
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2020

Systematic classification of attackers via bounded model Systematic classification of attackers via bounded model

checking checking

Eric ROTHSTEIN-MORRIS
Singapore University of Technology and Design

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Sudipta CHATTOPADYAY
Singapore University of Technology and Design

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
ROTHSTEIN-MORRIS, Eric; SUN, Jun; and CHATTOPADYAY, Sudipta. Systematic classification of attackers
via bounded model checking. (2020). Proceedings of the 21st International Conference on Verification,
Model Checking, and Abstract Interpretation, VMCAI 2020, New Orleans, LA, January 19-21. 1-23.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4634

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Systematic Classification of Attackers via
Bounded Model Checking

(Extended Version)

Eric Rothstein-Morris1, Sun Jun2, and Sudipta Chattopadhyay1

1Singapore University of Technology and Design
{eric rothstein,sudipta chattopadhyay}@sutd.edu.sg

2 Singapore Management University
junsun@smu.edu.sg

Abstract. In this work, we study the problem of verification of sys-
tems in the presence of attackers using bounded model checking. Given
a system and a set of security requirements, we present a methodology
to generate and classify attackers, mapping them to the set of require-
ments that they can break. A naive approach suffers from the same
shortcomings of any large model checking problem, i.e., memory short-
age and exponential time. To cope with these shortcomings, we describe
two sound heuristics based on cone-of-influence reduction and on learn-
ing, which we demonstrate empirically by applying our methodology to
a set of hardware benchmark systems.

1 Introduction

Problem Context. Some systems are designed to provide security guarantees
in the presence of attackers. For example, the Diffie-Hellman key agreement
protocol guarantees perfect forward secrecy [21,27] (PFS), i.e., that the session
key remains secret even if the long-term keys are compromised. These security
guarantees are only valid in the context of the attacker models for which they
were proven; more precisely, those guarantees only hold for attackers that fit
those or weaker attacker models. For instance, PFS describes an attacker model
(i.e., an attacker that can compromise the long-term keys, and only those), and a
property that is guaranteed in the presence of an attacker that fits the model (i.e.,
confidentiality of the session keys). However, if we consider an attacker model
that is stronger (e.g., an attacker that can directly compromise the session key),
then Diffie-Hellman can no longer guarantee the confidentiality of the session
keys. Clearly, it is difficult to provide any guarantees against an attacker model
that is too capable, so it is in the interest of the system designer to choose an
adequate attacker model that puts the security guarantees of the system in the
context of realistic and relevant attackers.

Consider the following research question: RQ1) given a system and a list
of security requirements, how do we systematically generate attackers that can
potentially break these requirements, and how do we verify if they are successful?

ar
X

iv
:1

91
1.

05
80

8v
1

 [
cs

.C
R

]
 1

3
N

ov
 2

01
9

We approach this question at a high level for a system S with a set C of n
components, and a set of security requirements R as follows. Let A be a subset
of C; the set A models an attacker that can interact with S by means of each
component c in it. More precisely, for every component c in A, the attacker can
change the value of c at any time and any number of times during execution,
possibly following an attack strategy. Considering the exponential size of the
set of attackers (i.e., 2n), a brute-force approach to checking whether each of
those attackers breaks each requirement in R is inefficient for two reasons: 1)
an attacker A may only affect an isolated part of the system, so requirements
that refer to other parts of the system should not be affected by the presence of
A, and 2) if some attacker B affects the system in a similar way to A (e.g., if
they control a similar set of components), then the knowledge we obtain while
verifying the system in the presence of A may be useful when verifying the system
in the presence of B. These two reasons motivate a second research question:
RQ2) which techniques can help us efficiently classify attackers, i.e., to map
each attacker to the set of requirements that it breaks?

To answer these two research questions in a more concrete and practical
context, we study systems modelled by And-inverter Graphs (AIGs) (see [23,25]).
AIGs describe hardware models at the bit-level [10], and have attracted the
attention of industry partners including IBM and Intel [16]. Due to being systems
described at bit-level, AIGs present a convenient system model to study the
problem of attacker classification, because the range of actions that attackers
have over components is greatly restricted: either the attacker leaves the value
of the component as it is, or the attacker negates its current value. However, this
approach can be generalised to other systems by considering non-binary ranges
for components, and by allowing attackers to choose any value in those ranges.

Contributions. In this paper, we provide:

– a formalisation of attackers of AIGs and how they interact with systems,
– a methodology to perform bounded model checking while considering the

presence of attackers,
– a set of heuristics that efficiently characterise attacker frontiers for invariant

properties using bounded model checking,
– experimental evidence of the effectiveness of the proposed methodology and

heuristics.

2 Preliminaries

In this section, we provide the foundation necessary to formally present the prob-
lem of model checking And-inverter Graph (AIGs) in the presence of attackers.
Let B = { 0, 1 } be the set of booleans. An And-inverter Graph models a sys-
tem of equations that has m boolean inputs, n boolean state variables and o
boolean gates. The elements in the set W = {w1, . . . , wm } represent the inputs,
the elements in V = { v1, . . . , vn } represent the latches, and the elements in

w1

w2 1v1

•

g1•
•

r1

r2•g2

•
r3

w1

w2 0v1

•

g1•
•

r1

r2•g2

•
r3

w1

w2 1v1

•

g1•
•

r1

r2•1

•

g2

r3

Fig. 1. Left: And-inverter graph describing a system with two inputs w1 and w2 (green
boxes), one latch v1 with initial value 1 (grey box), two gates g1 and g2 (gray circles),
and three invariant requirements r1 = �g1, r2 = �¬g2 and r3 = �v1 (red circles).
Arrows represent logical dependencies, and bullets in the arrows imply negation.
Right above: an attacker that controls latch v1 can set its value to 0 and break r2
and r3 in 0 steps.
Right below: an attacker that controls gate g2 can set its value to 1 and break r2 in
0 steps and r3 in 1 step, because the value of v1 at time 1 is 0.

G = { g1, . . . , go } represent the and-gates. We assume that W , V and G are
pairwise disjoint, and we define the set of components C by C ,W ∪ V ∪G.

An expression e is described by the grammar e ::= 0 | 1 | c | ¬c, where c ∈ C.
The set of all expressions is E. We use discrete time steps t = 0, 1, .. to describe
the system of equations. To each latch v ∈ V we associate a transition equation
of the form v(t + 1) = e(t) and an initial equation of the form v(0) = b, where
e ∈ E and b ∈ B. To each gate g ∈ G we associate an equation of the form
g(t) = e1(t) ∧ e2(t), where e1, e2 ∈ E.

Example 1. Figure 1 shows an example AIG with W = {w1, w2 }, V =
{ v1 } and G = { g1, g2 }. The corresponding system of equations is

v1(0) = 1, v1(t + 1) = ¬g2(t),

g1(t) = ¬w1(t) ∧ ¬w2(t), g2(t) = g1(t) ∧ ¬v1(t).

The states of a system are all the different valuations of the variables in V ;
formally, a state −→v : V → B is a map of elements of V to booleans (i.e. a vector
of bits). Similarly, the valuations of the variables in W are all the inputs to the
systems; again, an input −→w : W → B is a map of elements of W to booleans

(also a vector of bits). We refer to the set of all states by
−→
V , and to the set of

all inputs by
−→
W . For t = 0, 1, ..., we denote the state of the system at time t by

−→v (t), with −→v (t) , 〈v1(t), . . . , vn(t)〉. The initial state is −→v (0), defined by the
initial equations for the latches. Similarly, we denote the input of the system
at time t by −→w(t), with −→w(t) , 〈w1(t), . . . , wn(t)〉. There are no restrictions or

assumptions over −→w(t), so it can take any value in
−→
W .

In Example 1, the set of states is
−→
V = { 〈0〉, 〈1〉 }, the set of all inputs is

−→
W = { 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉 }, and the initial state is −→v (0) = 〈1〉.

Given an expression e ∈ E, the invariant �e is the property that requires e(t)
to be true for all t ≥ 0. The system S fails the invariant �e iff there exists a finite
sequence of input vectors

〈−→w0, . . . ,
−→w t

〉
such that, if we assume −→w(t) = −→w t, then

e(t) is false. The system satisfies the invariant �e if no such sequence of input
vectors exists. Every expression e represents a boolean predicate over the state
of the latches of the system, and can be used to characterise states that are
(un)safe. These expressions are particularly useful in safety-critical hardware, as
they can signal the approach of a critical state.

