtime. The idea is that, given an arbitrary input sample to
a DNN, to decide at runtime whether it is likely to be an
adversarial sample or not. If it is, we raise an alarm and report
that the sample is ‘suspicious’ with certain confidence. Once
detected, it can be rejected or checked depending on different
applications. Our detection algorithm integrates mutation test-
ing of DNN models [26] and statistical hypothesis testing [3].
It is designed based on the observation that adversarial samples
are much more sensitive to mutation on the DNN than normal
samples, i.e., if we mutate the DNN slightly, the mutated
DNN is more likely to change the label on the adversarial
sample than that on the normal one. This is illustrated in
Figure 1. The left figure shows a label change on a normal
sample, i.e., given a normal sample which is classified as
a cat, a label change occurs if the mutated DNN classifies
the input as a dog. The right figure shows a label change
on an adversarial sample, i.e., given an adversarial sample
which is mis-classified as a dog, a label change occurs if
the mutated DNN classifies the input as a cat. Our empirical
study confirms that the label change rate (LCR) of adversarial
samples is significantly higher than that of normal samples
against a set of DNN mutants. We thus propose a measure of
a sample’s sensitivity against a set of DNN mutants in terms
of LCR. We further adopt statistical analysis methods like
receiver operating characteristic (ROC [9]) to show that we
can distinguish adversarial samples and normal samples with
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Fig. 1: Label change of a normal sample and an adversarial sample against DNN mutation models.

high accuracy based on LCR. Our algorithm then takes a DNN
model as input, generates a set of DNN mutants, and applies
statistical hypothesis testing to check whether the given input
sample has a high LCR and thus is likely to be adversarial.

We implement our approach as a self-contained toolkit
called mMutant [10]. We apply our approach on the MNIST
and CIFAR10 dataset against the state-of-the-art attacking
methods for generating adversarial samples. The results show
that our approach detects adversarial samples efficiently with
high accuracy. All four DNN mutation operators we exper-
imented with show promising results on detecting 6 groups
of adversarial samples, e.g., capable of detecting most of
the adversarial samples within around 150 DNN mutants. In
particular, using DNN mutants generated by Neuron Acti-
vation Inverse (NAI) operator, we manage to detect 96.4%
of the adversarial samples with 74.1 mutations for MNIST
and 90.6% of the adversarial samples with 86.1 mutations for
CIFAR10 on average.

II. BACKGROUND

In this section, we review state-of-the-art methods for gen-
erating adversarial samples for DNN, and define our problem.

A. Adversarial Samples for Deep Neural Networks

In this work, we focus on DNN classifiers which take a
given sample and label the sample accordingly (e.g., as a
certain object). In the following, we use x to denote an input
sample for a DNN f . We use cx to denote the ground-truth
label of x. Given an input sample x and a DNN f , we
can obtain the label of the input x under f by performing
forward propagation. x is regarded as an adversarial sample
with respect to the DNN f if f(x) 6= cx. x is regarded as a
normal sample with respect to the DNN f if f(x) = cx. Notice
that under our definition, those samples in the training/testing
dataset wrongly labeled by f are also adversarial samples.

Since Szegedy et al. discoveried that neural networks
are vulnerable to adversarial samples [43], many attacking
methods have been developed on how to generate adversarial
samples efficiently (e.g., with minimal perturbation). That
is, given a normal sample x, an attacker aims to find a
minimum perturbation ∆x which satisfies f(x + ∆x) 6= cx.
In the following, we briefly introduce several state-of-the-art
attacking algorithms.

FGSM: The Fast Gradient Sign Method (FGSM) [14] is
designed based on the intuition that we can change the
label of an input sample by changing its softmax value to

the largest extent, which is represented by its gradient. The
implementation of FGSM is straightforward and efficient. By
simply adding up the sign of gradient of the cost function
with respect to the input, we could quickly obtain a potential
adversarial counterpart of a normal sample by the follow
formulation:

x̂ = x+ εsign(∇J(θ, x, cx))

, where J is the cost used to train the model, ε is the attacking
step size and θ are the parameters. Notice that FGSM does
not guarantee that the adversarial perturbation is minimal.

JSMA: Jacobian-based Saliency Map Attack (JSMA) [33] is
devised to attack a model with minimal perturbation which
enables the adversarial sample to mislead the target model
into classifying it with certain (attacker-desired) label. It is a
greedy algorithm that changes one pixel during each iteration
to increase the probability of having the target label. The idea
is to calculate a saliency map based on the Jacobian matrix
to model the impact that each pixel imposes on the target
classification. With the saliency map, the algorithm picks the
pixel which may have the most significant influence on the
desired change and then increases it to the maximum value.
The process is repeated until it reaches one of the stopping
criteria, i.e., the number of pixels modified has reached the
bound, or the target label has been achieved. Define

ai =
∂Ft(x)

∂Xi

bi =
∑
k 6=t

∂Fk(x)

∂Xi

Then, the saliency map at each iteration is defined as follow:

S(x, t)i =

{
ai × |bi| if ai > 0 and bi < 0

0 otherwise

However, it is too strict to select one pixel at a time because
few pixels could meet that definition. Thus, instead of picking
one pixel at a time, the authors proposed to pick two pixels
to modify according to the follow objective:

arg max
(p1,p2)

(
∂Ft(x)

∂xp1
+
∂Ft(x)

∂xp2

)
×

∣∣∣∣∣∣
∑

i=p1,p2

∑
k 6=t

∂Fk(x)

∂xi

∣∣∣∣∣∣
where(p1, p2) is the candidate pair, and t is the target class.



