
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2020

Symbolic verification of message passing interface programs Symbolic verification of message passing interface programs

Hengbiao YU
National University of Defense Technology

Zhenbang CHEN
National University of Defense Technology

Xianjin FU
National University of Defense Technology

Ji WANG
National University of Defense Technology

Zhendong SU
ETH Zurich

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
YU, Hengbiao; CHEN, Zhenbang; FU, Xianjin; WANG, Ji; SU, Zhendong; SUN, Jun; HUANG, Chun; and DONG,
Wei. Symbolic verification of message passing interface programs. (2020). Proceedings of the 42nd
International Conference on Software Engineering, Seoul, South Korea, 2020 October 5-11. 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4633

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Hengbiao YU, Zhenbang CHEN, Xianjin FU, Ji WANG, Zhendong SU, Jun SUN, Chun HUANG, and Wei
DONG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4633

https://ink.library.smu.edu.sg/sis_research/4633

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Symbolic Verification of Message Passing Interface Programs

ABSTRACT
Message passing is the standard paradigm of programming in high-

performance computing. However, verifying Message Passing In-

terface (MPI) programs is challenging, due to the complex program

features (such as non-determinism and non-blocking operations).

In this work, we present MPI symbolic verifier (MPI-SV), the first

symbolic execution based tool for automatically verifying MPI pro-

grams with non-blocking operations. MPI-SV combines symbolic

execution and model checking in a synergistic way to tackle the

challenges in MPI program verification. The synergy improves

the scalability and enlarges the scope of verifiable properties. We

have implemented MPI-SV
1
and evaluated it with 111 real-world

MPI verification tasks. The pure symbolic execution-based tech-

nique successfully verifies 57 out of the 111 tasks (51%) within one

hour, while in comparison, MPI-SV verifies 99 tasks (89%). On aver-

age, compared with pure symbolic execution, MPI-SV achieves 8x

speedups on verifying the satisfaction of the critical property and

5x speedups on finding violations.

1 INTRODUCTION
Nowadays, an increasing number of high-performance computing

(HPC) applications have been developed to solve large-scale prob-

lems [11]. The Message Passing Interface (MPI) [75] is the current

de facto standard programming paradigm for developing HPC appli-

cations. Many MPI programs are developed with significant human

effort. One of the reasons is that MPI programs are error-prone
because of complex program features (such as non-determinism
and asynchrony) and their scale. Improving the reliability of MPI

programs is challenging [30, 31].

Program analysis [62] is an effective technique for improving

program reliability. Existing methods for analyzing MPI programs

can be categorized into dynamic and static approaches. Most ex-

isting methods are dynamic, such as debugging [52], correctness

checking [69] and dynamic verification [80]. These methods need

concrete inputs to runMPI programs and perform analysis based on

runtime information. Hence, dynamic approaches may miss input-

related program errors. Static approaches [5, 9, 55, 72] analyze ab-

stract models of MPI programs and suffer from false alarms, manual

effort, and poor scalability. In summary, existing automatic verifi-
cation approaches either do not support input-related analysis or

fail to support the analysis of the MPI programs with non-blocking
operations, the invocations of which do not block the program

execution. Non-blocking operations are ubiquitous in real-world

MPI programs for improving the performance but introduce more

complexity to programming.

Symbolic execution [28, 49] supports input-related analysis by

systematically exploring a program’s path space. In principle, sym-

bolic execution provides a balance between concrete execution and

static abstraction with improved input coverage or more precise

program abstraction. However, symbolic execution based analyses

1
MPI-SV is available from the anonymized repo at https://github.com/mpi-sv/mpi-sv.

suffer from path explosion due to the exponential increase of pro-

gram pathsw.r.t. the number of conditional statements. The problem

is particularly severe when analyzing MPI programs because of par-

allel execution and non-deterministic operations. Existing symbolic

execution based verification approaches [74][26] do not support

non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI pro-

grams by smartly integrating symbolic execution and model check-

ing. MPI-SV uses symbolic execution to extract path-level models

from MPI programs and verifies the models w.r.t. the expected prop-
erties by model checking [18]. The two techniques complement

each other: (1) symbolic execution abstracts the control and data

dependencies to generate verifiable models for model checking, and

(2) model checking improves the scalability of symbolic execution

by leveraging the verification results to prune redundant paths and

enlarges the scope of verifiable properties of symbolic execution.

In particular, MPI-SV combines two algorithms: (1) symbolic

execution of non-blocking MPI programs with non-deterministic
operations, and (2) modeling and checking the behaviors of an

MPI program path precisely. To safely handle non-deterministic

operations, the first algorithm delays the message matchings of non-

deterministic operations as much as possible. The second algorithm

extracts a model from an MPI program path. The model represents

all the path’s equivalent behaviors, i.e., the paths generated by

changing the interleavings and matchings of the communication

operations in the path.We have proved that our modeling algorithm

is precise and consistent with the MPI standard [25]. We feed the

generated models from the second algorithm into a model checker

to perform verification w.r.t. the expected properties, i.e., safety
and liveness properties in linear temporal logic (LTL) [57]. If the

extractedmodel from a pathp satisfies the propertyφ,p’s equivalent
paths can be safely pruned; otherwise, if themodel checker reports a

counterexample, a violation ofφ is found. This way, we significantly

boost the performance of symbolic execution by pruning a large

set of paths which are equivalent to certain paths that have been

already model-checked.

We have implemented MPI-SV for MPI C programs based on

Cloud9 [10] and PAT [77]. We have used MPI-SV to analyze 12 real-

world MPI programs, totaling 47K lines of code (LOC) (three are

beyond the scale that the state-of-the-art MPI verification tools can

handle), w.r.t. the deadlock freedom property and non-reachability
properties. For the 111 deadlock freedom verification tasks, when

we set the time threshold to be an hour, MPI-SV can complete 99

tasks, i.e., deadlock reported or deadlock freedom verified, while

pure symbolic execution can complete 57 tasks. For the 99 com-

pleted tasks, MPI-SV achieves, on average, 8x speedups on verifying

deadlock freedom and 5x speedups on finding a deadlock.

The main contributions of this work are:

• A synergistic framework combining symbolic execution and

model checking for verifying MPI programs.

• A method for symbolic execution of non-blocking MPI pro-

gramswith non-deterministic operations. Themethod is formally

1

https://github.com/mpi-sv/mpi-sv
ppyeo
Typewritten Text
Paper presented at International Conference on Software Engineering 42nd ICSE 2020, May 23-29, Seoul, South Korea

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Proc ::= var l : T | l := e | Comm | Proc ; Proc |
if e Proc else Proc | while e do Proc

Comm ::= Ssend(e) | Send(e) | Recv(e) | Recv(*) | Barrier |
ISend(e,r) | IRecv(e,r) | IRecv(*,r) | Wait(r)

Figure 1: Syntax of a core MPI language.

proven to preserve the correctness of verifying reachability prop-

erties.

• A precise method for modeling the equivalent behaviors of an

MPI path, which enlarges the scope of the verifiable properties.

• A tool for symbolic verification of MPI C programs and an ex-

tensive evaluation on real-world MPI programs.

2 ILLUSTRATION
In this section, we first introduce MPI programs and use an example

to illustrate the problem that this work targets. Then, we overview

MPI-SV informally by the example.

2.1 MPI Syntax and Motivating Example
MPI implementations, such as MPICH [32] and OpenMPI [27], pro-

vide the programming interfaces of message passing to support

the development of parallel applications. An MPI program can be

implemented in different languages, such as C and C++. Without

loss of generality, we focus on MPI programs written in C. Let T be
a set of types, N a set of names, and E a set of expressions. For sim-

plifying the discussion, we define a core language for MPI processes

in Figure 1, where T ∈ T, l ∈ N, e ∈ E and r ∈ N. An MPI program

MP is defined by a finite set of processes {Proci | 0 ≤ i ≤ n}. For
brevity, we omit complex language features (such the messages in the
communication operations and pointer operations) although MPI-SV
does support real-world MPI C programs.

The statement var l : T declares a variable l with type T. The
statement l := e assigns the value of expression e to variable l .
A process can be constructed from basic statements by using the

composition operations including sequence, condition and loop. Let

e be the destination process’s identifier. Message passings can be

blocking or non-blocking. First, we introduce blocking operations:

• Ssend(e): send a message to the eth process, and the sending

process blocks until the message is received by the destination

process.

• Send(e): send a message to the eth process, and the sending

process blocks until the message is copied into the system buffer.

• Recv(e): receive a message from the eth process, and the re-

ceiving process blocks until the message from the eth process is

received.

• Recv(*): receive a message from any process, and the receiv-

ing process blocks until a message is received regardless which

process sends the message.

• Barrier: block the process until all the processes have called

Barrier.
• Wait(r): the process blocks until the operation indicated by r is

completed.

