Singapore Management University

[Institutional Knowledge at Singapore Management University](https://ink.library.smu.edu.sg/)

[Research Collection School Of Computing and](https://ink.library.smu.edu.sg/sis_research)
Information Systems

School of Computing and Information Systems

5-2020

Symbolic verification of message passing interface programs

Hengbiao YU National University of Defense Technology

Zhenbang CHEN National University of Defense Technology

Xianjin FU National University of Defense Technology

Ji WANG National University of Defense Technology

Zhendong SU ETH Zurich

See next page for additional authors

Follow this and additional works at: [https://ink.library.smu.edu.sg/sis_research](https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Information Security Commons](https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages)

Citation

YU, Hengbiao; CHEN, Zhenbang; FU, Xianjin; WANG, Ji; SU, Zhendong; SUN, Jun; HUANG, Chun; and DONG, Wei. Symbolic verification of message passing interface programs. (2020). Proceedings of the 42nd International Conference on Software Engineering, Seoul, South Korea, 2020 October 5-11. 1-12. Available at: https://ink.library.smu.edu.sg/sis_research/4633

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email [cherylds@smu.edu.sg.](mailto:cherylds@smu.edu.sg)

Author

Hengbiao YU, Zhenbang CHEN, Xianjin FU, Ji WANG, Zhendong SU, Jun SUN, Chun HUANG, and Wei DONG

ABSTRACT

Message passing is the standard paradigm of programming in highperformance computing. However, verifying Message Passing Interface (MPI) programs is challenging, due to the complex program features (such as non-determinism and non-blocking operations). In this work, we present MPI symbolic verifier (MPI-SV), the first symbolic execution based tool for automatically verifying MPI programs with non-blocking operations. MPI-SV combines symbolic execution and model checking in a synergistic way to tackle the challenges in MPI program verification. The synergy improves the scalability and enlarges the scope of verifiable properties. We have implemented MPI-SV¹ and evaluated it with 111 real-world MPI verification tasks. The pure symbolic execution-based technique successfully verifies 57 out of the 111 tasks (51%) within one hour, while in comparison, MPI-SV verifies 99 tasks (89%). On average, compared with pure symbolic execution, MPI-SV achieves 8x speedups on verifying the satisfaction of the critical property and 5x speedups on finding violations.

1 INTRODUCTION

Nowadays, an increasing number of high-performance computing (HPC) applications have been developed to solve large-scale problems [\[11\]](#page-12-0). The Message Passing Interface (MPI) [\[75\]](#page-13-0) is the current de facto standard programming paradigm for developing HPC applications. Many MPI programs are developed with significant human effort. One of the reasons is that MPI programs are error-prone because of complex program features (such as non-determinism and asynchrony) and their scale. Improving the reliability of MPI programs is challenging [\[30,](#page-12-1) [31\]](#page-12-2).

Program analysis [\[62\]](#page-13-1) is an effective technique for improving program reliability. Existing methods for analyzing MPI programs can be categorized into dynamic and static approaches. Most existing methods are dynamic, such as debugging [\[52\]](#page-12-3), correctness checking [\[69\]](#page-13-2) and dynamic verification [\[80\]](#page-13-3). These methods need concrete inputs to run MPI programs and perform analysis based on runtime information. Hence, dynamic approaches may miss inputrelated program errors. Static approaches [\[5,](#page-12-4) [9,](#page-12-5) [55,](#page-13-4) [72\]](#page-13-5) analyze abstract models of MPI programs and suffer from false alarms, manual effort, and poor scalability. In summary, existing automatic verification approaches either do not support input-related analysis or fail to support the analysis of the MPI programs with non-blocking operations, the invocations of which do not block the program execution. Non-blocking operations are ubiquitous in real-world MPI programs for improving the performance but introduce more complexity to programming.

Symbolic execution [\[28,](#page-12-6) [49\]](#page-12-7) supports input-related analysis by systematically exploring a program's path space. In principle, symbolic execution provides a balance between concrete execution and static abstraction with improved input coverage or more precise program abstraction. However, symbolic execution based analyses

suffer from path explosion due to the exponential increase of program paths w.r.t. the number of conditional statements. The problem is particularly severe when analyzing MPI programs because of parallel execution and non-deterministic operations. Existing symbolic execution based verification approaches [\[74\]](#page-13-6)[\[26\]](#page-12-8) do not support non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI programs by smartly integrating symbolic execution and model checking. MPI-SV uses symbolic execution to extract path-level models from MPI programs and verifies the models w.r.t. the expected properties by model checking [\[18\]](#page-12-9). The two techniques complement each other: (1) symbolic execution abstracts the control and data dependencies to generate verifiable models for model checking, and (2) model checking improves the scalability of symbolic execution by leveraging the verification results to prune redundant paths and enlarges the scope of verifiable properties of symbolic execution.

In particular, MPI-SV combines two algorithms: (1) symbolic execution of non-blocking MPI programs with non-deterministic operations, and (2) modeling and checking the behaviors of an MPI program path precisely. To safely handle non-deterministic operations, the first algorithm delays the message matchings of nondeterministic operations as much as possible. The second algorithm extracts a model from an MPI program path. The model represents all the path's equivalent behaviors, i.e., the paths generated by changing the interleavings and matchings of the communication operations in the path. We have proved that our modeling algorithm is precise and consistent with the MPI standard [\[25\]](#page-12-10). We feed the generated models from the second algorithm into a model checker to perform verification w.r.t. the expected properties, i.e., safety and liveness properties in linear temporal logic (LTL) [\[57\]](#page-13-7). If the extracted model from a path p satisfies the property φ , p 's equivalent paths can be safely pruned; otherwise, if the model checker reports a counterexample, a violation of φ is found. This way, we significantly boost the performance of symbolic execution by pruning a large set of paths which are equivalent to certain paths that have been already model-checked.

We have implemented MPI-SV for MPI C programs based on Cloud9 [\[10\]](#page-12-11) and PAT [\[77\]](#page-13-8). We have used MPI-SV to analyze 12 realworld MPI programs, totaling 47K lines of code (LOC) (three are beyond the scale that the state-of-the-art MPI verification tools can handle), w.r.t. the deadlock freedom property and non-reachability properties. For the 111 deadlock freedom verification tasks, when we set the time threshold to be an hour, MPI-SV can complete 99 tasks, i.e., deadlock reported or deadlock freedom verified, while pure symbolic execution can complete 57 tasks. For the 99 completed tasks, MPI-SV achieves, on average, 8x speedups on verifying deadlock freedom and 5x speedups on finding a deadlock.

The main contributions of this work are:

- A synergistic framework combining symbolic execution and model checking for verifying MPI programs.
- A method for symbolic execution of non-blocking MPI programs with non-deterministic operations. The method is formally

57 58

¹MPI-SV is available from the anonymized repo at [https://github.com/mpi-sv/mpi-sv.](https://github.com/mpi-sv/mpi-sv)

Figure 1: Syntax of a core MPI language.

proven to preserve the correctness of verifying reachability properties.

- A precise method for modeling the equivalent behaviors of an MPI path, which enlarges the scope of the verifiable properties.
- A tool for symbolic verification of MPI C programs and an extensive evaluation on real-world MPI programs.

2 ILLUSTRATION

In this section, we first introduce MPI programs and use an example to illustrate the problem that this work targets. Then, we overview MPI-SV informally by the example.

2.1 MPI Syntax and Motivating Example

MPI implementations, such as MPICH [\[32\]](#page-12-12) and OpenMPI [\[27\]](#page-12-13), provide the programming interfaces of message passing to support the development of parallel applications. An MPI program can be implemented in different languages, such as C and C++. Without loss of generality, we focus on MPI programs written in C. Let T be a set of types, $\mathbb N$ a set of names, and $\mathbb E$ a set of expressions. For simplifying the discussion, we define a core language for MPI processes in Figure [1,](#page-3-0) where $T \in \mathbb{T}$, $l \in \mathbb{N}$, $e \in \mathbb{E}$ and $r \in \mathbb{N}$. An MPI program MP is defined by a *finite* set of processes $\{Proc_i | 0 \le i \le n\}$. For heavity we omit complex language features (such the messages in the brevity, we omit complex language features (such the messages in the communication operations and pointer operations) although MPI-SV does support real-world MPI C programs.

The statement var $l : T$ declares a variable l with type T . The statement $l := e$ assigns the value of expression e to variable l . A process can be constructed from basic statements by using the composition operations including sequence, condition and loop. Let e be the destination process's identifier. Message passings can be blocking or non-blocking. First, we introduce blocking operations:

- Ssend(e): send a message to the eth process, and the sending process blocks until the message is received by the destination process.
- Send(e): send a message to the eth process, and the sending process blocks until the message is copied into the system buffer.
- Recv(e): receive a message from the eth process, and the receiving process blocks until the message from the eth process is received.
- Recv(\star): receive a message from *any* process, and the receiving process blocks until a message is received regardless which process sends the message.
- Barrier: block the process until all the processes have called Barrier.
- Wait (r) : the process blocks until the operation indicated by r is completed.

