Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

5-2020

Symbolic verification of message passing interface programs

Hengbiao YU
National University of Defense Technology

Zhenbang CHEN
National University of Defense Technology

Xianjin FU
National University of Defense Technology

Ji WANG
National University of Defense Technology

Zhendong SU
ETH Zurich

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons

Citation

YU, Hengbiao; CHEN, Zhenbang; FU, Xianjin; WANG, Ji; SU, Zhendong; SUN, Jun; HUANG, Chun; and DONG,
Wei. Symbolic verification of message passing interface programs. (2020). Proceedings of the 42nd
International Conference on Software Engineering, Seoul, South Korea, 2020 October 5-11. 1-12.

Available at: https://ink.library.smu.edu.sg/sis_research/4633

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author

Hengbiao YU, Zhenbang CHEN, Xianjin FU, Ji WANG, Zhendong SU, Jun SUN, Chun HUANG, and Wei
DONG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4633

https://ink.library.smu.edu.sg/sis_research/4633

23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Papempresentedt InternationalConferencen SoftwareEngineeringd2ndICSE 2020,May 23-29,Seoul ,SouthKoree

Symbolic Verification of Message Passing Interface Programs

ABSTRACT

Message passing is the standard paradigm of programming in high-
performance computing. However, verifying Message Passing In-
terface (MPI) programs is challenging, due to the complex program
features (such as non-determinism and non-blocking operations).
In this work, we present MPI symbolic verifier (MPI-SV), the first
symbolic execution based tool for automatically verifying MPI pro-
grams with non-blocking operations. MPI-SV combines symbolic
execution and model checking in a synergistic way to tackle the
challenges in MPI program verification. The synergy improves
the scalability and enlarges the scope of verifiable properties. We
have implemented MPI—S and evaluated it with 111 real-world
MPI verification tasks. The pure symbolic execution-based tech-
nique successfully verifies 57 out of the 111 tasks (51%) within one
hour, while in comparison, MPI-SV verifies 99 tasks (89%). On aver-
age, compared with pure symbolic execution, MPI-SV achieves 8x
speedups on verifying the satisfaction of the critical property and
5x speedups on finding violations.

1 INTRODUCTION

Nowadays, an increasing number of high-performance computing
(HPC) applications have been developed to solve large-scale prob-
lems [[11]. The Message Passing Interface (MPI) [[75] is the current
de facto standard programming paradigm for developing HPC appli-
cations. Many MPI programs are developed with significant human
effort. One of the reasons is that MPI programs are error-prone
because of complex program features (such as non-determinism
and asynchrony) and their scale. Improving the reliability of MPI
programs is challenging [30] [31].

Program analysis [[62] is an effective technique for improving
program reliability. Existing methods for analyzing MPI programs
can be categorized into dynamic and static approaches. Most ex-
isting methods are dynamic, such as debugging [52]], correctness
checking [69] and dynamic verification [80]. These methods need
concrete inputs to run MPI programs and perform analysis based on
runtime information. Hence, dynamic approaches may miss input-
related program errors. Static approaches [5} 9 [55 [72] analyze ab-
stract models of MPI programs and suffer from false alarms, manual
effort, and poor scalability. In summary, existing automatic verifi-
cation approaches either do not support input-related analysis or
fail to support the analysis of the MPI programs with non-blocking
operations, the invocations of which do not block the program
execution. Non-blocking operations are ubiquitous in real-world
MPI programs for improving the performance but introduce more
complexity to programming.

Symbolic execution [28][49] supports input-related analysis by
systematically exploring a program’s path space. In principle, sym-
bolic execution provides a balance between concrete execution and
static abstraction with improved input coverage or more precise
program abstraction. However, symbolic execution based analyses

IMPI-SV is available from the anonymized repo at https://github.com/mpi-sv/mpi-sv,

suffer from path explosion due to the exponential increase of pro-
gram paths w.r.t. the number of conditional statements. The problem
is particularly severe when analyzing MPI programs because of par-
allel execution and non-deterministic operations. Existing symbolic
execution based verification approaches [74][26] do not support
non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI pro-
grams by smartly integrating symbolic execution and model check-
ing. MPI-SV uses symbolic execution to extract path-level models
from MPI programs and verifies the models w.r.t. the expected prop-
erties by model checking [18]. The two techniques complement
each other: (1) symbolic execution abstracts the control and data
dependencies to generate verifiable models for model checking, and
(2) model checking improves the scalability of symbolic execution
by leveraging the verification results to prune redundant paths and
enlarges the scope of verifiable properties of symbolic execution.

In particular, MPI-SV combines two algorithms: (1) symbolic
execution of non-blocking MPI programs with non-deterministic
operations, and (2) modeling and checking the behaviors of an
MPI program path precisely. To safely handle non-deterministic
operations, the first algorithm delays the message matchings of non-
deterministic operations as much as possible. The second algorithm
extracts a model from an MPI program path. The model represents
all the path’s equivalent behaviors, i.e., the paths generated by
changing the interleavings and matchings of the communication
operations in the path. We have proved that our modeling algorithm
is precise and consistent with the MPI standard [25]. We feed the
generated models from the second algorithm into a model checker
to perform verification w.r.t. the expected properties, i.e., safety
and liveness properties in linear temporal logic (LTL) [57]. If the
extracted model from a path p satisfies the property ¢, p’s equivalent
paths can be safely pruned; otherwise, if the model checker reports a
counterexample, a violation of ¢ is found. This way, we significantly
boost the performance of symbolic execution by pruning a large
set of paths which are equivalent to certain paths that have been
already model-checked.

We have implemented MPI-SV for MPI C programs based on
Cloud9 [10] and PAT [77]. We have used MPI-SV to analyze 12 real-
world MPI programs, totaling 47K lines of code (LOC) (three are
beyond the scale that the state-of-the-art MPI verification tools can
handle), w.r.t. the deadlock freedom property and non-reachability
properties. For the 111 deadlock freedom verification tasks, when
we set the time threshold to be an hour, MPI-SV can complete 99
tasks, i.e., deadlock reported or deadlock freedom verified, while
pure symbolic execution can complete 57 tasks. For the 99 com-
pleted tasks, MPI-SV achieves, on average, 8x speedups on verifying
deadlock freedom and 5x speedups on finding a deadlock.

The main contributions of this work are:

e A synergistic framework combining symbolic execution and
model checking for verifying MPI programs.

e A method for symbolic execution of non-blocking MPI pro-
grams with non-deterministic operations. The method is formally

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

https://github.com/mpi-sv/mpi-sv
ppyeo
Typewritten Text
Paper presented at International Conference on Software Engineering 42nd ICSE 2020, May 23-29, Seoul, South Korea

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

146
147
148

150

160
161
162
163
164
165
166
167
168
169

170

172
173

174

Proc == wvarl:T|[l:=e|Comm | Proc; Proc |
if e Proc else Proc | while e do Proc
Comm == Ssend(e) | Send(e) | Recv(e) | Recv(*) | Barrier |

ISend(e,r) | IRecv(e,r) | IRecv(x,r) | Wait(r)

Figure 1: Syntax of a core MPI language.

proven to preserve the correctness of verifying reachability prop-
erties.
o A precise method for modeling the equivalent behaviors of an
MPI path, which enlarges the scope of the verifiable properties.
e A tool for symbolic verification of MPI C programs and an ex-
tensive evaluation on real-world MPI programs.

2 ILLUSTRATION

In this section, we first introduce MPI programs and use an example
to illustrate the problem that this work targets. Then, we overview
MPI-SV informally by the example.

2.1 MPI Syntax and Motivating Example

MPI implementations, such as MPICH [32] and OpenMPI [27], pro-
vide the programming interfaces of message passing to support
the development of parallel applications. An MPI program can be
implemented in different languages, such as C and C++. Without
loss of generality, we focus on MPI programs written in C. Let T be
a set of types, N a set of names, and E a set of expressions. For sim-
plifying the discussion, we define a core language for MPI processes
in Figure where T € T,l € N, e € E and r € N. An MPI program
MP is defined by a finite set of processes {Proc; | 0 < i < n}. For
brevity, we omit complex language features (such the messages in the
communication operations and pointer operations) although MPI-SV
does support real-world MPI C programs.

The statement var [: T declares a variable [with type T. The
statement [:= e assigns the value of expression e to variable I.
A process can be constructed from basic statements by using the
composition operations including sequence, condition and loop. Let
e be the destination process’s identifier. Message passings can be
blocking or non-blocking. First, we introduce blocking operations:

e Ssend(e): send a message to the eth process, and the sending
process blocks until the message is received by the destination
process.

e Send(e): send a message to the eth process, and the sending
process blocks until the message is copied into the system buffer.

e Recv(e): receive a message from the eth process, and the re-
ceiving process blocks until the message from the eth process is
received.

e Recv(*): receive a message from any process, and the receiv-
ing process blocks until a message is received regardless which
process sends the message.

e Barrier: block the process until all the processes have called
Barrier.

e Wait(r): the process blocks until the operation indicated by r is
completed.