A Recv(*) operation, called wildcard receive, may receive a mes-

sage from different processes under different runs, resulting in

non-determinism. The blocking of a Send(i) operation depends

P0 P1 P2 P3
Send(1) if (x != ‘a’) Send(1) Send(1)

Recv(0)
else
IRecv(*,req);
Recv(3)

Figure 2: An illustrative example of MPI programs.

on the size of the system buffer, which may differ under differ-

ent MPI implementations. For simplicity, we assume that the size

of the system buffer is infinite. Hence, each Send(e) operation

returns immediately after being issued. Note that our implemen-

tation allows users to configure the buffer size. To improve the

performance, the MPI standard provides non-blocking operations

to overlap computations and communications.

• ISend(e,r): send amessage to the eth process, and the operation
returns immediately after being issued. The parameter r is the
handle of the operation.

• IRecv(e,r): receive a message from the eth process, and the

operation returns immediately after being issued. IRecv(*,r)
is the non-blocking wildcard receive.

The operations above are key MPI operations. Complex opera-

tions, such as MPI_Bcast and MPI_Gather, can be implemented by

composing these key operations. An MPI program runs in many

processes spanned across multiple machines. These processes com-

municate by message passing to accomplish a parallel task. The

semantics of the core language is defined based on communicating

state machines (CSM) [8] and given in the supplementary document.

Besides parallel execution, the non-determinism in MPI programs

mainly comes from two sources: (1) inputs, which may influence

the communication through control flow, and (2) wildcard receives,

which lead to highly non-deterministic executions.

Consider the MPI program in Figure 2. Processes P0, P2 and

P3 only send a message to P1 and then terminate. For process P1,
if input x is not equal to ‘a’, P1 receives a message from P0 in

a blocking manner; otherwise, P1 uses a non-blocking wildcard

receive to receive a message. Then, P1 receives a message from

P3. When x is ‘a’ and IRecv(*,req) receives the message from

P3, a deadlock would happen, i.e., P1 blocks at Recv(3), and all

the other processes terminate. Hence, to detect the deadlock, we

need to handle the non-determinism caused by the input x and the

wildcard receive IRecv(*,req).
To handle non-determinism due to the input, a standard remedy

is symbolic execution [49]. However, there are two challenges. The

first one is to systematically explore the paths of an MPI program
with non-blocking and wildcard operations, which significantly in-

crease the complexity of MPI programs. A non-blocking operation

does not block but returns immediately, causing out-of-order com-

pletion. The difficulty in handling wildcard operations is to get all

the possibly matched messages. The second one is to improve the
scalability of the symbolic execution. Symbolic execution struggles

with path explosion. MPI processes run concurrently, resulting in

an exponential number of program paths w.r.t. the number of pro-

cesses. Furthermore, the path space increases exponentially with

the number of wildcard operations.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Symbolic Verification of Message Passing Interface Programs

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

An MPI
Program

CSP Model Checker

Violation
PathSymbolic Executor

State Pruner

Violation

MPI-SV

Yes
No

Yes

Property

Test Case

CSP Model

No

Figure 3: The framework of MPI-SV.

2.2 Our Approach
MPI-SV leverages dynamic verification [80] andmodel checking [18]

to tackle the challenges. Figure 3 shows MPI-SV’s basic framework.

The inputs of MPI-SV are anMPI program and an expected property,

e.g., deadlock freedom. MPI-SV uses the built-in symbolic executor

to explore the path space automatically and checks the property

along with path exploration. For a path that violates the property,

called a violation path, MPI-SV generates a test case for replaying,

which includes the program inputs, the interleaving sequence of

MPI operations and the matchings of wildcard receives. In contrast,

for a violation-free path p, MPI-SV builds a communicating sequen-

tial process (CSP) model Γ, which represents the paths which can

be obtained based on p by changing the interleavings and match-

ings of the communication operations in p. Then, MPI-SV utilizes

a CSP model checker to verify Γ w.r.t. the property. If the model

checker reports a counterexample, a violation is found; otherwise,

if Γ satisfies the property, MPI-SV prunes all behaviors captured by

the model so that they are avoided by symbolic execution.

Since MPI processes are memory independent, MPI-SV will se-

lect a process to execute in a round-robinmanner to avoid exploring

all interleavings of the processes. A process keeps running until

it blocks or terminates, and the encountered MPI operations are

collected instead of being executed. The intuition behind this strat-

egy is to collect the message exchanges as thoroughly as possible,

which helps find possible matchings for the wildcard receive opera-

tions. Consider the MPI program in Figure 2 and deadlock freedom
property. Figure 4 shows the symbolic execution tree, where the

node labels indicate processs communications, e.g., (3, 1) means

that P1 receives a message from P3. MPI-SV first symbolically ex-

ecutes P0, which only sends a message to P1. Send(1) operation

returns immediately with the assumption of infinite system buffers.

Hence, P0 terminates, and the operation Send(1) is recorded. Then,
MPI-SV executes P1 and explores both branches of the conditional

statement as follows.

(1) True branch (x , ‘a’). In this case, P1 blocks at Recv(0).
MPI-SV records the receive operation for P1, and starts executing P2.
Like P0, P2 executes operation Send(1) and terminates, after which

P3 is selected and behaves the same as P2. After P3 terminates, the

global execution blocks, i.e., P1 blocks and all the other processes

terminate. When this happens, MPI-SV matches the recorded oper-

ations, performs the message exchanges and continues to execute

the matched processes. The Recv(0) in P1 should be matched with

the Send(1) in P0. After executing the send and receive opera-

tions, MPI-SV selects P1 to execute, because P0 terminates. Then,

P1 blocks at Recv(3). Same as earlier, the global execution blocks

x ≠ 'a' x = 'a'

(0,1) (0,1) (2,1) (3,1)
(3,1) (3,1)

p1 p2 p3

p4
Deadlock(3,1)

Figure 4: The example program’s symbolic execution tree.

and operation matching needs to be done. Recv(3) is matched with

the Send(1) in P3. After executing the Recv(3) and Send(1) op-

erations, all the processes terminate successfully. Path p1 in Figure

4 is explored.

(2) False branch (x =‘a’). The execution of P1 proceeds until
reaching the blocking receive Recv(3). Additionally, the two issued
receive operations, i.e., IRecv(*,req) and Recv(3), are recorded.
Similar to the true branch, when every process blocks or terminates,

we handle operation matching. Here P0, P2 and P3 terminate, and P1
blocks at Recv(3). IRecv(*,req) should be matched first because

of the non-overtaken policy in theMPI standard [25]. There are three

Send operation candidates from P0, P2 and P3, respectively. MPI-SV

forks a state for each candidate. Suppose MPI-SV first explores the

state where IRecv(*,req) is matched with P0’s Send(1). After
matching and executing P1’s Recv(3) and P3’s Send(1), the path
terminates successfully, which generates path p2 in Figure 4.

Violation detection. MPI-SV continues to explore the remain-

ing two cases. Without CSP-based boosting, the deadlock would

be found in the last case (i.e., p4 in Figure 4), where IRecv(*,req)
is matched with P3’s Send(1) and P1 blocks because Recv(3) has

no matched operation. MPI-SV generates a CSP model Γ based on

the deadlock-free path p2 where P1’s IRecv(*,req) is matched

with P0’s Send(1). Each MPI process is modeled as a CSP pro-

cess, and all the CSP processes are composed in parallel to form

Γ. Notably, in Γ, we collect the possible matchings of a wildcard

receive through statically matching the arguments of operations in

the path. Additionally, the requirements in the MPI standard, i.e.,
completes-before relations [80], are also modeled. A CSP model

checker then verifies deadlock freedom for Γ. The model checker

reports a counterexample where IRecv(*,req) is matched with

the Send(1) in P3. MPI-SV only explores two paths for detecting
the deadlock and avoids the exploration of p3 and p4 (indicated by

dashed lines).

Pruning. Because the CSP modeling is precise (cf. Section 4),

in addition to finding violations earlier, MPI-SV can also perform

path pruning when the model satisfies the property. Suppose we

change the program in Figure 2 to be the one where the last state-

ment of P1 is a Recv(*) operation. Then, the program is deadlock
free. When the symbolic executor explores the first path after taking

the false branch, the generated model is verified to be deadlock-free,

and MPI-SV prunes the candidate states forked for the matchings

of the two wildcard receives along the current path. Hence, MPI-SV

only explores two paths to verify that the program is deadlock-free.

In contrast, without model checking, we need to explore eight paths
(the wildcard receive in the true branch has two matchings, and

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the two wildcard receives in the false branch have three and two

matchings, respectively).