171 172 173 174 A Recv(*) operation, called wildcard receive, may receive a message from different processes under different runs, resulting in non-determinism. The blocking of a Send(i) operation depends

Figure 2: An illustrative example of MPI programs.

on the size of the system buffer, which may differ under different MPI implementations. For simplicity, we assume that the size of the system buffer is infinite. Hence, each Send(e) operation returns immediately after being issued. Note that our implementation allows users to configure the buffer size. To improve the performance, the MPI standard provides non-blocking operations to overlap computations and communications.

- ISend(e,r): send a message to the eth process, and the operation returns immediately after being issued. The parameter r is the handle of the operation.
- IRecv (e, r) : receive a message from the eth process, and the operation returns immediately after being issued. IRecv($*,r$) is the non-blocking wildcard receive.

The operations above are key MPI operations. Complex operations, such as MPI_Bcast and MPI_Gather, can be implemented by composing these key operations. An MPI program runs in many processes spanned across multiple machines. These processes communicate by message passing to accomplish a parallel task. The semantics of the core language is defined based on communicating state machines (CSM) [\[8\]](#page-12-14) and given in the supplementary document. Besides parallel execution, the non-determinism in MPI programs mainly comes from two sources: (1) inputs, which may influence the communication through control flow, and (2) wildcard receives, which lead to highly non-deterministic executions.

Consider the MPI program in Figure [2.](#page-3-1) Processes P_0 , P_2 and P_3 only send a message to P_1 and then terminate. For process P_1 , if input x is not equal to 'a', P_1 receives a message from P_0 in a blocking manner; otherwise, P_1 uses a non-blocking wildcard receive to receive a message. Then, P_1 receives a message from P_3 . When x is 'a' and IRecv(*,req) receives the message from P_3 , a *deadlock* would happen, *i.e.*, P_1 blocks at Recv(3), and all the other processes terminate. Hence, to detect the deadlock, we need to handle the non-determinism caused by the input x and the wildcard receive IRecv(*,req).

To handle non-determinism due to the input, a standard remedy is symbolic execution [\[49\]](#page-12-7). However, there are two challenges. The first one is to systematically explore the paths of an MPI program with non-blocking and wildcard operations, which significantly increase the complexity of MPI programs. A non-blocking operation does not block but returns immediately, causing out-of-order completion. The difficulty in handling wildcard operations is to get all the possibly matched messages. The second one is to improve the scalability of the symbolic execution. Symbolic execution struggles with path explosion. MPI processes run concurrently, resulting in an exponential number of program paths w.r.t. the number of processes. Furthermore, the path space increases exponentially with the number of wildcard operations.

Figure 4: The example program's symbolic execution tree.

2.2 Our Approach

243 244 245

290

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 MPI-SV leverages dynamic verification [\[80\]](#page-13-3) and model checking [\[18\]](#page-12-9) to tackle the challenges. Figure [3](#page-4-0) shows MPI-SV's basic framework. The inputs of MPI-SV are an MPI program and an expected property, e.g., deadlock freedom. MPI-SV uses the built-in symbolic executor to explore the path space automatically and checks the property along with path exploration. For a path that violates the property, called a violation path, MPI-SV generates a test case for replaying, which includes the program inputs, the interleaving sequence of MPI operations and the matchings of wildcard receives. In contrast, for a *violation-free* path p , MPI-SV builds a communicating sequential process (CSP) model Γ, which represents the paths which can be obtained based on p by changing the interleavings and matchings of the communication operations in p . Then, MPI-SV utilizes a CSP model checker to verify Γ w.r.t. the property. If the model checker reports a counterexample, a violation is found; otherwise, if Γ satisfies the property, MPI-SV prunes all behaviors captured by the model so that they are avoided by symbolic execution.

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 Since MPI processes are memory independent, MPI-SV will select a process to execute in a round-robin manner to avoid exploring all interleavings of the processes. A process keeps running until it blocks or terminates, and the encountered MPI operations are collected instead of being executed. The intuition behind this strategy is to collect the message exchanges as thoroughly as possible, which helps find possible matchings for the wildcard receive operations. Consider the MPI program in Figure [2](#page-3-1) and deadlock freedom property. Figure [4](#page-4-1) shows the symbolic execution tree, where the node labels indicate processs communications, e.g., (3, ¹) means that P_1 receives a message from P_3 . MPI-SV first symbolically executes P_0 , which only sends a message to P_1 . Send(1) operation returns immediately with the assumption of infinite system buffers. Hence, P_0 terminates, and the operation Send(1) is recorded. Then, MPI-SV executes P_1 and explores both branches of the conditional statement as follows.

279 280 281 282 283 284 285 286 287 288 289 (1) True branch ($x \neq 'a'$). In this case, P_1 blocks at Recv(0). MPI-SV records the receive operation for P_1 , and starts executing P_2 . Like P_0 , P_2 executes operation Send(1) and terminates, after which P_3 is selected and behaves the same as P_2 . After P_3 terminates, the global execution blocks, i.e., P_1 blocks and all the other processes terminate. When this happens, MPI-SV matches the recorded operations, performs the message exchanges and continues to execute the matched processes. The Recv(0) in P_1 should be matched with the Send(1) in P_0 . After executing the send and receive operations, MPI-SV selects P_1 to execute, because P_0 terminates. Then, P_1 blocks at Recv(3). Same as earlier, the global execution blocks

and operation matching needs to be done. Recv(3) is matched with the Send(1) in P_3 . After executing the Recv(3) and Send(1) operations, all the processes terminate successfully. Path p_1 in Figure [4](#page-4-1) is explored.

(2) False branch (x ='a'). The execution of P_1 proceeds until reaching the blocking receive Recv(3). Additionally, the two issued receive operations, *i.e.*, IRecv(*, req) and Recv(3), are recorded. Similar to the true branch, when every process blocks or terminates, we handle operation matching. Here P_0 , P_2 and P_3 terminate, and P_1 blocks at $Recv(3)$. IRecv(*, req) should be matched first because of the non-overtaken policy in the MPI standard [\[25\]](#page-12-10). There are three Send operation candidates from P_0 , P_2 and P_3 , respectively. MPI-SV forks a state for each candidate. Suppose MPI-SV first explores the state where IRecv($*,$ req) is matched with P_0 's Send(1). After matching and executing P_1 's Recv(3) and P_3 's Send(1), the path terminates successfully, which generates path p_2 in Figure [4.](#page-4-1)

Violation detection. MPI-SV continues to explore the remaining two cases. Without CSP-based boosting, the deadlock would be found in the last case (*i.e.*, p_4 in Figure [4\)](#page-4-1), where IRecv(\star , req) is matched with P_3 's Send(1) and P_1 blocks because Recv(3) has no matched operation. MPI-SV generates a CSP model Γ based on the deadlock-free path p_2 where P_1 's IRecv(*,req) is matched with P_0 's Send(1). Each MPI process is modeled as a CSP process, and all the CSP processes are composed in parallel to form Γ. Notably, in Γ, we collect the possible matchings of a wildcard receive through statically matching the arguments of operations in the path. Additionally, the requirements in the MPI standard, i.e., completes-before relations [\[80\]](#page-13-3), are also modeled. A CSP model checker then verifies deadlock freedom for Γ. The model checker reports a counterexample where IRecv(*,req) is matched with the Send(1) in P_3 . MPI-SV only explores two paths for detecting the deadlock and avoids the exploration of p_3 and p_4 (indicated by dashed lines).

Pruning. Because the CSP modeling is precise (cf. Section [4\)](#page-6-0), in addition to finding violations earlier, MPI-SV can also perform path pruning when the model satisfies the property. Suppose we change the program in Figure [2](#page-3-1) to be the one where the last statement of P_1 is a Recv(*) operation. Then, the program is *deadlock* free. When the symbolic executor explores the first path after taking the false branch, the generated model is verified to be deadlock-free, and MPI-SV prunes the candidate states forked for the matchings of the two wildcard receives along the current path. Hence, MPI-SV only explores two paths to verify that the program is deadlock-free. In contrast, without model checking, we need to explore eight paths (the wildcard receive in the true branch has two matchings, and 349 350 the two wildcard receives in the false branch have three and two matchings, respectively).

Properties. Because our CSP modeling encodes the interleavings of the MPI operations in the MPI processes, the scope of the verifiable properties is enlarged, i.e., MPI-SV can verify safety and liveness properties in LTL. Suppose we change the property to be the one that requires the Send(1) operation in P_0 should be completed before the Send(1) operation in P_2 . The send operation in P_2 can be completed before the send operation in P_0 , due to the nature of parallel execution. However, pure symbolic execution fails to detect the property violation. In contrast, with the help of CSP modeling, when we verify the model generated from the first path w.r.t. the property, the model checker gives a counterexample, indicating that a violation of the temporal property exists.

3 SYMBOLIC VERIFICATION METHOD

In this section, we present our symbolic verification framework and then describe MPI-SV's symbolic execution method.

