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Symbolic Verification of Message Passing Interface Programs

ABSTRACT

Message passing is the standard paradigm of programming in high-
performance computing. However, verifying Message Passing In-
terface (MPI) programs is challenging, due to the complex program
features (such as non-determinism and non-blocking operations).
In this work, we present MPI symbolic verifier (MPI-SV), the first
symbolic execution based tool for automatically verifying MPI pro-
grams with non-blocking operations. MPI-SV combines symbolic
execution and model checking in a synergistic way to tackle the
challenges in MPI program verification. The synergy improves
the scalability and enlarges the scope of verifiable properties. We
have implemented MPI—S and evaluated it with 111 real-world
MPI verification tasks. The pure symbolic execution-based tech-
nique successfully verifies 57 out of the 111 tasks (51%) within one
hour, while in comparison, MPI-SV verifies 99 tasks (89%). On aver-
age, compared with pure symbolic execution, MPI-SV achieves 8x
speedups on verifying the satisfaction of the critical property and
5x speedups on finding violations.

1 INTRODUCTION

Nowadays, an increasing number of high-performance computing
(HPC) applications have been developed to solve large-scale prob-
lems [[11]. The Message Passing Interface (MPI) [[75] is the current
de facto standard programming paradigm for developing HPC appli-
cations. Many MPI programs are developed with significant human
effort. One of the reasons is that MPI programs are error-prone
because of complex program features (such as non-determinism
and asynchrony) and their scale. Improving the reliability of MPI
programs is challenging [30] [31].

Program analysis [[62] is an effective technique for improving
program reliability. Existing methods for analyzing MPI programs
can be categorized into dynamic and static approaches. Most ex-
isting methods are dynamic, such as debugging [52]], correctness
checking [69] and dynamic verification [80]. These methods need
concrete inputs to run MPI programs and perform analysis based on
runtime information. Hence, dynamic approaches may miss input-
related program errors. Static approaches [5} 9 [55 [72] analyze ab-
stract models of MPI programs and suffer from false alarms, manual
effort, and poor scalability. In summary, existing automatic verifi-
cation approaches either do not support input-related analysis or
fail to support the analysis of the MPI programs with non-blocking
operations, the invocations of which do not block the program
execution. Non-blocking operations are ubiquitous in real-world
MPI programs for improving the performance but introduce more
complexity to programming.

Symbolic execution [28][49] supports input-related analysis by
systematically exploring a program’s path space. In principle, sym-
bolic execution provides a balance between concrete execution and
static abstraction with improved input coverage or more precise
program abstraction. However, symbolic execution based analyses

IMPI-SV is available from the anonymized repo at https://github.com/mpi-sv/mpi-sv,

suffer from path explosion due to the exponential increase of pro-
gram paths w.r.t. the number of conditional statements. The problem
is particularly severe when analyzing MPI programs because of par-
allel execution and non-deterministic operations. Existing symbolic
execution based verification approaches [74][26] do not support
non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI pro-
grams by smartly integrating symbolic execution and model check-
ing. MPI-SV uses symbolic execution to extract path-level models
from MPI programs and verifies the models w.r.t. the expected prop-
erties by model checking [18]. The two techniques complement
each other: (1) symbolic execution abstracts the control and data
dependencies to generate verifiable models for model checking, and
(2) model checking improves the scalability of symbolic execution
by leveraging the verification results to prune redundant paths and
enlarges the scope of verifiable properties of symbolic execution.

In particular, MPI-SV combines two algorithms: (1) symbolic
execution of non-blocking MPI programs with non-deterministic
operations, and (2) modeling and checking the behaviors of an
MPI program path precisely. To safely handle non-deterministic
operations, the first algorithm delays the message matchings of non-
deterministic operations as much as possible. The second algorithm
extracts a model from an MPI program path. The model represents
all the path’s equivalent behaviors, i.e., the paths generated by
changing the interleavings and matchings of the communication
operations in the path. We have proved that our modeling algorithm
is precise and consistent with the MPI standard [25]. We feed the
generated models from the second algorithm into a model checker
to perform verification w.r.t. the expected properties, i.e., safety
and liveness properties in linear temporal logic (LTL) [57]. If the
extracted model from a path p satisfies the property ¢, p’s equivalent
paths can be safely pruned; otherwise, if the model checker reports a
counterexample, a violation of ¢ is found. This way, we significantly
boost the performance of symbolic execution by pruning a large
set of paths which are equivalent to certain paths that have been
already model-checked.

We have implemented MPI-SV for MPI C programs based on
Cloud9 [10] and PAT [77]. We have used MPI-SV to analyze 12 real-
world MPI programs, totaling 47K lines of code (LOC) (three are
beyond the scale that the state-of-the-art MPI verification tools can
handle), w.r.t. the deadlock freedom property and non-reachability
properties. For the 111 deadlock freedom verification tasks, when
we set the time threshold to be an hour, MPI-SV can complete 99
tasks, i.e., deadlock reported or deadlock freedom verified, while
pure symbolic execution can complete 57 tasks. For the 99 com-
pleted tasks, MPI-SV achieves, on average, 8x speedups on verifying
deadlock freedom and 5x speedups on finding a deadlock.

The main contributions of this work are:

e A synergistic framework combining symbolic execution and
model checking for verifying MPI programs.

e A method for symbolic execution of non-blocking MPI pro-
grams with non-deterministic operations. The method is formally
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Proc == wvarl:T|[l:=e|Comm | Proc; Proc |
if e Proc else Proc | while e do Proc
Comm == Ssend(e) | Send(e) | Recv(e) | Recv(*) | Barrier |

ISend(e,r) | IRecv(e,r) | IRecv(x,r) | Wait(r)

Figure 1: Syntax of a core MPI language.

proven to preserve the correctness of verifying reachability prop-
erties.
o A precise method for modeling the equivalent behaviors of an
MPI path, which enlarges the scope of the verifiable properties.
e A tool for symbolic verification of MPI C programs and an ex-
tensive evaluation on real-world MPI programs.

2 ILLUSTRATION

In this section, we first introduce MPI programs and use an example
to illustrate the problem that this work targets. Then, we overview
MPI-SV informally by the example.

2.1 MPI Syntax and Motivating Example

MPI implementations, such as MPICH [32] and OpenMPI [27], pro-
vide the programming interfaces of message passing to support
the development of parallel applications. An MPI program can be
implemented in different languages, such as C and C++. Without
loss of generality, we focus on MPI programs written in C. Let T be
a set of types, N a set of names, and E a set of expressions. For sim-
plifying the discussion, we define a core language for MPI processes
in Figure where T € T,l € N, e € E and r € N. An MPI program
MP is defined by a finite set of processes {Proc; | 0 < i < n}. For
brevity, we omit complex language features (such the messages in the
communication operations and pointer operations) although MPI-SV
does support real-world MPI C programs.