JSMA is relatively time-consuming and memory-consuming
since it needs to compute the Jacobian matrix and pick out a
pair from nearly

(
n
2

)
candidate pairs at each iteration.

DeepFool: The idea of DeepFool (DF) is to make the
normal samples cross the decision boundary with minimal
perturbations [30]. The authors first deduced an iterative
algorithm for binary classifiers with Tayler’s Formula,
and then analytically derived the solution for multi-class
classifiers. The exact derivation process is complicated and
thus we refer the readers to [30] for details.

C&W: Carlini et al. [7] proposed a group of attacks based on
three distance metrics. The key idea is to solve an optimization
problem which minimizes the perturbation imposed on the
normal sample (with certain distance metric) and maximizes
the probability of the target class label. The objective function
is as follow:

arg min ∆x+ c · f(x̂, t)

where ∆x is defined according to some distance metric, e.g,
L0, L2, L∞, x̂ = x+∆x is the clipped adversarial sample and
t is its target label. The idea is to devise a clip function for
the adversarial sample such that the value of each pixel dose
not exceed the legal range. The clip function and the best loss
function according to [7] are shown as follows.

clip :x̂ =0.5(tanh(x̃) + 1)

loss :f(x̂, t) = max(max{G(x̂)c : c 6= t} −G(x̂)t, 0)

where G(x) denotes the output vector of a model and t is the
target class. Readers can refer to [7] for details.

Black-Box: All the above mentioned attacks are white-box at-
tacks which means that the attackers require the full knowledge
of the DNN model. Black-Box (BB) attack only needs to know
the output of the DNN model given a certain input sample.
The idea is to train a substitute model to mimic the behaviors
of the target model with data augmentation. Then, it applies
one of the existing attack algorithm, e.g., FGSM and JSMA,
to generate adversarial samples for the substitute model. The
key assumption to its success is that the adversarial samples
transfer between different model architectures [43], [14].

B. Problem Definition

Observing that adversarial samples are relatively easy to
craft, a variety of defense mechanisms against adversarial
samples have been proposed [15], [28], [51], [27], [38], as
we have briefly introduced in Section I. However, Athalye
et al. [2] systematically evaluated the state-of-the-art defense
mechanisms recently and showed that most of them are
ineffective. Alternative defense mechanisms are thus desirable.

In this work, we take a complementary perspective and pro-
pose to detect adversarial samples at runtime using techniques
from the software engineering community. The problem is:
given an input sample x to a deployed DNN f , how can we
efficiently and accurately decide whether f(x) = cx (i.e., a

normal sample) or not (i.e., an adversarial sample)? If we
know that x is likely an adversarial sample, we could reject
it or further check it to avoid bad decisions. Furthermore, can
we quantify some confidence on the drawn conclusion?

III. OUR APPROACH

Our approach is based on the hypothesis that, in most cases
adversarial samples are more ‘sensitive’ to mutations on the
DNN model than normal samples. That is, if we generate
a set of slightly mutated DNN models based on the given
DNN model, the mutated DNN models are more likely to
label an adversarial sample with a label different from the
label generated by the original DNN model, as illustrated in
Figure 1. In other words, our approach is designed based on
a measure of sensitivity for differentiating adversarial samples
and normal samples. In the literature, multiple measures
have been proposed to capture their differences, e.g., density
estimate, model uncertainty estimate [11], and sensitivity to
input perturbation [46]. Our measure however allows us to
detect adversarial samples at runtime efficiently through model
mutation testing.

A. Mutating Deep Neural Networks

In order to test our hypothesis (and develop a practical
algorithm), we need a systematic way of generating mutants of
a given DNN model. We adopt the method developed in [26],
which is a proposal of applying mutation testing to DNN.
Mutation testing [19] is a well-known technique to evaluate
the quality of a test suiteand, and thus is different from
our work. The idea is to generate multiple mutations of the
program under test, by applying a set of mutation operators,
in order to see how many of the mutants can be killed by the
test suite. The definition of the mutation operators is a core
component of the technique. Given the difference between
traditional software systems and DNN, mutation operators
designed for traditional programs cannot be directly applied to
DNN. In [26], Ma et al. introduced a set of mutation operators
for DNN-based systems at different levels like source level
(e.g., the training data and training programs) and model level
(e.g., the DNN model).

In this work, we require a large group of slightly mutated
models for runtime adversarial sample detection. Of all the
mutation operators proposed in [26], mutation operators de-
fined at the source level are not considered. The reason is
that we would need to train the mutated models from scratch
which is often time-consuming. We thus focus on the model-
level operators, which modify the original model directly to
obtain mutated models without training. Specifically, we adopt
four of the eight defined operators from [26] shown in Table I.
For example, NAI means that we change the activation status
of a certain number of neurons in the original model. Notice
that the other four operators defined in [26] are not applicable
due to the specific architecture of the deep learning models
we focus on in this work.