3.1 Framework

Given an MPI program $MP = \{Proc_i \mid 0 \le i \le n\}$, a state S_c
in MP 's symbolic execution is composed by the states of proin MP 's symbolic execution is composed by the states of processes, i.e., $(s_0, ..., s_n)$, and each MPI process's state is a 6-tuple $(M, Stat, PC, F, B, R)$, where M maps each variable to a concrete value or a symbolic value, Stat is the next program statement to execute, PC is the process's path constraint [\[49\]](#page-12-7), $\mathcal F$ is the flag of process status belonging to {active, blocked, terminated}, \mathcal{B} and R are infinite buffers for storing the issued MPI operations not yet matched and the matched MPI operations, respectively. We use $s_i \in S_c$ to denote that s_i is a process state in the global state
S. An element elem of s. can be accessed by s. elem e.g. s. \mathcal{F} is S_c . An element *elem* of s_i can be accessed by s_i , *elem*, *e.g.*, s_i . \mathcal{F} is the *i*th process's status flog. In principle, a statement execution in the ith process's status flag. In principle, a statement execution in any process advances the global state, making MP 's state space exponential to the number of processes. We use variable Seq_i defined in M to record the sequence of the issued MPI operations in Proc_i, and Seq(S_c) to denote the set $\{Seq_i \mid 0 \le i \le n\}$ of global
state S. Clobal state S 's path condition (denoted by S. *PC*) is the state S_c . Global state S_c 's path condition (denoted by S_c .PC) is the conjunction of the path conditions of S_c 's processes, i.e., $\bigwedge_{s_i \in S}$ $\bigwedge_{s_i \in S_c} s_i.PC.$

Algorithm [1](#page-5-0) shows the details of MPI-SV. We use worklist to store the global states to be explored. Initially, worklist only contains S_{init} , composed of the initial states of all the processes, and each process's status is active. At Line [4,](#page-5-1) Select picks a state from worklist as the one to advance. Hence, Select can be customized with different search heuristics, e.g., depth-first search (DFS). Then, Scheduler selects an active process $Proc_i$ to execute. Next, Execute (*cf.* Algorithm [2\)](#page-6-1) symbolically executes the statement $Stat_i$ in $Proof_i$
and may add new states into worklist. This procedure continues and may add new states into worklist. This procedure continues until worklist is empty (i.e., all the paths have been explored), detecting a violation or time out (omitted for brevity). After executing $Stat_i$, if all the processes in the current global state S_c terminate, i.e., a violation free path terminates, we use Algorithm 4 to generate a a violation-free path terminates, we use Algorithm [4](#page-7-0) to generate a CSP model Γ from the current state (Line [8\)](#page-5-2). Then, we use a CSP model checker to verify Γ w.r.t. φ . If Γ satisfies φ (denoted by $\Gamma \models \varphi$), we prune the global states forked by the wildcard operations along

the current path (Line [11\)](#page-5-3), i.e., the states in worklist whose path conditions imply S_c 's path condition; otherwise, if the model checker gives a counterexample, we report the violation and exit (Line [14\)](#page-5-4).

Since MPI processes are memory independent, we employ partial order reduction (POR) [\[18\]](#page-12-9) to reduce the search space. Scheduler selects a process in a round-robin fashion from the current global state. In principle, Scheduler starts from the active MPI process with the smallest identifier, $e.g., Proc₀$ at the beginning, and an MPI process keeps running until it is blocked or terminated. Then, the next active process will be selected to execute. Such strategy significantly reduces the path space of symbolic execution. Then, with the help of CSP modeling and model checking, MPI-SV can verify more properties, i.e., safety and liveness properties in LTL. The details of such technical improvements will be given in Section [4.](#page-6-0)

3.2 Blocking-driven Symbolic Execution

Algorithm [2](#page-6-1) shows the symbolic execution of a statement. Common statements such as conditional statements are handled in the standard way [\[49\]](#page-12-7) (omitted for brevity), and here we focus on MPI operations. The main idea is to delay the executions of MPI operations as much as possible, i.e., trying to get all the message matchings. Instead of execution, Algorithm [2](#page-6-1) records each MPI operation for each MPI process (Lines [4](#page-6-2)[&8\)](#page-6-3). We also need to update buffer B after issuing an MPI operation (Lines [5&](#page-6-4)[9\)](#page-6-5). Then, if $Stat_i$ is a non-
blocking operation, the execution returns immediately: otherwise blocking operation, the execution returns immediately; otherwise, we block Proc_i (Line [10,](#page-6-6) excepting the Wait of an ISend operation). When reaching GlobalBlocking (Lines [11](#page-6-7)[&12\)](#page-6-8), i.e., every process is terminated or blocked, we use Matching (cf. Algorithm [3\)](#page-6-9) to match the recorded but not yet matched MPI operations and execute the matched operations. Since the opportunity of matching messages is GlobalBlocking, we call it blocking-driven symbolic execution.

Matching matches the recorded MPI operations in different processes. To obtain all the possible matchings, we delay the matching of a wildcard operation as much as possible. We use match $_N$ to

 $4'$ \overline{A} ⁷

match the non-wildcard operations first (Line [3\)](#page-6-10) w.r.t. the rules in the MPI standard [\[25\]](#page-12-10), especially the non-overtaken ones: (1) if two sends of a process send messages to the same destination, and both can match the same receive, the receive should match the first one; and (2) if a process has two receives, and both can match a send, the first receive should match the send. The matched send and receive operations will be executed, and the statuses of the involved processes will be updated to active, denoted by $Fire(S_c, pair_n)$ (Line 5) If there is no matching for non-wildcard operations, we use [5\)](#page-6-11). If there is no matching for non-wildcard operations, we use

r٥		P2
$Isend(1,req1)$;	IRecv $(*, \text{req}_2);$	Barrier:
Barrier;	Barrier;	$Isend(1,req3)$;
$Wait(\text{req}_1)$	Wait(req ₂)	Wait(req ₃)

Figure 5: An example of operation matching.

match_W to match the wildcard operations (Line [8\)](#page-6-12). For each possible matching of a wildcard receive, we fork a new state (denoted by fork(S_c , pair_w) at Line [10\)](#page-6-13) to analyze each matching case. If no operations can be matched, but there exist blocked processes, a deadlock happens (Line [17\)](#page-6-14). Besides, for the properties other than deadlock freedom, we also check them during symbolic execution (omitted for brevity).

Take the program in Figure [5](#page-6-15) for example. When all the processes block at Barrier, MPI-SV matches the recorded operation in the buffers of the processes, i.e., $s_0 \cdot B = \langle I\text{Send}(1, \text{req}_1), \text{Barrier}\rangle$ $s_1 \mathcal{B} = \langle \text{IRecv}(*, \text{req}_2), \text{Barrier} \rangle$, and $s_2 \mathcal{B} = \langle \text{Barrier} \rangle$. According to the MPI standard, each operation in the buffers is ready to be matched. Hence, Matching first matches the non-wildcard operations, i.e., the Barrier operations, then the status of each process becomes active. After that, MPI-SV continues to execute the active processes and record issued MPI operations. The next GlobalBlocking point is: P_0 and P_2 terminate, and P_1 blocks at Wait(req₂). The buffers are \langle ISend(1,req₁),Wait(req₁)), \langle IRecv(*,req₂),Wait(req₂)), and \langle ISend(1, req₃), Wait(req₃)), respectively. All the issued Wait operations are not ready to match, because the corresponding non-blocking operations are not matched. So Matching needs to match the wildcard operation, i.e., IRecv($*$, req₂), which can be matched with ISend(1, req₁) or ISend(1, req₃). Then, a new state is forked for each case and added to the worklist.

Correctness. Blocking-driven symbolic execution is an instance of model checking with POR. We have proved the symbolic execution method is correct for reachability properties [\[57\]](#page-13-7). Due to the space limit, the proof is presented in the supplementary document.

4 CSP BASED PATH MODELING

In this section, we first introduce the CSP [\[68\]](#page-13-9) language. Then, we present the modeling algorithm of an MPI program terminated path using a subset of CSP. Finally, we prove the soundness and completeness of our modeling.

4.1 CSP Subset

Let Σ be a *finite* set of *events*, $\mathbb C$ a set of channels, and X a set of variables. Figure [6](#page-6-16) shows the syntax of the CSP subset, where P denotes a CSP process, $a \in \Sigma$, $c \in \mathbb{C}$, $X \subseteq \Sigma$ and $x \in X$.

$$
P := a | P \circ P | P \Box P | P || P | c?x \rightarrow P | c!x \rightarrow P | \textbf{skip}
$$

Figure 6: The syntax of a CSP subset.

The single event process a performs the event a and terminates. There are three operators: sequential composition $\binom{6}{9}$, external choice (\square) and parallel composition with synchronization (\parallel). $P\square Q$

performs as P or Q, and the choice is made by the environment.
Let PS be a finite set of processes \Box^{PS} denotes the external choice Let PS be a finite set of processes, $\square PS$ denotes the external choice

of all the processes in PS. P $\parallel_{X} Q$ performs P and Q in an interleaving manner, but P and Q synchronize on the events in X . The process $c?x \rightarrow P$ performs as P after reading a value from channel c and writing the value to variable x. The process $c!x \rightarrow P$ writes the value of x to channel c and then behaves as P . Process skip terminates immediately.