The statement var [ : T declares a variable [ with type T. The
statement [ := e assigns the value of expression e to variable I.
A process can be constructed from basic statements by using the
composition operations including sequence, condition and loop. Let
e be the destination process’s identifier. Message passings can be
blocking or non-blocking. First, we introduce blocking operations:

e Ssend(e): send a message to the eth process, and the sending
process blocks until the message is received by the destination
process.

e Send(e): send a message to the eth process, and the sending
process blocks until the message is copied into the system buffer.

e Recv(e): receive a message from the eth process, and the re-
ceiving process blocks until the message from the eth process is
received.

e Recv(*): receive a message from any process, and the receiv-
ing process blocks until a message is received regardless which
process sends the message.

e Barrier: block the process until all the processes have called
Barrier.

e Wait(r): the process blocks until the operation indicated by r is
completed.

A Recv () operation, called wildcard receive, may receive a mes-
sage from different processes under different runs, resulting in
non-determinism. The blocking of a Send(i) operation depends

Py Py P, Ps

Send(1) | if (x!=‘a’) Send(1) | Send(1)
Recv(0)

else
IRecv(*,req);

Recv(3)

Figure 2: An illustrative example of MPI programs.

on the size of the system buffer, which may differ under differ-
ent MPI implementations. For simplicity, we assume that the size
of the system buffer is infinite. Hence, each Send(e) operation
returns immediately after being issued. Note that our implemen-
tation allows users to configure the buffer size. To improve the
performance, the MPI standard provides non-blocking operations
to overlap computations and communications.

e ISend(e,r):send a message to the eth process, and the operation
returns immediately after being issued. The parameter r is the
handle of the operation.

e IRecv(e,r): receive a message from the eth process, and the
operation returns immediately after being issued. IRecv(*,r)
is the non-blocking wildcard receive.

The operations above are key MPI operations. Complex opera-
tions, such as MPI_Bcast and MPI_Gather, can be implemented by
composing these key operations. An MPI program runs in many
processes spanned across multiple machines. These processes com-
municate by message passing to accomplish a parallel task. The
semantics of the core language is defined based on communicating
state machines (CSM) [8]] and given in the supplementary document.
Besides parallel execution, the non-determinism in MPI programs
mainly comes from two sources: (1) inputs, which may influence
the communication through control flow, and (2) wildcard receives,
which lead to highly non-deterministic executions.

Consider the MPI program in Figure [2| Processes Py, P2 and
P3 only send a message to P; and then terminate. For process Py,
if input x is not equal to ‘a’, P; receives a message from Py in
a blocking manner; otherwise, P; uses a non-blocking wildcard
receive to receive a message. Then, P; receives a message from
P3. When x is ‘a’ and IRecv(*,req) receives the message from
P3, a deadlock would happen, i.e., P; blocks at Recv(3), and all
the other processes terminate. Hence, to detect the deadlock, we
need to handle the non-determinism caused by the input x and the
wildcard receive IRecv(*,req).

To handle non-determinism due to the input, a standard remedy
is symbolic execution [49]. However, there are two challenges. The
first one is to systematically explore the paths of an MPI program
with non-blocking and wildcard operations, which significantly in-
crease the complexity of MPI programs. A non-blocking operation
does not block but returns immediately, causing out-of-order com-
pletion. The difficulty in handling wildcard operations is to get all
the possibly matched messages. The second one is to improve the
scalability of the symbolic execution. Symbolic execution struggles
with path explosion. MPI processes run concurrently, resulting in
an exponential number of program paths w.r.t. the number of pro-
cesses. Furthermore, the path space increases exponentially with
the number of wildcard operations.
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An MPI II
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CSP Model Checker

Figure 3: The framework of MPI-SV.

2.2 Our Approach

MPI-SV leverages dynamic verification [[80] and model checking [[18]
to tackle the challenges. Figure [3|shows MPI-SV’s basic framework.
The inputs of MPI-SV are an MPI program and an expected property,
e.g., deadlock freedom. MPI-SV uses the built-in symbolic executor
to explore the path space automatically and checks the property
along with path exploration. For a path that violates the property,
called a violation path, MPI-SV generates a test case for replaying,
which includes the program inputs, the interleaving sequence of
MPI operations and the matchings of wildcard receives. In contrast,
for a violation-free path p, MPI-SV builds a communicating sequen-
tial process (CSP) model T', which represents the paths which can
be obtained based on p by changing the interleavings and match-
ings of the communication operations in p. Then, MPI-SV utilizes
a CSP model checker to verify T' w.r.t. the property. If the model
checker reports a counterexample, a violation is found; otherwise,
if T satisfies the property, MPI-SV prunes all behaviors captured by
the model so that they are avoided by symbolic execution.

Since MPI processes are memory independent, MPI-SV will se-
lect a process to execute in a round-robin manner to avoid exploring
all interleavings of the processes. A process keeps running until
it blocks or terminates, and the encountered MPI operations are
collected instead of being executed. The intuition behind this strat-
egy is to collect the message exchanges as thoroughly as possible,
which helps find possible matchings for the wildcard receive opera-
tions. Consider the MPI program in Figure[2|and deadlock freedom
property. Figure [4] shows the symbolic execution tree, where the
node labels indicate processs communications, e.g., (3,1) means
that P; receives a message from P3. MPI-SV first symbolically ex-
ecutes Py, which only sends a message to P;. Send(1) operation
returns immediately with the assumption of infinite system buffers.
Hence, Py terminates, and the operation Send(1) is recorded. Then,
MPI-SV executes P; and explores both branches of the conditional
statement as follows.

(1) True branch (x # ‘@’). In this case, P; blocks at Recv(0).
MPI-SV records the receive operation for P, and starts executing Ps.
Like Py, P, executes operation Send(1) and terminates, after which
Pj is selected and behaves the same as Py. After P3 terminates, the
global execution blocks, i.e., P; blocks and all the other processes
terminate. When this happens, MPI-SV matches the recorded oper-
ations, performs the message exchanges and continues to execute
the matched processes. The Recv (@) in P; should be matched with
the Send(1) in Py. After executing the send and receive opera-
tions, MPI-SV selects P; to execute, because Py terminates. Then,
P; blocks at Recv(3). Same as earlier, the global execution blocks

2n® c.lle

v 2
(3’1)6 Deadlock
P P2 P3

Figure 4: The example program’s symbolic execution tree.

and operation matching needs to be done. Recv(3) is matched with
the Send(1) in P3. After executing the Recv(3) and Send(1) op-
erations, all the processes terminate successfully. Path p; in Figure
[4is explored.