A Recv () operation, called wildcard receive, may receive a mes-
sage from different processes under different runs, resulting in
non-determinism. The blocking of a Send(i) operation depends

Py Py P, Ps

Send(1) | if (x!=‘a’) Send(1) | Send(1)
Recv(0)

else
IRecv(*,req);

Recv(3)

Figure 2: An illustrative example of MPI programs.

on the size of the system buffer, which may differ under differ-
ent MPI implementations. For simplicity, we assume that the size
of the system buffer is infinite. Hence, each Send(e) operation
returns immediately after being issued. Note that our implemen-
tation allows users to configure the buffer size. To improve the
performance, the MPI standard provides non-blocking operations
to overlap computations and communications.

e ISend(e,r):send a message to the eth process, and the operation
returns immediately after being issued. The parameter r is the
handle of the operation.

e IRecv(e,r): receive a message from the eth process, and the
operation returns immediately after being issued. IRecv(*,r)
is the non-blocking wildcard receive.

The operations above are key MPI operations. Complex opera-
tions, such as MPI_Bcast and MPI_Gather, can be implemented by
composing these key operations. An MPI program runs in many
processes spanned across multiple machines. These processes com-
municate by message passing to accomplish a parallel task. The
semantics of the core language is defined based on communicating
state machines (CSM) [8]] and given in the supplementary document.
Besides parallel execution, the non-determinism in MPI programs
mainly comes from two sources: (1) inputs, which may influence
the communication through control flow, and (2) wildcard receives,
which lead to highly non-deterministic executions.

Consider the MPI program in Figure [2| Processes Py, P2 and
P3 only send a message to P; and then terminate. For process Py,
if input x is not equal to ‘a’, P; receives a message from Py in
a blocking manner; otherwise, P; uses a non-blocking wildcard
receive to receive a message. Then, P; receives a message from
P3. When x is ‘a’ and IRecv(*,req) receives the message from
P3, a deadlock would happen, i.e., P; blocks at Recv(3), and all
the other processes terminate. Hence, to detect the deadlock, we
need to handle the non-determinism caused by the input x and the
wildcard receive IRecv(*,req).

To handle non-determinism due to the input, a standard remedy
is symbolic execution [49]. However, there are two challenges. The
first one is to systematically explore the paths of an MPI program
with non-blocking and wildcard operations, which significantly in-
crease the complexity of MPI programs. A non-blocking operation
does not block but returns immediately, causing out-of-order com-
pletion. The difficulty in handling wildcard operations is to get all
the possibly matched messages. The second one is to improve the
scalability of the symbolic execution. Symbolic execution struggles
with path explosion. MPI processes run concurrently, resulting in
an exponential number of program paths w.r.t. the number of pro-
cesses. Furthermore, the path space increases exponentially with
the number of wildcard operations.

177
178
179
180
181
182
183

184

186
187
188
189
190
191
192
193

194

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

Symbolic Verification of Message Passing Interface Programs

An MPI II
Program

Property

i
: State Pruner '
i
i

: No Y.
:
: Violation &

CSP Model Checker

Figure 3: The framework of MPI-SV.

2.2 Our Approach

MPI-SV leverages dynamic verification [[80] and model checking [[18]
to tackle the challenges. Figure [3|shows MPI-SV’s basic framework.
The inputs of MPI-SV are an MPI program and an expected property,
e.g., deadlock freedom. MPI-SV uses the built-in symbolic executor
to explore the path space automatically and checks the property
along with path exploration. For a path that violates the property,
called a violation path, MPI-SV generates a test case for replaying,
which includes the program inputs, the interleaving sequence of
MPI operations and the matchings of wildcard receives. In contrast,
for a violation-free path p, MPI-SV builds a communicating sequen-
tial process (CSP) model T', which represents the paths which can
be obtained based on p by changing the interleavings and match-
ings of the communication operations in p. Then, MPI-SV utilizes
a CSP model checker to verify T' w.r.t. the property. If the model
checker reports a counterexample, a violation is found; otherwise,
if T satisfies the property, MPI-SV prunes all behaviors captured by
the model so that they are avoided by symbolic execution.

Since MPI processes are memory independent, MPI-SV will se-
lect a process to execute in a round-robin manner to avoid exploring
all interleavings of the processes. A process keeps running until
it blocks or terminates, and the encountered MPI operations are
collected instead of being executed. The intuition behind this strat-
egy is to collect the message exchanges as thoroughly as possible,
which helps find possible matchings for the wildcard receive opera-
tions. Consider the MPI program in Figure[2|and deadlock freedom
property. Figure [4] shows the symbolic execution tree, where the
node labels indicate processs communications, e.g., (3,1) means
that P; receives a message from P3. MPI-SV first symbolically ex-
ecutes Py, which only sends a message to P;. Send(1) operation
returns immediately with the assumption of infinite system buffers.
Hence, Py terminates, and the operation Send(1) is recorded. Then,
MPI-SV executes P; and explores both branches of the conditional
statement as follows.

(1) True branch (x # ‘@’). In this case, P; blocks at Recv(0).
MPI-SV records the receive operation for P, and starts executing Ps.
Like Py, P, executes operation Send(1) and terminates, after which
Pj is selected and behaves the same as Py. After P3 terminates, the
global execution blocks, i.e., P; blocks and all the other processes
terminate. When this happens, MPI-SV matches the recorded oper-
ations, performs the message exchanges and continues to execute
the matched processes. The Recv (@) in P; should be matched with
the Send(1) in Py. After executing the send and receive opera-
tions, MPI-SV selects P; to execute, because Py terminates. Then,
P; blocks at Recv(3). Same as earlier, the global execution blocks

2n® c.lle

v 2
(3’1)6 Deadlock
P P2 P3

Figure 4: The example program’s symbolic execution tree.

and operation matching needs to be done. Recv(3) is matched with
the Send(1) in P3. After executing the Recv(3) and Send(1) op-
erations, all the processes terminate successfully. Path p; in Figure
[4is explored.

(2) False branch (x =‘a’). The execution of P; proceeds until
reaching the blocking receive Recv(3). Additionally, the two issued
receive operations, i.e, IRecv(*,req) and Recv(3), are recorded.
Similar to the true branch, when every process blocks or terminates,
we handle operation matching. Here Py, P, and P3 terminate, and Py
blocks at Recv(3). IRecv (*, req) should be matched first because
of the non-overtaken policy in the MPI standard [25]. There are three
Send operation candidates from Py, P, and Ps, respectively. MPI-SV
forks a state for each candidate. Suppose MPI-SV first explores the
state where IRecv(*,req) is matched with Py’s Send(1). After
matching and executing P;’s Recv(3) and P3’s Send(1), the path
terminates successfully, which generates path p; in Figure [4

Violation detection. MPI-SV continues to explore the remain-
ing two cases. Without CSP-based boosting, the deadlock would
be found in the last case (i.e., ps in Figure , where IRecv(*,req)
is matched with P3’s Send(1) and P; blocks because Recv(3) has
no matched operation. MPI-SV generates a CSP model I based on
the deadlock-free path p, where P;’s IRecv(*,req) is matched
with Py’s Send(1). Each MPI process is modeled as a CSP pro-
cess, and all the CSP processes are composed in parallel to form
T. Notably, in T', we collect the possible matchings of a wildcard
receive through statically matching the arguments of operations in
the path. Additionally, the requirements in the MPI standard, i.e.,
completes-before relations [80]], are also modeled. A CSP model
checker then verifies deadlock freedom for I'. The model checker
reports a counterexample where IRecv(*,req) is matched with
the Send(1) in P3. MPI-SV only explores two paths for detecting
the deadlock and avoids the exploration of p3 and p4 (indicated by
dashed lines).

Pruning. Because the CSP modeling is precise (cf. Section[d),
in addition to finding violations earlier, MPI-SV can also perform
path pruning when the model satisfies the property. Suppose we
change the program in Figure2]to be the one where the last state-
ment of P; is a Recv(*) operation. Then, the program is deadlock
free. When the symbolic executor explores the first path after taking
the false branch, the generated model is verified to be deadlock-free,
and MPI-SV prunes the candidate states forked for the matchings
of the two wildcard receives along the current path. Hence, MPI-SV
only explores two paths to verify that the program is deadlock-free.
In contrast, without model checking, we need to explore eight paths
(the wildcard receive in the true branch has two matchings, and

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348

349

350

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

394

396
397
398
399
400
401
402
403
404
405

406

the two wildcard receives in the false branch have three and two
matchings, respectively).