4.2 CSP Modeling

For each violation-free program path, Algorithm [4](#page-7-0) builds a precise CSP model of the possible communication behaviors by changing the matchings and interleavings of the communication operations along the path. The basic idea is to model the communication operations in each process as a CSP process, then compose all the CSP processes in parallel to form the model. To model Proc_i, we scan its operation sequence Seq_i in reverse. For each operation, we connect its CSP model and compose the model with that of the generate its CSP model and compose the model with that of the remaining operations in Seq_i w.r.t. the semantics of the operation and the MPI standard [\[25\]](#page-12-10). The modeling algorithm is efficient, and has a polynomial time complexity w.r.t. the total length of the recorded MPI operation sequences.

 We use channel operations in CSP to model send and receive operations. Each send operation op has its own channel, denoted by Chan(op). We use a zero-sized channel to model Ssend operation (Line [10\)](#page-7-1), because Ssend blocks until the message is received. In contrast, considering a Send or ISend operation is completed immediately, we use one-sized channels for them (Line [14\)](#page-7-2), so the channel writing returns immediately. The modeling of Barrier (Line [17\)](#page-7-3) is to generate a synchronization event that requires all the parallel CSP processes to synchronize it (Lines [17](#page-7-3)[&38\)](#page-7-4). The modeling of receive operations consists of three steps. The first step calculates the possibly matched channels written by the send operations (Lines [20](#page-7-5)[&25\)](#page-7-6). The second uses the external choice of reading actions of the matched channels (Lines [21](#page-7-7)[&26\)](#page-7-8), so as to model different cases of the receive operation. Finally, the refined external choice process is composed with the remaining model. If the operation is blocking, the composition is sequential (Line [22\)](#page-7-9); otherwise, it is a parallel composition (Line [28\)](#page-7-10).

StaticMatchedChannel(op_j , S) (Lines [20](#page-7-5)[&25\)](#page-7-6) returns the set of the channels written by the possibly matched send operations of the receive operation op_j . We scan $Seq(S)$ to obtain the possibly
matched send operations of an Civen a receive operation recy in matched send operations of op_j . Given a receive operation recv in
process Proc: SMO (recv. S) coloulated as follows denotes the set process Proc_i, $\overline{S}MO(reev, S)$ calculated as follows denotes the set
of the matched send operations of recy of the matched send operations of recv.

- If recv is $Recv(j)$ or $IREcv(j, r)$, $SMO(recv, S)$ contains $Proc_j$'s
send operations with Proc; as the destination process. send operations with $Proc_i$ as the destination process.
- If recv is Recv(*) or IRecv(*, r), SMO(recv, S) contains any process's send operations with Proc_i as the destination process.

 SMO(op, S) over-approximates op's precisely matched operations, and can be optimized by removing the send operations that are definitely executed after op's completion, and the ones whose messages are definitely received before op's issue. For example, Let Proc₀ be Send(1);Barrier;Send(1), and Proc₁ be Recv(*);Barrier. SMO will add the two send operations in Proc $₀$ to the matching</sub> set of the Recv(*) in Proc₁. Since Recv(*) must complete before Barrier, we can remove the second send operation in Proc $_0$. Such optimization reduces the complexity of the CSP model. For brevity,

we use $SMO(op, S)$ to denote the optimized matching set. Then, StaticMatchedChannel(op_j, S) is {Chan(op) | op ∈ SMO(op_j, S)}.
To satisfy the MPI requirements, Refine(P S) (Lines 21&26) re

To satisfy the MPI requirements, Refine(P, S) (Lines [21](#page-7-7)[&26\)](#page-7-8) refines the models of receive operations by imposing the completesbefore requirements [\[80\]](#page-13-3) as follows:

- If a receive operation has multiple matched send operations from the same process, it should match the earlier issued one. This is ensured by checking the emptiness of the dependent channels.
- The receive operations in the same process should be matched w.r.t. their issue order if they receive messages from the same process, except the conditional completes-before pattern [\[80\]](#page-13-3). We use one-sized channel actions to model these requirements.

697 698 699 700 701 702 703 704 705 We model a Wait operation if it corresponds to an IRecv operation (Line [30\)](#page-7-11), because ISend operations complete immediately under the assumption of infinite system buffer. Wait operations are modeled by the synchronization in parallel processes. GenerateEvent generates a new synchronization event e_w for each Wait opera-tion (Line [31\)](#page-7-12). Then, e_w is produced after the corresponding nonblocking operation is completed (Line [28\)](#page-7-10). The synchronization on e_w ensures that a Wait operation blocks until the corresponding non-blocking operation is completed.

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 We use the example in Figure [5](#page-6-15) for a demonstration. After exploring a violation-free path, the recorded operation sequences are $Seq_0 = \langle$ ISend(1,req₁), Barrier, Wait(req₁)), $Seq_1 = \langle$ IRecv(*,req₂), Barrier, Wait(req₂)), $Seq_2 = \langle$ Barrier, ISend(1, req₃), Wait(req₃)). We first scan Seq_0 in reverse. Note that we don't model Wait(req1), because it corresponds to ISend. We create a synchronization event B for modeling Barrier (Lines [16&](#page-7-13)[17\)](#page-7-3). For the ISend(1, req₁), we model it by writing an element a to a one-sized channel chan₁, and use prefix operation to compose its model with B (Lines [12](#page-7-14)[-14\)](#page-7-2). In this way, we generate CSP process $chan_1!a \rightarrow B$ $\frac{\circ}{2}$ skip (denoted by CP_0) for Proc₀. Similarly, we model Proc₂ by B $\frac{6}{9}$ *chan*₂!b \rightarrow **skip** (denoted by CP_2), where chan₂ is also a one-sized channel and b is a channel element. For Proc₁, we generate a single event process e_w to model Wait(req2), because it corresponds to IRecv (Lines [30-](#page-7-11) [32\)](#page-7-15). For IRecv(\star , req₂), we first compute the matched channels using SMO (Line [25\)](#page-7-6), and StaticMatchedChannel(op_j , S) contains
both change and change Then, we generate the following CSP process both $chan_1$ and $chan_2$. Then, we generate the following CSP process

((chan₁?a→skip□chan₂?b→skip) $\overset{\circ}{\sigma}$ e_w) \parallel (B $\overset{\circ}{\sigma}$ e_w $\overset{\circ}{\sigma}$ skip)

(denoted by CP_1) for Proc₁. Finally, we compose the CSP processes using the parallel operator to form the CSP model (Line [38\)](#page-7-4), i.e., $\overline{CP_0}$ $\begin{array}{ccc} \parallel & \overline{CP_1} & \parallel & \overline{CP_2}. \\ \parallel & \{B\} & \{B\} \end{array}$

CSP modeling supports the case where communications depend on message contents. MPI-SV tracks the influence of a message during symbolic execution. When detecting that the message content influences the communications, MPI-SV symbolizes the content on-the-fly. We specially handle the widely used master-slave pattern for dynamic load balancing [\[33\]](#page-12-15). The basic idea is to use a recursive CSP process to model each slave process and a conditional statement for master process to model the communication behaviors of different matchings. We verified five dynamic load balancing MPI programs in our experiments (cf. Section [5.4\)](#page-9-0). The details for supporting master-slave pattern is in the supplementary document.

4.3 Soundness and Completeness

743 744 745 746 747 748 749 In the following, we show that the CSP modeling is sound and complete. Suppose GenerateCSP(S) generates the CSP process CSP_s . Here, soundness means that CSP_s models all the possible behaviors by changing the matchings or interleavings of the communication operations along the path to S, and completeness means that each trace in CSP_s represents a real behavior that can be derived from S by changing the matchings or interleavings of the communications.

750 751 752 753 754 Since we compute $SMO(op, S)$ by statically matching the arguments of the recorded operations, $SMO(op, S)$ may contain some false matchings. Calculating the precisely matched operations of op is NP-complete [\[24\]](#page-12-16), and we suppose such an ideal method exists. We use CSP_{static} and CSP_{ideal} to denote the generated models using $SMO(op, S)$ and the ideal method, respectively. The following theorems ensure the equivalence of the two models under the stable-failure semantics [\[68\]](#page-13-9) of CSP and CSP_{static} 's consistency to the MPI semantics, which imply the soundness and completeness of our CSP modeling method. The proofs are presented in the supplementary document. Let $\mathcal{T}(P)$ denote the trace set [\[68\]](#page-13-9) of CSP process P, and $\mathcal{F}(P)$ denote the failure set of CSP process P. Each element in $\mathcal{F}(P)$ is (s, X) , where $s \in \mathcal{T}(P)$ is a trace, and X is the set of events P refuses to perform after s.