(2) False branch (x =‘a’). The execution of P; proceeds until
reaching the blocking receive Recv(3). Additionally, the two issued
receive operations, i.e, IRecv(*,req) and Recv(3), are recorded.
Similar to the true branch, when every process blocks or terminates,
we handle operation matching. Here Py, P, and P3 terminate, and Py
blocks at Recv(3). IRecv (*, req) should be matched first because
of the non-overtaken policy in the MPI standard [25]. There are three
Send operation candidates from Py, P, and Ps, respectively. MPI-SV
forks a state for each candidate. Suppose MPI-SV first explores the
state where IRecv(*,req) is matched with Py’s Send(1). After
matching and executing P;’s Recv(3) and P3’s Send(1), the path
terminates successfully, which generates path p; in Figure [4

Violation detection. MPI-SV continues to explore the remain-
ing two cases. Without CSP-based boosting, the deadlock would
be found in the last case (i.e., ps in Figure , where IRecv(*,req)
is matched with P3’s Send(1) and P; blocks because Recv(3) has
no matched operation. MPI-SV generates a CSP model I based on
the deadlock-free path p, where P;’s IRecv(*,req) is matched
with Py’s Send(1). Each MPI process is modeled as a CSP pro-
cess, and all the CSP processes are composed in parallel to form
T. Notably, in T', we collect the possible matchings of a wildcard
receive through statically matching the arguments of operations in
the path. Additionally, the requirements in the MPI standard, i.e.,
completes-before relations [80]], are also modeled. A CSP model
checker then verifies deadlock freedom for I'. The model checker
reports a counterexample where IRecv(*,req) is matched with
the Send(1) in P3. MPI-SV only explores two paths for detecting
the deadlock and avoids the exploration of p3 and p4 (indicated by
dashed lines).

Pruning. Because the CSP modeling is precise (cf. Section[d),
in addition to finding violations earlier, MPI-SV can also perform
path pruning when the model satisfies the property. Suppose we
change the program in Figure2]to be the one where the last state-
ment of P; is a Recv(*) operation. Then, the program is deadlock
free. When the symbolic executor explores the first path after taking
the false branch, the generated model is verified to be deadlock-free,
and MPI-SV prunes the candidate states forked for the matchings
of the two wildcard receives along the current path. Hence, MPI-SV
only explores two paths to verify that the program is deadlock-free.
In contrast, without model checking, we need to explore eight paths
(the wildcard receive in the true branch has two matchings, and
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the two wildcard receives in the false branch have three and two
matchings, respectively).

Properties. Because our CSP modeling encodes the interleav-
ings of the MPI operations in the MPI processes, the scope of the
verifiable properties is enlarged, i.e., MPI-SV can verify safety and
liveness properties in LTL. Suppose we change the property to be
the one that requires the Send(1) operation in Py should be com-
pleted before the Send(1) operation in P,. The send operation in
P, can be completed before the send operation in Py, due to the
nature of parallel execution. However, pure symbolic execution
fails to detect the property violation. In contrast, with the help of
CSP modeling, when we verify the model generated from the first
path w.r.t. the property, the model checker gives a counterexample,
indicating that a violation of the temporal property exists.

3 SYMBOLIC VERIFICATION METHOD

In this section, we present our symbolic verification framework
and then describe MPI-SV’s symbolic execution method.

3.1 Framework

Given an MPI program M® = {Proc; | 0 < i < n}, a state S¢
in M%P’s symbolic execution is composed by the states of pro-
cesses, i.e., (50, ...,Sn), and each MPI process’s state is a 6-tuple
(M, Stat, PC, F, B, R), where M maps each variable to a concrete
value or a symbolic value, Stat is the next program statement to
execute, PC is the process’s path constraint [49], F is the flag of
process status belonging to {active, blocked, terminated}, 8 and
R are infinite buffers for storing the issued MPI operations not
yet matched and the matched MPI operations, respectively. We
use s; € S¢ to denote that s; is a process state in the global state
Sc. An element elem of s; can be accessed by s;.elem, e.g., s;.F is
the ith process’s status flag. In principle, a statement execution in
any process advances the global state, making M%’s state space
exponential to the number of processes. We use variable Seq; de-
fined in M to record the sequence of the issued MPI operations in
Proc;, and Seq(S.) to denote the set {Seq; | 0 < i < n} of global
state Sc. Global state S.’s path condition (denoted by S..PC) is the
conjunction of the path conditions of S¢’s processes, i.e, A s;.PC.
S;€S

Algorithm[T] shows the details of MPI-SV. We use 1:/orlcclist to
store the global states to be explored. Initially, worklist only con-
tains S;n;, composed of the initial states of all the processes, and
each process’s status is active. At Line[4] Select picks a state from
worklist as the one to advance. Hence, Select can be customized
with different search heuristics, e.g., depth-first search (DFS). Then,
Scheduler selects an active process Proc; to execute. Next, Execute
(¢f. Algorithm[2) symbolically executes the statement Stat; in Proc;,
and may add new states into worklist. This procedure continues
until worklist is empty (i.e., all the paths have been explored), de-
tecting a violation or time out (omitted for brevity). After executing
Stat;, if all the processes in the current global state S. terminate, i.e.,
a violation-free path terminates, we use Algorithm[4]to generate a
CSP model T from the current state (Line . Then, we use a CSP
model checker to verify I w.r.t. . If T satisfies ¢ (denoted by ' |= ¢),
we prune the global states forked by the wildcard operations along

Algorithm 1: Symbolic Verification Framework

MPI-SV(M®P, ¢, Sym)
Data: MP is {Proc; | 0 < i < n}, ¢ is a property, and Sym
is a set of symbolic variables

1 begin
2 worklist < {Sinit}
3 while worklist # 0 do
4 S¢ < Select(worklist)
5 (M;, Stat;, PC;, Fi, Bi, R;) < Scheduler(S.)
6 Execute(Sc, Proc;, Stat;, Sym, worklist)
7
8
9

if Vs; € S¢, s;.F = terminated then
I' — GenerateCSP(S.)
ModelCheck(T, ¢)

10 if T |= ¢ then

11 workliste—worklist\{Sy € worklist|S, .PC=S..PC}
12 end

13 else if T |£ ¢ then

14 reportViolation and Exit

15 end

16 end

17 end

18 end

the current path (Line[11), i.e., the states in worklist whose path con-
ditions imply S;’s path condition; otherwise, if the model checker
gives a counterexample, we report the violation and exit (Line[T4).