Properties. Because our CSP modeling encodes the interleav-

ings of the MPI operations in the MPI processes, the scope of the

verifiable properties is enlarged, i.e., MPI-SV can verify safety and

liveness properties in LTL. Suppose we change the property to be

the one that requires the Send(1) operation in P0 should be com-

pleted before the Send(1) operation in P2. The send operation in

P2 can be completed before the send operation in P0, due to the

nature of parallel execution. However, pure symbolic execution

fails to detect the property violation. In contrast, with the help of

CSP modeling, when we verify the model generated from the first

path w.r.t. the property, the model checker gives a counterexample,

indicating that a violation of the temporal property exists.

3 SYMBOLIC VERIFICATION METHOD
In this section, we present our symbolic verification framework

and then describe MPI-SV’s symbolic execution method.

3.1 Framework
Given an MPI programMP = {Proci | 0 ≤ i ≤ n}, a state Sc
in MP’s symbolic execution is composed by the states of pro-

cesses, i.e., (s0, ..., sn), and each MPI process’s state is a 6-tuple

(M, Stat, PC,F ,B,R), whereM maps each variable to a concrete

value or a symbolic value, Stat is the next program statement to

execute, PC is the process’s path constraint [49], F is the flag of

process status belonging to {active, blocked, terminated}, B and

R are infinite buffers for storing the issued MPI operations not

yet matched and the matched MPI operations, respectively. We

use si ∈ Sc to denote that si is a process state in the global state

Sc . An element elem of si can be accessed by si .elem, e.g., si .F is

the ith process’s status flag. In principle, a statement execution in

any process advances the global state, makingMP’s state space

exponential to the number of processes. We use variable Seqi de-
fined inM to record the sequence of the issued MPI operations in

Proci , and Seq(Sc) to denote the set {Seqi | 0 ≤ i ≤ n} of global
state Sc . Global state Sc ’s path condition (denoted by Sc .PC) is the
conjunction of the path conditions of Sc ’s processes, i.e.,

∧
si ∈Sc

si .PC .

Algorithm 1 shows the details of MPI-SV. We use worklist to
store the global states to be explored. Initially, worklist only con-

tains Sinit , composed of the initial states of all the processes, and

each process’s status is active. At Line 4, Select picks a state from
worklist as the one to advance. Hence, Select can be customized

with different search heuristics, e.g., depth-first search (DFS). Then,

Scheduler selects an active process Proci to execute. Next, Execute
(cf. Algorithm 2) symbolically executes the statement Stati in Proci ,
and may add new states into worklist. This procedure continues
until worklist is empty (i.e., all the paths have been explored), de-

tecting a violation or time out (omitted for brevity). After executing

Stati , if all the processes in the current global state Sc terminate, i.e.,
a violation-free path terminates, we use Algorithm 4 to generate a

CSP model Γ from the current state (Line 8). Then, we use a CSP

model checker to verify Γ w.r.t. φ. If Γ satisfies φ (denoted by Γ |= φ),
we prune the global states forked by the wildcard operations along

Algorithm 1: Symbolic Verification Framework

MPI-SV(MP,φ, Sym)
Data:MP is {Proci | 0 ≤ i ≤ n}, φ is a property, and Sym

is a set of symbolic variables

1 begin
2 worklist ← {Sinit }
3 while worklist , ∅ do
4 Sc ← Select(worklist)
5 (Mi , Stati , PCi ,Fi ,Bi ,Ri) ← Scheduler(Sc)
6 Execute(Sc ,Proci , Stati , Sym,worklist)
7 if ∀si ∈ Sc , si .F = terminated then
8 Γ ← GenerateCSP(Sc)
9 ModelCheck(Γ,φ)

10 if Γ |= φ then
11 worklist←worklist\{Sp∈worklist |Sp .PC⇒Sc .PC}
12 end
13 else if Γ ̸ |= φ then
14 reportViolation and Exit
15 end
16 end
17 end
18 end

the current path (Line 11), i.e., the states inworklist whose path con-
ditions imply Sc ’s path condition; otherwise, if the model checker

gives a counterexample, we report the violation and exit (Line 14).

Since MPI processes are memory independent, we employ partial

order reduction (POR) [18] to reduce the search space. Scheduler
selects a process in a round-robin fashion from the current global

state. In principle, Scheduler starts from the active MPI process

with the smallest identifier, e.g., Proc0 at the beginning, and an MPI

process keeps running until it is blocked or terminated. Then, the

next active process will be selected to execute. Such strategy signifi-

cantly reduces the path space of symbolic execution. Then, with the

help of CSP modeling and model checking, MPI-SV can verify more

properties, i.e., safety and liveness properties in LTL. The details of

such technical improvements will be given in Section 4.

3.2 Blocking-driven Symbolic Execution
Algorithm 2 shows the symbolic execution of a statement. Com-

mon statements such as conditional statements are handled in the

standard way [49] (omitted for brevity), and here we focus on MPI

operations. The main idea is to delay the executions of MPI opera-

tions as much as possible, i.e., trying to get all themessagematchings.

Instead of execution, Algorithm 2 records each MPI operation for

each MPI process (Lines 4&8). We also need to update buffer B

after issuing an MPI operation (Lines 5&9). Then, if Stati is a non-
blocking operation, the execution returns immediately; otherwise,

we block Proci (Line 10, excepting the Wait of an ISend operation).
When reaching GlobalBlocking (Lines 11&12), i.e., every process is

terminated or blocked, we useMatching (cf. Algorithm 3) to match

the recorded but not yet matched MPI operations and execute the

matched operations. Since the opportunity of matching messages

is GlobalBlocking, we call it blocking-driven symbolic execution.

Matching matches the recorded MPI operations in different pro-

cesses. To obtain all the possible matchings, we delay the matching

of a wildcard operation as much as possible. We use matchN to

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Symbolic Verification of Message Passing Interface Programs

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 2: Blocking-driven Symbolic Execution

Execute(Sc ,Proci , Stati , Sym,worklist)
Data: Global state Sc , MPI process Proci , Statement Stati ,

Symbolic variable set Sym, worklist of global states
1 begin
2 switch (Stati) do
3 case Send or ISend or IRecv do
4 Seqi ← Seqi · ⟨Stati ⟩
5 si .B ← si .B · ⟨Stati ⟩
6 end
7 case Barrier or Wait or Ssend or Recv do
8 Seqi ← Seqi · ⟨Stati ⟩
9 si .B ← si .B · ⟨Stati ⟩

10 si .F ← blocked
11 if GlobalBlocking then

// ∀si ∈ Sc , (si .F = blocked ∨ si .F = terminated)
12 Matching(Sc ,worklist)
13 end
14 end
15 default:

Execute(Sc ,Proci , Stati , Sym,worklist) as normal
16 end
17 end

match the non-wildcard operations first (Line 3) w.r.t. the rules in
the MPI standard [25], especially the non-overtaken ones: (1) if two

sends of a process send messages to the same destination, and both

can match the same receive, the receive should match the first one;

and (2) if a process has two receives, and both can match a send, the

first receive should match the send. The matched send and receive

operations will be executed, and the statuses of the involved pro-

cesses will be updated to active, denoted by Fire(Sc , pairn) (Line
5). If there is no matching for non-wildcard operations, we use

Algorithm 3: Blocking-driven Matching

Matching(Sc ,worklist)
Data: Global state Sc , worklist of global states

1 begin
2 MSW ← ∅ // Matching set of wildcard operations

3 pairn ← matchN (Sc) // Match non-wildcard operations

4 if pairn , empty pair then
5 Fire(Sc ,pairn)
6 end
7 else
8 MSW ← matchW (Sc) // Match wildcard operations

9 for pairw ∈ MSW do
10 S ′c ← fork(Sc , pairw)
11 worklist ← worklist ∪ {S ′c }
12 end
13 if MSW , ∅ then
14 worklist ← worklist \ {Sc }
15 end
16 end
17 if pairn = empty pair ∧MSW = ∅ then
18 reportDeadlock and Exit
19 end
20 end

P0 P1 P2
ISend(1,req1); IRecv(*,req2); Barrier;
Barrier; Barrier; ISend(1,req3);
Wait(req1) Wait(req2) Wait(req3)

Figure 5: An example of operation matching.

matchW to match the wildcard operations (Line 8). For each possi-

ble matching of a wildcard receive, we fork a new state (denoted

by fork(Sc , pairw) at Line 10) to analyze each matching case. If no

operations can be matched, but there exist blocked processes, a

deadlock happens (Line 17). Besides, for the properties other than

deadlock freedom, we also check them during symbolic execution

(omitted for brevity).