Theorem 4.1. $\mathcal{F}(\text{CSP}_{static}) = \mathcal{F}(\text{CSP}_{ideal}).$

Theorem 4.2. CSP_{static} is consistent with the MPI semantics.

5 EXPERIMENTAL EVALUATION

In this section, we first introduce the implementation of MPI-SV, then describes the research questions and the experimental setup. Finally, we give experimental results.

5.1 Implementation

We have implemented MPI-SV based on Cloud9 [\[10\]](#page-12-11), which is built upon KLEE [\[12\]](#page-12-17), and enhances KLEE with better support for POSIX environment and parallel symbolic execution. We leverage Cloud9's support for multi-threaded programs. We use a multi-threaded library for MPI, called AzequiaMPI [\[67\]](#page-13-10), as the MPI environment model for symbolic execution. MPI-SV contains three main modules: program preprocessing, symbolic execution, and model checking. The program preprocessing module generates the input for symbolic execution. We use Clang to compile an MPI program to LLVM bytecode, which is then linked with the pre-compiled MPI library AzequiaMPI. The symbolic execution module is in charge of path exploration and property checking. The third module utilizes the state-of-the-art CSP model checker PAT [\[77\]](#page-13-8) to verify CSP models, and uses the output of PAT to boost the symbolic executor.

5.2 Research Questions

We conducted experiments to answer the following questions:

- Effectiveness: Can MPI-SV verify real-world MPI programs effectively? How effective when compared to the existing state-ofthe-art tools?
- Efficiency: How efficient is MPI-SV when verifying real-world MPI programs? How efficient is MPI-SV when compared to the pure symbolic execution?
- Verifiable properties : Can MPI-SV verify properties other than deadlock freedom?

5.3 Setup

Table 1 lists the programs analyzed in our experiments. All the programs are real-world open source MPI programs. DTG is a testing program from [\[79\]](#page-13-11). Matmat, Integrate and Diffusion2d come from the FEVS benchmark suite [\[73\]](#page-13-12). Matmat is used for matrix multiplication, Integrate calculates the integrals of trigonometric functions, and Diffusion2d is a parallel solver for two-dimensional diffusion equation. Gauss_elim is an MPI implementation for gaussian elimination used in [\[84\]](#page-13-13). Heat is a parallel solver for heat equation used in [\[60\]](#page-13-14). Mandelbrot, Sorting and Image_manip come

812

813

from github. Mandelbrot parallel draws the mandelbrot set for a bitmap, Sorting uses bubble sort to sort a multi-dimensional array, and Image_manip is an MPI program for image manipulations, e.g., shifting, rotating and scaling. The remaining three programs are large parallel applications. Depsolver is a parallel multi-material 3D electrostatic solver, Kfray is a ray tracing program creating realistic images, and ClustalW is a tool for aligning gene sequences.

843 844 845 846 847 848 849 850 851 852 To evaluate MPI-SV further, we mutate [\[47\]](#page-12-18) the programs by rewriting a randomly selected receive using two rules: (1) replace Recv(i) with if $(x>a)$ {Recv(i)} else {Recv(*)}; (2) replace Recv(*) with if $(x>a)$ {Recv(*)} else {Recv(j)}. Here x is an input variable, a is a random value, and j is generated randomly from the scope of the process identifier. The mutations for IRecv(i,r) and IRecv($*,r$) are similar. Rule 1 is to improve program performance and simplify programming, while rule 2 is to make the communication more deterministic. Since communications tend to depend on inputs in complex applications, such as the last three programs in Table [1,](#page-9-1) we also introduce input related conditions. For each program, we generate five mutants if possible, or generate as many as the number of receives. We don't mutate the programs using master-slave pattern [\[33\]](#page-12-15), i.e., Matmat and Sorting, and only mutate the static scheduling versions of programs Integrate, Mandelbrot, and Kfray.

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 Baselines. We use pure symbolic execution as the first baseline because: (1) none of the state-of-the-art symbolic execution based verification tools can analyze non-blocking MPI programs, e.g., CIVL [\[56\]](#page-13-15); (2) MPI-SPIN [\[72\]](#page-13-5) can support input coverage and non-blocking operations, but it requires building models of the programs manually; and (3) other automatic tools that support nonblocking operations, such as MOPPER [\[24\]](#page-12-16) and ISP [\[80\]](#page-13-3), can only verify programs under given inputs. MPI-SV aims at covering both the input space and non-determinism automatically. To compare with pure symbolic execution, we run MPI-SV under two configurations: (1) Symbolic execution, i.e., applying only symbolic execution for path exploration, and (2) Our approach, i.e., using model checking based boosting. Most of the programs run with 6, 8, and 10 processes, respectively. DTG and Matmat can only be run with 5 and 4 processes, respectively. For Diffusion and the programs using master-slave pattern, we only run them with 4 and 6 processes due to the huge path space. We use MPI-SV to verify deadlock freedom

of MPI programs and also evaluate 2 non-reachability properties for Integrate and Mandelbrot. The timeout is one hour. There are three possible verification results: finding a violation, no violation, or timeout. We carry out all the tasks on an Intel Xeon-based Server with 256G memory and 32 2.5GHz cores running a Ubuntu 14.04 OS. To evaluate MPI-SV's effectiveness further, we also directly compare MPI-SV with CIVL [\[56\]](#page-13-15) and MPI-SPIN [\[72\]](#page-13-5). Note that, since MPI-SPIN needs manual modeling, we only use MPI-SV to verify MPI-SPIN's C benchmarks w.r.t. deadlock freedom.

5.4 Experimental Results

Table [2](#page-10-0) lists the results for evaluating MPI-SV against pure symbolic execution. The first column shows program names, and #Procs is the number of running processes. T specifies whether the analyzed program is mutated, where o denotes the original program, and m_i represents a mutant. A task comprises a program and the number of running processes. We label the programs using master-slave pattern with superscript "*". Column Deadlock indicates whether a task is deadlock free, where 0, 1, and -1 denote no deadlock, deadlock and unknown, respectively. We use unknown for the case that both configurations fail to complete the task. Columns Time(s) and #Iterations show the verification time and the number of explored paths, respectively, where to stands for timeout. The results where Our approach performs better is in gray background.

For the 111 verification tasks, MPI-SV completes 99 tasks (89%) within one hour, whereas 57 tasks (51%) for Symbolic execution. Our approach detects deadlocks in 43 tasks, while the number of Symbolic execution is 41. We manually confirmed that the detected deadlocks are real. For the 43 tasks having deadlocks, MPI-SV on average offers a 5x speedups for detecting deadlocks. On the other hand, Our approach can verify deadlock freedom for 56 tasks, while only 16 tasks for Symbolic execution. MPI-SV achieves an average 8x speedups. Besides, compared with Symbolic execution, Our approach requires fewer paths to detect the deadlocks (1/17 on average) and complete the path exploration (1/65 on average). These results demonstrate the effectiveness and efficiency of MPI-SV.

Figure [7](#page-9-2) shows the efficiency of verification for the two configurations. The X-axis varies the time threshold from 5 minutes to one hour, while the Y-axis is the number of completed verification tasks. Our approach can complete more tasks than Symbolic execution under the same time threshold, demonstrating MPI-SV's efficiency.

Figure 7: Completed tasks under a time threshold.

929 $\overline{9}$ 9 9 $\overline{9}$ 9 $\overline{9}$ 9 937 938 939 $\overline{9}$ 9 9 $\overline{9}$ 9 $\overline{9}$ 9 9 $\overline{9}$ ⁹ 950 9 952 $\overline{9}$ 954 9 $\overline{9}$ 9 $\overline{9}$ $\ddot{9}$ 9 $\overline{9}$ <u>و</u> 9 9 9 $\overline{9}$ 9 9 9 9 $\ddot{\mathbf{Q}}$ $\ddot{9}$ $\overline{9}$

