
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2004 

Improving transliteration with precise alignment of phoneme Improving transliteration with precise alignment of phoneme 

chunks and using contextual features chunks and using contextual features 

Wei GAO 
Singapore Management University, weigao@smu.edu.sg 

Kam-Fai WONG 

Wai LAM 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
GAO, Wei; WONG, Kam-Fai; and LAM, Wai. Improving transliteration with precise alignment of phoneme 
chunks and using contextual features. (2004). Proceedings of the First Asia Information Retrieval 
Symposium (AIRS 2004). 106-117. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4631 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4631&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Improving Transliteration with Precise
Alignment of Phoneme Chunks and Using

Contextual Features

Wei Gao, Kam-Fai Wong, and Wai Lam

Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong, China
{wgao, kfwong, wlam}@se.cuhk.edu.hk

Abstract. Automatic transliteration of foreign names is basically re-
garded as a diminutive clone of the machine translation (MT) prob-
lem. It thus follows IBM’s conventional MT models under the source-
channel framework. Nonetheless, some parameters of this model dealing
with zero-fertility words in the target sequences, can negatively impact
transliteration effectiveness because of the inevitable inverted conditional
probability estimation. Instead of source-channel, this paper presents
a direct probabilistic transliteration model using contextual features of
phonemes with a tailored alignment scheme for phoneme chunks. Experi-
ments demonstrate superior performance over the source-channel for the
task of English-Chinese transliteration.

1 Introduction

Automatic transliteration of foreign names, e.g. names of people, places, organi-
zations, etc., is recognized as an important issue in many cross language appli-
cations. Cross-lingual information retrieval involves query keyword translation
from the source to target language and document translation in the opposite di-
rection. For similar reasons, machine translation and spoken language processing,
such as cross-lingual spoken document retrieval and spoken language translation,
also encounters the same problem of translating proper names. Contemporary
lexicon-based translation is ineffective as proper name dictionaries can never be
comprehensive. New names appear almost daily and become unregistered vocab-
ulary in the lexicon. This is known as the Out-Of-Vocabulary (OOV) problem.
The lack of translation for OOV names can impact the performance of applica-
tions adversely and sometimes seriously.

Based on pronunciations, foreign names can usually be translated, or more
appropriately transliterated, into target languages, which were originally hand-
coded with rules of thumb by human translators. De facto standard has been
established, but is often inconsistently used. The rules are subjected to the inter-
pretation of individual producers. In Mandarin Chinese, for instance, the name
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of “Bin Laden” can be translated as /ben la deng/1, /bin la deng/, /ben la
dan/ and /bin la dan/. Sometimes dialectical features can further ambiguate
the standard. For these reasons, rule-based transliteration approach has been
undermined in English-to-Chinese machine translation applications. Thus, an
effective data-driven transliteration model is required.

In this paper, we present a statistical phoneme-based method for forward
transliteration of foreign names from English to Chinese. Grapheme-to-phoneme
transformation and Pinyin-to-Hanzi conversion applied in the phoneme-based
methods are extensively studied areas. We focus on the intermediate tasks for
transliterating phoneme pairs. The rest of the paper is organized as follows:
Section 2 summarizes related work; Section 3 explains the drawbacks of source-
channel model in our task; Section 4 illustrates our methods in detail; Section 5
presents and analyses experimental results; Section 6 concludes this paper.

2 Related Work

Several approaches have been proposed for automatic name transliteration be-
tween various language pairs. Based on the source-channel framework, [7] de-
scribed a generative model, in which they adopted finite state transducers and
a channel decoder to transform transliterated names in Japanese back to their
origins in English. The source-channel model was later on applied or extended by
a number of other tasks: backward transliteration from Arabic to English in [12],
forward transliteration from English to Korean in [8], and forward transliteration
from English to Chinese in [13].