Take the program in Figure 5 for example. When all the pro-

cesses block at Barrier, MPI-SV matches the recorded operation

in the buffers of the processes, i.e., s0 .B=⟨ISend(1,req1),Barrier⟩,
s1 .B=⟨IRecv(*,req2), Barrier⟩, and s2 .B=⟨Barrier⟩. According to
the MPI standard, each operation in the buffers is ready to be

matched. Hence,Matching first matches the non-wildcard opera-

tions, i.e., the Barrier operations, then the status of each process be-

comes active. After that, MPI-SV continues to execute the active pro-

cesses and record issued MPI operations. The next GlobalBlocking
point is: P0 and P2 terminate, and P1 blocks at Wait(req2). The
buffers are ⟨ISend(1,req

1
),Wait(req

1
)⟩, ⟨IRecv(*,req

2
),Wait(req

2
)⟩,

and ⟨ISend(1,req
3
), Wait(req

3
)⟩, respectively. All the issued Wait

operations are not ready to match, because the corresponding

non-blocking operations are not matched. So Matching needs to

match the wildcard operation, i.e., IRecv(*,req
2
), which can be

matched with ISend(1,req
1
) or ISend(1,req

3
). Then, a new

state is forked for each case and added to the worklist.
Correctness. Blocking-driven symbolic execution is an instance

of model checking with POR. We have proved the symbolic execu-

tion method is correct for reachability properties [57]. Due to the

space limit, the proof is presented in the supplementary document.

4 CSP BASED PATH MODELING
In this section, we first introduce the CSP [68] language. Then, we

present the modeling algorithm of an MPI program terminated

path using a subset of CSP. Finally, we prove the soundness and

completeness of our modeling.

4.1 CSP Subset
Let Σ be a finite set of events, C a set of channels, and X a set of

variables. Figure 6 shows the syntax of the CSP subset, where P
denotes a CSP process, a∈Σ, c∈C, X⊆Σ and x∈X.

P := a | P # P | P□P | P ∥
X
P | c?x→P | c!x→P | skip

Figure 6: The syntax of a CSP subset.

The single event process a performs the event a and terminates.

There are three operators: sequential composition (#), external
choice (□) and parallel composition with synchronization (∥

X
). P□Q

performs as P or Q , and the choice is made by the environment.

Let PS be a finite set of processes, □PS denotes the external choice

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

of all the processes in PS . P ∥
X

Q performs P and Q in an inter-

leaving manner, but P and Q synchronize on the events in X . The
process c?x → P performs as P after reading a value from channel

c and writing the value to variable x . The process c!x → P writes

the value of x to channel c and then behaves as P . Process skip
terminates immediately.

4.2 CSP Modeling
For each violation-free program path, Algorithm 4 builds a precise

CSP model of the possible communication behaviors by changing

the matchings and interleavings of the communication operations

along the path. The basic idea is to model the communication

operations in each process as a CSP process, then compose all the

CSP processes in parallel to form the model. To model Proci , we
scan its operation sequence Seqi in reverse. For each operation, we

generate its CSP model and compose the model with that of the

remaining operations in Seqi w.r.t. the semantics of the operation

and the MPI standard [25]. The modeling algorithm is efficient,

and has a polynomial time complexity w.r.t. the total length of the

recorded MPI operation sequences.

We use channel operations in CSP to model send and receive

operations. Each send operation op has its own channel, denoted

by Chan(op). We use a zero-sized channel to model Ssend opera-

tion (Line 10), because Ssend blocks until the message is received.

In contrast, considering a Send or ISend operation is completed

immediately, we use one-sized channels for them (Line 14), so the

channel writing returns immediately. The modeling of Barrier
(Line 17) is to generate a synchronization event that requires all

the parallel CSP processes to synchronize it (Lines 17&38). The

modeling of receive operations consists of three steps. The first

step calculates the possibly matched channels written by the send

operations (Lines 20&25). The second uses the external choice of

reading actions of the matched channels (Lines 21&26), so as to

model different cases of the receive operation. Finally, the refined

external choice process is composed with the remaining model. If

the operation is blocking, the composition is sequential (Line 22);

otherwise, it is a parallel composition (Line 28).

StaticMatchedChannel(opj , S) (Lines 20&25) returns the set of
the channels written by the possibly matched send operations of

the receive operation opj . We scan Seq(S) to obtain the possibly

matched send operations of opj . Given a receive operation recv in

process Proci , SMO(recv, S) calculated as follows denotes the set

of the matched send operations of recv .

• If recv is Recv(j) or IRecv(j, r), SMO(recv, S) contains Procj ’s
send operations with Proci as the destination process.

• If recv is Recv(∗) or IRecv(∗, r), SMO(recv, S) contains any pro-
cess’s send operations with Proci as the destination process.

SMO(op, S) over-approximates op’s precisely matched opera-

tions, and can be optimized by removing the send operations that

are definitely executed after op’s completion, and the ones whose

messages are definitely received before op’s issue. For example,

Let Proc0 be Send(1);Barrier;Send(1), and Proc1 be Recv(*);Barrier.
SMO will add the two send operations in Proc0 to the matching

set of the Recv(*) in Proc1. Since Recv(*) must complete before

Barrier, we can remove the second send operation in Proc0. Such
optimization reduces the complexity of the CSP model. For brevity,

Algorithm 4: CSP Modeling for a Terminated State

GenerateCSP(S)
Data: A terminated global state S , and

Seq(S)={Seqi | 0 ≤ i ≤ n}
1 begin
2 PS ← ∅
3 for i ← 0 . . . n do
4 Pi ← skip
5 Req ← {r | IRecv(*,r)∈Seqi∨IRecv(i,r)∈Seqi }
6 for j ←lenдth(Seqi) − 1 . . . 0 do
7 switch opj do
8 case Ssend(i) do
9 c1 ← Chan(opj) // c1’s size is 0

10 Pi ← c1!x → Pi
11 end
12 case Send(i) or ISend(i,r) do
13 c2 ← Chan(opj) // c2’s size is 1

14 Pi ← c2!x → Pi
15 end
16 case Barrier do
17 Pi ← B # Pi
18 end
19 case Recv(i) or Recv(*) do
20 C ← StaticMatchedChannel(opj , S)
21 Q ← Refine(□{c?x → skip | c ∈ C}, S)
22 Pi ← Q # Pi
23 end
24 case IRecv(*,r) or IRecv(i,r) do
25 C ← StaticMatchedChannel(opj , S)
26 Q ← Refine(□{c?x → skip | c ∈ C}, S)
27 ew←WaitEvent(opj) // opj ’s wait event

28 Pi ← (Q # ew) ∥
{ew }

Pi

29 end
30 case Wait(r) and r ∈ Req do
31 ew ← GenerateEvent(opj)
32 Pi ← ew # Pi
33 end
34 end
35 end
36 PS ← PS ∪ {Pi }
37 end
38 P ← ∥

{B}
PS

39 return P
40 end

we use SMO(op, S) to denote the optimized matching set. Then,

StaticMatchedChannel(opj , S) is {Chan(op) | op ∈ SMO(opj , S)}.
To satisfy the MPI requirements, Refine(P , S) (Lines 21&26) re-

fines the models of receive operations by imposing the completes-

before requirements [80] as follows:

• If a receive operation has multiple matched send operations from

the same process, it should match the earlier issued one. This is

ensured by checking the emptiness of the dependent channels.

• The receive operations in the same process should be matched

w.r.t. their issue order if they receive messages from the same

process, except the conditional completes-before pattern [80]. We

use one-sized channel actions to model these requirements.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Symbolic Verification of Message Passing Interface Programs

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

We model a Wait operation if it corresponds to an IRecv oper-
ation (Line 30), because ISend operations complete immediately

under the assumption of infinite system buffer. Wait operations are
modeled by the synchronization in parallel processes.GenerateEvent
generates a new synchronization event ew for each Wait opera-

tion (Line 31). Then, ew is produced after the corresponding non-

blocking operation is completed (Line 28). The synchronization on

ew ensures that a Wait operation blocks until the corresponding

non-blocking operation is completed.

We use the example in Figure 5 for a demonstration. After ex-

ploring a violation-free path, the recorded operation sequences are

Seq0=⟨ISend(1,req1), Barrier, Wait(req1)⟩, Seq1=⟨IRecv(*,req2),
Barrier,Wait(req

2
)⟩, Seq2=⟨Barrier,ISend(1,req3),Wait(req3)⟩.We

first scan Seq0 in reverse. Note that we don’t model Wait(req1),
because it corresponds to ISend. We create a synchronization event

B for modeling Barrier (Lines 16&17). For the ISend(1,req1), we
model it by writing an element a to a one-sized channel chan1, and
use prefix operation to compose its model with B (Lines 12-14). In
this way, we generate CSP process chan1!a→B # skip (denoted by

CP0) for Proc0. Similarly, we model Proc2 by B # chan2!b→skip
(denoted by CP2), where chan2 is also a one-sized channel and b is

a channel element. For Proc1, we generate a single event process ew
to model Wait(req2), because it corresponds to IRecv (Lines 30-
32). For IRecv(*,req2), we first compute the matched channels

using SMO (Line 25), and StaticMatchedChannel(opj , S) contains
both chan1 and chan2. Then, we generate the following CSP process

((chan1?a→skip□chan2?b→skip) # ew) ∥
{ew }
(B # ew # skip)

(denoted by CP1) for Proc1. Finally, we compose the CSP processes

using the parallel operator to form the CSP model (Line 38), i.e.,
CP0 ∥

{B}
CP1 ∥

{B}
CP2.