Properties. Because our CSP modeling encodes the interleav-
ings of the MPI operations in the MPI processes, the scope of the
verifiable properties is enlarged, i.e., MPI-SV can verify safety and
liveness properties in LTL. Suppose we change the property to be
the one that requires the Send(1) operation in Py should be com-
pleted before the Send(1) operation in P,. The send operation in
P, can be completed before the send operation in Py, due to the
nature of parallel execution. However, pure symbolic execution
fails to detect the property violation. In contrast, with the help of
CSP modeling, when we verify the model generated from the first
path w.r.t. the property, the model checker gives a counterexample,
indicating that a violation of the temporal property exists.

3 SYMBOLIC VERIFICATION METHOD

In this section, we present our symbolic verification framework
and then describe MPI-SV’s symbolic execution method.

3.1 Framework

Given an MPI program M® = {Proc; | 0 < i < n}, a state S¢
in M%P’s symbolic execution is composed by the states of pro-
cesses, i.e., (50, ...,Sn), and each MPI process’s state is a 6-tuple
(M, Stat, PC, F, B, R), where M maps each variable to a concrete
value or a symbolic value, Stat is the next program statement to
execute, PC is the process’s path constraint [49], F is the flag of
process status belonging to {active, blocked, terminated}, 8 and
R are infinite buffers for storing the issued MPI operations not
yet matched and the matched MPI operations, respectively. We
use s; € S¢ to denote that s; is a process state in the global state
Sc. An element elem of s; can be accessed by s;.elem, e.g., s;.F is
the ith process’s status flag. In principle, a statement execution in
any process advances the global state, making M%’s state space
exponential to the number of processes. We use variable Seq; de-
fined in M to record the sequence of the issued MPI operations in
Proc;, and Seq(S.) to denote the set {Seq; | 0 < i < n} of global
state Sc. Global state S.’s path condition (denoted by S..PC) is the
conjunction of the path conditions of S¢’s processes, i.e, A s;.PC.
S;€S

Algorithm[T] shows the details of MPI-SV. We use 1:/orlcclist to
store the global states to be explored. Initially, worklist only con-
tains S;n;, composed of the initial states of all the processes, and
each process’s status is active. At Line[4] Select picks a state from
worklist as the one to advance. Hence, Select can be customized
with different search heuristics, e.g., depth-first search (DFS). Then,
Scheduler selects an active process Proc; to execute. Next, Execute
(¢f. Algorithm[2) symbolically executes the statement Stat; in Proc;,
and may add new states into worklist. This procedure continues
until worklist is empty (i.e., all the paths have been explored), de-
tecting a violation or time out (omitted for brevity). After executing
Stat;, if all the processes in the current global state S. terminate, i.e.,
a violation-free path terminates, we use Algorithm[4]to generate a
CSP model T from the current state (Line . Then, we use a CSP
model checker to verify I w.r.t. . If T satisfies ¢ (denoted by ' |= ¢),
we prune the global states forked by the wildcard operations along

Algorithm 1: Symbolic Verification Framework

MPI-SV(M®P, ¢, Sym)
Data: MP is {Proc; | 0 < i < n}, ¢ is a property, and Sym
is a set of symbolic variables

1 begin
2 worklist < {Sinit}
3 while worklist # 0 do
4 S¢ < Select(worklist)
5 (M;, Stat;, PC;, Fi, Bi, R;) < Scheduler(S.)
6 Execute(Sc, Proc;, Stat;, Sym, worklist)
7
8
9

if Vs; € S¢, s;.F = terminated then
I' — GenerateCSP(S.)
ModelCheck(T, ¢)

10 if T |= ¢ then

11 workliste—worklist\{Sy € worklist|S, .PC=S..PC}
12 end

13 else if T |£ ¢ then

14 reportViolation and Exit

15 end

16 end

17 end

18 end

the current path (Line[11), i.e., the states in worklist whose path con-
ditions imply S;’s path condition; otherwise, if the model checker
gives a counterexample, we report the violation and exit (Line[T4).

Since MPI processes are memory independent, we employ partial
order reduction (POR) [18] to reduce the search space. Scheduler
selects a process in a round-robin fashion from the current global
state. In principle, Scheduler starts from the active MPI process
with the smallest identifier, e.g., Procy at the beginning, and an MPI
process keeps running until it is blocked or terminated. Then, the
next active process will be selected to execute. Such strategy signifi-
cantly reduces the path space of symbolic execution. Then, with the
help of CSP modeling and model checking, MPI-SV can verify more
properties, i.e., safety and liveness properties in LTL. The details of
such technical improvements will be given in Section [4]

3.2 Blocking-driven Symbolic Execution

Algorithm [2] shows the symbolic execution of a statement. Com-
mon statements such as conditional statements are handled in the
standard way [49] (omitted for brevity), and here we focus on MPI
operations. The main idea is to delay the executions of MPI opera-
tions as much as possible, i.e., trying to get all the message matchings.
Instead of execution, Algorithmrecords each MPI operation for
each MPI process (Lines [48{8). We also need to update buffer 8
after issuing an MPI operation (Lines[5]8{9). Then, if Stat; is a non-
blocking operation, the execution returns immediately; otherwise,
we block Proc; (Line[10] excepting the Wait of an ISend operation).
When reaching GlobalBlocking (Lines[TT]8{12), i.e., every process is
terminated or blocked, we use Matching (cf. Algorithm|[3) to match
the recorded but not yet matched MPI operations and execute the
matched operations. Since the opportunity of matching messages
is GlobalBlocking, we call it blocking-driven symbolic execution.
Matching matches the recorded MPI operations in different pro-
cesses. To obtain all the possible matchings, we delay the matching
of a wildcard operation as much as possible. We use matchy to

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

423

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

446

460
461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

Symbolic Verification of Message Passing Interface Programs

Algorithm 2: Blocking-driven Symbolic Execution

Execute(Sc, Proc;, Stat;, Sym, worklist)
Data: Global state S., MPI process Proc;, Statement Stat;,
Symbolic variable set Sym, worklist of global states
1 begin

2 switch (Stat;) do
3 case Send or ISend or IRecv do
4 Seq; « Seq; - (Stat;)
5 si.B «— 5;.8 - (Stat;)
6 end
7 case Barrier or Wait or Ssend or Recv do
8 Seq; < Seq; - (Stat;)
9 si.B « 5;.B - (Stat;)
10 si.F « blocked
11 if GlobalBlocking then
// Vs;i € S¢, (si.F = blocked V s;.F = terminated)
12 Matching(S¢, worklist)
13 end
14 end
15 default:

Execute(Sc, Proc;, Stat;, Sym, worklist) as normal
16 end
17 end

match the non-wildcard operations first (Line[3) w.r.t. the rules in
the MPI standard [25], especially the non-overtaken ones: (1) if two
sends of a process send messages to the same destination, and both
can match the same receive, the receive should match the first one;
and (2) if a process has two receives, and both can match a send, the
first receive should match the send. The matched send and receive
operations will be executed, and the statuses of the involved pro-
cesses will be updated to active, denoted by Fire(Se, pair,,) (Line
[). If there is no matching for non-wildcard operations, we use

Algorithm 3: Blocking-driven Matching

Matching(Sc, worklist)
Data: Global state S, worklist of global states

1 begin

2 MSW — 0 // Matching set of wildcard operations
3 pairn — matchN(SC) // Match non-wildcard operations
4 if pair, # empty pair then

5 Fire(Sc, pairn)

6 end

7 else

8 MSy matchW(SC) // Match wildcard operations
9 for pair,, € MSy do

10 S « fork(Sc, pair.,)

1 worklist < worklist U {S/.}

12 end

13 if MSy # 0 then

14 worklist «— worklist \ {S¢}

15 end

16 end

17 if pair, = empty pair A MSy, = 0 then

18 reportDeadlock and Exit

19 end

20 end

Py Py Py
ISend(1,reqi); | IRecv(*,reqy); | Barrier;
Barrier; Barrier; ISend(1,reqs);
Wait(req;) Wait(reqz) Wait(reqs)

Figure 5: An example of operation matching.

matchyy to match the wildcard operations (Line|[8). For each possi-
ble matching of a wildcard receive, we fork a new state (denoted
by fork(Sc, pair,,) at Line |10) to analyze each matching case. If no
operations can be matched, but there exist blocked processes, a
deadlock happens (Line[17). Besides, for the properties other than
deadlock freedom, we also check them during symbolic execution
(omitted for brevity).