TABLE I: DNN model mutation operators

Mutation Operator Level Description

Gaussian Fuzzing (GF) Weight Fuzz weight by Gaussian Distribution
Weight Shuffling (WS) Neuron Shuffle selected weights
Neuron Switch (NS) Neuron Switch two neurons within a layer
Neuron Activation Inverse (NAI) Neuron Change the activation status of a neuron

B. Evaluating Our Hypothesis

We first conduct experiments to measure the label change
rate (LCR) of adversarial samples and normal samples when
we feed them into a set of mutated DNN models. Given an
input sample x (either normal or adversarial) and a DNN
model f , we first adopt the model mutation operators shown
in Table I to obtain a set of mutated models. Note that some of
the resultant mutated models may be of low quality, i.e., their
classification accuracy on the test data drops significantly. We
discharge those low quality ones and only keep those accurate
mutated models which retain an accuracy on the test data, i.e.,
at least 90% of the accuracy of the original model, to ensure
that the decision boundary does not perturb too much. Once
we obtain such a set of mutated models F , we then obtain
the label fi(x) of the input sample x on every mutated model
fi ∈ F . We define LCR on a sample x as follows (with respect
to F ).

ς(x) =
|{fi|fi ∈ F and fi(x) 6= f(x)}|

|F |
, where |S| is the number of elements in a set S. Intuitively,
ς(x) measures how sensitive an input sample x is on the
mutations of a DNN model.

Table II summarizes our empirical study on measuring ς(x)
using two popular dataset, i.e., the MNIST and CIFAR10
dataset, and multiple state-of-the-art attacking methods. A total
of 500 mutated models are generated using NAI operator
which randomly selects some neurons and changes their acti-
vation status. The first column shows the name of the dataset.
The second shows the mutation rate, i.e., the percentage of the
neurons whose activation status are changed. The third shows
the average LCR (with confidence interval of 99% significance
level) of 1000 normal samples randomly selected from the
testing set. The remaining columns show the average LCR
(with confidence interval of 99% significance level) of 1000
adversarial samples which are generated using state-of-the-art
methods. Note that column ‘Wrongly Labeled’ are samples
from the testing set which are wrongly labeled by the original
DNN model.

Based on the results, we can observe that at any mutation
rate, the ς values of the adversarial samples are significantly
higher than those of the normal samples.

ςadv is significantly larger than ςnor.

Further study on the LCR distance between normal and
adversarial samples with respect to different model mutation
operators is presented in Section IV. The results are consistent.

original mutation 1mutation 2

positive sample
negative sample
adversarial sample

decision boundaries

Fig. 2: An explanatory model of the model mutation testing
effect.

A practical implication of the observation is that given an input
sample x, we could potentially detect whether x is likely to
be normal or adversarial by checking ς(x).

C. Explanatory Model

In the following, we use a simple model to explain the above
observation. Recall that adversarial samples are generated in a
way which tries to minimize the modification to a normal sam-
ple while is still able to cross the decision boundary. Different
kinds of attacks use different approaches to achieve this goal.
Our hypothesis is that most adversarial samples generated by
existing methods are near the decision boundary (to minimize
the modification). As a result, as we randomly mutate the
model and perturb the decision boundary, adversarial samples
are more likely to cross the mutated decision boundaries, i.e., if
we feed an adversarial sample to a mutated model, the output
label has a higher chance to change from its original label.
This is illustrated visually in Figure 2.

D. The Detection Algorithm

The results shown in Table II suggests that we can use LCR
to distinguish adversarial samples and normal samples. In the
following, we present an algorithm which is designed to detect
adversarial samples at runtime based on measuring the LCR of
a given sample. The algorithm is based on the idea of statistical
model checking [3], [1].

The inputs of our algorithm are a DNN model f , a sample
x and a threshold ςh which is used to decide whether the
input is adversarial. We will discuss later on how to identify
ςh systematically. The basic idea of our algorithm is to use
hypothesis testing to decide the truthfulness of two mutual
exclusive hypothesis.

H0 : ς(x) > ςh

H1 : ς(x) ≤ ςh



TABLE II: Average ς (shown in percentage with confidence interval of 99% significance level) for normal samples and
adversarial samples under 500 NAI mutated models.

Dataset Mutation rate Normal samples Adversarial samples
Wrong labeled FGSM JSMA C&W Black-Box Deepfool

MNIST
0.01 1.28± 0.24 14.58± 2.64 47.56± 3.56 50.80± 2.46 12.07± 1.26 44.94± 3.43 37.62± 2.83
0.03 3.06± 0.44 27.16± 3.11 52.12± 3.04 57.86± 2.02 21.88± 1.38 51.15± 2.91 46.61± 2.43
0.05 3.88± 0.53 32.53± 3.15 54.54± 2.80 59.07± 1.95 27.73± 1.37 53.97± 2.67 50.30± 2.24

CIFAR10
0.003 2.20± 0.55 17.95± 1.39 14.06± 1.33 28.65± 1.30 19.77± 1.41 10.36± 1.06 30.84± 1.37
0.005 5.05± 0.91 32.18± 1.62 27.87± 1.71 47.75± 1.27 33.95± 1.60 21.66± 1.38 47.70± 1.23
0.007 7.28± 1.12 39.76± 1.70 36.19± 1.81 56.02± 1.29 41.22± 1.64 27.57± 1.5 54.41± 1.21

Three (standard) additional parameters, α, β and δ, are used to
control the probability of making an error. That is, we would
like to guarantee that the probability of a Type-I (respectively,
a Type-II) error, which rejects H0 (respectively, H1) while H0

(respectively, H1) holds, is less or equal to α (respectively,
β). The test needs to be relaxed with an indifferent region
(r−δ, r+δ), where neither hypothesis is rejected and the test
continues to bound both types of errors [1]. In practice, the
parameters (i.e., (α, β), and δ) can often be decided by how
much testing resources are available. In general, more resource
is required for a smaller error bound.