CSP modeling supports the case where communications depend

on message contents. MPI-SV tracks the influence of a message dur-

ing symbolic execution. When detecting that the message content

influences the communications, MPI-SV symbolizes the content

on-the-fly.We specially handle the widely usedmaster-slave pattern
for dynamic load balancing [33]. The basic idea is to use a recursive

CSP process to model each slave process and a conditional state-

ment for master process to model the communication behaviors

of different matchings. We verified five dynamic load balancing

MPI programs in our experiments (cf. Section 5.4). The details for

supporting master-slave pattern is in the supplementary document.

4.3 Soundness and Completeness
In the following, we show that the CSP modeling is sound and

complete. SupposeGenerateCSP(S) generates the CSP processCSPs .
Here, soundness means that CSPs models all the possible behaviors

by changing the matchings or interleavings of the communication

operations along the path to S , and completeness means that each

trace in CSPs represents a real behavior that can be derived from S
by changing the matchings or interleavings of the communications.

Since we compute SMO(op, S) by statically matching the argu-

ments of the recorded operations, SMO(op, S) may contain some

false matchings. Calculating the precisely matched operations of op
is NP-complete [24], and we suppose such an ideal method exists.

We use CSPstatic and CSPideal to denote the generated models

using SMO(op, S) and the ideal method, respectively. The follow-

ing theorems ensure the equivalence of the two models under the

stable-failure semantics [68] of CSP and CSPstatic ’s consistency to
the MPI semantics, which imply the soundness and completeness

of our CSP modeling method. The proofs are presented in the sup-

plementary document. Let T(P) denote the trace set [68] of CSP
process P , and F (P) denote the failure set of CSP process P . Each
element in F (P) is (s,X), where s ∈ T (P) is a trace, and X is the

set of events P refuses to perform after s .

Theorem 4.1. F (CSPstatic) = F (CSPideal).

Theorem 4.2. CSPstatic is consistent with the MPI semantics.

5 EXPERIMENTAL EVALUATION
In this section, we first introduce the implementation of MPI-SV,

then describes the research questions and the experimental setup.

Finally, we give experimental results.

5.1 Implementation
We have implemented MPI-SV based on Cloud9 [10], which is built

upon KLEE [12], and enhances KLEE with better support for POSIX

environment and parallel symbolic execution.We leverage Cloud9’s

support for multi-threaded programs. We use a multi-threaded li-

brary for MPI, called AzequiaMPI [67], as the MPI environment

model for symbolic execution. MPI-SV contains threemainmodules:

program preprocessing, symbolic execution, and model checking.

The program preprocessing module generates the input for sym-

bolic execution. We use Clang to compile an MPI program to LLVM

bytecode, which is then linked with the pre-compiled MPI library

AzequiaMPI. The symbolic execution module is in charge of path

exploration and property checking. The third module utilizes the

state-of-the-art CSP model checker PAT [77] to verify CSP models,

and uses the output of PAT to boost the symbolic executor.

5.2 Research Questions
We conducted experiments to answer the following questions:

• Effectiveness: Can MPI-SV verify real-world MPI programs ef-

fectively? How effective when compared to the existing state-of-

the-art tools?

• Efficiency: How efficient is MPI-SV when verifying real-world

MPI programs? How efficient is MPI-SV when compared to the

pure symbolic execution?

• Verifiable properties : Can MPI-SV verify properties other than

deadlock freedom?

5.3 Setup
Table 1 lists the programs analyzed in our experiments. All the pro-

grams are real-world open source MPI programs. DTG is a testing
program from [79]. Matmat, Integrate and Diffusion2d come

from the FEVS benchmark suite [73]. Matmat is used for matrix

multiplication, Integrate calculates the integrals of trigonometric

functions, and Diffusion2d is a parallel solver for two-dimensional

diffusion equation. Gauss_elim is anMPI implementation for gauss-

ian elimination used in [84]. Heat is a parallel solver for heat equa-

tion used in [60]. Mandelbrot, Sorting and Image_manip come

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: The programs in the experiments.
Program LOC Brief Description
DTG 90 Dependence transition group

Matmat 105 Matrix multiplication

Integrate 181 Integral computing

Diffusion2d 197 Simulation of diffusion equation

Gauss_elim 341 Gaussian elimination

Heat 613 Heat equation solver

Mandelbrot 268 Mandelbrot set drawing

Sorting 218 Array sorting

Image_manip 360 Image manipulation

DepSolver 8988 Multimaterial electrostatic solver

Kfray 12728 KF-Ray parallel raytracer

ClustalW 23265 Multiple sequence alignment

Total 47354 12 open source programs

from github. Mandelbrot parallel draws the mandelbrot set for a

bitmap, Sorting uses bubble sort to sort a multi-dimensional array,

and Image_manip is an MPI program for image manipulations, e.g.,
shifting, rotating and scaling. The remaining three programs are

large parallel applications. Depsolver is a parallel multi-material

3D electrostatic solver, Kfray is a ray tracing program creating re-

alistic images, and ClustalW is a tool for aligning gene sequences.

To evaluate MPI-SV further, we mutate [47] the programs by

rewriting a randomly selected receive using two rules: (1) replace

Recv(i) with if (x>a){Recv(i)} else {Recv(*)}; (2) replace Recv(*)

with if (x>a){Recv(*)} else {Recv(j)}. Here x is an input variable, a
is a random value, and j is generated randomly from the scope of the

process identifier. The mutations for IRecv(i,r) and IRecv(*,r)
are similar. Rule 1 is to improve program performance and simplify

programming, while rule 2 is to make the communication more

deterministic. Since communications tend to depend on inputs in

complex applications, such as the last three programs in Table 1, we

also introduce input related conditions. For each program, we gen-

erate five mutants if possible, or generate as many as the number of

receives. We don’t mutate the programs using master-slave pattern
[33], i.e., Matmat and Sorting, and only mutate the static schedul-

ing versions of programs Integrate, Mandelbrot, and Kfray.
Baselines. We use pure symbolic execution as the first base-

line because: (1) none of the state-of-the-art symbolic execution

based verification tools can analyze non-blocking MPI programs,

e.g., CIVL [56]; (2) MPI-SPIN [72] can support input coverage and

non-blocking operations, but it requires building models of the

programs manually; and (3) other automatic tools that support non-

blocking operations, such as MOPPER [24] and ISP [80], can only

verify programs under given inputs. MPI-SV aims at covering both

the input space and non-determinism automatically. To compare

with pure symbolic execution, we run MPI-SV under two configura-

tions: (1) Symbolic execution, i.e., applying only symbolic execution

for path exploration, and (2) Our approach, i.e., using model check-

ing based boosting. Most of the programs run with 6, 8, and 10

processes, respectively. DTG and Matmat can only be run with 5 and

4 processes, respectively. For Diffusion and the programs using

master-slave pattern, we only run them with 4 and 6 processes due

to the huge path space. We use MPI-SV to verify deadlock freedom

of MPI programs and also evaluate 2 non-reachability properties for

Integrate and Mandelbrot. The timeout is one hour. There are

three possible verification results: finding a violation, no violation,

or timeout. We carry out all the tasks on an Intel Xeon-based Server

with 256G memory and 32 2.5GHz cores running a Ubuntu 14.04

OS. To evaluate MPI-SV’s effectiveness further, we also directly

compare MPI-SV with CIVL [56] and MPI-SPIN [72]. Note that,

since MPI-SPIN needs manual modeling, we only use MPI-SV to

verify MPI-SPIN’s C benchmarks w.r.t. deadlock freedom.

5.4 Experimental Results
Table 2 lists the results for evaluating MPI-SV against pure symbolic

execution. The first column shows program names, and #Procs is
the number of running processes. T specifies whether the analyzed

program is mutated, where o denotes the original program, and mi
represents a mutant. A task comprises a program and the number

of running processes. We label the programs using master-slave
pattern with superscript “*”. ColumnDeadlock indicates whether a

task is deadlock free, where 0, 1, and -1 denote no deadlock, deadlock
and unknown, respectively. We use unknown for the case that both

configurations fail to complete the task. Columns Time(s) and
#Iterations show the verification time and the number of explored

paths, respectively, where to stands for timeout. The results where

Our approach performs better is in gray background.