Since MPI processes are memory independent, we employ partial
order reduction (POR) [18] to reduce the search space. Scheduler
selects a process in a round-robin fashion from the current global
state. In principle, Scheduler starts from the active MPI process
with the smallest identifier, e.g., Procy at the beginning, and an MPI
process keeps running until it is blocked or terminated. Then, the
next active process will be selected to execute. Such strategy signifi-
cantly reduces the path space of symbolic execution. Then, with the
help of CSP modeling and model checking, MPI-SV can verify more
properties, i.e., safety and liveness properties in LTL. The details of
such technical improvements will be given in Section [4]

3.2 Blocking-driven Symbolic Execution

Algorithm [2] shows the symbolic execution of a statement. Com-
mon statements such as conditional statements are handled in the
standard way [49] (omitted for brevity), and here we focus on MPI
operations. The main idea is to delay the executions of MPI opera-
tions as much as possible, i.e., trying to get all the message matchings.
Instead of execution, Algorithmrecords each MPI operation for
each MPI process (Lines [48{8). We also need to update buffer 8
after issuing an MPI operation (Lines[5]8{9). Then, if Stat; is a non-
blocking operation, the execution returns immediately; otherwise,
we block Proc; (Line[10] excepting the Wait of an ISend operation).
When reaching GlobalBlocking (Lines[TT]8{12), i.e., every process is
terminated or blocked, we use Matching (cf. Algorithm|[3) to match
the recorded but not yet matched MPI operations and execute the
matched operations. Since the opportunity of matching messages
is GlobalBlocking, we call it blocking-driven symbolic execution.
Matching matches the recorded MPI operations in different pro-
cesses. To obtain all the possible matchings, we delay the matching
of a wildcard operation as much as possible. We use matchy to
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Algorithm 2: Blocking-driven Symbolic Execution

Execute(Sc, Proc;, Stat;, Sym, worklist)
Data: Global state S., MPI process Proc;, Statement Stat;,
Symbolic variable set Sym, worklist of global states
1 begin

2 switch (Stat;) do
3 case Send or ISend or IRecv do
4 Seq; « Seq; - (Stat;)
5 si.B «— 5;.8 - (Stat;)
6 end
7 case Barrier or Wait or Ssend or Recv do
8 Seq; < Seq; - (Stat;)
9 si.B « 5;.B - (Stat;)
10 si.F « blocked
11 if GlobalBlocking then
// Vs;i € S¢, (si.F = blocked V s;.F = terminated)
12 Matching(S¢, worklist)
13 end
14 end
15 default:

Execute(Sc, Proc;, Stat;, Sym, worklist) as normal
16 end
17 end

match the non-wildcard operations first (Line[3) w.r.t. the rules in
the MPI standard [25], especially the non-overtaken ones: (1) if two
sends of a process send messages to the same destination, and both
can match the same receive, the receive should match the first one;
and (2) if a process has two receives, and both can match a send, the
first receive should match the send. The matched send and receive
operations will be executed, and the statuses of the involved pro-
cesses will be updated to active, denoted by Fire(Se, pair,,) (Line
[). If there is no matching for non-wildcard operations, we use

Algorithm 3: Blocking-driven Matching

Matching(Sc, worklist)
Data: Global state S, worklist of global states

1 begin

2 MSW — 0 // Matching set of wildcard operations
3 pairn — matchN(SC) // Match non-wildcard operations
4 if pair, # empty pair then

5 Fire(Sc, pairn)

6 end

7 else

8 MSy matchW(SC) // Match wildcard operations
9 for pair,, € MSy do

10 S « fork(Sc, pair.,)

1 worklist < worklist U {S/.}

12 end

13 if MSy # 0 then

14 worklist «— worklist \ {S¢}

15 end

16 end

17 if pair, = empty pair A MSy, = 0 then

18 reportDeadlock and Exit

19 end

20 end

Py Py Py
ISend(1,reqi); | IRecv(*,reqy); | Barrier;
Barrier; Barrier; ISend(1,reqs);
Wait(req;) Wait(reqz) Wait(reqs)

Figure 5: An example of operation matching.

matchyy to match the wildcard operations (Line|[8). For each possi-
ble matching of a wildcard receive, we fork a new state (denoted
by fork(Sc, pair,,) at Line |10) to analyze each matching case. If no
operations can be matched, but there exist blocked processes, a
deadlock happens (Line[17). Besides, for the properties other than
deadlock freedom, we also check them during symbolic execution
(omitted for brevity).

Take the program in Figure[5] for example. When all the pro-
cesses block at Barrier, MPI-SV matches the recorded operation
in the buffers of the processes, i.e., so. B=(ISend(1,req;),Barrier),
s1.B=(IRecv(*,reqy), Barrier), and s;. B=(Barrier). According to
the MPI standard, each operation in the buffers is ready to be
matched. Hence, Matching first matches the non-wildcard opera-
tions, i.e., the Barrier operations, then the status of each process be-
comes active. After that, MPI-SV continues to execute the active pro-
cesses and record issued MPI operations. The next GlobalBlocking
point is: Py and P, terminate, and P; blocks at Wait(reqz). The
buffers are (ISend(1,req;),Wait(req;)), (IRecv(x,req,),Wait(reqy)),
and (ISend(1,reqs), Wait(reqs)), respectively. All the issued Wait
operations are not ready to match, because the corresponding
non-blocking operations are not matched. So Matching needs to
match the wildcard operation, i.e., IRecv(*,req,), which can be
matched with ISend(1,req;) or ISend(1,reqs). Then, a new
state is forked for each case and added to the worklist.

Correctness. Blocking-driven symbolic execution is an instance
of model checking with POR. We have proved the symbolic execu-
tion method is correct for reachability properties [57]. Due to the
space limit, the proof is presented in the supplementary document.

4 CSP BASED PATH MODELING

In this section, we first introduce the CSP [68] language. Then, we
present the modeling algorithm of an MPI program terminated
path using a subset of CSP. Finally, we prove the soundness and
completeness of our modeling.

4.1 CSP Subset

Let X be a finite set of events, C a set of channels, and X a set of
variables. Figure [ shows the syntax of the CSP subset, where P
denotes a CSP process, a€X, ceC, XC¥ and xeX.

P:=a|PgP|POP|P|P|c?x—P | clx—P | skip
X
Figure 6: The syntax of a CSP subset.

The single event process a performs the event a and terminates.
There are three operators: sequential composition (§), external
choice (O) and parallel composition with synchronization (||). POQ

X
performs as P or Q, and the choice is made by the environment.
Let PS be a finite set of processes, OPS denotes the external choice
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of all the processes in PS. P || Q performs P and Q in an inter-

leaving manner, but P and Q synchronize on the events in X. The
process c?x — P performs as P after reading a value from channel
¢ and writing the value to variable x. The process c!x — P writes
the value of x to channel ¢ and then behaves as P. Process skip
terminates immediately.

4.2 CSP Modeling

For each violation-free program path, Algorithm [4]builds a precise
CSP model of the possible communication behaviors by changing
the matchings and interleavings of the communication operations
along the path. The basic idea is to model the communication
operations in each process as a CSP process, then compose all the
CSP processes in parallel to form the model. To model Proc;, we
scan its operation sequence Seq; in reverse. For each operation, we
generate its CSP model and compose the model with that of the
remaining operations in Seq; w.r.t. the semantics of the operation
and the MPI standard [25]. The modeling algorithm is efficient,
and has a polynomial time complexity w.r.t. the total length of the
recorded MPI operation sequences.