Our detection algorithm keeps generating accurate mutated
models (with an accuracy more than certain threshold on the
testing data) from the original model and evaluating ς(x) until
a stopping condition is satisfied. We remark that in practice we
could generate a set of accurate mutated models before-hand
and simply use them at runtime to further save detection time.

There are two main methods to decide when the testing
process can be stopped, i.e., we have sufficient confidence to
reject a hypothesis. One is the fixed-size sampling test (FSST),
which runs a predefined number of tests. One difficulty of
this approach is to find an appropriate number of tests to be
performed such that the error bounds are valid. The other
approach is the sequential probability ratio test (SPRT [3]).
SPRT dynamically decides whether to reject or not a hypoth-
esis every time after we update ς(x), which requires a variable
number of mutated models. SPRT is usually faster than FSST
as the testing process ends as soon as a conclusion is made.

In this work, we use SPRT for the detection. The details
of our SPRT-based algorithm is shown in Algorithm 1. The
inputs of the detection algorithm include the input sample
x, the original DNN model f , a mutation rate γ, and a
threshold of LCR ςh. Besides, the detection is error bounded
by 〈α, β〉 and relaxed with an indifference region δ. To apply
SPRT, we keep generating accurate mutated models at line
5. The details of generating mutated models using the four
operators in Table I are shown in Algorithm 2, Algorithm 3,
Algorithm 4, and Algorithm 5 respectively. We then evaluate
whether fi(x) = f(x) at line 7. If we observe a label change
of x using the mutated model fi, we calculate and update the
SPRT probability ratio at line 9 as:

pr =
pz1(1− p1)n−z

pz0(1− p0)n−z

, with p1 = ςh − δ and p0 = ςh + δ. The algorithm stops

Algorithm 1: SPRT-Detect(x, f, γ, ςh, α, β, δ)

1 Let stop = false;
2 Let z = 0 be the number of mutated models fi that

satisfy fi(x) 6= f(x);
3 Let n = 0 be the total number of generated mutated

models so far;
4 while !stop do
5 Apply a mutation operator to randomly generate an

accurate mutation model fi of f with mutation rate
γ;

6 n = n+ 1;
7 if fi(x) 6= f(x) then
8 z = z + 1;
9 Calculate the SPRT probability ratio as pr;

10 if pr ≤ β
1−α then

11 Accept the hypothesis that ς(x) > ςh and
report the input as an adversarial sample
with error bounded by β;

12 return;

13 if pr ≥ 1−β
α then

14 Accept the hypothesis that ς(x) ≤ ςh and
report the input as a normal sample with
error bounded by α;

15 return;

whenever a hypothesis is accepted either at line 11 or line
14. We remark that SPRT is guaranteed to terminate with
probability 1 [3].

We briefly introduce the NAI operator shown in Algorithm 2
as an example of the four mutation operators. We first obtain
the set of N unique neurons1 at line 1. Then we randomly
select dN × γe neurons (γ is the mutation rate) for activation
status inverse at line 2. Afterwards, we traverse the model f
layer by layer at line 3 and take those selected neurons at line
4. We then inverse the activation status of the selected neurons
by multiplying their weights with -1 at line 7.

1For convolutional layer, each slide of convolutional kernel is regarded as
a neuron



Algorithm 2: NAI(f, γ)

1 Let N be the set of unique neurons;
2 Randomly select dN × γe unique neurons;
3 for every layer in f do
4 Let Q be the set of selected neurons in this layer;
5 if Q 6= ∅ then
6 for q ← Q do
7 q.weight = −1 · q.weight;

Algorithm 3: GF (f, γ)

1 Let W be the parameters of f ;
2 Extract the parameters of f layer by layer;
3 Let N be the total number of parameters of f ;
4 Randomly select dN × γe parameters to fuzz;
5 for every layer in f do
6 Let W [i] be the parameters of this layer;
7 Find all the selected parameters P in W [i];
8 if P 6= ∅ then
9 Let µ = Avg(W [i]);

10 Let σ = Std(W [i]);
11 for every parameter in P do
12 Randomly assign the parameter according to

N (µ, σ2);

IV. IMPLEMENTATION AND EVALUATION

We have implemented our approach in a self-contained
toolkit which is available online [10]. It is implemented in
Python with about 5k lines of code. In the following, we
evaluate the accuracy and efficiency of our approach through
multiple experiments.