For the 111 verification tasks, MPI-SV completes 99 tasks (89%)

within one hour, whereas 57 tasks (51%) for Symbolic execution.
Our approach detects deadlocks in 43 tasks, while the number of

Symbolic execution is 41. We manually confirmed that the detected

deadlocks are real. For the 43 tasks having deadlocks, MPI-SV on

average offers a 5x speedups for detecting deadlocks. On the other

hand,Our approach can verify deadlock freedom for 56 tasks, while

only 16 tasks for Symbolic execution. MPI-SV achieves an aver-

age 8x speedups. Besides, compared with Symbolic execution, Our
approach requires fewer paths to detect the deadlocks (1/17 on av-

erage) and complete the path exploration (1/65 on average). These

results demonstrate the effectiveness and efficiency of MPI-SV.

Figure 7 shows the efficiency of verification for the two configu-

rations. The X-axis varies the time threshold from 5 minutes to one

hour, while the Y-axis is the number of completed verification tasks.

Our approach can complete more tasks than Symbolic execution
under the same time threshold, demonstrating MPI-SV’s efficiency.

0 5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

Symbolic execution

Our approach

Figure 7: Completed tasks under a time threshold.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Symbolic Verification of Message Passing Interface Programs

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 2: Experimental results.

Program (#Procs) T Deadlock Time(s) #Iterations
Symbolic execution Our approach Symbolic execution Our approach

DTG(5)

o 0 19.5 13.3 3 1

m1 1 20.7 16.1 4 1

m2 1 16.0 15.8 2 1

m3 0 32.8 16.2 10 2

m4 1 21.0 17.1 4 1

m5 1 19.3 15.1 4 1

Matmat∗(4) o 0 51.0 12.2 18 1

Integrate(6/8/10)
o 0/0/0 273.4/to/to 12.8/17.3/37.1 120/1216/1024 1/1/1

m1 0/-1/-1 to/to/to 266.2 /to/to 1420/1201/1022 32 /82/51

m2 0/1/1 to/18.0/21.7 265.4 / 17.4 /45.1 1427/2/2 32 / 1 /2

Integrate∗ (4/6) o 0/0 104.8/654.3 13.8/28.2 27/125 1/1

Diffusion2d(4/6)

o 0/0 731.9/to 19.2/32.8 90/289 1/1

m1 1/1 19.4/27.3 20.4/31.9 2/2 1/1

m2 0/0 738.8/to 19.5/29.8 90/287 1/1

m3 0/0 to/to 48.5/352.5 1680/1445 16/64

m4 1/1 26.8 /32.3 25.4 /37.6 3/2 2/1

m5 0/0 to/to 68.6/566.8 1061/877 16/64

Gauss_elim(6/8/10)
o 0/0/0 to/to/to 63.4/26.4/74.5 394/351/275 1/1/1

m1 1/1/1 862.8/to/to 23.1/38.1/80.6 121/349/272 1/2/1

Heat(6/8/10)

o 1/1/1 30.9/50.1/61.7 30.8 / 49.7 /63.8 2/2/2 1/1/1

m1 1/1/1 35.0/48.7/60.9 34.2 /50.6/65.7 2/2/2 1/1/1

m2 1/1/1 34.3/49.2/60.8 34.0 /51.3/65.2 2/2/2 1/1/1

m3 1/1/1 46.5/58.1/78.6 34.0/50.2/64.8 3/3/3 1/1/1

m4 1/1/1 60.7/77.4/96.8 33.9/50.0/64.3 9/9/9 1/1/1

m5 1/1/1 78.7/99.0/136.6 33.9/50.2/64.8 7/7/7 1/1/1

Mandelbrot(6/8/10)

o 0/0/-1 to/to/to 152.9 / 631.9 /to 373/350/325 9 / 9 /9

m1 1/1/1 15.2/17.5/22.1 14.6/16.6/19.2 2/2/2 1/1/1

m2 -1/-1/-1 to/to/to to/to/to 676/689/583 109/132/121

m3 -1/-1/-1 to/to/to to/to/to 655/570/494 106/93/78

Mandelbort∗ (4/6) o 0/0 217.1/877.8 18.6/22.4 72/240 1/1

Sorting∗ (4/6) o 0/0 to/to 24.4/41.9 432/376 1/1

Image_mani(6/8/10)
o 0/0/0 217.0/267.6/319.6 28.2/34.6/47.9 96/96/96 4/4/4

m1 1/1/1 15.9/18.0/20.0 15.5 / 17.7 /21.1 2/2/2 1/1/1

DepSolver(6/8/10) o 0/0/0 260.2/440.2/681.4 267.0/449.0/702.7 3/3/3 3/3/3

Kfray(6/8/10)

o 0/0/0 to/to/to 58.2/69.9/170.6 590/527/446 1/1/1

m1 1/1/1 57.4/59.8/65.6 62.9/77.5/169.5 2/2/2 1 /2/2

m2 1/1/1 56.7/59.5/65.1 59.3/78.4/169.6 2/2/2 1 /2/2

m3 -1/-1/-1 to/to/to to/to/to 949/831/728 232/164/135

Kfray∗ (4/6) o 0/0 to/to 55.5/192.7 727/682 1/1

Clustalw(6/8/10)

o 0/0/0 to/to/to 106.1/876.1/1104.9 215/191/170 1/1/1

m1 0/0/0 to/to/to 229.3/1308.1/1689.3 220/200/158 4/4/4

m2 0/0/0 to/to/to 106.3/1033.2/996.5 206/191/162 1/1/1

m3 0/0/0 to/to/to 107.0/881.6/909.2 204/182/179 1/1/1

m4 0/0/0 to/to/to 107.5/483.5/1147.9 204/171/172 1/1/1

m5 0/0/0 to/to/to 106.8/878.2/910.7 201/197/176 1/1/1

In addition, Our approach can complete all the 99 verified tasks

within 30 minutes and 86 (87%) tasks in 5 minutes, which also

demonstrates MPI-SV’s effectiveness.

For some tasks, e.g., Kfray, MPI-SV does not outperform Sym-
bolic execution. The reasons include: (a) the paths contain hundreds
of non-wildcard operations, and the corresponding CSP models are

huge, and thus time-consuming to model check; (b) the number of

wildcard receives or their possible matchings is very small, and as

a result, only few paths are pruned.

Comparison with CIVL. CIVL uses symbolic execution to build

a model for the whole program and performs model checking on the

model. In contrast, MPI-SV adopts symbolic execution to generate

path-level verifiable models. CIVL does not support non-blocking

operations. We applied CIVL on our evaluation subjects. It only

successfully analyzed DTG. Diffusion2d could be analyzed after

removing unsupported external calls. MPI-SV and CIVL had similar

performance on these two programs. CIVL failed on all the remain-

ing programs due to compilation failures or lack of support for

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

non-blocking operations. In contrast, MPI-SV successfully analyzed

99 of the 140 programs in CIVL’s latest benchmarks. The failed

ones are small API test programs for the APIs that MPI-SV does

not support. For the real-world program floyd that both MPI-SV

and CIVL can analyze, MPI-SV verified its deadlock-freedom under

4 processes in 3 minutes, while CIVL timed out after 30 minutes.

The results indicate the benefits of MPI-SV’s path-level modeling.

Comparison with MPI-SPIN. MPI-SPIN relies on manual mod-

eling of MPI programs. Inconsistencies may happen between an

MPI program and its model. Although prototypes exist for trans-

lating C to Promela [46], they are impractical for real-world MPI

programs. MPI-SPIN’s state space reduction treats communication

channels as rendezvous ones; thus, the reduction cannot handle the

programs with wildcard receives. MPI-SV leverages model checking

to prune redundant paths caused by wildcard receives. We applied

MPI-SV on MPI-SPIN’s 17 C benchmarks to verify deadlock free-

dom, andMPI-SV successfully analyzed 15 automatically, indicating

the effectiveness. For the remaining two programs, i.e., BlobFlow
and Monte, MPI-SV cannot analyze them due to the lack of support

for APIs. For the real-world program gausselim, MPI-SPIN needs

171s to verify that the model is deadlock-free under 5 processes,

while MPI-SV only needs 27s to verify the program automatically. If

the number of the processes is 8, MPI-SPIN timed out in 30 minutes,

but MPI-SV used 66s to complete verification.

Temporal properties.We specify two temporal safety properties

φ1 and φ2 for Integrate and Mandelbrot, respectively, where φ1
requires process one cannot receive a message before process two,

and φ2 requires process one cannot send a message before process

two. Both φ1 and φ2 can be represented by an LTL formula G(!a U
b), which requires event a cannot happen before event b. We verify

Integrate and Mandelbrot under 6 processes. The verification

results show that MPI-SV detects the violations of φ1 and φ2, while
pure symbolic execution fails to detect violations.