The aim of work by [13] is closest to ours. Their fundamental equation derived
from the IBM statistical machine translation (SMT) model proposed by [2]:

Ĉ = argmax
C

p(C|E) = argmax
C

{p(E|C) × p(C)} (1)

where E = e
|E|
1 denotes a |E|-phoneme English word as the observation on

channel output, and C = c
|C|
1 represents E’s |C|-phoneme Chinese translation

by pinyin as the source of channel input. As shown in Fig. 1, the channel de-
coder reverses the direction to find the most probable input pinyin sequence Ĉ
given an observation E. The posterior probability p(C|E) is indirectly maxi-
mized by optimizing the combination of the transliteration model p(E|C) and
the language model p(C). p(E|C) was trained from name pairs represented by
International Phonetic Alphabet (IPA) symbols for English names (obtained
from a speech synthesis engine) and pinyin notations for their Chinese counter-
parts (obtained from a Hanzi-Pinyin dictionary). It proceeded by Expectation-
Maximization (EM ) iterations of standard IBM SMT model training method
by using GIZA++ toolkit, bootstrapping from Model-1 through Model-4 [13].
Language model p(C) was trained by using pinyin symbol trigrams and applying

1 Mandarin pinyin is used as phonetic representation of Chinese characters throughout
this paper. For simplicity, we ignore the four tones in the pinyin system.
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Fig. 1. English-to-Chinese transliteration system [13] based on IBM SMT model

Good-Turing smoothing with Katz back-off in CMU-Cambridge language mod-
eling toolkits [3]. Search was done by use of USC-ISI ReWrite Decoder [5]. The
method demonstrates pinyin error rates in edit distance of around 50% [13].

3 Drawbacks of Source-Channel

When the IBM SMT model is applied in our task, i.e. English-to-Chinese translit-
eration, it has several limitations:

1. p(E|C) is approximated by the Markov chains [11] under Markov assumption
(zero order or first-order) on state transition as well as conditional indepen-
dence assumption on observation. Markov assumption hypothesizes that the
transition probability to a state, i.e. phoneme of Chinese pinyin, depends
only on its previous one state at most. Longer history may suffer from data
sparseness and renders the model computationally expensive with the in-
crease of state space; conditional independence assumption assumes that an
observation unit, i.e. English phoneme, depends only on the state that gener-
ates it, not on its neighboring observation units. With these hypotheses, it is
hard to extend the model by using additional dependencies, such as flexible
features of neighboring phonemes. Albeit the trigram language model p(C)
is combined, (1) cannot be be optimal unless both p(E|C) and p(C) use the
true probability distributions. Yet, the used models and training methods
in machine translation empirically testified that they only provided poor
approximations of the true distributions [9, 13].

2. Because of the inverted conditional probability p(E|C), only a target lan-
guage phoneme can be associated with a contiguous group of source language
phonemes, but not vice visa, i.e. never could one English phoneme be con-
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English Name         FRANCES  TAYLOR 

English Phonemes         F      R  AE  N S IH S     T EY  L ER

                                           

Initials and Finals        f    u  l      ang   x  i   s  i   t   ai   l   e

Chinese Pinyin          fu       lang       xi     si      tai      le 

Chinese Transliteration                               

Fig. 2. English-to-Chinese transliteration example in [13], considering unaligned sym-
bols as zero-fertility

verted to a group of pinyin symbols. The example in [13] exposes this obvious
limitation (see Fig. 22): /u/ and the second /i/ in the third line have to be
considered as spuriously produced from nothing or from a mute ε. Under
the IBM models, such inserted symbols are known as zero-fertility “words”.
They are deleted by source-channel during training and reproduced by de-
coder by considering inserting one of them before each target symbol of each
remaining unaligned source phoneme in terms of the number of possible zero-
fertility symbols [5]. Although adding zero-fertility symbols may increase the
probability of hypothesis, incorrect transliterations are still abundant as such
insertions are frequent.

3. Due to smoothing, the language model may not assign zero probability to
an illegal pinyin sequence, e.g. one containing two consecutive initials [13].
Such sequences need to be manually corrected by inserting certain finals
between them until a legitimate pinyin sequence is obtained. Moreover, the
training of language model is independent of transliteration model and their
combination sometimes can yield unpredictable results.

4 Direct Transliteration Model

Instead of source-channel, we aim to estimate the posterior probability directly.
We rectify the angle of observation to avoid the use of the reversed conditional
probability. Figure 3 shows the application of the alignment scheme of our ap-
proach to the previous example in Fig. 2, where we look possible combinations of
pinyin symbols as initial-final clusters converted from single English phonemes.
The condition of the probability to be estimated thus turns out to be E instead of
C. The distribution can be approximated directly by Maximum Entropy (Max-
Ent) approach [1]. Under MaxEnt model, the language model can be considered
as an optional feature [9]. Its absence could be compensated if other cutting edge
features could be chosen.