In Example 1, we define three requirements: r1 , �g1, r2 , �¬g2, and
r3 , �v1. This system satisfies r2 and r3, but it fails r1 because w1 = 1
and w2 = 0 results in g1(0) being 0.

The Cone-of-Influence (COI) is a mapping from an expression to the compo-
nents that can potentially influence its value. We obtain the COI of an expression
e ∈ E, denoted H(e), by transitively tracing its dependencies to inputs, latches
and gates. More precisely,

– H(0) = ∅ and H(1) = ∅;
– if e = ¬c for c ∈ C, then H(e) = H(c);
– if e = w and w is an input, then H(e) = {w };
– if e = v and v is a latch whose transition equation is l(t + 1) = e′(t), then
H(e) = { v } ∪ H(e′);

– if e = g and g is a gate whose equation is g(t) = e1(t) ∧ e2(t) then H(e) =
{ g } ∪ H(e1) ∪ H(e2).

The COI of a requirement r = �e is H(r) , H(e).

In Example 1, the COI for the requirements are H(�g1) = { g1, w1, w2 },
and H(�g2) = H(�g3) = { g1, g2, v1, w1, w2 }.

The set of sources of an expression e ∈ E, denoted src(e) is the set of latches
and inputs in the COI of e; formally, src(e) , H(e)∩(V ∪W). The Jaccard index

of two expressions e1 and e2 is equal to |src(e1)∩src(e2)||src(e1)∪src(e2)| . This index provides a

measure of how similar the sources of e1 and e2 are.
The dual cone-of-influence (IOC) of a component c ∈ C, denoted N(c), is the

set of components influenced by c; more precisely N(c) , { c′ ∈ C | c ∈ H(c′) } .

3 Motivational Example

In this section, we provide a motivational example of the problem of model
checking compromised systems, and we illustrate how to classify attackers given
a list of security requirements. Consider a scenario where an attacker A controls
the gate g2 of Example 1. By controlling g2, we mean that A can set the value

{ v1, g1, g2 }

{ v1, g2 }{ v1, g1 } { g1, g2 }

{ g1 }{ v1 } { g2 }

{ }

{ v1, g1, g2 }

{ v1, g2 }{ v1, g1 } { g1, g2 }

{ g1 }{ v1 } { g2 }

{ }

Fig. 2. Left: classification of attackers for requirements r2 and r3. Right: classification
of attackers for requirement r1. A green attacker cannot break the requirement, while
a red attacker can.

of g2(t) at will for all t ≥ 0. Since r2 = �¬g2, it is possible for A to break
r2 by setting g2(0) to 1. We note that the same strategy works to break both
requirements, but it need not be in the general case; i.e., an attacker may have
one strategy to break one requirement, and a different strategy to break another.
A can also break r3 = �v1, because, if A sets g2(0) to 1, then v1(1) is equal to
0. Since the original system fails to enforce r1, we say that A has the power to
break the requirements r1, r2 and r3. Now, consider a different attacker B which
only controls the gate g1. No matter what value B chooses for g1(t) for all t, it
is impossible for B to break r2 or r3, so we say that B only has the power to
break r1.

If we allow attackers to control any number of components, then there are 8
different attackers, described by the subsets of { v1, g1, g2 }. We do not consider
attackers that control inputs, because the model checking of invariant properties
requires the property to hold for all inputs, so giving control of inputs to an
attacker does not make it more powerful (i.e. the attacker cannot break more
requirements than it already could without the inputs). Figure 2 illustrates the
classification of attackers depending on whether they can break a given require-
ment or not. Based on it, we can provide the following security guarantees: 1)
the system cannot enforce r1, and 2) that the system can only enforce r2 and r3
in the presence of attackers that are as capable to interact with the system as
{ g1 } (i.e. they only control g1 or nothing).

According to the classification, attacker { g2 } is as powerful as the attacker
{ v1, g1, g2 }, since both attackers can break the same requirements r1, r2 and r3.
This information may be useful to the designer of the system, because it may
prioritise attackers that control less components but are as powerful as attackers
that control more when deploying defensive mechanisms.

4 Bounded Model Checking of Compromised Systems

We recall the research questions that motivate this work: RQ1) given a system
and a list of security requirements, how do we systematically generate attack-

ers that can potentially break these requirements, and how do we verify if they
are successful? and RQ2) which techniques can help us efficiently classify at-
tackers, i.e., to map each attacker to the set of requirements that it breaks? In
this section, we aim to answer these research questions on a theoretical level by
formalising the problem of attacker classification via bounded model checking
AIGs in the presence of attackers. More precisely, to answer RQ1, we formalise
attackers and their interactions with systems, and we show how to systematically
generate bounded model checking problems that solve whether some given at-
tackers can break some given requirements. We then propose two methods for the
classification of attackers: 1) a brute-force method that creates a model checking
problem for each attacker-requirement pair, and 2) a method that incrementally
empowers attackers to find “minimal attackers,” since minimal attackers repre-
sent large portions of the universe of attackers thanks to a monotonicity relation
between the set of components controlled by the attacker and the set of require-
ments that the attacker can break. The latter method is a theoretical approach
to answer RQ2, while its practical usefulness is evaluated in Section 5.

4.1 Attackers and Compromised Systems

Since an AIG describes a system of equations, to incorporate the actions of an
attacker A into the system, we modify the equations that are associated to the
components controlled by A. Let S = (W,V,G) be a system described by an
AIG, let R = { r1, . . . , rn } be a set of invariant requirements for S, and let
C = W ∪ V ∪ G be the set of components of S. By definition, an attacker A
is any subset of C. If a component c belongs to an attacker A, then A has the
capability to interact with S through c. We modify the equations of every latch
v ∈ V to be parametrised by an attacker A as follows: the original transition
equation v(t + 1) = e(t) and the initial equation v(0) = b changes to

v(t + 1) =

{
e(t), if v 6∈ A;

Av(t + 1), otherwise,
v(0) =

{
b, if v 6∈ A;

Av(0), otherwise.
(1)

where Av(t) is a value chosen by the attacker A at time t. Similarly, we modify
the equation of gate g ∈ G as follows: the original equation g(t) = e1(t) ∧ e2(t)
changes to

g(t) =

{
e1(t) ∧ e2(t), if g 6∈ A;

Ag(t), otherwise,
(2)

where Ag(t) is, again, a value chosen by the attacker A at time t.
An attack −→a : A → B is a map of components in A to booleans. An attack

strategy is a finite sequence of attacks (−→a 0,
−→a 1, . . . ,

−→a t) that fixes the values
of all Ac(k) (used in the equations above) by Ac(k) = −→a k(c), with c ∈ A and
0 ≤ k ≤ t.

We use A[S] to interpret the system S under the influence of attacker A
(i.e., A[S] is the modified system of equations). Given a requirement r ∈ R with

r = �e, we say that A breaks the requirement r if and only if there exists a
sequence of inputs of length k and an attack strategy of length k such that e(k)
is false. We denote the set of requirements that A breaks by A[R].

Finally, we define two partial orders for attackers: 1) an attacker Ai is strictly
less capable (to interact with the system) than an attacker Aj in the context of
S iff Ai ⊆ Aj and Ai 6= Aj . The attacker Ai is equally capable to attacker Aj iff
Ai = Aj ; and 2) an attacker Ai is strictly less powerful than an attacker Aj in
the context of S and R iff Ai[R] ⊆ Aj [R] and Ai[R] 6= Aj [R]. Similarly, attacker
Ai is equally powerful to attacker Aj iff Ai[R] = Aj [R]. We simply state that Ai

is less capable than Aj if S is clear from the context. Similarly, we simply say
that Ai is less powerful than Aj if S and R are clear from the context.

We can now properly present the problem of attacker classification.

Definition 1 (Attacker Classification via Model Checking). Given a sys-
tem S, a set of requirements R, and a set of h attackers {A1, . . . , Ah }, for every
attacker A, we compute the set A[R] of requirements that A can break by per-
forming model checking of each requirement in R on the compromised system
A[S].