Runtime bugs.MPI-SV can also detect local runtime bugs. Dur-

ing the experiments, MPI-SV finds 5 unknown memory access out-

of-bound bugs: 4 in DepSolver and 1 in ClustalW.

6 RELATEDWORK
Dynamic analyses are widely used for analyzing MPI programs.

Debugging or testing tools [1, 37, 51, 52, 59, 69, 83] have better

feasibility and scalability but depend on specific inputs and run-

ning schedules. Dynamic verification techniques, e.g., ISP [80] and

DAMPI [81], run MPI programs multiple times to cover the sched-

ules under the same inputs. Böhm et al. [3] propose a state-space

reduction framework for the MPI program with non-deterministic
synchronization. These approaches can detect the bugs depending

on specific matchings of wildcard operations, but may still miss

inputs related bugs. MPI-SV supports both input and schedule cov-

erages, and a larger scope of verifiable properties. MOPPER [24]

encodes the deadlock detection problem under concrete inputs in

a SAT equation. Similarly, Huang and Mercer [42] use an SMT

formula to reason about a trace of an MPI program for deadlock

detection. However, the SMT encoding is specific for the zero-buffer

mode. Khanna et al. [48] combines dynamic and symbolic analy-

ses to verify multi-path MPI programs. Compared with these path

reasoning work in dynamic verification, MPI-SV ensures input

space coverage and can verify more properties, i.e., safety and live-

ness properties in LTL. Besides, MPI-SV employs CSP to enable a

more expressive modeling, e.g., supporting conditional completes-

before [80] and master-slave pattern [33].

For static methods of analyzing MPI program, MPI-SPIN [71, 72]

manually models MPI programs in Promela [39], and verifies the

model w.r.t. LTL properties [57] by SPIN [38] (cf. Section 5.4 for

empirical comparison). MPI-SPIN can also verify the consistency

between an MPI program and a sequential program, which is not

supported by MPI-SV. Bronevetsky [9] proposes parallel control

flow graph (pCFG) for MPI programs to capture the interactions be-

tween arbitrary processes. But the static analysis using pCFG is hard

to be automated. ParTypes [55] uses type checking and deductive

verification to verify MPI programs against a protocol. ParTypes’s

verification results are sound but incomplete, and independent

with the number of processes. ParTypes does not support non-

deterministic or non-blocking MPI operations. MPI-Checker [23]

is a static analysis tool built on Clang Static Analyzer [15], and

only supports intraprocedural analysis of local properties such as

double non-blocking and missing wait. Botbol et al. [5] abstract an

MPI program to symbolic transducers, and obtain the reachabil-

ity set based on abstract interpretation [19], which only supports

blocking MPI programs and may generate false positives. COMPI

[53, 54] uses concolic testing [28, 70] to detect assertion or runtime

errors in MPI applications. Ye et al. [85] employs partial symbolic

execution [66] to detect MPI usage anomalies. However, these two

symbolic execution-based bug detection methods do not support

the non-determinism caused by wildcard operations.

MPI-SV is related to the existingwork on symbolic execution [49],

which has been advanced significantly during the last decade [10,

12, 28, 29, 64, 70, 78]. Many methods have been proposed to prune

paths during symbolic execution [4, 20, 35, 44]. The basic idea is

to use the techniques such as slicing [45] and interpolation [58] to

safely prune the paths. Compared with them, MPI-SV only prunes

the paths of the same path constraint but different message match-

ings or operation interleavings. Furthermore, there exists work of

combining symbolic execution and model checking [21, 63, 76].

YOGI [63] and Abstraction-driven concolic testing [21] combine

dynamic symbolic execution [28, 70] with counterexample-guided

abstraction refinement (CEGAR) [16].MPI-SV focuses on parallel

programs, and the verified models are path-level. MPI-SV is also

related to the work of unbounded verification for parallel programs

[2, 6, 7, 82]. Compared with them, MPI-SV is a bounded verifica-

tion tool and supports the verification of LTL properties. Besides,

MPI-SV is related to the existing work of testing and verification of

shared-memory programs [13, 14, 22, 35, 36, 40, 41, 43, 50, 61, 86].

Compared with them, MPI-SV concentrates on message-passing

programs. Utilizing the ideas in these work for analyzing MPI pro-

grams is interesting and left to the future work.

7 CONCLUSION
We has presented MPI-SV for verifying MPI programs with both

non-blocking and non-deterministic operations. By synergistically

combining symbolic execution and model checking, MPI-SV pro-

vides a general framework for verifying MPI programs. We have

implemented MPI-SV and extensively evaluated it on real-world

MPI programs. The results are promising.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Symbolic Verification of Message Passing Interface Programs

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Allinea. 2002. Allinea DDT. http://www.allinea.com/products/ddt/. (2002).

[2] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala.

2017. Verifying distributed programs via canonical sequentialization. PACMPL 1,

OOPSLA (2017), 110:1–110:27.

[3] Stanislav Böhm, Ondrej Meca, and Petr Jancar. 2016. State-Space Reduction of

Non-deterministically Synchronizing Systems Applicable to Deadlock Detection

in MPI. In FM. 102–118.

[4] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: attacking

path explosion in constraint-based test generation. In TACAS. 351–366.
[5] Vincent Botbol, Emmanuel Chailloux, and Tristan Le Gall. 2017. Static Analysis

of Communicating Processes Using Symbolic Transducers. In VMCAI. 73–90.
[6] Ahmed Bouajjani and Michael Emmi. 2012. Analysis of recursively parallel pro-

grams. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012. 203–214.

[7] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. 2018. On the

Completeness of Verifying Message Passing Programs Under Bounded Asyn-

chrony. In Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II. 372–391.

[8] Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines.

J. ACM (1983), 323–342.

[9] Greg Bronevetsky. 2009. Communication-sensitive static dataflow for parallel

message passing applications. In CGO. 1–12.
[10] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel

symbolic execution for automated real-world software testing. In EuroSYS. 183–
198.

[11] Rajkumar Buyya and others. 1999. High performance cluster computing: archi-

tectures and systems. Prentice Hall (1999), 999.
[12] C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In OSDI. 209–
224.

[13] Sagar Chaki, Edmund M. Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman,

and Karen Yorav. 2004. Efficient Verification of Sequential and Concurrent C

Programs. Formal Methods in System Design 25, 2-3 (2004), 129–166.

[14] Alessandro Cimatti, Iman Narasamdya, and Marco Roveri. 2011. Boosting Lazy

Abstraction for SystemCwith Partial Order Reduction. In Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS
2011, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings.
341–356.

[15] Clang. 2016. Clang Static Analyzer. http://clang-analyzer.llvm.org. (2016).

[16] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.

Counterexample-guided abstraction refinement. In CAV. 154–169.
[17] Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Synchro-

nization Skeletons Using Branching-Time Temporal Logic. In Logic of Programs.
52–71.

[18] Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT

press.

[19] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In POPL. 238–252.
[20] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying systems

rules using rule-directed symbolic execution. In ASPLOS. 329–342.
[21] Przemysław Daca, Ashutosh Gupta, and Thomas A Henzinger. 2016. Abstraction-

driven Concolic Testing. In VMCAI. 328–347.
[22] Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model

checking for SC and TSO. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 20–
36.

[23] Alexander Droste, Michael Kuhn, and Thomas Ludwig. 2015. MPI-checker: static

analysis for MPI. In LLVM-HPC. 3:1–3:10.
[24] Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma.

2014. Precise predictive analysis for discovering communication deadlocks in

MPI programs. In FM. 263–278.

[25] MPI Forum. 2012. MPI: A Message-Passing Interface Standard Version 3.0. http:

//mpi-forum.org. (2012).

[26] Xianjin Fu, Zhenbang Chen, Yufeng Zhang, Chun Huang, Wei Dong, and Ji Wang.

2015. MPISE: Symbolic Execution of MPI Programs. In HASE. 181–188.
[27] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,

Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, and others. 2004. Open MPI: Goals, concept, and design of a next

generation MPI implementation. In EuroMPI. 97–104.
[28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-

mated random testing. In PLDI. 213–223.

[29] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In NDSS.
[30] Ganesh Gopalakrishnan, Paul D. Hovland, Costin Iancu, Sriram Krishnamoorthy,

Ignacio Laguna, Richard A. Lethin, Koushik Sen, Stephen F. Siegel, and Armando

Solar-Lezama. 2017. Report of the HPCCorrectness Summit Jan 25-26, 2017,Wash-

ington, DC. https://science.energy.gov/~/media/ascr/pdf/programdocuments/

docs/2017/HPC_Correctness_Report.pdf. (2017).

[31] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur,

William Gropp, Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg

Bronevetsky. 2011. Formal analysis of MPI-based parallel programs. Commun.
ACM (2011), 82–91.