A. Experiment Settings

a) Datasets and Models: We adopt two popular image
datasets for our evaluation: MNIST and CIFAR10. Each
dataset has 60000/50000 images for training and 10000/10000
images for testing. The target models for MNIST and CI-
FAR10 are LeNet [23] and GooglLeNet [42] respectively. The
accuracy of our trained models on training and testing dataset
are 98.5%/98.3% for MNIST and 99.7%/90.5% for CIFAR10
respectively, which both achieve state-of-the-art performance.

b) Mutated models generation: We employ the four
mutation operators shown in Table I to generate mutated
models. In total, we have 236 neurons for the MNIST model
and 7914 neurons for the CIFAR10 model. For each mutation
operator, we generate three groups of mutation models from
the original trained model using different mutation rate to
see its effect. The mutation rate we use for the MNIST
model is {0.01, 0.03, 0.05} and {0.003, 0.005, 0.007} for
the CIFAR10 model (since there are more neurons). Note
that some mutation models may have significantly worse
performance, so not all mutated models are valid. In our

Algorithm 4: WS(f, γ)

1 Let N be the set of unique neurons;
2 Randomly select dN × γe unique neurons to shuffle ;
3 for every layer in f do
4 Let Q be the set of selected neurons in this layer;
5 if Q 6= ∅ then
6 for q ← Q do
7 q.weight = Shuffle(q.weight);

Algorithm 5: NS(f, γ)

1 for every layer in f do
2 Let N be the number of unique neurons in this layer;
3 Randomly select dN × γe unique neurons;
4 Let Q be the set of selected neurons;
5 Randomly switch the weights of neurons in Q;

experiment, we only keep those mutation models whose
accuracy on the testing dataset is not lower than 90% of that
of its seed model. For each mutation rate, we generate 500
such accurate mutated models for our experiments.

c) Adversarial samples generation: We test our detection
algorithm against four state-of-the-art attacks in Clverhans [31]
and Deepfool [30] (detailed in Section II). For each kind of
attack, we generate a set of adversarial samples for evalua-
tion. The parameters for each kind of attack to generate the
adversarial samples are summarized as follows.

• FGSM: There is only one parameter to control the scale
of perturbation. We set it as 0.35 for MNIST and 0.03
for CIAFR10 according to the original paper.

• JSMA: There is only one parameter to control the maxi-
mum distortion. We set it as 12% for both datasets, which
is slightly smaller than the original paper.

• C&W: There are three types of attacks proposed in [7]:
L0, L2 and L∞. We adopt L2 attack according to the au-
thor’s recommendation. We also set the scale coefficient
to be 0.6 for both datasets. We set the iteration number to
be 10000 for MNIST and 1000 for CIFAR10 according
to the original paper.

• Deepfool: We set the maximum number of iterations to
be 50 and the termination criterion (to prevent vanishing
updates) to be 0.02 for both datasets, which is a default
setting in the original paper.

• Black-Box: The key setting of the Black-Box attack is to
train a substitute model of the target model. The substitute
model for MNIST is the first model defined in Appedix
A of [32]. For CIFAR10, we use the LeNet [23] as
the surrogate model. Afterwards, the attack algorithm we
used for the surrogate model is FGSM.

For each attack, we make 1000 attempts to generate adver-
sarial samples. Notice that not all attempts are successful and



TABLE III: Number of samples in each group.

Dataset Attack Samples

MNIST

Normal 1000
Wrongly-labeled 171

FGSM 1000
JSMA 1000

BB 1000
C&W 743

Deepfool 1000

CIFAR10

Normal 1000
Wrongly-labeled 951

FGSM 1000
JSMA 1000

BB 1000
C&W 1000

Deepfool 1000

as a result we manage to generate no more than 1000 adver-
sarial samples for each attack. Further recall that according
to our definition, those samples in the testing dataset which
are wrongly labeled by the trained DNN are also adversarial
samples. Thus, in addition to the adversarial samples generated
from the attacking methods, we attempt to randomly select
1000 samples from the testing dataset which are wrongly
classified by the target model as well. Table III summarizes
the number of normal samples and valid adversarial samples
for each kind of attack used for the experiments.

B. Evaluation Metrics

a) Distance of label change rate: We use dlcr =
ςadv/ςnor where ςadv (and ςnor) is the average LCR of adver-
sarial samples (and normal samples) to measure the distance
between the LCR of adversarial samples and normal samples.
The larger the value is, the more significant is the difference.

b) Receiver characteristics operator: Since our detection
algorithm works based on a threshold LCR ςh, we first adopt
receiver characteristic operator (ROC) curve to see how good
our proposed feature, i.e., LCR under model mutation, is to
distinguish adversarial and normal samples [9], [11]. The ROC
curve plots the true positive rate (tpr) against false positive
rate (fpr) for every possible threshold for the classification.
From the ROC curve, we could further calculate the area
under the ROC curve (AUROC) to characterize how well the
feature performs. A perfect classifier (when all the possible
thresholds yield true positive rate 1 and false positive rate 0
for distinguishing normal and adversarial samples) will have
AUROC 1. The closer is AUROC to 1, the better is the feature.

c) Accuracy of detection: The accuracy of the detection
is defined in a standard way as follows. Given a set of images
X (labeled as normal or adversarial), what is the percentage
that our algorithm correctly classifies it as normal or adversar-
ial? Notice that the accuracy of detecting adversarial samples is
equivalent to tpr and the accuracy of detecting normal samples
is equivalent to 1 − fpr. The higher the accuracy, the better
is our detection algorithm.