929	Table 2: Experimental results.							
930	Program (#Procs)	т	Deadlock	Time(s)		#Iterations		
931				Symbolic execution	Our approach	Symbolic execution	Our approach	
932		\boldsymbol{o}	$\bf{0}$	19.5	13.3	3	1	
933		m ₁	$\mathbf{1}$	20.7	16.1	$\overline{4}$	$\mathbf{1}$	
934	DTG(5)	m ₂	$\mathbf{1}$	16.0	15.8	\overline{c}	$\mathbf{1}$	
935		m ₃	$\bf{0}$	32.8	16.2	10	$\overline{2}$	
936		m ₄	$\mathbf{1}$	21.0	17.1	$\overline{4}$	$\mathbf{1}$	
937		m ₅	$\mathbf{1}$	19.3	15.1	$\overline{4}$	$\mathbf{1}$	
938	Matmat ^{$*(4)$}	$\mathbf 0$	$\bf{0}$	51.0	12.2	18	$\mathbf{1}$	
939		\boldsymbol{o}	0/0/0	273.4/To/To	12.8/17.3/37.1	120/1216/1024	1/1/1	
940	Integrate $(6/8/10)$	m ₁	$0/-1/-1$	$\frac{1}{\sqrt{10}}$	$266.2 / \text{TO} / \text{TO}$	1420/1201/1022	32 / 82 / 51	
941		m ₂	0/1/1	TO/18.0/21.7	265.4 / 17.4 / 45.1	1427/2/2	32 / 1 / 2	
	Integrate [*] $(4/6)$	$\mathbf 0$	0/0	104.8/654.3	13.8/28.2	27/125	1/1	
942		0	0/0	731.9/TO	19.2/32.8	90/289	1/1	
943		m ₁	1/1	19.4/27.3	20.4/31.9	2/2	1/1	
944	Diffusion2d $(4/6)$	m ₂	0/0	738.8/TO	19.5/29.8	90/287	1/1	
945		m ₃	0/0	TO/TO	48.5/352.5	1680/1445	16/64	
946		m ₄	1/1	26.8 / 32.3	25.4 / 37.6	3/2	2/1	
947		m ₅	0/0	TO/TO	68.6/566.8	1061/877	16/64	
948	Gauss_elim $(6/8/10)$	\boldsymbol{o}	0/0/0	TO/TO/TO	63.4/26.4/74.5	394/351/275	1/1/1	
949		m ₁	1/1/1	862.8 /TO/TO	23.1/38.1/80.6	121/349/272	1/2/1	
950		0	1/1/1	30.9/50.1/61.7	30.8 / 49.7 / 63.8	2/2/2	1/1/1	
951		m ₁	1/1/1	35.0/48.7/60.9	34.2 / 50.6 / 65.7	2/2/2	1/1/1	
952	Heat $(6/8/10)$	m ₂	1/1/1	34.3/49.2/60.8	34.0 $/51.3/65.2$	2/2/2	1/1/1	
953		m ₃	1/1/1	46.5/58.1/78.6	34.0/50.2/64.8	3/3/3	1/1/1	
954		m ₄	1/1/1	60.7/77.4/96.8	33.9/50.0/64.3	9/9/9	1/1/1	
955		m ₅	1/1/1	78.7/99.0/136.6	33.9/50.2/64.8	7/7/7	1/1/1	
956	Mandelbrot (6/8/10)	\boldsymbol{o}	$0/0/-1$	$\frac{1}{\sqrt{10}}$	152.9 $/$ 631.9 $/$ TO	373/350/325	9 / 9 / 9	
957		m ₁	1/1/1	15.2/17.5/22.1	14.6/16.6/19.2	2/2/2	1/1/1	
958		m ₂	$-1/-1/-1$	TO/TO/TO	TO/TO/TO	676/689/583	109/132/121	
959		m ₃	$-1/-1/-1$	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{10}}$	655/570/494	106/93/78	
	Mandelbort [*] $(4/6)$	\mathbf{o}	0/0	217.1/877.8	18.6/22.4	72/240	1/1	
960	Sorting [*] $(4/6)$	$\mathbf 0$	0/0	TO/TO	24.4/41.9	432/376	1/1	
961	Image_mani $(6/8/10)$	\boldsymbol{o}	0/0/0	217.0/267.6/319.6	28.2/34.6/47.9	96/96/96	4/4/4	
962		m ₁	1/1/1	15.9/18.0/20.0	15.5 / 17.7 / 21.1	2/2/2	1/1/1	
963	DepSolver $(6/8/10)$	0	0/0/0	260.2/440.2/681.4	267.0/449.0/702.7	3/3/3	3/3/3	
964	Kfray(6/8/10)	0	0/0/0	$\frac{1}{\sqrt{10}}$	58.2/69.9/170.6	590/527/446	1/1/1	
965		m ₁	1/1/1	57.4/59.8/65.6	62.9/77.5/169.5	2/2/2	1/2/2	
966		m ₂	1/1/1	56.7/59.5/65.1	59.3/78.4/169.6	2/2/2	1/2/2	
967		m ₃	$-1/-1/-1$	TO/TO/TO	$\frac{1}{\sqrt{10}}$	949/831/728	232/164/135	
968	$Kfray*(4/6)$	\mathbf{o}	0/0	TO/TO	55.5/192.7	727/682	1/1	
969	Clustalw(6/8/10)	\boldsymbol{o}	0/0/0	$\frac{1}{\sqrt{10}}$	106.1/876.1/1104.9	215/191/170	1/1/1	
970		m ₁	0/0/0	$\frac{1}{\sqrt{10}}$	229.3/1308.1/1689.3	220/200/158	4/4/4	
971		m ₂	0/0/0	$\frac{1}{\sqrt{10}}$	106.3/1033.2/996.5	206/191/162	1/1/1	
972		m ₃	0/0/0	$\frac{1}{\sqrt{10}}$	107.0/881.6/909.2	204/182/179	1/1/1	
973		m ₄	0/0/0	σ TO/TO/TO	107.5/483.5/1147.9	204/171/172	1/1/1	
974		m ₅	0/0/0	$\frac{1}{\sqrt{10}}$	106.8/878.2/910.7	201/197/176	1/1/1	

Table 2: Experimental results.

In addition, Our approach can complete all the 99 verified tasks within 30 minutes and 86 (87%) tasks in 5 minutes, which also demonstrates MPI-SV's effectiveness.

For some tasks, e.g., Kfray, MPI-SV does not outperform Symbolic execution. The reasons include: (a) the paths contain hundreds of non-wildcard operations, and the corresponding CSP models are huge, and thus time-consuming to model check; (b) the number of wildcard receives or their possible matchings is very small, and as a result, only few paths are pruned.

Comparison with CIVL. CIVL uses symbolic execution to build a model for the whole program and performs model checking on the model. In contrast, MPI-SV adopts symbolic execution to generate path-level verifiable models. CIVL does not support non-blocking operations. We applied CIVL on our evaluation subjects. It only successfully analyzed DTG. Diffusion2d could be analyzed after removing unsupported external calls. MPI-SV and CIVL had similar performance on these two programs. CIVL failed on all the remaining programs due to compilation failures or lack of support for

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

1045 1046 1047 1048 1049 1050 1051 non-blocking operations. In contrast, MPI-SV successfully analyzed 99 of the 140 programs in CIVL's latest benchmarks. The failed ones are small API test programs for the APIs that MPI-SV does not support. For the real-world program floyd that both MPI-SV and CIVL can analyze, MPI-SV verified its deadlock-freedom under 4 processes in 3 minutes, while CIVL timed out after 30 minutes. The results indicate the benefits of MPI-SV's path-level modeling.

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 Comparison with MPI-SPIN. MPI-SPIN relies on manual modeling of MPI programs. Inconsistencies may happen between an MPI program and its model. Although prototypes exist for translating C to Promela [\[46\]](#page-12-19), they are impractical for real-world MPI programs. MPI-SPIN's state space reduction treats communication channels as rendezvous ones; thus, the reduction cannot handle the programs with wildcard receives. MPI-SV leverages model checking to prune redundant paths caused by wildcard receives. We applied MPI-SV on MPI-SPIN's 17 C benchmarks to verify deadlock freedom, and MPI-SV successfully analyzed 15 automatically, indicating the effectiveness. For the remaining two programs, i.e., BlobFlow and Monte, MPI-SV cannot analyze them due to the lack of support for APIs. For the real-world program gausselim, MPI-SPIN needs 171s to verify that the model is deadlock-free under 5 processes, while MPI-SV only needs 27s to verify the program automatically. If the number of the processes is 8, MPI-SPIN timed out in 30 minutes, but MPI-SV used 66s to complete verification.

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 Temporal properties. We specify two temporal safety properties φ_1 and φ_2 for Integrate and Mandelbrot, respectively, where φ_1 requires process one cannot receive a message before process two, and φ_2 requires process one cannot send a message before process two. Both φ_1 and φ_2 can be represented by an LTL formula G(!*a* U b), which requires event a cannot happen before event b . We verify Integrate and Mandelbrot under 6 processes. The verification results show that MPI-SV detects the violations of φ_1 and φ_2 , while pure symbolic execution fails to detect violations.

Runtime bugs. MPI-SV can also detect local runtime bugs. During the experiments, MPI-SV finds 5 unknown memory access outof-bound bugs: 4 in DepSolver and 1 in ClustalW.