Take the program in Figure[5] for example. When all the pro-
cesses block at Barrier, MPI-SV matches the recorded operation
in the buffers of the processes, i.e., so. B=(ISend(1,req;),Barrier),
s1.B=(IRecv(*,reqy), Barrier), and s;. B=(Barrier). According to
the MPI standard, each operation in the buffers is ready to be
matched. Hence, Matching first matches the non-wildcard opera-
tions, i.e., the Barrier operations, then the status of each process be-
comes active. After that, MPI-SV continues to execute the active pro-
cesses and record issued MPI operations. The next GlobalBlocking
point is: Py and P, terminate, and P; blocks at Wait(reqz). The
buffers are (ISend(1,req;),Wait(req;)), (IRecv(x,req,),Wait(reqy)),
and (ISend(1,reqs), Wait(reqs)), respectively. All the issued Wait
operations are not ready to match, because the corresponding
non-blocking operations are not matched. So Matching needs to
match the wildcard operation, i.e., IRecv(*,req,), which can be
matched with ISend(1,req;) or ISend(1,reqs). Then, a new
state is forked for each case and added to the worklist.

Correctness. Blocking-driven symbolic execution is an instance
of model checking with POR. We have proved the symbolic execu-
tion method is correct for reachability properties [57]. Due to the
space limit, the proof is presented in the supplementary document.

4 CSP BASED PATH MODELING

In this section, we first introduce the CSP [68] language. Then, we
present the modeling algorithm of an MPI program terminated
path using a subset of CSP. Finally, we prove the soundness and
completeness of our modeling.

4.1 CSP Subset

Let X be a finite set of events, C a set of channels, and X a set of
variables. Figure [shows the syntax of the CSP subset, where P
denotes a CSP process, a€X, ceC, XC¥ and xeX.

P:=a|PgP|POP|P|P|c?x—P | clx—P | skip
X
Figure 6: The syntax of a CSP subset.

The single event process a performs the event a and terminates.
There are three operators: sequential composition (§), external
choice (O) and parallel composition with synchronization (||). POQ

X
performs as P or Q, and the choice is made by the environment.
Let PS be a finite set of processes, OPS denotes the external choice

542

543

544

545

547

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

620

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

of all the processes in PS. P || Q performs P and Q in an inter-

leaving manner, but P and Q synchronize on the events in X. The
process c?x — P performs as P after reading a value from channel
¢ and writing the value to variable x. The process c!x — P writes
the value of x to channel ¢ and then behaves as P. Process skip
terminates immediately.

4.2 CSP Modeling

For each violation-free program path, Algorithm [4]builds a precise
CSP model of the possible communication behaviors by changing
the matchings and interleavings of the communication operations
along the path. The basic idea is to model the communication
operations in each process as a CSP process, then compose all the
CSP processes in parallel to form the model. To model Proc;, we
scan its operation sequence Seq; in reverse. For each operation, we
generate its CSP model and compose the model with that of the
remaining operations in Seq; w.r.t. the semantics of the operation
and the MPI standard [25]. The modeling algorithm is efficient,
and has a polynomial time complexity w.r.t. the total length of the
recorded MPI operation sequences.

We use channel operations in CSP to model send and receive
operations. Each send operation op has its own channel, denoted
by Chan(op). We use a zero-sized channel to model Ssend opera-
tion (Line[10), because Ssend blocks until the message is received.
In contrast, considering a Send or ISend operation is completed
immediately, we use one-sized channels for them (Line , so the
channel writing returns immediately. The modeling of Barrier
(Line|17) is to generate a synchronization event that requires all
the parallel CSP processes to synchronize it (Lines [17){38). The
modeling of receive operations consists of three steps. The first
step calculates the possibly matched channels written by the send
operations (Lines[20825). The second uses the external choice of
reading actions of the matched channels (Lines [218{26), so as to
model different cases of the receive operation. Finally, the refined
external choice process is composed with the remaining model. If
the operation is blocking, the composition is sequential (Line [22);
otherwise, it is a parallel composition (Line [28).

StaticMatchedChannel(op;, S) (Lines returns the set of
the channels written by the possibly matched send operations of
the receive operation opj. We scan Seq(S) to obtain the possibly
matched send operations of op;. Given a receive operation recv in
process Proc;, SMO(recv, S) calculated as follows denotes the set
of the matched send operations of recv.

e If recv is Recv(j) or IRecv(j, r), SMO(recv, S) contains Proc;’s
send operations with Proc; as the destination process.

e If recv is Recv(x) or IRecv(x,r), SMO(recv, S) contains any pro-
cess’s send operations with Proc; as the destination process.

SMO(op, S) over-approximates op’s precisely matched opera-
tions, and can be optimized by removing the send operations that
are definitely executed after op’s completion, and the ones whose
messages are definitely received before op’s issue. For example,
Let Procg be Send(1);Barrier;Send(1), and Procy be Recv(*);Barrier.
SMO will add the two send operations in Procy to the matching
set of the Recv (*) in Procj. Since Recv (*) must complete before
Barrier, we can remove the second send operation in Procy. Such
optimization reduces the complexity of the CSP model. For brevity,

Algorithm 4: CSP Modeling for a Terminated State

GenerateCSP(S)
Data: A terminated global state S, and
Seq(S)={Seq; | 0 < i < n}
1 begin
PS <0
fori—0...n do
P; « skip
Req « {r | IRecv(*,r)eSeq;VIRecv(i,r)eSeq;}
for j «—length(Seq;)—1 ... 0 do
switch op; do
case Ssend(i) do
c¢1 < Chan(opj)
P; «—c1!lx > P;
end
case Send(i) or ISend(i,r) do
Cy — Chan(opj) // c3’s size is 1
P; «— c!lx —> P;
end
case Barrier do
P; —Bgs§P;
end
case Recv (i) or Recv(*) do

© %N G R W N

// c1’s size is @

L T T o S S G Y
L ® NG R XN =R o

20 C « StaticMatchedChannel(op;, S)
21 Q « Refine(O{c?x — skip | c € C},S)
22 Pi —Qs5P
23 end
24 case IRecv(*,r) or IRecv(i,r) do
25 C « StaticMatchedChannel(opj, S)
26 Q « Refine(O{c?x — skip | c € C},S)
27 ew<—WaitEvent(opj) // opj’s wait event
28 Pi—(Qsew) || P
€

29 end
30 case Wait(r) and r € Req do
31 ey < GenerateEvent(op;)
32 P; — ey, §P;
33 end
34 end
35 end
36 PS « PSU{P;}
37 end
38 P— | PS

{8}
39 return P
40 end

we use SMO(op, S) to denote the optimized matching set. Then,
StaticMatchedChannel(opj, S) is {Chan(op) | op € SMO(opj, S)}.

To satisfy the MPI requirements, Refine(P, S) (Lines re-
fines the models of receive operations by imposing the completes-
before requirements [80] as follows:

o If areceive operation has multiple matched send operations from
the same process, it should match the earlier issued one. This is
ensured by checking the emptiness of the dependent channels.

e The receive operations in the same process should be matched
w.r.t. their issue order if they receive messages from the same
process, except the conditional completes-before pattern [80]. We
use one-sized channel actions to model these requirements.

639

640

641

642

643

644

645

646

647

648

649

665

666

667

668

669

671

672

674

675

677

678

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

751

753
754

Symbolic Verification of Message Passing Interface Programs

We model a Wait operation if it corresponds to an IRecv oper-
ation (Line [30), because ISend operations complete immediately
under the assumption of infinite system buffer. Wait operations are
modeled by the synchronization in parallel processes. GenerateEvent
generates a new synchronization event e,, for each Wait opera-
tion (Line[31). Then, e,, is produced after the corresponding non-
blocking operation is completed (Line [28). The synchronization on
e,y ensures that a Wait operation blocks until the corresponding
non-blocking operation is completed.

We use the example in Figure [5]for a demonstration. After ex-
ploring a violation-free path, the recorded operation sequences are
Seqo=(ISend(1,req;), Barrier, Wait(req;)), Seq;=(IRecv(*,req,),
Barrier,Wait(req,)), Seqz=(Barrier,ISend(1,reqs),Wait(reqs)). We
first scan Seqo in reverse. Note that we don’t model Wait(req;),
because it corresponds to ISend. We create a synchronization event
B for modeling Barrier (Lines[16)%{17). For the ISend(1,req;), we
model it by writing an element a to a one-sized channel chanj, and
use prefix operation to compose its model with B (Lines[12}{T4). In
this way, we generate CSP process chani!a—B § skip (denoted by
CPy) for Procy. Similarly, we model Procy by B § chany!b—skip
(denoted by CP;), where chan; is also a one-sized channel and b is
a channel element. For Proc, we generate a single event process e,,
to model Wait(reqsz), because it corresponds to IRecv (Lines
. For IRecv(*,reqy), we first compute the matched channels
using SMO (Line , and StaticMatchedChannel(op;, S) contains
both chani and chany. Then, we generate the following CSP process

((chany?a—skipOchany?b—skip) s ew) || (B ey § skip)

€y

(denoted by CP;) for Procy. Finally, we compose the CSP processes
using the parallel operator to form the CSP model (Line 38), i.e.,
CPy || CPy || CPy.