We use channel operations in CSP to model send and receive
operations. Each send operation op has its own channel, denoted
by Chan(op). We use a zero-sized channel to model Ssend opera-
tion (Line[10), because Ssend blocks until the message is received.
In contrast, considering a Send or ISend operation is completed
immediately, we use one-sized channels for them (Line , so the
channel writing returns immediately. The modeling of Barrier
(Line|17) is to generate a synchronization event that requires all
the parallel CSP processes to synchronize it (Lines [17){38). The
modeling of receive operations consists of three steps. The first
step calculates the possibly matched channels written by the send
operations (Lines[20825). The second uses the external choice of
reading actions of the matched channels (Lines [218{26), so as to
model different cases of the receive operation. Finally, the refined
external choice process is composed with the remaining model. If
the operation is blocking, the composition is sequential (Line [22);
otherwise, it is a parallel composition (Line [28).

StaticMatchedChannel(op;, S) (Lines returns the set of
the channels written by the possibly matched send operations of
the receive operation opj. We scan Seq(S) to obtain the possibly
matched send operations of op;. Given a receive operation recv in
process Proc;, SMO(recv, S) calculated as follows denotes the set
of the matched send operations of recv.

e If recv is Recv(j) or IRecv(j, r), SMO(recv, S) contains Proc;’s
send operations with Proc; as the destination process.

e If recv is Recv(x) or IRecv(x,r), SMO(recv, S) contains any pro-
cess’s send operations with Proc; as the destination process.

SMO(op, S) over-approximates op’s precisely matched opera-
tions, and can be optimized by removing the send operations that
are definitely executed after op’s completion, and the ones whose
messages are definitely received before op’s issue. For example,
Let Procg be Send(1);Barrier;Send(1), and Procy be Recv(*);Barrier.
SMO will add the two send operations in Procy to the matching
set of the Recv (*) in Procj. Since Recv (*) must complete before
Barrier, we can remove the second send operation in Procy. Such
optimization reduces the complexity of the CSP model. For brevity,

Algorithm 4: CSP Modeling for a Terminated State

GenerateCSP(S)
Data: A terminated global state S, and
Seq(S)={Seq; | 0 < i < n}
1 begin
PS <0
fori—0...n do
P; « skip
Req « {r | IRecv(*,r)eSeq;VIRecv(i,r)eSeq;}
for j «—length(Seq;)—1 ... 0 do
switch op; do
case Ssend(i) do
c¢1 < Chan(opj)
P; «—c1!lx > P;
end
case Send(i) or ISend(i,r) do
Cy — Chan(opj) // c3’s size is 1
P; «— c!lx —> P;
end
case Barrier do
P; —Bgs§P;
end
case Recv (i) or Recv(*) do

© %N G R W N

// c1’s size is @

L T T o S S G Y
L ® NG R XN =R o

20 C « StaticMatchedChannel(op;, S)
21 Q « Refine(O{c?x — skip | c € C},S)
22 Pi —Qs5P
23 end
24 case IRecv(*,r) or IRecv(i,r) do
25 C « StaticMatchedChannel(opj, S)
26 Q « Refine(O{c?x — skip | c € C},S)
27 ew<—WaitEvent(opj) // opj’s wait event
28 Pi—(Qsew) || P
€

29 end
30 case Wait(r) and r € Req do
31 ey < GenerateEvent(op;)
32 P; — ey, §P;
33 end
34 end
35 end
36 PS « PSU{P;}
37 end
38 P— | PS

{8}
39 return P
40 end

we use SMO(op, S) to denote the optimized matching set. Then,
StaticMatchedChannel(opj, S) is {Chan(op) | op € SMO(opj, S)}.

To satisfy the MPI requirements, Refine(P, S) (Lines re-
fines the models of receive operations by imposing the completes-
before requirements [80] as follows:

o If areceive operation has multiple matched send operations from
the same process, it should match the earlier issued one. This is
ensured by checking the emptiness of the dependent channels.

e The receive operations in the same process should be matched
w.r.t. their issue order if they receive messages from the same
process, except the conditional completes-before pattern [80]. We
use one-sized channel actions to model these requirements.

639

640

641

642

643

644

645

646

647

648

649

665

666

667

668

669

671

672

674

675

677

678

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

751

753
754

Symbolic Verification of Message Passing Interface Programs

We model a Wait operation if it corresponds to an IRecv oper-
ation (Line [30), because ISend operations complete immediately
under the assumption of infinite system buffer. Wait operations are
modeled by the synchronization in parallel processes. GenerateEvent
generates a new synchronization event e,, for each Wait opera-
tion (Line[31). Then, e,, is produced after the corresponding non-
blocking operation is completed (Line [28). The synchronization on
e,y ensures that a Wait operation blocks until the corresponding
non-blocking operation is completed.

We use the example in Figure [5]for a demonstration. After ex-
ploring a violation-free path, the recorded operation sequences are
Seqo=(ISend(1,req;), Barrier, Wait(req;)), Seq;=(IRecv(*,req,),
Barrier,Wait(req,)), Seqz=(Barrier,ISend(1,reqs),Wait(reqs)). We
first scan Seqo in reverse. Note that we don’t model Wait(req;),
because it corresponds to ISend. We create a synchronization event
B for modeling Barrier (Lines[16)%{17). For the ISend(1,req;), we
model it by writing an element a to a one-sized channel chanj, and
use prefix operation to compose its model with B (Lines[12}{T4). In
this way, we generate CSP process chani!a—B § skip (denoted by
CPy) for Procy. Similarly, we model Procy by B § chany!b—skip
(denoted by CP;), where chan; is also a one-sized channel and b is
a channel element. For Proc, we generate a single event process e,,
to model Wait(reqsz), because it corresponds to IRecv (Lines
. For IRecv(*,reqy), we first compute the matched channels
using SMO (Line , and StaticMatchedChannel(op;, S) contains
both chani and chany. Then, we generate the following CSP process

((chany?a—skipOchany?b—skip) s ew) || (B ey § skip)

€y

(denoted by CP;) for Procy. Finally, we compose the CSP processes
using the parallel operator to form the CSP model (Line 38), i.e.,
CPy || CPy || CPy.

{B} {8}

CSP modeling supports the case where communications depend
on message contents. MPI-SV tracks the influence of a message dur-
ing symbolic execution. When detecting that the message content
influences the communications, MPI-SV symbolizes the content
on-the-fly. We specially handle the widely used master-slave pattern
for dynamic load balancing [33]. The basic idea is to use a recursive
CSP process to model each slave process and a conditional state-
ment for master process to model the communication behaviors
of different matchings. We verified five dynamic load balancing
MPI programs in our experiments (cf- Section[5.4). The details for
supporting master-slave pattern is in the supplementary document.

4.3 Soundness and Completeness

In the following, we show that the CSP modeling is sound and
complete. Suppose GenerateCSP(S) generates the CSP process CSP;.
Here, soundness means that CSP¢ models all the possible behaviors
by changing the matchings or interleavings of the communication
operations along the path to S, and completeness means that each
trace in CSP; represents a real behavior that can be derived from S
by changing the matchings or interleavings of the communications.