Definition 1 assumes that exhaustive model checking is possible for S and
the compromised versions A[S] for all attackers A. However, if exhaustive model
checking is not possible (e.g., due to time limitations or memory restrictions),
we consider an alternative formulation for Bounded Model Checking (BMC):

Definition 2 (Attacker Classification via Bounded Model Checking).
Let S be a system, R be a set of requirements, and t be a natural number. Given
a set of attackers {A1, . . . , Ah }, for each attacker A , we compute the set A[R]
of requirements that A can break using a strategy of length up to t on the
compromised system A[S].

In the following, we show how to construct a SAT formula that describes the
attacker classification problem via bounded model checking.

4.2 A SAT Formula for BMC up to t Steps

For a requirement r = �e and a time step t ≥ 0, we are interested in finding an
assignment of sources and attacker actions (i.e., an attack strategy) such that,
for 0 ≤ k ≤ t, the value of e(k) is false. We define the proposition goal(r, t) by

goal(�e, t) ,
t∨

k=0

¬e(k), (3)

We must inform the SAT solver of the equalities and dependencies between
expressions given by the definition of the AIG (e.g., that e(k) ⇔ ¬v1(k)). In-
spired by the work of Biere et al. [8], we transform the equations into a Con-
junctive Normal Form formula (CNF) that the SAT solver can work with. To

transform Equations 1 and 2, we use Tseitin encoding as follows: the equation

v(0) =

{
b, if v 6∈ A;

Av(0), otherwise
, becomes

(
¬v↓ ∨ (v(0)⇔ b)

)
∧
(
v↓ ∨ (v(0)⇔ Av(0))

)

where v↓ is a literal that marks whether the latch v is an element of the attacker
A currently being checked, i.e., we assume that v↓ is true if v ∈ A, and we assume
that v↓ is false if v 6∈ A. Consequently, if v 6∈ A, then v(0) ⇔ b must be true,
and if v ∈ A, then v(0)⇔ Av(0) must be true. We denote this new proposition
by encode(v, 0), and it characterises the initial state.

Similarly, for 0 ≤ k < t, each equation of the form

v(k + 1) =

{
e(k), if v 6∈ A;

Av(k + 1), otherwise,

becomes
(
v↓ ∨ (v(k + 1)⇔ e(k))

)
∧
(
¬v↓ ∨ (v(k + 1)⇔ Av(k + 1))

)
.

We denote these new propositions by encode(v, k). We now use the Tseitin
encoding of p⇔ (q ∧ r), i.e., (p∨¬q ∨¬r)∧ (¬p∨ q)∧ (¬p∨ r), to encode gates.
For 0 ≤ k ≤ t, the equation

g(k) =

{
e1(k) ∧ e2(k), if g 6∈ A;

Ag(k), otherwise,

becomes
(
g↓ ∨ (g(k)⇔ e1(k) ∧ e2(k))

)
∧
(
¬g↓ ∨ (g(k)⇔ Ag(k))

)
,

where g↓ is a literal that marks whether the gate g is an element of the attacker
A currently being checked in a similar way that the literal v↓ works for the latch
v. We denote this new proposition by encode(g, k).

Consider a component c and an attacker A. If c ∈ A, then we assume c↓

and the value of component c at time k depends on the source literal Ac(k); if
c 6∈ A, then we assume ¬c↓ so we use the original semantics of the system (which
depends only on the input literals). During bounded model checking, we need to
find an assignment of inputs in W and attacker actions for each component c in
A over t steps; thus, we need to assign at least |W ×A| × t literals.

The SAT problem for checking whether requirement r is safe up to t steps,
denoted check(r, t), is defined by

check(r, t) , goal(r, t) ∧
∧

c∈(V ∪G)

(
t∧

k=0

encode(c, k)

)
. (4)

Proposition 1. For a given attacker A and a requirement r = �e, if we assume
the literal c↓ for all c ∈ A and we assume ¬x↓ for all x 6∈ A (i.e., x ∈ (V ∪G)−A),
then A can break the requirement r in t steps (or less) if and only if check(r, t)
is satisfiable.

Data: system S = (W,V,G), a time step t ≥ 0, a set of requirements R.
Result: A map that maps the attacker A to A[R].

1 Map H;
2 foreach r ∈ R do
3 foreach A such that A ⊆ (V ∪G) do

4 if check(r, t) is satisfiable while assuming c↓ for all c ∈ A then
5 insert r in H(A);
6 end

7 end

8 end
9 return H;

Algorithm 1: Naive attacker classification algorithm.

Proof. We first show that if check(r, t) is satisfiable, then A can break the re-
quirement. If check(r, t) is satisfiable then goal(r, t) is satisfiable, and e(k) is
false for some k ≤ t. Moreover, there is an assignment of inputs −→w(k) and at-
tacker actions Ac(k), such that the encode(c, k) propositions are satisfied. By
taking −→wk = −→w(k) and −→a k(c) = Ac(k), we provide a witness input vector se-
quence and a witness attack strategy which proves that A can break r in k steps
(i.e., in t steps or less since k ≤ t).

We now show that if A can break the requirement in t steps or less, then
check(r, t) is satisfiable. Since A breaks r = �e in t steps or less, there must be an
assignment of the input vector sequence (−→w0, . . . ,

−→wk) and an attacker strategy
(−→a 0, . . . ,

−→a k) such that e(k) is false for some k ≤ t; this satisifes goal(r, t),
which, in turn, makes check(r, t) satisfiable.

ut

Algorithm 1 describes a naive strategy to compute the sets A[R] for each
attacker A; i.e. the set of requirements that A breaks in t steps (or less). Algo-
rithm 1 works by solving, for each of the 2|V ∪G| different attackers, a set of |R|
SAT problems, each of which has a size of at least O (|C| × t) on the worst case.

In the rest of the section, we propose two sound heuristics in an attempt
to improve Algorithm 1: the first technique aims to reduce the size of the SAT
formula, while the other aims to record and propagate the results of verifications
among the set of attackers so that some calls to the SAT solver can be avoided.

4.3 Isolation and Monotonicity

The first strategy involves relying on isolation to prove that it is impossible for a
given attacker to break some requirements. To formally capture this notion, we
first extend the notion of IOC to attackers. The IOC of an attacker A, denoted
N(A), is defined by the union of IOCs of the components in A; more precisely,
N(A) ,

⋃
{N(c) | c ∈ A } .

Informally, isolation happens whenever the IOC of A is disjoint from the COI
of r, implying that A cannot interact with r.

Proposition 2 (Isolation). Let A be an attacker and r be a requirement that
is satisfied in the absence of A. If N(A) ∩ H(r) = ∅, then A cannot break r.

Proof. For the attacker A to break the requirement r, there must be a component
c ∈ H(r) whose behaviour was affected by the presence of A, and whose change
of behaviour caused r to fail. However, for A to affect the behaviour of c, there
must be a dependency between the variables directly controlled by A and c, since
A only chooses actions over the components it controls; implying that c ∈ N(A).
This contradicts the premise that the IOC of A and the COI of r are disjoint,
so the component c cannot exist. ut

Isolation reduces the SAT formula by dismissing attackers that are outside the
COI of the requirement to be verified. Isolation works similarly to COI reduction
(see [13,15,7,18,14]), and it transforms Equation 4 into

check(r, t) , goal(r, t) ∧
∧

c∈(H(r)−W)

(
t∧

k=0

encode(c, k)

)
(5)

The second strategy uses monotonicity relation between capabilities and
power of attackers.

Proposition 3 (Monotonicity). For attackers A and B and a set of require-
ments R, if A ⊆ B, then A[R] ⊆ B[R].

Proof. If A is a subset of B, then attacker B can always choose the same attack
strategies that A used to break the requirements in A[R]; thus, A[R] must be a
subset of B[R]. ut

Monotonicity allows us to define the notion of minimal (successful) attackers
for a requirement r: attacker A is a minimal attacker for requirement r if and
only if A breaks r, and there is no attacker B ⊂ A such that B also breaks r.
In the remainder of this section, we expand on this notion, and we describe a
methodology for attacker classification that focuses on the identification of these
minimal attackers.