C. Research Questions

RQ1: Is there a significant difference between the LCR of
adversarial samples and normal samples under different model
mutations? To answer the question, we calculate the average
LCR of the set of normal samples and the set of adversarial
samples generated as described above with a set of mutated
models using different mutation operators. A set of 500
mutants are generated for each mutation operator (note that
mutation rate 0.003 is too low for NS to generate mutated
models for CIFAR10 model and thus omitted). According to
the detailed results summarized in Tabel II and IV, we have
the following answer.

Answer to RQ1: Adversarial samples have significantly
higher LCR under model mutation than normal samples.

In addition, we have the following observations.

• Adversarial samples generated from every kind of attack
have significantly larger LCR than normal samples under
a set of mutated models under any mutation rate, and dif-
ferent kind of attack have different LCR. We can see that
the LCR of normal samples are very low (i.e., comparable
to the testing error) and that of adversarial samples are
much higher. Figure 3 shows the distance between LCR
of adversarial samples and normal samples for different
mutation operators. We can see that the distance is mostly
larger than 10 and can be up to 375, which well supports
our answer to RQ1. We can also observe that adversarial
samples generated by FGSM/JSMA/Deepfool/Black-box
have relatively higher LCR distance than those generated
by CW and those wrong-labeled samples in the original
dataset. In general, our detection algorithm is able to
detect attacks with larger distance faster and better.

• As we increase the model mutation rate, the LCR of
both normal samples and adversarial samples increase
(as expected) and the distance between them decreases.
We can observe from Table IV that the LCR increases
with an increasing model mutation rate in all cases. From
Figure 3, we see that a smaller model mutation rate like
0.01 for MNIST and 0.003 for CIFAR10 have the largest
LCR distance. This is probably because as we increase
the mutation rate, normal samples are more sensitive in
terms of the change of LCR since it is a much smaller
number.

• Like adversarial samples generated by different attacking
methods, wrongly labeled samples also have significantly
larger LCR than normal samples. This suggests that
wrongly labeled samples are also sensitive to the change
of decision boundaries from model mutations as adversar-
ial samples. They are the same as the adversarial samples
which are near to the decision boundary and thus can be
potentially detected.

RQ2: How good is the LCR under model mutation as an
indicator for the detection of adversarial samples? To answer



TABLE IV: Label change rate (confidence interval with 99% significance level) for each group of samples under model mutation
testing with different mutation operators (NAI result is shown previously in Table II). The results are shown in percentage.

Mutation operator Dataset Mutation rate Normal samples Adversarial samples
Wrong labeled FGSM JSMA C&W Black-Box Deepfool

NS

MNIST
0.01 0.12± 0.07 3.78± 0.94 44.67± 3.92 36.03± 3.24 3.42± 0.79 40.06± 3.82 26.09± 3.16
0.03 0.37± 0.19 10.78± 2.30 46.32± 3.71 47.45± 2.61 8.93± 1.16 43.05± 3.59 34.20± 2.92
0.05 0.89± 0.35 19.30± 3.18 48.91± 3.41 56.51± 2.11 15.87± 1.53 46.94± 3.29 42.69± 2.65

CIFAR10
0.003 - - - - - - -
0.005 0.02± 0.03 0.3± 0.15 0.3± 0.16 0.46± 0.16 0.37± 0.18 0.08± 0.05 0.86± 0.24
0.007 0.94± 0.4 10.12± 1.19 7.16± 1.06 16.07± 1.21 11.04± 1.19 4.61± 0.8 19.05± 1.37

WS

MNIST
0.01 0.93± 0.18 9.83± 2.33 46.04± 3.73 46.96± 2.67 7.98± 1.15 42.42± 3.62 33.41± 2.97
0.03 3.03± 0.35 21.84± 3.11 49.83± 3.26 56.01± 2.10 17.01± 1.38 47.98± 3.14 43.07± 2.60
0.05 3.83± 0.42 26.96± 3.26 51.46± 3.06 57.56± 2.00 21.03± 1.40 50.20± 2.94 46.37± 2.46

CIFAR10
0.003 0.79± 0.35 9.04± 1.17 6.43± 1.05 14.85± 1.27 10.01± 1.18 9.11± 0.74 18.78± 1.46
0.005 2.01± 0.55 17.0± 1.53 12.88± 0.145 29.42± 1.55 18.42± 1.55 8.49± 1.06 32.63± 1.63
0.007 2.69± 0.65 21.6± 1.67 17.21± 1.67 37.69± 1.63 23.40± 1.69 11.15± 1.22 40.03± 1.63

GF

MNIST
0.01 0.57± 0.30 16.75± 3.33 47.87± 3.54 56.39± 2.14 14.27± 1.56 45.56± 3.41 41.07± 2.76
0.03 1.39± 0.46 27.00± 3.40 51.87± 3.10 60.64± 1.85 22.10± 1.64 50.59± 2.97 48.06± 2.41
0.05 2.49± 0.59 33.28± 3.28 55.02± 2.77 62.36± 1.74 25.87± 1.55 53.38± 2.68 51.60± 2.19

CIFAR10
0.003 1.42± 0.51 15.36± 1.52 11.42± 1.42 26.52± 1.53 17.0± 1.51 8.05± 1.10 31.36± 1.68
0.005 2.89± 0.75 25.31± 1.75 20.71± 1.79 41.69± 1.54 26.59± 1.75 13.75± 1.34 45.8± 1.57
0.007 4.09± 0.91 31.97± 1.86 27.69± 1.97 50.07± 1.52 32.94± 1.82 18.29± 1.48 53.67± 1.51
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Fig. 3: LCR distance between normal samples and adversarial samples using different mutation operators

the question, we further investigate the ROC curve using LCR
as the indicator of classifying an input sample as normal
or adversarial. We compare our proposed feature, i.e., LCR
under model mutations with two baseline approaches. The first
baseline (referred as baseline 1) is a combination of density
estimate and model uncertainty estimate as joint features [11].
The second baseline (referred as baseline 2) is based on the
label change rate of imposing random perturbations on the
input sample [46].