Since we compute SMO(op, S) by statically matching the argu-
ments of the recorded operations, SMO(op, S) may contain some
false matchings. Calculating the precisely matched operations of op
is NP-complete [24]], and we suppose such an ideal method exists.

We use CSPs;qaric and CSP; g, to denote the generated models
using SMO(op, S) and the ideal method, respectively. The follow-
ing theorems ensure the equivalence of the two models under the
stable-failure semantics [68]] of CSP and CSPs;4ric’s consistency to
the MPI semantics, which imply the soundness and completeness
of our CSP modeling method. The proofs are presented in the sup-
plementary document. Let 7 (P) denote the trace set [68] of CSP
process P, and 7 (P) denote the failure set of CSP process P. Each
element in F(P) is (s, X), where s € 7 (P) is a trace, and X is the
set of events P refuses to perform after s.

Theorem 4.1. F(CSPssaric) = F(CSP;geal)-

Theorem 4.2. CSPg;4tic is consistent with the MPI semantics.

5 EXPERIMENTAL EVALUATION

In this section, we first introduce the implementation of MPI-SV,
then describes the research questions and the experimental setup.
Finally, we give experimental results.

5.1 Implementation

We have implemented MPI-SV based on Cloud9 [[10]], which is built
upon KLEE [12]], and enhances KLEE with better support for POSIX
environment and parallel symbolic execution. We leverage Cloud9’s
support for multi-threaded programs. We use a multi-threaded li-
brary for MPI, called AzequiaMPI [67], as the MPI environment
model for symbolic execution. MPI-SV contains three main modules:
program preprocessing, symbolic execution, and model checking.
The program preprocessing module generates the input for sym-
bolic execution. We use Clang to compile an MPI program to LLVM
bytecode, which is then linked with the pre-compiled MPI library
AzequiaMPI The symbolic execution module is in charge of path
exploration and property checking. The third module utilizes the
state-of-the-art CSP model checker PAT [77] to verify CSP models,
and uses the output of PAT to boost the symbolic executor.

5.2 Research Questions
We conducted experiments to answer the following questions:

o Effectiveness: Can MPI-SV verify real-world MPI programs ef-
fectively? How effective when compared to the existing state-of-
the-art tools?

o Efficiency: How efficient is MPI-SV when verifying real-world
MPI programs? How efficient is MPI-SV when compared to the
pure symbolic execution?

e Verifiable properties : Can MPI-SV verify properties other than
deadlock freedom?

5.3 Setup

Table 1 lists the programs analyzed in our experiments. All the pro-
grams are real-world open source MPI programs. DTG is a testing
program from [79]]. Matmat, Integrate and Diffusion2d come
from the FEVS benchmark suite [[73]]. Matmat is used for matrix
multiplication, Integrate calculates the integrals of trigonometric
functions, and Diffusion2d is a parallel solver for two-dimensional
diffusion equation. Gauss_elimis an MPI implementation for gauss-
ian elimination used in [84]]. Heat is a parallel solver for heat equa-
tion used in [60]. Mandelbrot, Sorting and Image_manip come
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Table 1: The programs in the experiments.

Program LOC | Brief Description

DTG 90 | Dependence transition group
Matmat 105 | Matrix multiplication
Integrate 181 | Integral computing
Diffusion2d 197 | Simulation of diffusion equation
Gauss_elim 341 | Gaussian elimination

Heat 613 | Heat equation solver
Mandelbrot 268 | Mandelbrot set drawing
Sorting 218 | Array sorting

Image_manip 360 | Image manipulation

DepSolver 8988 | Multimaterial electrostatic solver
Kfray 12728 | KF-Ray parallel raytracer
ClustalWw 23265 | Multiple sequence alignment
Total 47354 | 12 open source programs

from github. Mandelbrot parallel draws the mandelbrot set for a
bitmap, Sorting uses bubble sort to sort a multi-dimensional array,
and Image_manip is an MPI program for image manipulations, e.g.,
shifting, rotating and scaling. The remaining three programs are
large parallel applications. Depsolver is a parallel multi-material
3D electrostatic solver, Kfray is a ray tracing program creating re-
alistic images, and ClustalW is a tool for aligning gene sequences.
To evaluate MPI-SV further, we mutate [47] the programs by
rewriting a randomly selected receive using two rules: (1) replace
Recv (i) with if (x>a){Recv(i)} else {Recv(*)}; (2) replace Recv(*)
with if (x>a){Recv(*) } else {Recv(j) }. Here x is an input variable, a
is arandom value, and j is generated randomly from the scope of the
process identifier. The mutations for IRecv(i,r) and IRecv(*,r)
are similar. Rule 1 is to improve program performance and simplify
programming, while rule 2 is to make the communication more
deterministic. Since communications tend to depend on inputs in
complex applications, such as the last three programs in Table[1] we
also introduce input related conditions. For each program, we gen-
erate five mutants if possible, or generate as many as the number of
receives. We don’t mutate the programs using master-slave pattern
[33], i.e., Matmat and Sorting, and only mutate the static schedul-
ing versions of programs Integrate, Mandelbrot, and Kfray.
Baselines. We use pure symbolic execution as the first base-
line because: (1) none of the state-of-the-art symbolic execution
based verification tools can analyze non-blocking MPI programs,
e.g., CIVL [56]; (2) MPI-SPIN [72] can support input coverage and
non-blocking operations, but it requires building models of the
programs manually; and (3) other automatic tools that support non-
blocking operations, such as MOPPER [24] and ISP [80], can only
verify programs under given inputs. MPI-SV aims at covering both
the input space and non-determinism automatically. To compare
with pure symbolic execution, we run MPI-SV under two configura-
tions: (1) Symbolic execution, i.e., applying only symbolic execution
for path exploration, and (2) Our approach, i.e., using model check-
ing based boosting. Most of the programs run with 6, 8, and 10
processes, respectively. DTG and Matmat can only be run with 5 and
4 processes, respectively. For Diffusion and the programs using
master-slave pattern, we only run them with 4 and 6 processes due
to the huge path space. We use MPI-SV to verify deadlock freedom

of MPI programs and also evaluate 2 non-reachability properties for
Integrate and Mandelbrot. The timeout is one hour. There are
three possible verification results: finding a violation, no violation,
or timeout. We carry out all the tasks on an Intel Xeon-based Server
with 256G memory and 32 2.5GHz cores running a Ubuntu 14.04
OS. To evaluate MPI-SV’s effectiveness further, we also directly
compare MPI-SV with CIVL [56] and MPI-SPIN [72]]. Note that,
since MPI-SPIN needs manual modeling, we only use MPI-SV to
verify MPI-SPIN’s C benchmarks w.r.t. deadlock freedom.