4.4 Minimal (Successful) Attackers

The set of minimal attackers for a requirement r partitions the set of attackers
into those that break r and those who do not. Any attacker that is more capable
than a minimal attacker is guaranteed to break r by monotonicity (cf. Propo-
sition 3), and any attacker that is less capable than a minimal attacker cannot
break r; otherwise, this less capable attacker would be a minimal attacker. Con-
sequently, we can reduce the problem of attacker classification to the problem of
finding the minimal attackers for all requirements.

Existence of a Minimal Attacker. Thanks to isolation (cf. Proposition 2)
we can guarantee that a requirement r that is safe in the absence of an attacker
A remains safe in the presence of A if H(r) ∩ N(A) is empty. Thus, for each
requirement r ∈ R, the set of attackers that could break r is P(H(r)−W).
Out of all the attackers of r, the most capable attacker is H(r)−W , so we can
test whether there exists any attacker that can break r in t steps by solving
check(r, t) against attacker H(r) −W . For succinctness, we henceforth denote
the attacker H(r)−W by rmax.

Corollary 1. From monotonicity and isolation (cf. Propositions 3 and 2), if at-
tacker rmax cannot break the requirement r, then there are no minimal attackers
for r. Equivalently, if rmax cannot break r, then r does not belong to any set of
broken requirements A[R].

Data: system S, a requirement r, and a time step t ≥ 0.
Result: set M of minimal attackers for r, bounded by t.

1 if check(r, t) is not satisfiable while assuming c↓ for all c ∈ rmax then
2 return ∅;
3 end
4 Set: P = { ∅ }, M = ∅; //(P contains the empty attacker ∅)
5 while P is not empty do
6 extract A from P such that the size of A is minimal;
7 if not (exists B ∈M such that B ⊆ A) then

8 if check(r, t) is satisfiable when assuming c↓ for all c ∈ A then
9 insert A in M ;

10 else
11 foreach c ∈ (rmax −A) do
12 insert A ∪ { c } in P ;
13 end

14 end

15 end

16 end
17 return M ;

Algorithm 2: The MinimalAttackers algorithm.

Finding Minimal Attackers. After having confirmed that at least one min-
imal attacker for r exists, we can focus on finding them. Our strategy consist
of systematically increasing the capabilities of attackers that fail to break the
requirement r until they do. Algorithm 2 describes this empowering procedure
to computes the set of minimal attackers for a requirement r, which we call
MinimalAttackers. As mentioned, we first check to see if a minimal attacker
exists (Lines 1-3); then we start evaluating attackers in an orderly fashion by
always choosing the smallest attackers in the set of pending attackers P (Lines

5-16). Line 7 uses monotonicity to discard the attacker A if there is a successful
attacker B with B ⊆ A. Line 8 checks if the attacker A can break r in t steps
(or less); if so, then A is a minimal attacker for r and is included in M (Line
9); otherwise, we empower A with a new component c, and we add these new
attackers to P (Lines 11-13). We note that Line 11 relies on isolation, since we
only add components that belong to the COI of r.

We recall the motivational example from Section 3. Consider the com-
putation of MinimalAttackers for requirement r2. In this case, rmax

2 is
{ g1, g2, v1 }, which is able to break r2, confirming the existence of (at
least) a minimal attacker (Lines 1-3). We start to look for minimal at-
tackers by checking the attacker ∅ (Lines 5-8); after we see that it fails to
break r2, we conclude that ∅ is not a minimal attacker and that we need
to increase its capabilities. We then derive the attackers { g1 } , { g2 } and
{ v1 } by adding one non-isolated component to ∅, and we put them into
the set of pending attackers (Lines 11-13). For attackers { v1 } and { g2 },
we know that they can break the requirement r2, so they get added to
the set of minimal attackers, and are not empowered (Line 9); however,
for attacker { g1 }, since it fails to break r2, we increase its capabilities
and we generate attackers { v1, g1 } and { g1, g2 }. Finally, for these two
latter attackers, since the minimal attackers { v1 } and { g2 } have already
been identified, the check in Line 7 fails, and they are dismissed from the
set of pending attackers, since they cannot be minimal. The algorithm
finishes with M = { { v1 } , { g2 } }.

Algorithm 3 applies Algorithm 2 to each requirement; it collects all minimal
attackers in the setM and initialises the attacker classification map H. Finally,
Algorithm 4 exploits monotonicity to compute the classification of each attacker
A by aggregating the requirements broken by the minimal attackers that are
subsets of A.

For the motivational example in Section 3, Algorithm 3 returns M =
{ ∅, { v1 } , { g2 } } andH = { (∅, { r1 }), ({ v1 } , { r2, r3 }), ({ g2 } , { r2, r3 }) }.
From there, Algorithm 4 completes the map H, and returns

H = {(∅, { r1 }), ({ v1 } , { r1, r2, r3 }), ({ g1 } , { r1 }), ({ g2 } , { r1, r2, r3 }),
({ v1, g2 } , { r1, r2, r3 }), ({ v1, g2 } , { r1, r2, r3 }),
({ g1, g2 } , { r1, r2, r3 }), ({ v1, g1, g2 } , { r1, r2, r3 })}

4.5 On Soundness and Completeness

Just like any bounded model checking problem, if the time parameter t is below
the completeness threshold (see [24]), the resulting attacker classification up to t
steps could be incomplete. More precisely, an attacker classification up to t steps
may prove that an attacker A cannot break some requirement r with a strategy
up to t steps, while in reality A can break r by using a strategy whose length is

Data: system S, a time step t ≥ 0, and a set of requirements R.
Result: Set of all minimal attackersM and an initial classification map H.

1 Set: M = ∅;
2 Map: H;
3 foreach r ∈ R do
4 foreach A ∈ MinimalAttackers(S, t, r) do
5 insert r in H(A);
6 insert A in M;

7 end

8 end
9 return (M,H);

Algorithm 3: The AllMinimalAttackers algorithm.

Data: system S = (W,V,G), a time step t ≥ 0, a set of requirements R.
Result: A map H that maps the attacker A to A[R].

1 (M,H) = AllMinimalAttackers(S, t, R);
2 foreach A ⊆ (V ∪G) do
3 foreach A′ ∈M do
4 if A′ ⊆ A then
5 insert all elements of H(A′) in H(A);
6 end

7 end

8 end
9 return H;
Algorithm 4: Improved classification algorithm. We assume that H ini-
tially maps every A to the empty set.

strictly greater than t. There are practical reasons that justify the use of a time
parameter that is lower than the completeness threshold: 1) computing the exact
completeness threshold is often as hard as solving the model-checking problem
[18], so an approximation is taken instead; and 2), the complexity of the classifi-
cation problem growths exponentially with t in the worst case, since the size of
the SAT formulae grow with t, and there is an exponential number of attackers
that need to be classified by making calls to the SAT solver. A classification that
uses a t below the completeness threshold, while possibly incomplete, is sound,
i.e., it does not falsely report that an attacker can break a requirement when
in reality it cannot. In Section 6 we discuss possible alternatives to overcome
incompleteness, but we leave a definite solution as future work.

We also consider the possibility of limiting the maximum size of minimal
attackers to approximate the problem of attacker classification. The result of a
classification whose minimal sets are limited to have up to z elements is also
sound but incomplete, since does not identify minimal attackers that have more

than z elements. We show in Section 5 that, even with restricted minimal at-
tackers, it is possible to obtain a high coverage of the universe of attackers.

4.6 Requirement Clustering

Property clustering [13,7,14] is a state-of-the-art technique for the model check-
ing of multiple properties. Clustering allows the SAT solver to reuse information
when solving a similar instance of the same problem, but under different as-
sumptions. To create clusters for attacker classification, we combine the SAT
problems whose COI is similar (i.e., requirements that have a Jaccard index
close to 1), and incrementally enable and disable properties during verification.
More precisely, to use clustering, instead of computing goal(r, t) for a single
requirement, we compute goal(Y, t) for a cluster Y of requirements, defined by

goal(Y, t) ,
∧
r∈Y

(¬r↓ ∨ goal(r, t)). (6)

where r↓ is a new literal that plays a similar role to the ones used for gates and
latches; i.e., we assume r↓ when we want to find the minimal attackers for r,
and we assume ¬y↓ for all other requirements y ∈ Y .