{B} {8}

CSP modeling supports the case where communications depend
on message contents. MPI-SV tracks the influence of a message dur-
ing symbolic execution. When detecting that the message content
influences the communications, MPI-SV symbolizes the content
on-the-fly. We specially handle the widely used master-slave pattern
for dynamic load balancing [33]. The basic idea is to use a recursive
CSP process to model each slave process and a conditional state-
ment for master process to model the communication behaviors
of different matchings. We verified five dynamic load balancing
MPI programs in our experiments (cf- Section[5.4). The details for
supporting master-slave pattern is in the supplementary document.

4.3 Soundness and Completeness

In the following, we show that the CSP modeling is sound and
complete. Suppose GenerateCSP(S) generates the CSP process CSP;.
Here, soundness means that CSP¢ models all the possible behaviors
by changing the matchings or interleavings of the communication
operations along the path to S, and completeness means that each
trace in CSP; represents a real behavior that can be derived from S
by changing the matchings or interleavings of the communications.

Since we compute SMO(op, S) by statically matching the argu-
ments of the recorded operations, SMO(op, S) may contain some
false matchings. Calculating the precisely matched operations of op
is NP-complete [24]], and we suppose such an ideal method exists.

We use CSPs;qaric and CSP; g, to denote the generated models
using SMO(op, S) and the ideal method, respectively. The follow-
ing theorems ensure the equivalence of the two models under the
stable-failure semantics [68]] of CSP and CSPs;4ric’s consistency to
the MPI semantics, which imply the soundness and completeness
of our CSP modeling method. The proofs are presented in the sup-
plementary document. Let 7 (P) denote the trace set [68] of CSP
process P, and 7 (P) denote the failure set of CSP process P. Each
element in F(P) is (s, X), where s € 7 (P) is a trace, and X is the
set of events P refuses to perform after s.

Theorem 4.1. F(CSPssaric) = F(CSP;geal)-

Theorem 4.2. CSPg;4tic is consistent with the MPI semantics.

5 EXPERIMENTAL EVALUATION

In this section, we first introduce the implementation of MPI-SV,
then describes the research questions and the experimental setup.
Finally, we give experimental results.

5.1 Implementation

We have implemented MPI-SV based on Cloud9 [[10]], which is built
upon KLEE [12]], and enhances KLEE with better support for POSIX
environment and parallel symbolic execution. We leverage Cloud9’s
support for multi-threaded programs. We use a multi-threaded li-
brary for MPI, called AzequiaMPI [67], as the MPI environment
model for symbolic execution. MPI-SV contains three main modules:
program preprocessing, symbolic execution, and model checking.
The program preprocessing module generates the input for sym-
bolic execution. We use Clang to compile an MPI program to LLVM
bytecode, which is then linked with the pre-compiled MPI library
AzequiaMPI The symbolic execution module is in charge of path
exploration and property checking. The third module utilizes the
state-of-the-art CSP model checker PAT [77] to verify CSP models,
and uses the output of PAT to boost the symbolic executor.

5.2 Research Questions
We conducted experiments to answer the following questions:

o Effectiveness: Can MPI-SV verify real-world MPI programs ef-
fectively? How effective when compared to the existing state-of-
the-art tools?

o Efficiency: How efficient is MPI-SV when verifying real-world
MPI programs? How efficient is MPI-SV when compared to the
pure symbolic execution?

e Verifiable properties : Can MPI-SV verify properties other than
deadlock freedom?

5.3 Setup

Table 1 lists the programs analyzed in our experiments. All the pro-
grams are real-world open source MPI programs. DTG is a testing
program from [79]]. Matmat, Integrate and Diffusion2d come
from the FEVS benchmark suite [[73]]. Matmat is used for matrix
multiplication, Integrate calculates the integrals of trigonometric
functions, and Diffusion2d is a parallel solver for two-dimensional
diffusion equation. Gauss_elimis an MPI implementation for gauss-
ian elimination used in [84]]. Heat is a parallel solver for heat equa-
tion used in [60]. Mandelbrot, Sorting and Image_manip come

755

756

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

847

849

860
861
862
863

864

866
867
868
869

870

Table 1: The programs in the experiments.

Program LOC | Brief Description

DTG 90 | Dependence transition group
Matmat 105 | Matrix multiplication
Integrate 181 | Integral computing
Diffusion2d 197 | Simulation of diffusion equation
Gauss_elim 341 | Gaussian elimination

Heat 613 | Heat equation solver
Mandelbrot 268 | Mandelbrot set drawing
Sorting 218 | Array sorting

Image_manip 360 | Image manipulation

DepSolver 8988 | Multimaterial electrostatic solver
Kfray 12728 | KF-Ray parallel raytracer
ClustalWw 23265 | Multiple sequence alignment
Total 47354 | 12 open source programs

from github. Mandelbrot parallel draws the mandelbrot set for a
bitmap, Sorting uses bubble sort to sort a multi-dimensional array,
and Image_manip is an MPI program for image manipulations, e.g.,
shifting, rotating and scaling. The remaining three programs are
large parallel applications. Depsolver is a parallel multi-material
3D electrostatic solver, Kfray is a ray tracing program creating re-
alistic images, and ClustalW is a tool for aligning gene sequences.
To evaluate MPI-SV further, we mutate [47] the programs by
rewriting a randomly selected receive using two rules: (1) replace
Recv (i) with if (x>a){Recv(i)} else {Recv(*)}; (2) replace Recv(*)
with if (x>a){Recv(*) } else {Recv(j) }. Here x is an input variable, a
is arandom value, and j is generated randomly from the scope of the
process identifier. The mutations for IRecv(i,r) and IRecv(*,r)
are similar. Rule 1 is to improve program performance and simplify
programming, while rule 2 is to make the communication more
deterministic. Since communications tend to depend on inputs in
complex applications, such as the last three programs in Table[1] we
also introduce input related conditions. For each program, we gen-
erate five mutants if possible, or generate as many as the number of
receives. We don’t mutate the programs using master-slave pattern
[33], i.e., Matmat and Sorting, and only mutate the static schedul-
ing versions of programs Integrate, Mandelbrot, and Kfray.
Baselines. We use pure symbolic execution as the first base-
line because: (1) none of the state-of-the-art symbolic execution
based verification tools can analyze non-blocking MPI programs,
e.g., CIVL [56]; (2) MPI-SPIN [72] can support input coverage and
non-blocking operations, but it requires building models of the
programs manually; and (3) other automatic tools that support non-
blocking operations, such as MOPPER [24] and ISP [80], can only
verify programs under given inputs. MPI-SV aims at covering both
the input space and non-determinism automatically. To compare
with pure symbolic execution, we run MPI-SV under two configura-
tions: (1) Symbolic execution, i.e., applying only symbolic execution
for path exploration, and (2) Our approach, i.e., using model check-
ing based boosting. Most of the programs run with 6, 8, and 10
processes, respectively. DTG and Matmat can only be run with 5 and
4 processes, respectively. For Diffusion and the programs using
master-slave pattern, we only run them with 4 and 6 processes due
to the huge path space. We use MPI-SV to verify deadlock freedom

of MPI programs and also evaluate 2 non-reachability properties for
Integrate and Mandelbrot. The timeout is one hour. There are
three possible verification results: finding a violation, no violation,
or timeout. We carry out all the tasks on an Intel Xeon-based Server
with 256G memory and 32 2.5GHz cores running a Ubuntu 14.04
OS. To evaluate MPI-SV’s effectiveness further, we also directly
compare MPI-SV with CIVL [56] and MPI-SPIN [72]]. Note that,
since MPI-SPIN needs manual modeling, we only use MPI-SV to
verify MPI-SPIN’s C benchmarks w.r.t. deadlock freedom.

5.4 Experimental Results

Table[2]lists the results for evaluating MPI-SV against pure symbolic
execution. The first column shows program names, and #Procs is
the number of running processes. T specifies whether the analyzed
program is mutated, where o denotes the original program, and m;
represents a mutant. A task comprises a program and the number
of running processes. We label the programs using master-slave
pattern with superscript “*”. Column Deadlock indicates whether a
task is deadlock free, where 0, 1, and -1 denote no deadlock, deadlock
and unknown, respectively. We use unknown for the case that both
configurations fail to complete the task. Columns Time(s) and
#Iterations show the verification time and the number of explored
paths, respectively, where To stands for timeout. The results where
Our approach performs better is in gray background.

For the 111 verification tasks, MPI-SV completes 99 tasks (89%)
within one hour, whereas 57 tasks (51%) for Symbolic execution.
Our approach detects deadlocks in 43 tasks, while the number of
Symbolic execution is 41. We manually confirmed that the detected
deadlocks are real. For the 43 tasks having deadlocks, MPI-SV on
average offers a 5x speedups for detecting deadlocks. On the other
hand, Our approach can verify deadlock freedom for 56 tasks, while
only 16 tasks for Symbolic execution. MPI-SV achieves an aver-
age 8x speedups. Besides, compared with Symbolic execution, Our
approach requires fewer paths to detect the deadlocks (1/17 on av-
erage) and complete the path exploration (1/65 on average). These
results demonstrate the effectiveness and efficiency of MPI-SV.