6 RELATED WORK

1102

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 Dynamic analyses are widely used for analyzing MPI programs. Debugging or testing tools [\[1,](#page-12-20) [37,](#page-12-21) [51,](#page-12-22) [52,](#page-12-3) [59,](#page-13-16) [69,](#page-13-2) [83\]](#page-13-17) have better feasibility and scalability but depend on specific inputs and running schedules. Dynamic verification techniques, e.g., ISP [\[80\]](#page-13-3) and DAMPI [\[81\]](#page-13-18), run MPI programs multiple times to cover the schedules under the same inputs. Böhm et al. [\[3\]](#page-12-23) propose a state-space reduction framework for the MPI program with non-deterministic synchronization. These approaches can detect the bugs depending on specific matchings of wildcard operations, but may still miss inputs related bugs. MPI-SV supports both input and schedule coverages, and a larger scope of verifiable properties. MOPPER [\[24\]](#page-12-16) encodes the deadlock detection problem under concrete inputs in a SAT equation. Similarly, Huang and Mercer [\[42\]](#page-12-24) use an SMT formula to reason about a trace of an MPI program for deadlock detection. However, the SMT encoding is specific for the zero-buffer mode. Khanna et al. [\[48\]](#page-12-25) combines dynamic and symbolic analyses to verify multi-path MPI programs. Compared with these path reasoning work in dynamic verification, MPI-SV ensures input

space coverage and can verify more properties, i.e., safety and liveness properties in LTL. Besides, MPI-SV employs CSP to enable a more expressive modeling, e.g., supporting conditional completesbefore [\[80\]](#page-13-3) and master-slave pattern [\[33\]](#page-12-15).

For static methods of analyzing MPI program, MPI-SPIN [\[71,](#page-13-19) [72\]](#page-13-5) manually models MPI programs in Promela [\[39\]](#page-12-26), and verifies the model w.r.t. LTL properties [\[57\]](#page-13-7) by SPIN [\[38\]](#page-12-27) (cf. Section [5.4](#page-9-0) for empirical comparison). MPI-SPIN can also verify the consistency between an MPI program and a sequential program, which is not supported by MPI-SV. Bronevetsky [\[9\]](#page-12-5) proposes parallel control flow graph (pCFG) for MPI programs to capture the interactions between arbitrary processes. But the static analysis using pCFG is hard to be automated. ParTypes [\[55\]](#page-13-4) uses type checking and deductive verification to verify MPI programs against a protocol. ParTypes's verification results are sound but incomplete, and independent with the number of processes. ParTypes does not support nondeterministic or non-blocking MPI operations. MPI-Checker [\[23\]](#page-12-28) is a static analysis tool built on Clang Static Analyzer [\[15\]](#page-12-29), and only supports intraprocedural analysis of local properties such as double non-blocking and missing wait. Botbol et al. [\[5\]](#page-12-4) abstract an MPI program to symbolic transducers, and obtain the reachability set based on abstract interpretation [\[19\]](#page-12-30), which only supports blocking MPI programs and may generate false positives. COMPI [\[53,](#page-12-31) [54\]](#page-12-32) uses concolic testing [\[28,](#page-12-6) [70\]](#page-13-20) to detect assertion or runtime errors in MPI applications. Ye et al. [\[85\]](#page-13-21) employs partial symbolic execution [\[66\]](#page-13-22) to detect MPI usage anomalies. However, these two symbolic execution-based bug detection methods do not support the non-determinism caused by wildcard operations.

MPI-SV is related to the existing work on symbolic execution [\[49\]](#page-12-7), which has been advanced significantly during the last decade [\[10,](#page-12-11) [12,](#page-12-17) [28,](#page-12-6) [29,](#page-12-33) [64,](#page-13-23) [70,](#page-13-20) [78\]](#page-13-24). Many methods have been proposed to prune paths during symbolic execution [\[4,](#page-12-34) [20,](#page-12-35) [35,](#page-12-36) [44\]](#page-12-37). The basic idea is to use the techniques such as slicing [\[45\]](#page-12-38) and interpolation [\[58\]](#page-13-25) to safely prune the paths. Compared with them, MPI-SV only prunes the paths of the same path constraint but different message matchings or operation interleavings. Furthermore, there exists work of combining symbolic execution and model checking [\[21,](#page-12-39) [63,](#page-13-26) [76\]](#page-13-27). YOGI [\[63\]](#page-13-26) and Abstraction-driven concolic testing [\[21\]](#page-12-39) combine dynamic symbolic execution [\[28,](#page-12-6) [70\]](#page-13-20) with counterexample-guided abstraction refinement (CEGAR) [\[16\]](#page-12-40).MPI-SV focuses on parallel programs, and the verified models are path-level. MPI-SV is also related to the work of unbounded verification for parallel programs [\[2,](#page-12-41) [6,](#page-12-42) [7,](#page-12-43) [82\]](#page-13-28). Compared with them, MPI-SV is a bounded verification tool and supports the verification of LTL properties. Besides, MPI-SV is related to the existing work of testing and verification of shared-memory programs [\[13,](#page-12-44) [14,](#page-12-45) [22,](#page-12-46) [35,](#page-12-36) [36,](#page-12-47) [40,](#page-12-48) [41,](#page-12-49) [43,](#page-12-50) [50,](#page-12-51) [61,](#page-13-29) [86\]](#page-13-30). Compared with them, MPI-SV concentrates on message-passing programs. Utilizing the ideas in these work for analyzing MPI programs is interesting and left to the future work.

7 CONCLUSION

We has presented MPI-SV for verifying MPI programs with both non-blocking and non-deterministic operations. By synergistically combining symbolic execution and model checking, MPI-SV provides a general framework for verifying MPI programs. We have implemented MPI-SV and extensively evaluated it on real-world MPI programs. The results are promising.

1161 **REFERENCES**

1162 1163 1164

1168

1177 1178

1182 1183 1184

1212

1218

- [1] Allinea. 2002. Allinea DDT. [http://www.allinea.com/products/ddt/.](http://www.allinea.com/products/ddt/) (2002).
- [2] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala. 2017. Verifying distributed programs via canonical sequentialization. PACMPL 1, OOPSLA (2017), 110:1–110:27.
- 1165 1166 1167 [3] Stanislav Böhm, Ondrej Meca, and Petr Jancar. 2016. State-Space Reduction of Non-deterministically Synchronizing Systems Applicable to Deadlock Detection in MPI. In FM. 102–118.
	- [4] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: attacking path explosion in constraint-based test generation. In TACAS. 351–366.
- 1169 [5] Vincent Botbol, Emmanuel Chailloux, and Tristan Le Gall. 2017. Static Analysis of Communicating Processes Using Symbolic Transducers. In VMCAI. 73–90.
- 1170 1171 1172 [6] Ahmed Bouajjani and Michael Emmi. 2012. Analysis of recursively parallel programs. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. 203–214.
- 1173 1174 1175 1176 [7] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. 2018. On the Completeness of Verifying Message Passing Programs Under Bounded Asynchrony. In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II. 372–391.
	- [8] Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines. J. ACM (1983), 323–342.
	- [9] Greg Bronevetsky. 2009. Communication-sensitive static dataflow for parallel message passing applications. In CGO. 1–12.
- 1179 1180 1181 [10] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel symbolic execution for automated real-world software testing. In EuroSYS. 183– 198.
	- [11] Rajkumar Buyya and others. 1999. High performance cluster computing: architectures and systems. Prentice Hall (1999), 999.
	- [12] C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI. 209– 224.
- 1185 1186 1187 [13] Sagar Chaki, Edmund M. Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman, and Karen Yorav. 2004. Efficient Verification of Sequential and Concurrent C Programs. Formal Methods in System Design 25, 2-3 (2004), 129–166.
- 1188 1189 1190 1191 [14] Alessandro Cimatti, Iman Narasamdya, and Marco Roveri. 2011. Boosting Lazy Abstraction for SystemC with Partial Order Reduction. In Tools and Algorithms for the Construction and Analysis of Systems - 17th International Conference, TACAS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. 341–356.
- 1192 Clang. 2016. Clang Static Analyzer. [http://clang-analyzer.llvm.org.](http://clang-analyzer.llvm.org) (2016).
	- [16] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-guided abstraction refinement. In CAV. 154–169.
	- Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic. In Logic of Programs. 52–71.
	- [18] Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT press.
	- [19] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL. 238–252.
	- [20] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying systems rules using rule-directed symbolic execution. In ASPLOS. 329–342.
	- [21] Przemysław Daca, Ashutosh Gupta, and Thomas A Henzinger. 2016. Abstractiondriven Concolic Testing. In VMCAI. 328–347.
	- [22] Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model checking for SC and TSO. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 20– 36.
	- [23] Alexander Droste, Michael Kuhn, and Thomas Ludwig. 2015. MPI-checker: static analysis for MPI. In LLVM-HPC. 3:1–3:10.
	- [24] Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma. 2014. Precise predictive analysis for discovering communication deadlocks in MPI programs. In FM. 263–278.
- 1210 1211 [25] MPI Forum. 2012. MPI: A Message-Passing Interface Standard Version 3.0. [http:](http://mpi-forum.org) [//mpi-forum.org.](http://mpi-forum.org) (2012).
	- [26] Xianjin Fu, Zhenbang Chen, Yufeng Zhang, Chun Huang, Wei Dong, and Ji Wang. 2015. MPISE: Symbolic Execution of MPI Programs. In HASE. 181–188.
- 1213 1214 1215 [27] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, and others. 2004. Open MPI: Goals, concept, and design of a next generation MPI implementation. In EuroMPI. 97–104.
- 1216 1217 [28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In PLDI. 213–223.
- [29] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated Whitebox Fuzz Testing. In NDSS.
- [30] Ganesh Gopalakrishnan, Paul D. Hovland, Costin Iancu, Sriram Krishnamoorthy, Ignacio Laguna, Richard A. Lethin, Koushik Sen, Stephen F. Siegel, and Armando Solar-Lezama. 2017. Report of the HPC Correctness Summit Jan 25-26, 2017, Washington, DC. [https://science.energy.gov/~/media/ascr/pdf/programdocuments/](https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf) [docs/2017/HPC_Correctness_Report.pdf.](https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf) (2017).
- [31] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur, William Gropp, Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg Bronevetsky. 2011. Formal analysis of MPI-based parallel programs. Commun. ACM (2011), 82–91.
- [32] William Gropp. 2002. MPICH2: A new start for MPI implementations. In EuroMPI. 7–7.
- [33] William Gropp, Ewing Lusk, and Anthony Skjellum. 2014. Using MPI: Portable Parallel Programming with the Message-Passing Interface. The MIT Press.
- [34] William Gropp, Ewing Lusk, and Rajeev Thakur. 1999. Using MPI-2: Advanced features of the message-passing interface. MIT press.
- [35] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. 2015. Assertion guided symbolic execution of multithreaded programs. In FSE. 854–865.
- [36] Shengjian Guo, Meng Wu, and Chao Wang. 2018. Adversarial symbolic execution for detecting concurrency-related cache timing leaks. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. 377–388.
- [37] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R de Supinski, and Matthias S Müller. 2012. MPI runtime error detection with MUST: advances in deadlock detection. In SC. 30.
- [38] Gerard J Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software Engineering (1997), 279–295.
- [39] Gerard J. Holzmann. 2012. Promela manual pages. [http://spinroot.com/spin/](http://spinroot.com/spin/Man/promela.html) [Man/promela.html.](http://spinroot.com/spin/Man/promela.html) (2012).
- [40] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording local executions to reproduce concurrency failures. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '13, Seattle, WA, USA, June 16-19, 2013. 141–152.
- [41] Shiyou Huang and Jeff Huang. 2016. Maximal causality reduction for TSO and PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016. 447–461.
- [42] Yu Huang and Eric Mercer. 2015. Detecting MPI Zero Buffer Incompatibility by SMT Encoding. In NFM. 219–233.
- [43] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2015. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multithreaded C-Programs. In 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 807–812.
- [44] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A Navas. 2013. Boosting concolic testing via interpolation. In FSE. 48–58.
- [45] Ranjit Jhala and Rupak Majumdar. 2005. Path slicing. In PLDI. 38–47. [46] Ke Jiang and Bengt Jonsson. 2009. Using SPIN to model check concurrent algo-
- rithms, using a translation from C to Promela. In MCC 2009. 67–69.
- [47] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software testing?. In FSE. 654–665.
- [48] Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare. 2018. Dynamic Symbolic Verification of MPI Programs. In FM.
- [49] J.C. King. 1976. Symbolic execution and program testing. Commun. ACM (1976), 385–394.
- [50] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018. Synchronizing the Asynchronous. In 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China. 21:1–21:17.
- [51] Bettina Krammer, Katrin Bidmon, Matthias S Müller, and Michael M Resch. 2004. MARMOT: An MPI analysis and checking tool. Advances in Parallel Computing (2004), 493–500.
- [52] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L. Lee, Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen, and Feng Qin. 2015. Debugging high-performance computing applications at massive scales. Commun. ACM 58, 9 (2015), 72–81.
- [53] Hongbo Li, Zizhong Chen, and Rajiv Gupta. 2019. Efficient Concolic Testing of MPI Applications. In Proceedings of the 28th International Conference on Compiler Construction (CC 2019). 193–204.
- [54] Hongbo Li, Sihuan Li, Zachary Benavides, Zizhong Chen, and Rajiv Gupta. 2018. COMPI: Concolic Testing for MPI Applications. In 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018. 865–874.