The SAT problem for checking whether the cluster of requirements Y is safe
up to t steps is

check(Y, t) , goal(Y, t) ∧
∧

c∈(H(Y)−W)

(
t∧

k=0

encode(c, k)

)
, (7)

where H(Y) =
⋃
{H(r) | r ∈ Y }.

5 Evaluation

In this section, we perform experiments to evaluate how effective is the use of
isolation and monotonicity for the classification of attackers, and we evaluate
the completeness of partial classifications for different time steps.

For evaluation, we use a sample of AIG benchmarks from past Hardware
Model-Checking Competitions (see [2,3]), from their multiple-property verifica-
tion track. Each benchmark has an associated list of invariants to be verified
which, for the purposes of this evaluation, we interpret as the set of security
requirements. As of 2014, the benchmark set was composed of 230 different in-
stances, coming from both academia and industrial settings [16]. We quote from
[16]:

“Among industrial entries, 145 instances belong to the SixthSense fam-
ily (6s*, provided by IBM), 24 are Intel benchmarks (intel*), and 24
are Oski benchmarks. Among the academic related benchmarks, the set
includes 13 instances provided by Robert (Bob) Brayton (bob*), 4 bench-
marks coming from Politecnico di Torino (pdt*) and 15 Beem (beem*).
Additionally, 5 more circuits, already present in previous competitions,
complete the set.”

All experiments are performed on a quad core MacBook with 2.9 GHz Intel Core
i7 and 16GB RAM, and we use the SAT solver CaDiCaL version 1.0.3 [4]. The
source code of the artefact is available at [1].

We separate our evaluation in two parts: 1) a comparative study where we
evaluate the effectiveness of using of monotonicity and isolation for attacker clas-
sification in several benchmarks, and 2) a case study, where we apply our clas-
sification methodology to a single benchmark –pdtvsarmultip– and we study
the results of varying the time parameters for partial classification.

5.1 Evaluating Methodologies

Given a set of competing classification methodologies M1, . . . ,Mn (e.g., Algo-
rithm 1 and Algorithm 4), each methodology is given the same set of benchmarks
S1, . . . , Sm, each with its respective set of requirements R1, . . . , Rm. To evaluate
a methodology M on a benchmark S = (W,V,G) with a set of requirements R,
we allow M to “learn” for about 10 minutes per requirement by making calls
to the SAT solver, and produce a (partial) attacker classification H. Afterwards,
we compute the coverage metric obtained by M, defined as follows.

Definition 3 (Coverage). Let P(V) be the set of all attackers, and let H be
the attacker classification produced by the methodology M. We recall that H
is a map that maps each attacker A to a set of requirements, and in the ideal
case, H(A) = A[R], for each attacker A. The attacker coverage obtained by
methodology M for a requirement r is the percentage of attackers A ∈ P(V)
for which we can correctly determine whether A breaks r by computing r ∈ H(A)
(i.e., we do not allow guessing and we do not allow making new calls to the SAT
solver).

We also measure the execution time of the classification per requirement.
More precisely, the time it takes for the methodology to find minimal attackers,
capped at about 10 minutes per requirement. We force stop the classification for
each requirement if a timeout occurs, but not while the SAT solver is running
(i.e., we do not interrupt the SAT solver), which is why sometimes the reported
time exceeds 10 minutes.

5.2 Effectiveness of Isolation and Monotonicity

To test the effectiveness of isolation and monotonicity, we selected a small sam-
ple of seven benchmarks. For each benchmark, we test four variations of our
methodology:

1. (+IS,+MO): Algorithm 4, which uses both isolation and monotonicity
2. (+IS,−MO): Algorithm 4 but removing the check for monotonicity on Al-

gorithm 2, Line 7;
3. (−IS,+MO): Algorithm 4 but using Equation 5 instead of Equation 7 to

remove isolation while preserving monotonicity; and

4. (+IS,+MO) Algorithm 1, which does not use isolation nor monotonicity.

The benchmarks we selected have an average of 173 inputs, 8306 gates, 517
latches, and 80 requirements. Under our formulation of attackers, these bench-
marks have on average 28823 attackers. However, since an attacker that controls
a gate g can be emulated by an attacker that controls all latches in the sources
of g, we restrict attackers to be comprised of only latches; reducing the size of
the set of attackers from 28823 to 2517 on average per benchmark. Furthermore,
we arbitrarily restrict the number of components that minimal attackers may
control to a maximum of 3, which implies that, on a worst case scenario, we need
to make a maximum of 80×

∑3
k=0

(
517
k

)
calls to the SAT solver per benchmark.

We also arbitrarily define the time step parameter t to be 10.
Figure 3 illustrates the average coverage for the four different methodolo-

gies, for each of the seven benchmarks. The exact coverage values are reported
in Table 4 in the Appendix. We see that our methodology consistently obtains
the best coverage of all the other methodologies, with the exception of bench-
mark 6s155, where the methodology that removes isolation triumphs over ours.
We attribute this exception to the way the SAT solver reuses knowledge when
working incrementally; it seems that, for (−IS,+MO), the SAT solver can reuse
more knowledge than for (+IS,+MO), which is why (−IS,+MO) can discover
more minimal attackers in average than (+IS,+MO) (see Table 4).

We observe that the most significant element in play to obtain a high coverage
is the use of monotonicity. Methodologies that use monotonicity always obtain
better results than their counterparts without monotonicity. Isolation does not
show a trend for increasing coverage, but has an impact in terms of classification
time. Figure 4 presents the average classification time per requirement for the
benchmarks under the different methodologies. We note that removing isolation
often increases the average classification time of classification methodologies;
the only exception –benchmark 6s325– reports a smaller time because the SAT
solver ran out of memory during SAT solving about 50% of the time, which
caused an early termination of the classification procedure. This early termina-
tion also reflects on the comparatively low coverage for the method (−IS,+MO)
in this benchmark, reported on Figure 3.

5.3 Partial Classification of the pdtvsarmultip Benchmark

The benchmark pdtvsarmultip has 17 inputs, 130 latches, 2743 gates, and has
an associated list of 33 invariant properties, out of which 31 are unique and
we interpret as the list of security requirements. Since we are only considering
attackers that control latches, there are a total of 2130 attackers that need to be
classified for the 31 security requirements.

We consider 6 scenarios for partial classification up to t, with t taking values
in { 0, 1, 5, 10, 20, 30 }. For each requirement, we obtain the execution time of
classification (ms), the size of the set of source latches for the requirement (#C),
the number of minimal attackers found (#Min.), the total number of calls to the
SAT solver (#SAT), the average number of components per minimal attacker

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pdtsarmultip 6s106 6s155 6s255 6s325 bob12m18m nusmvdme2d3multi

Average Coverage

(+IS, +MO) (-IS, +MO) (+IS, -MO) (-IS, -MO)

Fig. 3. Average requirement coverage per benchmark. A missing bar indicates a value
that is approximately 0.

0

100
200

300
400

500
600

700

pdtsarmultip 6s106 6s155 6s255 6s325 bob12m18m nusmvdme2d3multi

Average Classification Time per Requirement (seconds)

(+IS, +MO) (-IS, +MO) (+IS, -MO) (-IS, -MO)

Fig. 4. Average classification time per requirement per benchmark. The time for bench-
mark nusmvdme2d3multi is very close to 0 in all instances.

(#C./Min) and the coverage for the requirement (Cov.). We present the average
of these measures in Table 1.

Normally, the attacker classification behaves in a similar way to what is
reported for requirement �¬g2177, shown in Table 2. More precisely, coverage
steadily increases and stabilises as we increase t. However, we like to highlight two
interesting phenomena that may occur: 1) coverage may decrease as we increase
the time step (e.g., as shown in Table 3), and 2) the number of minimal attackers
decreases while the coverage increases, as shown in Tables 2 and 3.

Case 1) occurs because the set of attackers that can effectively interact with
the system at time 0 is rather small, i.e., 26, while the set of attackers that can
affect the system at times 0 and 1 has size 226. The size of this set increases
with time until it stabilises at 266, which is the size of the set of attackers that
cannot be dismissed by isolation.