Figure [7|shows the efficiency of verification for the two configu-
rations. The X-axis varies the time threshold from 5 minutes to one
hour, while the Y-axis is the number of completed verification tasks.
Our approach can complete more tasks than Symbolic execution
under the same time threshold, demonstrating MPI-SV’s efficiency.

100 |~ pg-E-E-&--S2-E-8-B-0

i —— Symbolic execution
— 4l - Ourapproach

0 | | | | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 7: Completed tasks under a time threshold.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

951

961
962
963
964
965
966
967
968
969
970

971

981
982
983
984
985

986

Symbolic Verification of Message Passing Interface Programs

Table 2: Experimental results.

Program (#Procs) T | Deadlock - - Time(s) - #Itefatlons
Symbolic execution Our approach Symbolic execution | Our approach
0 0 19.5 13.3 3 1
m 1 20.7 16.1 4 1
ms 1 16.0 15.8 2 1
DTG(5) ms 0 32.8 16.2 10 2
ma 1 21.0 17.1 4 1
ms 1 19.3 15.1 4 1
Matmat'(4) o 0 51.0 12.2 18 1
0/0/0 273.4/10/TO0 12.8/17.3/37.1 120/1216/1024 1/1/1
Integrate(6/8/10) my 0/-1/-1 TO/TO/TO 266.2 /TO/TO 1420/1201/1022 32 /82/51
my 0/1/1 T0/18.0/21.7 265.4 / 17.4 /45.1 1427/2/2 32/1/2
Integrate” (4/6) o 0/0 104.8/654.3 13.8/28.2 27/125 1/1
0 0/0 731.9/T0 19.2/32.8 90/289 171
m 171 19.4/27.3 20.4/31.9 2/2 1/1
. . my 0/0 738.8/T0 19.5/29.8 90/287 1/1
Diffusion2d(4/6) — - 0/0 T0/TO 48.5/352.5 168071445 16/64
my 11 26.8/32.3 254 /37.6 3/2 2/1
ms 0/0 TO/TO 68.6/566.8 1061/877 16/64
. 0 0/0/0 To/To/To 63.4/26.4/74.5 394/351/275 1/1/1
Gauss_elim(6/8/10) | — —— 862.8/T0/T0 23.1/38.1/80.6 121/349/272 1/2/1
0 1/1/1 30.9/50.1/61.7 30.8 / 49.7 /63.8 2/2/2 1/1/1
m 1/1/1 35.0/48.7/60.9 34.2/50.6/65.7 2/2/2 1/1/1
Heat (6/8/10) my 1/1/1 34.3/49.2/60.8 340 /51.3/65.2 2/2/2 1/1/1
ms 1/1/1 46.5/58.1/78.6 34.0/50.2/64.8 3/3/3 1/1/1
ma 1/1/1 60.7/77.4/96.8 33.9/50.0/64.3 9/9/9 1/1/1
ms 1/1/1 78.7/99.0/136.6 33.9/50.2/64.8 777]7 1/1/1
0 0/0/-1 TO/TO/TO 152.9 //631.9 /1o 373/350/325 9/9/9
m 1/1/1 15.2/17.5/22.1 14.6/16.6/19.2 2/2/2 1/1/1
Mandelbrot(6/8/10) |—0 —— 7 To/To/To To/To/To 67676897583 109/132/121
ms -1/-1/-1 TO/TO/TO TO/TO/TO 655/570/494 106/93/78
Mandelbort* (4/6) o 0/0 217.1/877.8 18.6/22.4 72/240 1/1
Sorting*(4/6) o 0/0 TO/TO 24.4/41.9 432/376 1/1
Inage_mani (6/8/10) 0/0/0 217.0/267.6/319.6 28.2/34.6/47.9 96/96/96 4/4/4
m 1/1/1 15.9/18.0/20.0 15.5 /| 17.7 /21.1 2/2/2 1/1/1
DepSolver(6/8/10) | o 0/0/0 260.2/440.2/681.4 | 267.0/449.0/702.7 3/3/3 3/3/3
0 0/0/0 To/TO/TO 58.2/69.9/170.6 590/527/446 1/1/1
Kfray(6/8/10) m 1/1/1 57.4/59.8/65.6 62.9/77.5/169.5 2/2/2 1/2/2
my 1/1/1 56.7/59.5/65.1 59.3/78.4/169.6 2/2/2 1/2/2
ms | -1/-1/-1 TO/TO/TO TO/TO/TO 949/831/728 232/164/135
Kfray*(4/6) o 0/0 TO/TO 55.5/192.7 727]682 1/1
0/0/0 TO/TO/TO 106.1/876.1/1104.9 215/191/170 1/1/1
m 0/0/0 TO/TO/TO 229.3/1308.1/1689.3 220/200/158 4/4/4
m 0/0/0 To/TO/TO 106.3/1033.2/996.5 206/191/162 1/1/1
Clustalw(6/8/10) mi 0/0/0 To?m;ro 107.0//881.6//909.2 204;182;179 1?1?1
my | 0/0/0 To/TO/TO 107.5/483.5/1147.9 204/171/172 1/1/1
ms 0/0/0 To/To/To 106.8/878.2/910.7 201/197/176 1/1/1

In addition, Our approach can complete all the 99 verified tasks
within 30 minutes and 86 (87%) tasks in 5 minutes, which also
demonstrates MPI-SV’s effectiveness.

For some tasks, e.g., Kfray, MPI-SV does not outperform Sym-
bolic execution. The reasons include: (a) the paths contain hundreds
of non-wildcard operations, and the corresponding CSP models are
huge, and thus time-consuming to model check; (b) the number of
wildcard receives or their possible matchings is very small, and as
a result, only few paths are pruned.

Comparison with CIVL. CIVL uses symbolic execution to build
amodel for the whole program and performs model checking on the
model. In contrast, MPI-SV adopts symbolic execution to generate
path-level verifiable models. CIVL does not support non-blocking
operations. We applied CIVL on our evaluation subjects. It only
successfully analyzed DTG. Diffusion2d could be analyzed after
removing unsupported external calls. MPI-SV and CIVL had similar
performance on these two programs. CIVL failed on all the remain-
ing programs due to compilation failures or lack of support for

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

non-blocking operations. In contrast, MPI-SV successfully analyzed
99 of the 140 programs in CIVL’s latest benchmarks. The failed
ones are small API test programs for the APIs that MPI-SV does
not support. For the real-world program floyd that both MPI-SV
and CIVL can analyze, MPI-SV verified its deadlock-freedom under
4 processes in 3 minutes, while CIVL timed out after 30 minutes.
The results indicate the benefits of MPI-SV’s path-level modeling.

Comparison with MPI-SPIN. MPI-SPIN relies on manual mod-
eling of MPI programs. Inconsistencies may happen between an
MPI program and its model. Although prototypes exist for trans-
lating C to Promela [46]], they are impractical for real-world MPI
programs. MPI-SPIN’s state space reduction treats communication
channels as rendezvous ones; thus, the reduction cannot handle the
programs with wildcard receives. MPI-SV leverages model checking
to prune redundant paths caused by wildcard receives. We applied
MPI-SV on MPI-SPIN’s 17 C benchmarks to verify deadlock free-
dom, and MPI-SV successfully analyzed 15 automatically, indicating
the effectiveness. For the remaining two programs, i.e., BlobFlow
and Monte, MPI-SV cannot analyze them due to the lack of support
for APIs. For the real-world program gausselim, MPI-SPIN needs
171s to verify that the model is deadlock-free under 5 processes,
while MPI-SV only needs 27s to verify the program automatically. If
the number of the processes is 8, MPI-SPIN timed out in 30 minutes,
but MPI-SV used 66s to complete verification.

Temporal properties. We specify two temporal safety properties
¢1 and ¢y for Integrate and Mandelbrot, respectively, where ¢
requires process one cannot receive a message before process two,
and ¢, requires process one cannot send a message before process
two. Both ¢1 and @2 can be represented by an LTL formula G(la U
b), which requires event a cannot happen before event b. We verify
Integrate and Mandelbrot under 6 processes. The verification
results show that MPI-SV detects the violations of ¢; and ¢, while
pure symbolic execution fails to detect violations.

Runtime bugs. MPI-SV can also detect local runtime bugs. Dur-
ing the experiments, MPI-SV finds 5 unknown memory access out-
of-bound bugs: 4 in DepSolver and 1 in ClustalWw.