5.4 Experimental Results

Table[2]lists the results for evaluating MPI-SV against pure symbolic
execution. The first column shows program names, and #Procs is
the number of running processes. T specifies whether the analyzed
program is mutated, where o denotes the original program, and m;
represents a mutant. A task comprises a program and the number
of running processes. We label the programs using master-slave
pattern with superscript “*”. Column Deadlock indicates whether a
task is deadlock free, where 0, 1, and -1 denote no deadlock, deadlock
and unknown, respectively. We use unknown for the case that both
configurations fail to complete the task. Columns Time(s) and
#Iterations show the verification time and the number of explored
paths, respectively, where To stands for timeout. The results where
Our approach performs better is in gray background.

For the 111 verification tasks, MPI-SV completes 99 tasks (89%)
within one hour, whereas 57 tasks (51%) for Symbolic execution.
Our approach detects deadlocks in 43 tasks, while the number of
Symbolic execution is 41. We manually confirmed that the detected
deadlocks are real. For the 43 tasks having deadlocks, MPI-SV on
average offers a 5x speedups for detecting deadlocks. On the other
hand, Our approach can verify deadlock freedom for 56 tasks, while
only 16 tasks for Symbolic execution. MPI-SV achieves an aver-
age 8x speedups. Besides, compared with Symbolic execution, Our
approach requires fewer paths to detect the deadlocks (1/17 on av-
erage) and complete the path exploration (1/65 on average). These
results demonstrate the effectiveness and efficiency of MPI-SV.

Figure [7|shows the efficiency of verification for the two configu-
rations. The X-axis varies the time threshold from 5 minutes to one
hour, while the Y-axis is the number of completed verification tasks.
Our approach can complete more tasks than Symbolic execution
under the same time threshold, demonstrating MPI-SV’s efficiency.

100 |~ pg-E-E-&--S2-E-8-B-0

i —— Symbolic execution
— 4l - Ourapproach

0 | | | | | | | | | | | |
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Figure 7: Completed tasks under a time threshold.
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Table 2: Experimental results.

Program (#Procs) T | Deadlock - - Time(s) - #Itefatlons
Symbolic execution Our approach Symbolic execution | Our approach
0 0 19.5 13.3 3 1
m 1 20.7 16.1 4 1
ms 1 16.0 15.8 2 1
DTG(5) ms 0 32.8 16.2 10 2
ma 1 21.0 17.1 4 1
ms 1 19.3 15.1 4 1
Matmat'(4) o 0 51.0 12.2 18 1
0/0/0 273.4/10/TO0 12.8/17.3/37.1 120/1216/1024 1/1/1
Integrate(6/8/10) my 0/-1/-1 TO/TO/TO 266.2 /TO/TO 1420/1201/1022 32 /82/51
my 0/1/1 T0/18.0/21.7 265.4 / 17.4 /45.1 1427/2/2 32/1/2
Integrate” (4/6) o 0/0 104.8/654.3 13.8/28.2 27/125 1/1
0 0/0 731.9/T0 19.2/32.8 90/289 171
m 171 19.4/27.3 20.4/31.9 2/2 1/1
. . my 0/0 738.8/T0 19.5/29.8 90/287 1/1
Diffusion2d(4/6) — - 0/0 T0/TO 48.5/352.5 168071445 16/64
my 11 26.8/32.3 254 /37.6 3/2 2/1
ms 0/0 TO/TO 68.6/566.8 1061/877 16/64
. 0 0/0/0 To/To/To 63.4/26.4/74.5 394/351/275 1/1/1
Gauss_elim(6/8/10) | — —— 862.8/T0/T0 23.1/38.1/80.6 121/349/272 1/2/1
0 1/1/1 30.9/50.1/61.7 30.8 / 49.7 /63.8 2/2/2 1/1/1
m 1/1/1 35.0/48.7/60.9 34.2/50.6/65.7 2/2/2 1/1/1
Heat (6/8/10) my 1/1/1 34.3/49.2/60.8 340 /51.3/65.2 2/2/2 1/1/1
ms 1/1/1 46.5/58.1/78.6 34.0/50.2/64.8 3/3/3 1/1/1
ma 1/1/1 60.7/77.4/96.8 33.9/50.0/64.3 9/9/9 1/1/1
ms 1/1/1 78.7/99.0/136.6 33.9/50.2/64.8 777]7 1/1/1
0 0/0/-1 TO/TO/TO 152.9 //631.9 /1o 373/350/325 9/9/9
m 1/1/1 15.2/17.5/22.1 14.6/16.6/19.2 2/2/2 1/1/1
Mandelbrot(6/8/10) |—0 —— 7 To/To/To To/To/To 67676897583 109/132/121
ms -1/-1/-1 TO/TO/TO TO/TO/TO 655/570/494 106/93/78
Mandelbort* (4/6) o 0/0 217.1/877.8 18.6/22.4 72/240 1/1
Sorting*(4/6) o 0/0 TO/TO 24.4/41.9 432/376 1/1
Inage_mani (6/8/10) 0/0/0 217.0/267.6/319.6 28.2/34.6/47.9 96/96/96 4/4/4
m 1/1/1 15.9/18.0/20.0 15.5 /| 17.7 /21.1 2/2/2 1/1/1
DepSolver(6/8/10) | o 0/0/0 260.2/440.2/681.4 | 267.0/449.0/702.7 3/3/3 3/3/3
0 0/0/0 To/TO/TO 58.2/69.9/170.6 590/527/446 1/1/1
Kfray(6/8/10) m 1/1/1 57.4/59.8/65.6 62.9/77.5/169.5 2/2/2 1/2/2
my 1/1/1 56.7/59.5/65.1 59.3/78.4/169.6 2/2/2 1/2/2
ms | -1/-1/-1 TO/TO/TO TO/TO/TO 949/831/728 232/164/135
Kfray*(4/6) o 0/0 TO/TO 55.5/192.7 727]682 1/1
0/0/0 TO/TO/TO 106.1/876.1/1104.9 215/191/170 1/1/1
m 0/0/0 TO/TO/TO 229.3/1308.1/1689.3 220/200/158 4/4/4
m 0/0/0 To/TO/TO 106.3/1033.2/996.5 206/191/162 1/1/1
Clustalw(6/8/10) mi 0/0/0 To?m;ro 107.0//881.6//909.2 204;182;179 1?1?1
my | 0/0/0 To/TO/TO 107.5/483.5/1147.9 204/171/172 1/1/1
ms 0/0/0 To/To/To 106.8/878.2/910.7 201/197/176 1/1/1

In addition, Our approach can complete all the 99 verified tasks
within 30 minutes and 86 (87%) tasks in 5 minutes, which also
demonstrates MPI-SV’s effectiveness.

For some tasks, e.g., Kfray, MPI-SV does not outperform Sym-
bolic execution. The reasons include: (a) the paths contain hundreds
of non-wildcard operations, and the corresponding CSP models are
huge, and thus time-consuming to model check; (b) the number of
wildcard receives or their possible matchings is very small, and as
a result, only few paths are pruned.