Case 2) occurs because the minimal attackers that are found for smaller
time steps represent a small percentage of the set of attackers that can affect the
system, so there is very little we can learn by using monotonicity. More precisely,
those minimal attackers control a relatively large set of components, which they
need to be successful in breaking requirements, as shown in Step 5, column
#C./Min in Tables 2 and 3. By considering more time steps, we are allowing
attackers that control less components to further propagate their actions through
the system, which enables attack strategies that were unsuccessful for smaller
choices of time steps.

Steps ms #C. #Min. #SAT #C./Min. Cov.

0 683.1290323 34.96774194 2.451612903 16328.77419 1.4 0.527277594
1 2387.548387 46.22580645 6.387096774 24420 1.650232484 0.572533254
5 5229.935484 58.93548387 44.90322581 28355.29032 1.639645689 0.84956949
10 24967.12903 58.93548387 151.1935484 25566.54839 1.460869285 0.918973269
20 13632.51613 58.93548387 17.67741935 20849.70968 1.176272506 0.979354259
30 12208.25806 58.93548387 15.93548387 20798.16129 1.104563895 0.979354274

Table 1. Average measures for all requirements per time steps.

�¬g2177
Steps ms #C #Min. #SAT #C./Min. Cov.

0 895 59 0 34281 – 5.94E-14
1 2187 66 10 47378 2 0.499511
5 1735 66 205 12476 1.912195 0.999997
10 968 66 27 9948 1 0.999999
20 1275 66 27 9948 1 0.999999
30 1819 66 27 9948 1 0.999999

Table 2. Coverage for requirement
�¬g2177.

�¬g2220
Steps ms #C. #Min. #SAT #C./Min. Cov.

0 1 6 1 28 1 0.90625
1 86 26 1 2628 1 0.500039
5 4511 67 17 47664 2.588235 0.852539
10 3226 67 6 37889 1 0.984375
20 3355 67 6 37889 1 0.984375
30 3562 67 6 37889 1 0.984375

Table 3. Coverage for requirement
�¬g2220.

By taking an average over all requirements, we observe that coverage seems
to steadily increase as we increase the number of steps for the classification,
as reported in Table 1, column Cov. The low coverage for small t is due to
the restriction on the size of minimal attackers. More precisely, for small t,
attackers can only use short strategies, which limits their interaction with the
system; we expect attackers to control a large number of components if they
want to successfully influence a requirement in this single time step, and since
we restricted our search to attackers of size 3 maximum, these larger minimal
attackers are not found (e.g., as reported in Table 2 for Step 0).

We conclude that experimental evidence favours the use of both monotonic-
ity and isolation for the classification of attackers, although some exceptions
may occur for the use of isolation. Nevertheless, these two techniques help our
classification methodology (+IS,+MO) consistently obtain significantly better
coverage when compared to the naive methodology (−IS,−MO).

6 Related Work

On Defining Attackers. Describing an adequate attacker model to contex-
tualise the security guarantees of a system is not a trivial task. Some attacker
models may be adequate to provide guarantees over one property (e.g. confiden-
tiality), but not for a different one (e.g., integrity). Additionally, depending on
the nature of the system and the security properties being studied, it is sensible
to describe attackers at different levels of abstraction. For instance, in the case
of security protocols, Basin and Cremers define attackers in [6] as combinations
of compromise rules that span over three dimensions: whose data is compro-
mised, which kind of data it is, and when the compromise occurs. In the case

of Cyber-physical Systems (CPS), works like [19,29] model attackers as sets of
components (e.g., some sensors or actuators), while other works like [31,17,30]
model attackers that can arbitrarily manipulate any control inputs and any sen-
sor measurements at will, as long as they avoid detection. In the same context
of CPS, Rocchetto and Tippenhauer [28] model attackers more abstractly as
combinations of quantifiable traits (e.g., insider knowledge, access to tools, and
financial support), which, when provided a compatible system model, ideally
fully define how the attacker can interact with the system.

Our methodology for the definition of attackers combines aspects from [6,19]
and [29]. The authors of [6] define symbolic attackers and a set of rules that
describe how the attackers affect the system, which is sensible since many cryp-
tographic protocols are described symbolically. Our methodology describes at-
tackers as sets of components (staying closer to the definitions of attackers in [19]
and [29]), and has a lower level of abstraction since we describe the semantics
of attacker actions in terms of how they change the functional behaviour of the
AIG, and not in terms of what they ultimately represent. This lower level of
abstraction lets us systematically and exhaustively generate attackers by simply
having a benchmark description, but it limits the results of the analysis to the
benchmark; Basin and Cremers can compare among different protocol imple-
mentations, because attackers have the same semantics even amongst different
protocols. If we had an abstraction function from sets of gates and latches to
symbolic notions (e.g., “components in charge of encryption”, or “components
in charge of redundancy”), then it could be possible to compare results amongst
different AIGs.

On Efficient Classification. The works by Cabodi, Camurati and Quer [15],
Cabodi et. al [13], and Cabodi and Nocco [14] present several useful techniques
that can be used to improve the performance of model checking when verifying
multiple properties, including COI reduction and property clustering. We also
mention the work by Goldberg et al. [20] where they consider the problem of
efficiently checking a set of safety properties P1 to Pk by individually checking
each property while assuming that all other properties are valid. Ultimately, all
these works inspired us to incrementally check requirements in the same cluster,
helping us transform Equation 4 into Equation 7. Nevertheless, we note that
all these techniques are described for model checking systems in the absence
of attackers, which is why we needed to introduce the notions of isolation and
monotonicity to account for them. Finally, it may be possible to use or incor-
porate other techniques that improve the efficiency of BMC in general (e.g.,
interpolation [26]).

On Completeness. As mentioned in Section 4.5, if the time parameter for the
classification is below the completeness threshold, the resulting attacker classifi-
cation is most likely incomplete. To guarantee completeness, it may be possible to
adapt existing termination methods (see [5]) to consider attackers. Alternatively,
methods that compute a good approximation of the completeness threshold (see

[24]) which guarantee the precision of resulting the coverage should help improve
the completeness of attacker classifications. Interpolation [26] can also help find-
ing a guarantee of completeness. Also, the verification techniques IC3 [11,12]
and PDR [11], which have seen some success in hardware model checking, may
address the limitation of boundedness.

On Verifying Non-Safety Properties. In this work, we focused our analysis
exclusively on safety properties of the form �e. However, we believe that it is
possible to extend this methodology to other types of properties, it is possible to
efficiently encode Linear Temporal Logic formulae for bounded model checking
[8,9]. The formulations of the SAT problem change for the different nature of
the formulae, but both isolation and monotonicity should remain valid heuristics,
since they ultimately refer to how strategies of attackers can be inferred, not how
they are constructed.

7 Conclusion and Future Work

In this work, we present a methodology to model check systems in the presence
of attackers with the objective of mapping each attacker to the list of security
requirements that it breaks. This mapping of attackers creates a classification
for them, defining equivalence classes of attackers by the set of requirements
that they can break. The system can then be considered safe in the presence of
attackers that cannot break any requirement. While it is possible to perform a
classification of attackers by exhaustively performing model checking, the expo-
nential size of the set of attackers renders this naive approach impractical. Thus,
we rely on ordering relations between attackers to efficiently classify a large per-
centage of them, and we demonstrate empirically by applying our methodology
to a set of benchmarks that describe hardware systems at a bit level.

In our view, ensuring the completeness of the attacker classification is the
most relevant direction for future work. Unlike complete classifications, incom-
plete classifications cannot provide guarantees that work in the general case if
minimal attackers are not found. We also note that the effectiveness of mono-
tonicity for classification is directly related to finding minimal attackers. Con-
sequently, our methodology may benefit from any other method that helps in
the identification of those minimal attackers. In particular, we are interested in
checking the effectiveness of an approach where, instead of empowering attack-
ers, we try to reduce successful attackers into minimal attackers by removing
unnecessary capabilities. This, formally, is an actual causality analysis [22] of
successful attackers.

References

1. And-inverter graph attacker classification, https://gitlab.com/asset-sutd/

public/aig-ac

https://gitlab.com/asset-sutd/public/aig-ac
https://gitlab.com/asset-sutd/public/aig-ac

2. (November 2011), http://fmv.jku.at/hwmcc11/index.html
3. (October 2013), http://fmv.jku.at/hwmcc13/index.html
4. (September 2019), http://fmv.jku.at/cadical/
5. Awedh, M., Somenzi, F.: Proving more properties with bounded model checking.