1274 1275 1276

- 1277 1278 [55] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2015. Protocolbased verification of message-passing parallel programs. In OOPSLA. 280–298.
- 1279 1280 [56] Ziqing Luo, Manchun Zheng, and Stephen F. Siegel. 2017. Verification of MPI programs using CIVL. In EuroMPI. 6:1–6:11.
- 1281 [57] Zohar Manna and Amir Pnueli. 1992. The temporal logic of reactive and concurrent systems - specification. Springer.
- 1282 1283 [58] Kenneth L. McMillan. 2005. Applications of Craig Interpolants in Model Checking. In TACAS. 1–12.
- 1284 1285 1286 1287 [59] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz, and Todd Gamblin. 2014. Accurate application progress analysis for large-scale parallel debugging. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '14, Edinburgh, United Kingdom - June 09 - 11, 2014. 193–203.
	- [60] Matthias Müller, Bronis de Supinski, Ganesh Gopalakrishnan, Tobias Hilbrich, and David Lecomber. 2011. Dealing with MPI bugs at scale: Best practices, automatic detection, debugging, and formal verification. [http://sc11.supercomputing.org/](http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131) [schedule/event_detail.php?evid=tut131,](http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131) (2011).
	- [61] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and Reproducing Heisenbugs in Concurrent Programs. In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings. 267–280.
- 1294 [62] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of program analysis. Springer.
- 1295 1296 1297 [63] Aditya V Nori, Sriram K Rajamani, SaiDeep Tetali, and Aditya V Thakur. 2009. The YOGI Project: Software property checking via static analysis and testing. In TACAS. 178–181.
- 1298 1299 1300 1301 [64] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael R. Lowry, Suzette Person, and Mark Pape. 2008. Combining unit-level symbolic execution and system-level concrete execution for testing NASA software. In Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. 15–26.
- 1302 [65] Wojciech Penczek, Maciej Szreter, Rob Gerth, and Ruurd Kuiper. 2000. Improving Partial Order Reductions for Universal Branching Time Properties. Fundam. Inform. (2000), 245–267.
	- [66] David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic Execution: Correctness Checking for Real Code. In SEC. USENIX Association, 49–64.
	- [67] Juan A. Rico-Gallego and Juan Carlos Díaz Martín. 2011. Performance Evaluation of Thread-Based MPI in Shared Memory. In EuroMPI. 337–338.
	- [68] Bill Roscoe. 2005. The theory and practice of concurrency. Prentice-Hall.
- 1308 1309 [69] Victor Samofalov, V. Krukov, B. Kuhn, S. Zheltov, Alexander V. Konovalov, and J. DeSouza. 2005. Automated Correctness Analysis of MPI Programs with Intel(r) Message Checker. In PARCO. 901–908.
	- [70] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing engine for C. In Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. 263–272.
	- Stephen F. Siegel. Model Checking Nonblocking MPI Programs. In VMCAI. [72] Stephen F. Siegel. 2007. Verifying Parallel Programs with MPI-Spin. In PVM/MPI. 13–14.
	- [73] Stephen F Siegel and Timothy K Zirkel. 2011. FEVS: A functional equivalence verification suite for high-performance scientific computing. Mathematics in Computer Science (2011), 427–435.
	- [74] Stephen F. Siegel and Timothy K. Zirkel. 2011. TASS: The Toolkit for Accurate Scientific Software. Mathematics in Computer Science (2011), 395–426.
	- Marc Snir. 1998. MPI-the Complete Reference: The MPI core. Vol. 1. MIT press.
	- [76] Ting Su, Zhoulai Fu, Geguang Pu, Jifeng He, and Zhendong Su. 2015. Combining symbolic execution and model checking for data flow testing. In ICSE. 654–665.
	- [77] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards flexible verification under fairness. In CAV. 709–714.
	- [78] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation for .NET. In TAP. 134–153.
	- [79] Sarvani Vakkalanka. 2010. Efficient dynamic verification algorithms for MPI applications. Ph.D. Dissertation. The University of Utah.
	- [80] Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008. Dynamic Verification of MPI Programs with Reductions in Presence of Split Operations and Relaxed Orderings. In CAV. 66–79.
	- [81] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R De Supinski, Martin Schulz, and Greg Bronevetsky. 2010. A scalable and distributed dynamic formal verifier for MPI programs. In SC. 1–10.
	- [82] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend synchrony: synchronous verification of asynchronous distributed programs. PACMPL 3, POPL (2019), 59:1–59:30.
- 1332 1333 [83] Rogue Wave. 2009. TotalView Software. [http://www.roguewave.com/products/](http://www.roguewave.com/products/totalview) [totalview.](http://www.roguewave.com/products/totalview) (2009).

1334

[84] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin Zheng, Zheng Zhang, and Geoffrey Voelker. 2009. MPIWiz: subgroup reproducible replay of MPI applications. ACM Sigplan Notices (2009), 251–260.

- Fangke Ye, Jisheng Zhao, and Vivek Sarkar. 2018. Detecting MPI usage anomalies via partial program symbolic execution. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018. 63:1–63:5.
- [86] Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018. YOGAR-CBMC: CBMC with Scheduling Constraint Based Abstraction Refinement - (Competition Contribution). In Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II. 422–426.