2 Lowercase letters denote pinyin symbols. Capital letters are English phonemes rep-
resented by computer-readable IPA notations — ARPABET.
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English Name       FRANCES  TAYLOR 

English Phonemes       F     R  AE  N   S IH  S    T EY  L ER

             

Initials and Finals      f   u   l     a   ng   x  i  s   i   t   ai   l    e 

Chinese Pinyin         fu      lang        xi     si      tai       le 

Chinese Transliteration                                

Fig. 3. Our phoneme alignment scheme in direct transliteration modeling

4.1 Baseline of Direct Model

We introduce the pinyin mapping units of each ei denoted by cmui, which can
be individual pinyin symbols or clusters of initial and final. In an alignment,
each English phoneme aligns to only one cmu. Thus, the transliteration model
p(C|E) can be approximated by:

p(C|E) ≈
|E|∏
i=1

p(cmui|ei) . (2)

The unknown cmus (clusters) can be discovered on the fly during EM training
for computing the Viterbi alignments and symbol-mapping probabilities by using
GIZA++, where we can make the source and target consistent with the actual
transliteration direction, i.e. from English to Chinese.

Equation (2) gives poor approximation as no contextual feature is considered.
From our perspective, the transliteration is to classify each phoneme of a given
English name into its most probable cmu according to the frames of various
features. We then yield a better approximation:

p(C|E) ≈
|E|∏
i=1

p(cmui|hi) (3)

where hi denotes the history or context of ei, which is described as follows:

hi = {ei, ei+1, ei+2, ei−1, ei−2, cmui−1, cmui−2} . (4)

History of an English phoneme is defined as its left-two and right-two neighboring
phonemes plus the two cmus at pinyin side, to which its left-two phonemes align.
For each e in a given pair of {e1, e2, . . . , en} and {cmu1, cmu2, . . . , cmun}, its
conditional transliteration probability to produce the cmu with respect to its
contextual history h can be computed by:

p(cmu|h) =
p(h, cmu)∑

cmu′∈Ω p(h, cmu′)
(5)

where Ω is the set of all cmus mapped from e and observed in the training
data, and p(h, cmu) is the joint probability distribution of observing h and cmu
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Table 1. Baseline model feature templates

Category Contextual Feature Templates # of Possible Features
1 ei = X and cmui = Z |VE | · |VC |
2 cmui−1 = X and cmui = Z |VC |2
3 cmui−2cmui−1 = XY and cmui = Z |VC |3
4 ei−1 = X and cmui = Z |VE | · |VC |
5 ei−2 = X and cmui = Z |VE | · |VC |
6 ei+1 = X and cmui = Z |VE | · |VC |
7 ei+2 = X and cmui = Z |VE | · |VC |

simultaneously, which can be trained using maximum likelihood estimation. We
use the MaxEnt model to solve the joint probability distribution [10]:

p(cmu, h) = πµ

k∏
j=1

α
fi(h,cmu)
j (6)

where π is a normalization constant, {µ, α1, α2, . . . , αk} are the model param-
eters and {f1, f2, . . . , fk} are features which are all binary. Each parameter αj

corresponds to a feature fj . A feature takes the following form:

f1(hi, cmui) =
{

1 if ei=/F/ & ei−1=START & ei+1=/R/ & cmui=/fu/
0 otherwise

or

f2(hi, cmui) =
{

1 if ei=/S/ & ei+1=/T/ & cmui−1=/IH/ & cmui=/si/
0 otherwise .

The general feature templates we used in experiments are listed in Table 1, where
X , Y and Z can be any individual English phoneme or Chinese pinyin cmu, and
|VE | and |VC | are the number of elements in the respective sound vocabulary of
English and Chinese.