6 RELATED WORK

Dynamic analyses are widely used for analyzing MPI programs.
Debugging or testing tools [l [37) 511 52 59 [69] [83] have better
feasibility and scalability but depend on specific inputs and run-
ning schedules. Dynamic verification techniques, e.g., ISP [80] and
DAMPI [§81], run MPI programs multiple times to cover the sched-
ules under the same inputs. Bohm et al. [3] propose a state-space
reduction framework for the MPI program with non-deterministic
synchronization. These approaches can detect the bugs depending
on specific matchings of wildcard operations, but may still miss
inputs related bugs. MPI-SV supports both input and schedule cov-
erages, and a larger scope of verifiable properties. MOPPER [24]
encodes the deadlock detection problem under concrete inputs in
a SAT equation. Similarly, Huang and Mercer [42] use an SMT
formula to reason about a trace of an MPI program for deadlock
detection. However, the SMT encoding is specific for the zero-buffer
mode. Khanna et al. [48] combines dynamic and symbolic analy-
ses to verify multi-path MPI programs. Compared with these path
reasoning work in dynamic verification, MPI-SV ensures input

10

space coverage and can verify more properties, ie., safety and live-
ness properties in LTL. Besides, MPI-SV employs CSP to enable a
more expressive modeling, e.g., supporting conditional completes-
before [80]] and master-slave pattern [33].

For static methods of analyzing MPI program, MPI-SPIN [71}[72]]
manually models MPI programs in Promela [39]], and verifies the
model wr.t. LTL properties [57] by SPIN [38] (cf: Section [5.4] for
empirical comparison). MPI-SPIN can also verify the consistency
between an MPI program and a sequential program, which is not
supported by MPI-SV. Bronevetsky [9] proposes parallel control
flow graph (pCFG) for MPI programs to capture the interactions be-
tween arbitrary processes. But the static analysis using pCFG is hard
to be automated. ParTypes [55] uses type checking and deductive
verification to verify MPI programs against a protocol. ParTypes’s
verification results are sound but incomplete, and independent
with the number of processes. ParTypes does not support non-
deterministic or non-blocking MPI operations. MPI-Checker [23]
is a static analysis tool built on Clang Static Analyzer [15], and
only supports intraprocedural analysis of local properties such as
double non-blocking and missing wait. Botbol et al. [5] abstract an
MPI program to symbolic transducers, and obtain the reachabil-
ity set based on abstract interpretation [[19], which only supports
blocking MPI programs and may generate false positives. COMPI
[53154] uses concolic testing [28][70] to detect assertion or runtime
errors in MPI applications. Ye et al. [[85] employs partial symbolic
execution [[66] to detect MPI usage anomalies. However, these two
symbolic execution-based bug detection methods do not support
the non-determinism caused by wildcard operations.

MPI-SV is related to the existing work on symbolic execution [49],
which has been advanced significantly during the last decade [10}
121 28] 1291164} (70} [78]. Many methods have been proposed to prune
paths during symbolic execution [4} 20l 35 [44]]. The basic idea is
to use the techniques such as slicing [45] and interpolation [58] to
safely prune the paths. Compared with them, MPI-SV only prunes
the paths of the same path constraint but different message match-
ings or operation interleavings. Furthermore, there exists work of
combining symbolic execution and model checking [21] [63] [76].
YOGI [63] and Abstraction-driven concolic testing [21] combine
dynamic symbolic execution [28|[70] with counterexample-guided
abstraction refinement (CEGAR) [16].MPI-SV focuses on parallel
programs, and the verified models are path-level. MPI-SV is also
related to the work of unbounded verification for parallel programs
[21[61[7,182]. Compared with them, MPI-SV is a bounded verifica-
tion tool and supports the verification of LTL properties. Besides,
MPI-SV is related to the existing work of testing and verification of
shared-memory programs [[13| [14] 22} [35] [36] 40} [41] [43] 50} [611 [86]].
Compared with them, MPI-SV concentrates on message-passing
programs. Utilizing the ideas in these work for analyzing MPI pro-
grams is interesting and left to the future work.

7 CONCLUSION

We has presented MPI-SV for verifying MPI programs with both
non-blocking and non-deterministic operations. By synergistically
combining symbolic execution and model checking, MPI-SV pro-
vides a general framework for verifying MPI programs. We have
implemented MPI-SV and extensively evaluated it on real-world
MPI programs. The results are promising.

1103
1104
1105
1106
1107
1108
1109
1110
11
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Symbolic Verification of Message Passing Interface Programs

REFERENCES

(1]
[2

(3]

&

[9

=

[10

[11]

[12

[13]

[14

[15]
[16]

[17

(18]

[19

[20

[21

[22]

[23]

[24

[25]

[26

[27]

[28]

Allinea. 2002. Allinea DDT. http://www.allinea.com/products/ddt/, (2002).
Alexander Bakst, Klaus von Gleissenthall, Rami Gokhan Kici, and Ranjit Jhala.
2017. Verifying distributed programs via canonical sequentialization. PACMPL 1,
OOPSLA (2017), 110:1-110:27.

Stanislav Bohm, Ondrej Meca, and Petr Jancar. 2016. State-Space Reduction of
Non-deterministically Synchronizing Systems Applicable to Deadlock Detection
in MPI. In FM. 102-118.

Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: attacking
path explosion in constraint-based test generation. In TACAS. 351-366.

Vincent Botbol, Emmanuel Chailloux, and Tristan Le Gall. 2017. Static Analysis
of Communicating Processes Using Symbolic Transducers. In VMCAL 73-90.
Ahmed Bouajjani and Michael Emmi. 2012. Analysis of recursively parallel pro-
grams. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012. 203-214.

Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. 2018. On the
Completeness of Verifying Message Passing Programs Under Bounded Asyn-
chrony. In Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II. 372-391.

Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines.
9. ACM (1983), 323-342.

Greg Bronevetsky. 2009. Communication-sensitive static dataflow for parallel
message passing applications. In CGO. 1-12.

Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
symbolic execution for automated real-world software testing. In EuroSYS. 183—
198.

Rajkumar Buyya and others. 1999. High performance cluster computing: archi-
tectures and systems. Prentice Hall (1999), 999.

C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDIL. 209—
224.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Joél Ouaknine, Ofer Strichman,
and Karen Yorav. 2004. Efficient Verification of Sequential and Concurrent C
Programs. Formal Methods in System Design 25, 2-3 (2004), 129-166.
Alessandro Cimatti, Iman Narasamdya, and Marco Roveri. 2011. Boosting Lazy
Abstraction for SystemC with Partial Order Reduction. In Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS
2011, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbriicken, Germany, March 26-April 3, 2011. Proceedings.
341-356.

Clang. 2016. Clang Static Analyzer. http://clang-analyzer.llvm.org, (2016).
Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.
Counterexample-guided abstraction refinement. In CAV. 154-169.

Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic. In Logic of Programs.
52-71.

Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT
press.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. 238-252.

Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying systems
rules using rule-directed symbolic execution. In ASPLOS. 329-342.

Przemystaw Daca, Ashutosh Gupta, and Thomas A Henzinger. 2016. Abstraction-
driven Concolic Testing. In VMCAL 328-347.

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model
checking for SC and TSO. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 20—
36.

Alexander Droste, Michael Kuhn, and Thomas Ludwig. 2015. MPI-checker: static
analysis for MPL In LLVM-HPC. 3:1-3:10.

Vojtéch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma.
2014. Precise predictive analysis for discovering communication deadlocks in
MPI programs. In FM. 263-278.

MPI Forum. 2012. MPI: A Message-Passing Interface Standard Version 3.0. http:
//mpi-forum.org) (2012).

Xianjin Fu, Zhenbang Chen, Yufeng Zhang, Chun Huang, Wei Dong, and Ji Wang.
2015. MPISE: Symbolic Execution of MPI Programs. In HASE. 181-188.

Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack] Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, and others. 2004. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In EuroMPIL 97-104.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In PLDIL. 213-223.

11

[29]

[30

[31

[32

(33]

(34

(35]

[36]

w
=

[38

[39

[40]

[41

(43]

[44

'S
&

[46

[47

[48

[49

[50

(51

[52

o
&

(54

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In NDSS.

Ganesh Gopalakrishnan, Paul D. Hovland, Costin Iancu, Sriram Krishnamoorthy,
Ignacio Laguna, Richard A. Lethin, Koushik Sen, Stephen F. Siegel, and Armando
Solar-Lezama. 2017. Report of the HPC Correctness Summit Jan 25-26, 2017, Wash-
ington, DC. https://science.energy.gov/~/media/ascr/pdf/programdocuments/
docs/2017/HPC_Correctness_Report.pdf| (2017).

Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur,
William Gropp, Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg
Bronevetsky. 2011. Formal analysis of MPI-based parallel programs. Commun.
ACM (2011), 82-91.

William Gropp. 2002. MPICH2: A new start for MPI implementations. In EuroMPL
7-7.