Table V presents the AUROC results under different model
mutation operators. We compare our results with two baselines
introduced above. The best AUROC results among the three
approaches are in bold. We could observe that our proposed
feature beats both baselines in over half the cases (excluding
Deepfool which we do not have any reported baseline results),
while baseline 1 and baseline 2 only win 1 and 3 cases
respectively. We could also observe that the AUROC results
are mostly very close to 1 (a perfect classifier), i.e., usually
larger than 0.9, which suggests that we could achieve high
accuracy using the proposed feature to distinguish adversarial
samples. We thus have the following answer to RQ2.

Answer to RQ2: LCR under model mutation could out-
perform current baselines to detect adversarial samples.

RQ3: How effective is our detection algorithm based on LCR
under model mutation? To answer the question, we apply our

TABLE V: AUROC results. BL means ‘baseline’.

Dataset Attack BL 1 BL 2 NAI GF NS WS

MNIST

FGSM 0.9057 0.9767 0.9744 0.9747 0.9554 0.9648
JSMA 0.9813 0.9946 0.9965 0.9975 0.9975 0.9969
CW 0.9794 0.9394 0.9576 0.9521 0.909 0.9225
BB – 0.9403 0.9789 0.9763 0.9631 0.9725
DF – – 0.9881 0.9889 0.9853 0.9864
WL – 0.9696 0.9689 0.9727 0.9612 0.9692

CIFAR10

FGSM 0.7223 0.9099 0.8956 0.8779 0.7559 0.8458
JSMA 0.9152 0.8753 0.9733 0.9737 0.9355 0.9729
CW 0.9217 0.8385 0.926 0.9205 0.8464 0.8994
BB – 0.9251 0.874 0.8371 0.7068 0.8702
DF – – 0.974 0.9786 0.9549 0.9753
WL – 0.9148 0.9185 0.9146 0.8331 0.876

detection algorithm (Algorithm 1) on each set of adversarial
samples generated using each attack and evaluate the accuracy
of the detection in Figure 4. We also report the accuracy of our
algorithm on a set of normal samples. The results are based
on the set of models generated using mutation rate 0.05 for
MNIST and 0.005 for CIFAR10 as they have good balance
between detecting adversarial and normal samples.

We set the parameters of Algorithm 1 as follows. Since
different kind of attacks have different LCR but the LCR of
normal sample is relatively stable, we choose to test against
the LCR of normal samples. Specifically, we set the threshold
ςh to be ρ·ςnr, where ςnr is the upper bound of the confidence
interval of ςnor and ρ (≥ 1) is a hyper parameter to control the
sensitivity of detecting adversarial samples in our algorithm.
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Fig. 4: Detection accuracy and number of mutated models needed.

The smaller ρ is, the more sensitive our algorithm is to detect
adversarial samples. The error bounds for SPRT is set as α =
0.05, β = 0.05. The indifference region is set as 0.1 · ςnr.

Figure 4 shows the detection accuracy and average num-
ber of model mutants needed for the detection using the
4 mutation operators for MNIST and CIFAR10 dataset re-
spectively. We could observe that our detection algorithm
achieves high accuracy on every kind of attack for ev-
ery mutation operator. On average, the GF/NAI/NS/WS
operators achieves accuracy of 94.9%/96.4%/83.9%/91.4%
with 75.5/74.1/145.3/105.4 mutated models for MNIST
(with ρ=1) and 85.5%/90.6%/56.6%/74.8% (with ρ=1) with
121.7/86.1/303/176.2 mutated models for CIFAR10 on de-
tecting the 6 kinds of adversarial samples. Meanwhile, we
maintain high detection accuracy of normal samples as well,
i.e., 90.8%/89.7%/94.7%/92.9% for MNIST (with ρ=1) and
79.3%/74%/84.6%/81.6% (with ρ=1) for CIFAR10 for the
above 4 operators respectively. Notice that for CIFAR10, we
could not train a good substitute model (the accuracy is below
50%) using Black-box attack and thus have no result. The
results show that our detection algorithm is able to detect most
of adversarial samples effectively. In addition, we observe that
the more accurate is the original (and as a result the mutated)
DNN model is (e.g., MNIST), the better is our algorithm.
Besides, we are able to achieve accuracy close to 1 for JSMA
and DF. We also recommend to use NAI/GF operators over
NS/WS operators as they have consistently better performance

than the others. We thus have the following answer to RQ3.

Answer to RQ3: Our detection algorithm based on statis-
tical hypothesis testing could effectively detect adversarial
samples.