4.2 Improving the Baseline Model

Deficiencies of the Baseline Model. There are two critical problems in the
baseline model that can be improved:

1. The search space for finding the Viterbi alignment from all possible align-
ments is extremely large. Take the name pair in Fig. 3 for example, there is
no means to prevent ill-formed cmus, e.g. the first phoneme /F/ maps to
/f/ and the second one /R/ maps to /ul/, which is an unfavorable align-
ment but cannot be avoided if such mappings dominate the training data.
This could produce many illegal pinyin sequences and give rise to a large
number of probable cmus. They turned out adding uncertainties to phonetic
transcriptions.
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2. Because of compound pinyin finals, two consecutive English phonemes may
map to a single pinyin symbol, such as mapping from /AE N/ to /ang/ in
the example (see Fig. 2), which is not allowed in the baseline. This linguistic
knowledge need not be imparted ad-hoc in the model. We can decompose
compound finals into multiple basic finals, e.g. from /ang/ into /a/ and
/ng/, to reduce the size of target phonetic vocabulary. The original mapping
is broken into /AE/-to-/a/ and /N/-to-/ng/.

Precise Alignment of Phoneme Chunks. We introduce alignment indica-
tors between a pair of sound sequences of E and C. Within 39 English phonemes
(24 consonants, 15 vowels) and 58 pinyin symbols (23 initials and 35 finals), there
are always some indicative elements for alignment, i.e. indicators. For E, they
are all the consonants, the vowel at the first position and the second vowel of
two contiguous vowels; for C correspondingly, they are all the initials, the fi-
nal at the first position and the second final of two contiguous finals. Also, we
define the following variables: τ(S) is defined as # of indicators in sequence S
(S ∈ {E, C}); t(E, C) = max {τ(E), τ(C)} represents the maximum # of indica-
tors in E and C; d(E, C) = |τ(E)− τ(C)| is the difference of the # of indicators
in E and C.

We chunk E and C by tagging the identified indicators and compensate the
one with fewer indicators by inserting d number of mute ε at its min {τ(E), τ(C)}
possible positions ahead of its indicators. ε is practically an indicator defined for
alignment. This ensures that both sequences end up with the same number
of indicators. The t chunks separated by indicators in E should align to the
corresponding t chunks in C in the same order. They are called alignment chunks.

There are ‖A‖ =
(

d
t

)
=

t!
(t − d)!d!

number of possible alignments at chunk level

with respect to different positions of ε.
This method can guarantee each chunk contains two sound units at most.

Thus, in a pair of aligned chunks, only three mapping layouts between phoneme
elements are possible:

1. e-to-c1c2: The alignment would be e-to-c1c2 where c1c2 is considered as an
initial-final cluster (cmu);

2. e1e2-to-c1c2: The alignment at phoneme level would be extended to e1-to-c1
and e2-to-c2. Note that no new alignment is generated under this condition.
Thus, the total number of alignments remains unchanged;

3. e1e2-to-c: By adding an additional ε at C side, the alignment at phoneme
level would be extended to e1-to-c and e2-to-ε or e1-to-ε and e2-to-c. In this
case, one more new alignment will be produced and we update ‖A‖ = ‖A‖+1.

EM Training for Symbol-Mappings. We then applied EM algorithm [4, 7]
to find the Viterbi alignment for each training pair as follows:

1. Initialization: For each English-Chinese pair, assign equal weights to all
alignments generated based on phoneme chunks as ‖A‖−1.
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2. Expectation Step: For each of the 39 English phonemes, count the instances
of its different mappings from the observations on all alignments produced.
Each alignment contributes counts in proportion to its own weight. Normal-
ize the scores of the mapping units it maps to so that the mapping probability
sums to 1.

3. Maximization Step: Re-compute the alignment scores. Each alignment is
scored with the product of the scores of the symbol mappings it contains.
Normalize the alignment scores so that each pair’s scores sum to 1.

4. Repeat step 2-3 until the symbol-mapping probabilities converge, meaning
that the variation of each probability between two iterations becomes less
than a specified threshold.

With the improved alignment, the mappings crossing chunks are avoided.
Thus, the EM training becomes more precise and produces significantly fewer
possible alignments compared to the baseline.

5 Experiments and Evaluation

5.1 Data Set

We obtained the beta release v.1.0 of LDC’s Chinese-English bi-directional named
entity list compiled from Xinhua’s database, from which we chose the English-to-
Chinese proper name list of people as raw data. The list contains 572,213 foreign
people’s names and their Chinese transliterations. Note that although the list
is in English, it contains names originated from different languages (e.g. Rus-
sian, German, Spanish, Arabic, Japanese, Korean, etc.). One assumption is that
the Chinese translations were produced based on their English pronunciations
directly. The exceptions are Japanese and Korean names, which are generally
translated in terms of meaning as opposed to pronunciation, and we consider
them as noise. We resorted to CMU’s pronunciation dictionary and LDC’s Chi-
nese character table with pinyin to convert the names into a parallel corpus of
sequences of English phonemes and pinyin symbols. We ended up with 46,305
pairs, which were then used as our experimental data pool.