William Gropp, Ewing Lusk, and Anthony Skjellum. 2014. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. The MIT Press.
William Gropp, Ewing Lusk, and Rajeev Thakur. 1999. Using MPI-2: Advanced
features of the message-passing interface. MIT press.

Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta.
2015. Assertion guided symbolic execution of multithreaded programs. In FSE.
854-865.

Shengjian Guo, Meng Wu, and Chao Wang. 2018. Adversarial symbolic execution
for detecting concurrency-related cache timing leaks. In Proceedings of the 2018
ACM 3Foint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. 377-388.

Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R de Supinski, and
Matthias S Miller. 2012. MPI runtime error detection with MUST: advances
in deadlock detection. In SC. 30.

Gerard] Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software
Engineering (1997), 279-295.

Gerard J. Holzmann. 2012. Promela manual pages. http://spinroot.com/spin/
Man/promela.html (2012).

Jeft Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording local ex-
ecutions to reproduce concurrency failures. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013. 141-152.

Shiyou Huang and Jeff Huang. 2016. Maximal causality reduction for TSO and
PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016.
447-461.

Yu Huang and Eric Mercer. 2015. Detecting MPI Zero Buffer Incompatibility by
SMT Encoding. In NFM. 219-233.

Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro
Parlato. 2015. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-
threaded C-Programs. In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 807-812.
Joxan Jaffar, Vijayaraghavan Murali, and Jorge A Navas. 2013. Boosting concolic
testing via interpolation. In FSE. 48-58.

Ranjit Jhala and Rupak Majumdar. 2005. Path slicing. In PLDI. 38-47.

Ke Jiang and Bengt Jonsson. 2009. Using SPIN to model check concurrent algo-
rithms, using a translation from C to Promela. In MCC 2009. 67-69.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In FSE. 654-665.

Dhriti Khanna, Subodh Sharma, César Rodriguez, and Rahul Purandare. 2018.
Dynamic Symbolic Verification of MPI Programs. In FM.

J.C. King. 1976. Symbolic execution and program testing. Commun. ACM (1976),
385-394.

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018. Synchronizing the
Asynchronous. In 29th International Conference on Concurrency Theory, CONCUR
2018, September 4-7, 2018, Beijing, China. 21:1-21:17.

Bettina Krammer, Katrin Bidmon, Matthias S Miiller, and Michael M Resch. 2004.
MARMOT: An MPI analysis and checking tool. Advances in Parallel Computing
(2004), 493-500.

Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L.
Lee, Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen,
and Feng Qin. 2015. Debugging high-performance computing applications at
massive scales. Commun. ACM 58, 9 (2015), 72-81.

Hongbo Li, Zizhong Chen, and Rajiv Gupta. 2019. Efficient Concolic Testing of
MPI Applications. In Proceedings of the 28th International Conference on Compiler
Construction (CC 2019). 193-204.

Hongbo Li, Sihuan Li, Zachary Benavides, Zizhong Chen, and Rajiv Gupta. 2018.
COMPI: Concolic Testing for MPI Applications. In 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018. 865-874.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

1249

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

http://www.allinea.com/products/ddt/
http://clang-analyzer.llvm.org
http://mpi-forum.org
http://mpi-forum.org
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

[55

[56]
[57]

[58

[59

[60

(61

[62

[63]

[64

[71]
[72]

[73

[74

[75]
[76]

[77]

(78

[79]

[80

[81]

[82]

[83]

Hugo A. Lopez, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César
Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2015. Protocol-
based verification of message-passing parallel programs. In OOPSLA. 280-298.
Ziqing Luo, Manchun Zheng, and Stephen F. Siegel. 2017. Verification of MPI
programs using CIVL. In EuroMPI. 6:1-6:11.

Zohar Manna and Amir Pnueli. 1992. The temporal logic of reactive and concurrent
systems - specification. Springer.

Kenneth L. McMillan. 2005. Applications of Craig Interpolants in Model Checking.
In TACAS. 1-12.

Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz,
and Todd Gamblin. 2014. Accurate application progress analysis for large-scale
parallel debugging. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014. 193-203.

Matthias Miiller, Bronis de Supinski, Ganesh Gopalakrishnan, Tobias Hilbrich, and
David Lecomber. 2011. Dealing with MPI bugs at scale: Best practices, automatic
detection, debugging, and formal verification. http://sc11.supercomputing.org/
schedule/event_detail.php?evid=tut131} (2011).

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings. 267-280.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. Springer.

Aditya V Nori, Sriram K Rajamani, SaiDeep Tetali, and Aditya V Thakur. 2009.
The YOGI Project: Software property checking via static analysis and testing. In
TACAS. 178-181.

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,
Michael R. Lowry, Suzette Person, and Mark Pape. 2008. Combining unit-level
symbolic execution and system-level concrete execution for testing NASA soft-
ware. In Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. 15-26.
Wojciech Penczek, Maciej Szreter, Rob Gerth, and Ruurd Kuiper. 2000. Improving
Partial Order Reductions for Universal Branching Time Properties. Fundam.
Inform. (2000), 245-267.

David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic
Execution: Correctness Checking for Real Code. In SEC. USENIX Association,
49-64.

Juan A. Rico-Gallego and Juan Carlos Diaz Martin. 2011. Performance Evaluation
of Thread-Based MPI in Shared Memory. In EuroMPI 337-338.

Bill Roscoe. 2005. The theory and practice of concurrency. Prentice-Hall.

Victor Samofalov, V. Krukov, B. Kuhn, S. Zheltov, Alexander V. Konovalov, and J.
DeSouza. 2005. Automated Correctness Analysis of MPI Programs with Intel(r)
Message Checker. In PARCO. 901-908.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. 263-272.
Stephen F. Siegel. Model Checking Nonblocking MPI Programs. In VMCAL
Stephen F. Siegel. 2007. Verifying Parallel Programs with MPI-Spin. In PVM/MPIL
13-14.

Stephen F Siegel and Timothy K Zirkel. 2011. FEVS: A functional equivalence
verification suite for high-performance scientific computing. Mathematics in
Computer Science (2011), 427-435.

Stephen F. Siegel and Timothy K. Zirkel. 2011. TASS: The Toolkit for Accurate
Scientific Software. Mathematics in Computer Science (2011), 395-426.

Marc Snir. 1998. MPI-the Complete Reference: The MPI core. Vol. 1. MIT press.
Ting Su, Zhoulai Fu, Geguang Pu, Jifeng He, and Zhendong Su. 2015. Combining
symbolic execution and model checking for data flow testing. In ICSE. 654-665.
Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards flexible
verification under fairness. In CAV. 709-714.

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation
for .NET. In TAP. 134-153.

Sarvani Vakkalanka. 2010. Efficient dynamic verification algorithms for MPI
applications. Ph.D. Dissertation. The University of Utah.

Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008. Dy-
namic Verification of MPI Programs with Reductions in Presence of Split Opera-
tions and Relaxed Orderings. In CAV. 66-79.

Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R De Supin-
ski, Martin Schulz, and Greg Bronevetsky. 2010. A scalable and distributed
dynamic formal verifier for MPI programs. In SC. 1-10.

Klaus von Gleissenthall, Rami Gokhan Kici, Alexander Bakst, Deian Stefan, and
Ranjit Jhala. 2019. Pretend synchrony: synchronous verification of asynchronous
distributed programs. PACMPL 3, POPL (2019), 59:1-59:30.

Rogue Wave. 2009. TotalView Software. http://www.roguewave.com/products/
totalview, (2009).

12

[84] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin

[85

[86

]

Zheng, Zheng Zhang, and Geoffrey Voelker. 2009. MPIWiz: subgroup reproducible
replay of MPI applications. ACM Sigplan Notices (2009), 251-260.

Fangke Ye, Jisheng Zhao, and Vivek Sarkar. 2018. Detecting MPI usage anom-
alies via partial program symbolic execution. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis,
SC 2018, Dallas, TX, USA, November 11-16, 2018. 63:1-63:5.

Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018. YOGAR-
CBMC: CBMC with Scheduling Constraint Based Abstraction Refinement - (Com-
petition Contribution). In Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II. 422-426.

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131
http://www.roguewave.com/products/totalview
http://www.roguewave.com/products/totalview

	Symbolic verification of message passing interface programs
	Citation
	Author

	Abstract
	1 Introduction
	2 Illustration
	2.1 MPI Syntax and Motivating Example
	2.2 Our Approach

	3 Symbolic Verification Method
	3.1 Framework
	3.2 Blocking-driven Symbolic Execution

	4 CSP Based Path Modeling
	4.1 CSP Subset
	4.2 CSP Modeling
	4.3 Soundness and Completeness

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Research Questions
	5.3 Setup
	5.4 Experimental Results

	6 Related Work
	7 Conclusion
	References