In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification. pp. 96–108. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)

6. Basin, D., Cremers, C.: Know your enemy: Compromising adversaries in protocol
analysis. ACM Trans. Inf. Syst. Secur. 17(2), 7:1–7:31 (Nov 2014), http://doi.
acm.org/10.1145/2658996

7. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands, The Netherlands (2009)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 193–207. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

9. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear Encodings
of Bounded LTL Model Checking. Logical Methods in Computer Science Volume
2, Issue 5 (November 2006)

10. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. rep., FMV
Reports Series, Institute for Formal Models and Verification, Johannes Kepler Uni-
versity, Altenbergerstr. 69, 4040 Linz, Austria (2011)

11. Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) Verification, Model Checking, and Abstract Interpretation. pp. 70–87.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

12. Bradley, A.R.: Understanding ic3. In: Proceedings of the 15th International
Conference on Theory and Applications of Satisfiability Testing. pp. 1–14.
SAT’12, Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/
978-3-642-31612-8_1

13. Cabodi, G., Camurati, P.E., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer,
S.: To split or to group: from divide-and-conquer to sub-task sharing for verifying
multiple properties in model checking. International Journal on Software Tools
for Technology Transfer 20(3), 313–325 (Jun 2018), https://doi.org/10.1007/
s10009-017-0451-8

14. Cabodi, G., Nocco, S.: Optimized model checking of multiple properties. In: 2011
Design, Automation Test in Europe. pp. 1–4 (March 2011)

15. Cabodi, G., Camurati, P., Quer, S.: A graph-labeling approach for efficient cone-of-
influence computation in model-checking problems with multiple properties. Soft-
ware: Practice and Experience 46(4), 493–511 (2016), https://onlinelibrary.

wiley.com/doi/abs/10.1002/spe.2321

16. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ven-
draminetto, D., Biere, A., Heljanko, K.: Hardware model checking competition
2014: An analysis and comparison of model checkers and benchmarks. Journal on
Satisfiability, Boolean Modeling and Computation 9, 135–172 (January 2015)

17. Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: At-
tacks against process control systems: Risk assessment, detection, and response.
In: Proceedings of the 6th ACM Symposium on Information, Computer and Com-
munications Security. pp. 355–366. ASIACCS ’11, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/1966913.1966959

18. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018)

http://fmv.jku.at/hwmcc11/index.html
http://fmv.jku.at/hwmcc13/index.html
http://fmv.jku.at/cadical/
http://doi.acm.org/10.1145/2658996
http://doi.acm.org/10.1145/2658996
http://dx.doi.org/10.1007/978-3-642-31612-8_1
http://dx.doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/s10009-017-0451-8
https://doi.org/10.1007/s10009-017-0451-8
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2321
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2321
http://doi.acm.org/10.1145/1966913.1966959

19. Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippen-
hauer, N.O., Sandberg, H., Candell, R.: A survey of physics-based attack detec-
tion in cyber-physical systems. ACM Comput. Surv. 51(4), 76:1–76:36 (Jul 2018),
http://doi.acm.org/10.1145/3203245

20. Goldberg, E., Gdemann, M., Kroening, D., Mukherjee, R.: Efficient verification
of multi-property designs (the benefit of wrong assumptions). In: 2018 Design,
Automation Test in Europe Conference Exhibition (DATE). pp. 43–48 (March
2018)

21. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J.,
Vandewalle, J. (eds.) Advances in Cryptology — EUROCRYPT ’89. pp. 29–37.
Springer Berlin Heidelberg, Berlin, Heidelberg (1990)

22. Halpern, J.Y.: Actual Causality. Mit Press (2016), http://www.jstor.org/

stable/j.ctt1f5g5p9

23. Hellerman, L.: A catalog of three-variable or-invert and and-invert logical circuits.
IEEE Transactions on Electronic Computers EC-12(3), 198–223 (June 1963)

24. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) Verification, Model
Checking, and Abstract Interpretation. pp. 298–309. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003)

25. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 21(12), 1377–1394
(Dec 2002)

26. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) Computer Aided Verification. pp. 1–13. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2003)

27. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (1996)

28. Rocchetto, M., Tippenhauer, N.O.: On attacker models and profiles for cyber-
physical systems. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
Computer Security – ESORICS 2016. pp. 427–449. Springer International Publish-
ing, Cham (2016)

29. Rothstein, E., Murguia, C.G., Ochoa, M.: Design-time quantification of integrity
in cyber-physical systems. In: Proceedings of the 2017 Workshop on Programming
Languages and Analysis for Security. pp. 63–74. PLAS ’17, ACM, New York, NY,
USA (2017), http://doi.acm.org/10.1145/3139337.3139347

30. Urbina, D.I., Giraldo, J.A., Cardenas, A.A., Tippenhauer, N.O., Valente, J., Faisal,
M., Ruths, J., Candell, R., Sandberg, H.: Limiting the impact of stealthy attacks on
industrial control systems. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1092–1105. CCS ’16, ACM, New
York, NY, USA (2016), http://doi.acm.org/10.1145/2976749.2978388

31. Weerakkody, S., Sinopoli, B., Kar, S., Datta, A.: Information flow for security in
control systems. In: 2016 IEEE 55th Conference on Decision and Control (CDC).
pp. 5065–5072 (Dec 2016)

Appendix

http://doi.acm.org/10.1145/3203245
http://www.jstor.org/stable/j.ctt1f5g5p9
http://www.jstor.org/stable/j.ctt1f5g5p9
http://doi.acm.org/10.1145/3139337.3139347
http://doi.acm.org/10.1145/2976749.2978388

B
en

ch
m

a
rk

p
d
ts

a
rm

u
lt

ip
6
s1

0
6

6
s1

5
5

6
s2

5
5

6
s3

2
5

b
o
b
1
2
m

1
8
m

n
u
sm

v
d
m

e2
d
3
m

u
lt

i

A
v
er

a
g
e

C
ov

er
a
g
e

p
er

R
eq

u
ir

em
en

t

(+
IS

,
+

M
O

)
0
.9

1
8
9
7
3
2
6
9

0
.9

7
7
6
2
0
1
8
7

0
.9

3
7
6
2
2
0
7

0
.9

7
7
1
7
2
8
5
2

0
.9

8
6
9
4
9
5
8
1

0
.7

8
5
0
7
5
7
7
7

0
.8

8
5
3
3
0
2

(-
IS

,
+

M
O

)
0
.9

1
6
6
2
2
4
2
3

0
.9

7
7
0
0
8
2
5
9

0
.9

9
6
0
9
3
7
5

0
.9

7
6
5
6
2
5

0
.5

9
0
2
0
5
5
4
4

0
.7

8
1
7
0
4
4
9
2

0
.8

8
5
3
3
0
2

(+
IS

,
-M

O
)

9
.9

5
E

-0
2

2
.0

1
E

-0
3

0
.1

9
5
3
1
2
5

1
.7

3
8
2
8
E

-1
1

0
.1

5
6
1
4
7
6
7
4

4
.6

1
E

-0
2

4
.5

2
E

-1
5

(-
IS

,
-M

O
)

6
.4

5
E

-0
2

9
.1

0
E

-3
6

6
.0

0
E

-7
2

2
.0

8
3
8
E

-2
2
2

0
.1

5
6
1
4
6
1
7
9

3
.2

9
E

-0
2

4
.5

2
E

-1
5

A
v
er

a
g
e

C
la

ss
ifi

ca
ti

o
n

T
im

e
p

er
R

eq
u
ir

em
en

t

(+
IS

,
+

M
O

)
2
4
9
6
7
.1

2
9
0
3

3
0
8
8
.8

8
2
3
5
3

3
2
6
3
7
2
.2

1
8
8

3
8
3
9
6
.1

2
5

1
7
4
0
6
6
.6

0
4
7

4
9
9
1
6
.5

9
2
1
1

3
5
3
0
.6

6
6
6
6
7

(-
IS

,
+

M
O

)
5
6
1
8
7
.4

8
3
8
7

2
5
0
9
0
.4

7
0
5
9

4
0
8
1
6
5
.4

0
6
3

2
6
3
4
5
7
.1

2
5

1
5
2
4
2
5
.3

8
8
9

5
4
1
8
7
0
.2

5
3
3
4
8
.3

3
3
3
3
3

(+
IS

,
-M

O
)