Effect of ρ In this experiment, we vary the hyper parameter
ρ to see its effect on the detection. As shown in Figure 4, we
set ρ as {1, 1.5, 2} for MNIST and {1, 2, 3} for CIFAR10.
We could observe that as we increase ρ, we have a lower
accuracy on detecting adversarial samples but a higher
accuracy on detecting normal samples. The reason is that
as we increase ρ, the threshold for the detection increases.
In this case, our algorithm will be less sensitive to detect
adversarial samples since the threshold is higher. We could
also observe that we would need more mutations with a
higher threshold. In summary, the selection of ρ could be
application specific and our practical guide is to set a small ρ
if the application has a high safety requirement and vice versa.

RQ4: What is the cost of our detection algorithm? The cost
of our algorithm mainly consists of two parts, i.e., generating
mutated models (denoted by cg) and performing forward
propagation (denoted by cf ) to obtain the label of an input
sample by a DNN model. The total cost of detecting an input
sample is thus C = n · (cg + cf ), where n is the number of



TABLE VI: Cost analysis of our algorithm.

Dataset cf operator cg n

MNIST

0.7 ms NAI 6.191 s 68.7789
0.5 ms NS 6.336 s 173.0040
0.3 ms WS 7.657 s 107.6702
0.3 ms GF 1.398 s 91.1747

CIFAR10

0.3 ms NAI 16.101 s 69.0873
0.5 ms NS 9.475 s 283.9628
0.4 ms WS 9.251 s 165.6373
0.4 ms GF 11.894 s 127.2767

mutants needed to draw a conclusion based on Algorithm 1.
We estimate cf by performing forward propagation for

10000 images on a MNIST and CIFAR10 model respectively.
The detailed results are shown in Tabel VI. Note that cg is
the time used to generate an accurate model (retaining at least
90% accuracy of the original model) and the cost to generate
an arbitrary mutated model is much less. In practice, we could
generate and cache a set of mutated models for the detection
of a set of samples. Given a set of m samples, the total cost for
the detection is reduced to C(m) = m·n·cf+n∗cg . In practice,
our algorithm could detect an input sample within 0.1 second
(with cached models) using a single machine. We remark that
our algorithm can be parallelized easily by evaluating a set
of models at the same time which would reduce the cost
significantly. We thus have the following answer to RQ4.

Answer to RQ4: Our detection algorithm is lightweight
and easy to parallel.

D. Threats to Validity

First, our experiment is based on a limited set of test
subjects so far. Our experience is that the more accurate the
original model and the mutated models are, the more effective
and more efficient our detection algorithm is. The reason is
that the LCR distance between adversarial samples and normal
samples will be larger if the model is more accurate, which
is good for our detection. In some applications, however, the
accuracy of the original models may not be high. Secondly, the
detection algorithm will have some false positives. Since our
detection algorithm is threshold-based, there will be some false
alarms along with the detection. Meanwhile, there is a tradeoff
between avoiding false positives or false negatives as discussed
above (i.e., in the selection of ρ). Thirdly, the detection of
normal samples typically needs more mutations. The reason
is that we choose to test against ςnor since we do not know
ςadv for an unknown attack. Since normal samples have lower
LCR under mutated models in general, they would need more
mutations than adversarial samples to draw a conclusion.

V. RELATED WORKS

This work is related to studies on adversarial sample gen-
eration, detection and prevention. There are several lines of
related work in addition to those discussed above.

a) Adversarial training: The key idea of adversarial
training is to augment training data with adversarial samples
to improve the robustness of the trained DNN itself. Many
attack strategies have been invented recently to effectively
generate adversarial samples like DeepFool [30], FGSM [14],
C&W [7], JSMA [33], black-box attacks [32] and others [39],
[36], [12], [6], [50]. However, adversarial training in general
may overfit to the specific kinds of attacks which generate
the adversarial samples for training [28] and thus can not
guarantee robustness on new kinds of attacks.

b) Adversarial sample detection: Another direction is to
automatically detect those adversarial samples that a DNN
will mis-classify. One way is to train a ‘detector’ subnetwork
from normal samples and adversarial samples [29]. Alternative
detection algorithms are often based on the difference between
how an adversarial sample and a normal sample would behave
in the softmax output [54], [17], [24], [11] or under random
perturbations [46].

c) Model robustness: Different metrics has been pro-
posed in the machine learning community to measure and
provide evidence on the robustness of a target DNN [53], [48].
Besides, in [34] and the following work [40], [25], neuron
coverage and its extensions are argued to be the key indicators
of the DNN robustness. In [4], they proposed adversarial
frequency and adversarial severity as the robustness metrics
and encode robustness as a linear program.

d) Testing and formal verification: Testing strategies
including white-box [34], [44], black-box [49] and mutation
testing [26] have been proposed to generate adversarial sam-
ples more efficiently for adversarial training. However, testing
can not provide any safety guarantee in general. There are also
attempts to formally verify certain safety properties against the
DNN to provide certain safety guarantees [18], [20], [21], [47].

VI. CONCLUSION

In this work, we propose an approach to detect adversarial
samples for Deep Neural Networks at runtime. Our approach
is based on the evaluated hypothesis that most adversarial
samples are much more sensitive to model mutations than
normal samples in terms of label change rate. We then propose
to detect whether an input sample is likely to be normal
or adversarial by statistically checking the label change rate
of an input sample under model mutations. We evaluated
our approach on MNIST and CIFAR10 datasets and showed
that our algorithm is both accurate and efficient to detect
adversarial samples.
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