[32] William Gropp. 2002. MPICH2: A new start for MPI implementations. In EuroMPI.
7–7.

[33] William Gropp, Ewing Lusk, and Anthony Skjellum. 2014. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. The MIT Press.

[34] William Gropp, Ewing Lusk, and Rajeev Thakur. 1999. Using MPI-2: Advanced
features of the message-passing interface. MIT press.

[35] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta.

2015. Assertion guided symbolic execution of multithreaded programs. In FSE.
854–865.

[36] Shengjian Guo, MengWu, and ChaoWang. 2018. Adversarial symbolic execution

for detecting concurrency-related cache timing leaks. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. 377–388.

[37] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R de Supinski, and

Matthias S Müller. 2012. MPI runtime error detection with MUST: advances

in deadlock detection. In SC. 30.
[38] Gerard J Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software

Engineering (1997), 279–295.

[39] Gerard J. Holzmann. 2012. Promela manual pages. http://spinroot.com/spin/

Man/promela.html. (2012).

[40] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording local ex-

ecutions to reproduce concurrency failures. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013. 141–152.

[41] Shiyou Huang and Jeff Huang. 2016. Maximal causality reduction for TSO and

PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016.
447–461.

[42] Yu Huang and Eric Mercer. 2015. Detecting MPI Zero Buffer Incompatibility by

SMT Encoding. In NFM. 219–233.

[43] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro

Parlato. 2015. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-

threaded C-Programs. In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 807–812.

[44] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A Navas. 2013. Boosting concolic

testing via interpolation. In FSE. 48–58.
[45] Ranjit Jhala and Rupak Majumdar. 2005. Path slicing. In PLDI. 38–47.
[46] Ke Jiang and Bengt Jonsson. 2009. Using SPIN to model check concurrent algo-

rithms, using a translation from C to Promela. In MCC 2009. 67–69.
[47] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software

testing?. In FSE. 654–665.
[48] Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare. 2018.

Dynamic Symbolic Verification of MPI Programs. In FM.

[49] J.C. King. 1976. Symbolic execution and program testing. Commun. ACM (1976),

385–394.

[50] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018. Synchronizing the

Asynchronous. In 29th International Conference on Concurrency Theory, CONCUR
2018, September 4-7, 2018, Beijing, China. 21:1–21:17.

[51] Bettina Krammer, Katrin Bidmon, Matthias S Müller, and Michael M Resch. 2004.

MARMOT: An MPI analysis and checking tool. Advances in Parallel Computing
(2004), 493–500.

[52] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L.

Lee, Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen,

and Feng Qin. 2015. Debugging high-performance computing applications at

massive scales. Commun. ACM 58, 9 (2015), 72–81.

[53] Hongbo Li, Zizhong Chen, and Rajiv Gupta. 2019. Efficient Concolic Testing of

MPI Applications. In Proceedings of the 28th International Conference on Compiler
Construction (CC 2019). 193–204.

[54] Hongbo Li, Sihuan Li, Zachary Benavides, Zizhong Chen, and Rajiv Gupta. 2018.

COMPI: Concolic Testing for MPI Applications. In 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018. 865–874.

11

http://www.allinea.com/products/ddt/
http://clang-analyzer.llvm.org
http://mpi-forum.org
http://mpi-forum.org
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[55] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César

Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2015. Protocol-

based verification of message-passing parallel programs. In OOPSLA. 280–298.
[56] Ziqing Luo, Manchun Zheng, and Stephen F. Siegel. 2017. Verification of MPI

programs using CIVL. In EuroMPI. 6:1–6:11.
[57] Zohar Manna and Amir Pnueli. 1992. The temporal logic of reactive and concurrent

systems - specification. Springer.
[58] Kenneth L. McMillan. 2005. Applications of Craig Interpolants inModel Checking.

In TACAS. 1–12.
[59] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz,

and Todd Gamblin. 2014. Accurate application progress analysis for large-scale

parallel debugging. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014. 193–203.

[60] MatthiasMüller, Bronis de Supinski, GaneshGopalakrishnan, Tobias Hilbrich, and

David Lecomber. 2011. Dealing with MPI bugs at scale: Best practices, automatic

detection, debugging, and formal verification. http://sc11.supercomputing.org/

schedule/event_detail.php?evid=tut131, (2011).

[61] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing

Heisenbugs in Concurrent Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings. 267–280.

[62] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. Springer.

[63] Aditya V Nori, Sriram K Rajamani, SaiDeep Tetali, and Aditya V Thakur. 2009.

The YOGI Project: Software property checking via static analysis and testing. In

TACAS. 178–181.
[64] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,

Michael R. Lowry, Suzette Person, and Mark Pape. 2008. Combining unit-level

symbolic execution and system-level concrete execution for testing NASA soft-

ware. In Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. 15–26.

[65] Wojciech Penczek, Maciej Szreter, Rob Gerth, and Ruurd Kuiper. 2000. Improving

Partial Order Reductions for Universal Branching Time Properties. Fundam.
Inform. (2000), 245–267.

[66] David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic

Execution: Correctness Checking for Real Code. In SEC. USENIX Association,

49–64.

[67] Juan A. Rico-Gallego and Juan Carlos Díaz Martín. 2011. Performance Evaluation

of Thread-Based MPI in Shared Memory. In EuroMPI. 337–338.
[68] Bill Roscoe. 2005. The theory and practice of concurrency. Prentice-Hall.
[69] Victor Samofalov, V. Krukov, B. Kuhn, S. Zheltov, Alexander V. Konovalov, and J.

DeSouza. 2005. Automated Correctness Analysis of MPI Programs with Intel(r)

Message Checker. In PARCO. 901–908.
[70] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing

engine for C. In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. 263–272.

[71] Stephen F. Siegel. Model Checking Nonblocking MPI Programs. In VMCAI.
[72] Stephen F. Siegel. 2007. Verifying Parallel Programs with MPI-Spin. In PVM/MPI.

13–14.

[73] Stephen F Siegel and Timothy K Zirkel. 2011. FEVS: A functional equivalence

verification suite for high-performance scientific computing. Mathematics in
Computer Science (2011), 427–435.

[74] Stephen F. Siegel and Timothy K. Zirkel. 2011. TASS: The Toolkit for Accurate

Scientific Software. Mathematics in Computer Science (2011), 395–426.
[75] Marc Snir. 1998. MPI–the Complete Reference: The MPI core. Vol. 1. MIT press.

[76] Ting Su, Zhoulai Fu, Geguang Pu, Jifeng He, and Zhendong Su. 2015. Combining

symbolic execution and model checking for data flow testing. In ICSE. 654–665.
[77] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards flexible

verification under fairness. In CAV. 709–714.
[78] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation

for .NET. In TAP. 134–153.
[79] Sarvani Vakkalanka. 2010. Efficient dynamic verification algorithms for MPI

applications. Ph.D. Dissertation. The University of Utah.

[80] Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008. Dy-

namic Verification of MPI Programs with Reductions in Presence of Split Opera-

tions and Relaxed Orderings. In CAV. 66–79.
[81] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R De Supin-

ski, Martin Schulz, and Greg Bronevetsky. 2010. A scalable and distributed

dynamic formal verifier for MPI programs. In SC. 1–10.
[82] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and

Ranjit Jhala. 2019. Pretend synchrony: synchronous verification of asynchronous

distributed programs. PACMPL 3, POPL (2019), 59:1–59:30.

[83] Rogue Wave. 2009. TotalView Software. http://www.roguewave.com/products/

totalview. (2009).

[84] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin

Zheng, Zheng Zhang, andGeoffrey Voelker. 2009. MPIWiz: subgroup reproducible

replay of MPI applications. ACM Sigplan Notices (2009), 251–260.
[85] Fangke Ye, Jisheng Zhao, and Vivek Sarkar. 2018. Detecting MPI usage anom-

alies via partial program symbolic execution. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis,
SC 2018, Dallas, TX, USA, November 11-16, 2018. 63:1–63:5.

[86] Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018. YOGAR-

CBMC: CBMCwith Scheduling Constraint Based Abstraction Refinement - (Com-

petition Contribution). In Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II. 422–426.

12

http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131
http://www.roguewave.com/products/totalview
http://www.roguewave.com/products/totalview

	Symbolic verification of message passing interface programs
	Citation
	Author

	Abstract
	1 Introduction
	2 Illustration
	2.1 MPI Syntax and Motivating Example
	2.2 Our Approach

	3 Symbolic Verification Method
	3.1 Framework
	3.2 Blocking-driven Symbolic Execution

	4 CSP Based Path Modeling
	4.1 CSP Subset
	4.2 CSP Modeling
	4.3 Soundness and Completeness

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Research Questions
	5.3 Setup
	5.4 Experimental Results

	6 Related Work
	7 Conclusion
	References