9
7
3
2
6
.2

9
0
3
2

2
8
4
8
3
.1

1
7
6
5

3
4
0
7
1
5
.0

3
1
3

1
9
7
2
7
5
.7

5
3
6
3
9
1
3
.8

4
7
2

1
1
4
3
3
0
.0

8
5
5

3
8
9
0

(-
IS

,
-M

O
)

1
7
0
6
3
0
.7

7
4
2

3
4
1
4
3
0
.7

0
5
9

6
4
6
9
2
6
.0

6
2
5

6
0
2
0
1
2
.5

1
6
2
9
5
9
.5

4
3
6

5
7
2
0
8
0
.0

9
8
7

4
2
6
2
.3

3
3
3
3
3

A
v
er

a
g
e

N
u
m

b
er

o
f

C
o
m

p
o
n
en

ts
to

B
u
il
d

A
tt

a
ck

er
s

F
ro

m
p

er
R

eq
u
ir

em
en

t

(+
IS

,
+

M
O

)
5
8
.9

3
5
4
8
3
8
7

3
5
.4

7
0
5
8
8
2
4

9
9
3
.8

7
5

1
7
3
.1

1
9
6
0
1
3

1
2
4
.0

4
6
0
5
2
6

6
3

(-
IS

,
+

M
O

)
8
2

1
3
5

2
5
7

7
5
2

1
6
6
8

2
6
1

6
3

(+
IS

,
-M

O
)

5
8
.9

3
5
4
8
3
8
7

3
5
.4

7
0
5
8
8
2
4

9
9
3
.8

7
5

1
7
3
.1

1
9
6
0
1
3

1
2
4
.0

4
6
0
5
2
6

6
3

(-
IS

,
-M

O
)

8
2

1
3
5

2
5
7

7
5
2

1
6
6
8

2
6
1

6
3

A
v
er

a
g
e

N
u
m

b
er

o
f

Id
en

ti
fi
ed

S
u
cc

es
sf

u
l

A
tt

a
ck

er
s

p
er

R
eq

u
ir

em
en

t

(+
IS

,
+

M
O

)
1
5
1
.1

9
3
5
4
8
4

1
6
.0

5
8
8
2
3
5
3

7
.5

2
.5

6
2
5

2
3
7
.3

0
5
6
4
7
8

3
4
.9

3
4
2
1
0
5
3

1
2
9
.3

3
3
3
3
3
3

(-
IS

,
+

M
O

)
1
4
6
.0

3
2
2
5
8
1

1
6
.0

5
8
8
2
3
5
3

8
2
.4

3
7
5

4
6
.4

2
4
2
4
2
4
2

3
4
.6

8
4
2
1
0
5
3

1
2
9
.3

3
3
3
3
3
3

(+
IS

,
-M

O
)

1
5
8
6
0
.2

5
8
0
6

1
4
6
9
3
.1

7
6
4
7

9
8

1
3
7
9
2
.9

3
7
5

2
1
4
2
9
3
.0

1
2
2
7
0
0
.5

8
5
5
3

1
2
8
2

(-
IS

,
-M

O
)

2
7
2
0
7
.5

4
8
3
9

1
0
5
8
4
2
.7

0
5
9

1
2
6
1
3
3
.2

8
1
3

2
0
6
5
7

2
5
0
2
.2

5
6
4
1

4
0
5
2
6
.7

2
3
6
8

1
2
8
2

A
v
er

a
g
e

N
u
m

b
er

o
f

C
a
ll
s

to
S
A

T
S
o
lv

er
p

er
R

eq
u
ir

em
en

t

(+
IS

,
+

M
O

)
2
5
5
6
6
.5

4
8
3
9

1
9
7
8
.6

4
7
0
5
9

1
0
.4

3
7
5

1
1
3
8
2
.1

2
5

5
8
3
1
2
3
.7

2
0
9

3
0
0
8
2
5
.9

6
0
5

4
0
5
7
6
.3

3
3
3
3

(-
IS

,
+

M
O

)
5
8
4
2
0
.8

3
8
7
1

2
9
4
4
7
7
.9

4
1
2

2
0
2
2
6
4
0
.2

5
3
5
2
5
2
.1

8
7
5

5
1
4
1
1
.2

4
7
4
7

1
6
0
7
8
0
3
.1

3
8

4
0
5
7
6
.3

3
3
3
3

(+
IS

,
-M

O
)

4
1
2
7
5
.6

1
2
9

1
6
6
5
5
.7

6
4
7
1

1
0
1

2
3
4
5
5
.8

7
5

5
5
0
6
5
2
.3

7
2
1

3
2
2
0
3
1
.1

5
1
3

4
1
7
2
9

(-
IS

,
-M

O
)

8
5
3
9
0
.8

0
6
4
5

3
9
6
5
1
0

1
3
8
9
3
3
9
.5

6
3

4
9
3
6
6
.1

8
7
5

5
6
2
3
8
.0

1
0
2
6

1
2
6
6
3
0
8
.5

2
6

4
1
7
2
9

A
v
er

a
g
e

M
in

im
a
l

N
u
m

b
er

o
f

C
o
m

p
o
n
en

ts
N

ee
d
ed

b
y

S
u
cc

es
sf

u
l

A
tt

a
ck

er
s

p
er

R
eq

u
ir

em
en

t

(+
IS

,
+

M
O

)
1
.4

6
0
8
6
9
2
8
5

1
.0

0
4
5
2
4
8
8
7

1
0
.4

6
4
2
8
5
7
1
4

1
.6

4
9
2
7
9
8
8
8

1
.1

4
2
2
3
7
9
2
8

2
.8

4
3
5
3
3
7
4
1

(-
IS

,
+

M
O

)
1
.4

6
0
8
6
9
2
8
5

1
.0

0
4
5
2
4
8
8
7

1
0
.4

3
7
5

1
1
.1

2
3
4
0
2
2
0
9

2
.8

4
3
5
3
3
7
4
1

(+
IS

,
-M

O
)

2
.9

1
2
5
3
2
4
9
3

2
.9

0
9
9
3
4
9
3
3

2
.1

9
5
3
1
2
5

2
.8

8
5
4
9
5
8
7
3

2
.9

2
7
8
3
5
6
8
4

2
.9

6
4
7
6
0
7
3
3

2
.9

8
4
1
9
5
4
4
9

(-
IS

,
-M

O
)

2
.9

7
5
1
7
1
8
2
8

2
.9

8
3
3
0
4
7
4
9

2
.6

6
5
6
5
9
0
8
6

1
.9

8
6
9
2
5
8
6
2

1
.9

7
7
3
1
4
9
9
7

2
.9

7
3
3
0
1
7
9
9

2
.9

8
4
1
9
5
4
4
9

T
a
b
le

4
.

A
v
er

a
g
e

m
et

ri
cs

p
er

re
q
u
ir

em
en

t
fo

r
th

e
d
iff

er
en

t
b

en
ch

m
a
rk

s.

	Systematic classification of attackers via bounded model checking
	Citation

	Systematic Classification of Attackers via Bounded Model Checking
	1 Introduction
	Problem Context.
	Contributions.

	2 Preliminaries
	3 Motivational Example
	4 Bounded Model Checking of Compromised Systems
	4.1 Attackers and Compromised Systems
	4.2 A SAT Formula for BMC up to t Steps
	4.3 Isolation and Monotonicity
	4.4 Minimal (Successful) Attackers
	Existence of a Minimal Attacker.
	Finding Minimal Attackers.

	4.5 On Soundness and Completeness
	4.6 Requirement Clustering

	5 Evaluation
	5.1 Evaluating Methodologies
	5.2 Effectiveness of Isolation and Monotonicity
	5.3 Partial Classification of the pdtvsarmultip Benchmark

	6 Related Work
	On Defining Attackers.
	On Efficient Classification.
	On Completeness.
	On Verifying Non-Safety Properties.

	7 Conclusion and Future Work