Comparison with CIVL. CIVL uses symbolic execution to build
amodel for the whole program and performs model checking on the
model. In contrast, MPI-SV adopts symbolic execution to generate
path-level verifiable models. CIVL does not support non-blocking
operations. We applied CIVL on our evaluation subjects. It only
successfully analyzed DTG. Diffusion2d could be analyzed after
removing unsupported external calls. MPI-SV and CIVL had similar
performance on these two programs. CIVL failed on all the remain-
ing programs due to compilation failures or lack of support for
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non-blocking operations. In contrast, MPI-SV successfully analyzed
99 of the 140 programs in CIVL’s latest benchmarks. The failed
ones are small API test programs for the APIs that MPI-SV does
not support. For the real-world program floyd that both MPI-SV
and CIVL can analyze, MPI-SV verified its deadlock-freedom under
4 processes in 3 minutes, while CIVL timed out after 30 minutes.
The results indicate the benefits of MPI-SV’s path-level modeling.

Comparison with MPI-SPIN. MPI-SPIN relies on manual mod-
eling of MPI programs. Inconsistencies may happen between an
MPI program and its model. Although prototypes exist for trans-
lating C to Promela [46]], they are impractical for real-world MPI
programs. MPI-SPIN’s state space reduction treats communication
channels as rendezvous ones; thus, the reduction cannot handle the
programs with wildcard receives. MPI-SV leverages model checking
to prune redundant paths caused by wildcard receives. We applied
MPI-SV on MPI-SPIN’s 17 C benchmarks to verify deadlock free-
dom, and MPI-SV successfully analyzed 15 automatically, indicating
the effectiveness. For the remaining two programs, i.e., BlobFlow
and Monte, MPI-SV cannot analyze them due to the lack of support
for APIs. For the real-world program gausselim, MPI-SPIN needs
171s to verify that the model is deadlock-free under 5 processes,
while MPI-SV only needs 27s to verify the program automatically. If
the number of the processes is 8, MPI-SPIN timed out in 30 minutes,
but MPI-SV used 66s to complete verification.

Temporal properties. We specify two temporal safety properties
¢1 and ¢y for Integrate and Mandelbrot, respectively, where ¢
requires process one cannot receive a message before process two,
and ¢, requires process one cannot send a message before process
two. Both ¢1 and @2 can be represented by an LTL formula G(la U
b), which requires event a cannot happen before event b. We verify
Integrate and Mandelbrot under 6 processes. The verification
results show that MPI-SV detects the violations of ¢; and ¢, while
pure symbolic execution fails to detect violations.

Runtime bugs. MPI-SV can also detect local runtime bugs. Dur-
ing the experiments, MPI-SV finds 5 unknown memory access out-
of-bound bugs: 4 in DepSolver and 1 in ClustalWw.

6 RELATED WORK

Dynamic analyses are widely used for analyzing MPI programs.
Debugging or testing tools [l [37) 511 52 59 [69] [83] have better
feasibility and scalability but depend on specific inputs and run-
ning schedules. Dynamic verification techniques, e.g., ISP [80] and
DAMPI [§81], run MPI programs multiple times to cover the sched-
ules under the same inputs. Bohm et al. [3] propose a state-space
reduction framework for the MPI program with non-deterministic
synchronization. These approaches can detect the bugs depending
on specific matchings of wildcard operations, but may still miss
inputs related bugs. MPI-SV supports both input and schedule cov-
erages, and a larger scope of verifiable properties. MOPPER [24]
encodes the deadlock detection problem under concrete inputs in
a SAT equation. Similarly, Huang and Mercer [42] use an SMT
formula to reason about a trace of an MPI program for deadlock
detection. However, the SMT encoding is specific for the zero-buffer
mode. Khanna et al. [48] combines dynamic and symbolic analy-
ses to verify multi-path MPI programs. Compared with these path
reasoning work in dynamic verification, MPI-SV ensures input
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space coverage and can verify more properties, ie., safety and live-
ness properties in LTL. Besides, MPI-SV employs CSP to enable a
more expressive modeling, e.g., supporting conditional completes-
before [80]] and master-slave pattern [33].

For static methods of analyzing MPI program, MPI-SPIN [71}[72]]
manually models MPI programs in Promela [39]], and verifies the
model wr.t. LTL properties [57] by SPIN [38] (cf: Section [5.4] for
empirical comparison). MPI-SPIN can also verify the consistency
between an MPI program and a sequential program, which is not
supported by MPI-SV. Bronevetsky [9] proposes parallel control
flow graph (pCFG) for MPI programs to capture the interactions be-
tween arbitrary processes. But the static analysis using pCFG is hard
to be automated. ParTypes [55] uses type checking and deductive
verification to verify MPI programs against a protocol. ParTypes’s
verification results are sound but incomplete, and independent
with the number of processes. ParTypes does not support non-
deterministic or non-blocking MPI operations. MPI-Checker [23]
is a static analysis tool built on Clang Static Analyzer [15], and
only supports intraprocedural analysis of local properties such as
double non-blocking and missing wait. Botbol et al. [5] abstract an
MPI program to symbolic transducers, and obtain the reachabil-
ity set based on abstract interpretation [[19], which only supports
blocking MPI programs and may generate false positives. COMPI
[53154] uses concolic testing [28][70] to detect assertion or runtime
errors in MPI applications. Ye et al. [[85] employs partial symbolic
execution [[66] to detect MPI usage anomalies. However, these two
symbolic execution-based bug detection methods do not support
the non-determinism caused by wildcard operations.

MPI-SV is related to the existing work on symbolic execution [49],
which has been advanced significantly during the last decade [10}
121 28] 1291164} (70} [78]. Many methods have been proposed to prune
paths during symbolic execution [4} 20l 35 [44]]. The basic idea is
to use the techniques such as slicing [45] and interpolation [58] to
safely prune the paths. Compared with them, MPI-SV only prunes
the paths of the same path constraint but different message match-
ings or operation interleavings. Furthermore, there exists work of
combining symbolic execution and model checking [21] [63] [76].
YOGI [63] and Abstraction-driven concolic testing [21] combine
dynamic symbolic execution [28|[70] with counterexample-guided
abstraction refinement (CEGAR) [16].MPI-SV focuses on parallel
programs, and the verified models are path-level. MPI-SV is also
related to the work of unbounded verification for parallel programs
[21[61[7,182]. Compared with them, MPI-SV is a bounded verifica-
tion tool and supports the verification of LTL properties. Besides,
MPI-SV is related to the existing work of testing and verification of
shared-memory programs [[13| [14] 22} [35] [36] 40} [41] [43] 50} [611 [86]].
Compared with them, MPI-SV concentrates on message-passing
programs. Utilizing the ideas in these work for analyzing MPI pro-
grams is interesting and left to the future work.

7 CONCLUSION

We has presented MPI-SV for verifying MPI programs with both
non-blocking and non-deterministic operations. By synergistically
combining symbolic execution and model checking, MPI-SV pro-
vides a general framework for verifying MPI programs. We have
implemented MPI-SV and extensively evaluated it on real-world
MPI programs. The results are promising.
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