5.2 Performance Measurement

There is no standard for measuring machine transliteration. Some tests require
human judgment. The performance was evaluated with two levels of accuracy,
i.e. character-level accuracy (C.A.) and word level accuracy (W.A.) in [6]:

C.A. =
L − (i + d + s)

L
(7)

W.A. =
# of correct names generated

# of tested names
. (8)

In (7), L is the length of the standard transliteration of a given foreign name, and
i, d, and s are the number of insertion, deletion and substitution respectively,
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i.e. edit distance between machine-generated transliteration and the standard. If
L < (i+d+s), we set C.A. = 0. Equation (8) is the percentage of the number of
transliterations identical to the standards in all the tested names. A name often
has acceptable transliteration alternatives. Hence, we will also measure how the
percentage of the number of transliterations distributes over different character-
level accuracy ranges, which is referred to as C.A. Distribution (C.A.D.):

C.A.D. =
# of names with C.A.∈ [r1, r2)

# of tested names
(9)

where [r1, r2) (denotes r1 ≤ C.A. < r2) is the bound of a C.A. range. We set
up six C.A. ranges: [0%, 20%), [20%, 40%), [40%, 60%), [60%, 80%), [80%,
100%) and [100%]. We are especially interested in the names within the ranges
[0%, 20%) and [80%, 100%) since the former could be considered as “completely
incorrect” and the latter “acceptable”.

5.3 Experiments and Results

In each trial of our experiments, individual translation name pairs, hereafter
referred to as instances, were randomly selected from the data pool to build 10
subsets. Each respectively accounts for 10% to 100% (step=10%) of the total
instances in the entire pool. In each subset, we used 90% of the instances for
training and the remaining 10% for open test. Also the same number of instances
(10%) were randomly selected from the training data for close test.

Experiments. The baseline model was trained and tested as follows:

1. Using EM iterations in GIZA++ to obtain Viterbi alignment of each pair of
names in the training set. The bootstrapping settings were the same as [13]
(see Sect. 2). Note that the direction of estimation is from E to C directly;

2. Aligned training instances were then passed to GIS (Generalized Iterative
Scaling) algorithm for training the MaxEnt models [1, 10]. This fulfilled train-
ing the models that can transliterate phoneme sequences of given English
names into pinyin sequences;

3. Tests were conducted on the trained MaxEnt models. “Beam search” [10]
was used where a beam size of 5 was adopted. For each given name, only
top-1 transliteration was accepted.

The experiments on the improved model were conducted under similar set-
tings except that the tailored alignment scheme and the EM training (see Sect.
4.2) were applied in the step 1.

To investigate the influence of data sizes on performance, the above procedure
was applied to the 10 subsets with different data sizes as described previously.
And the performance of the model was measured by the average accuracy (C.A.
and W.A.) of 50 trials of the experiments. C.A.D. was measured with average
distributions of 50 trials on 100% data size only.
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Accuracy vs. Data Size
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Fig. 4. Comparison of baseline (BL) and improved (IM) models on C.A.&W.A. vs.
Data Size

Results and Discussions. Figure 4 shows the average C.A. and W.A. of the
baseline model (BL) and the improved model (IM) over different data sizes.
IM significantly outperforms BL on all tests. In open tests with 100% data, for
example, IM demonstrates improvements on C.A. by 8.56% and on W.A. by
11.84%. Recall that in the IM model, we chopped longer pinyin symbols, e.g.
compound finals, into smaller sound units, i.e. basic finals, and aligned chunks
of English phonemes with corresponding chunks of pinyin symbols, prohibiting
alignments across chunk borders. This could produce: 1. more precise mappings
between English phonemes and cmus; 2. less possible cmus for each English
phoneme, reducing uncertainties; 3. less cums forming illegal pinyin syllables,
leading to more legitimate pinyin sequences. The figure also shows that with
enough instances, the models could achieve almost equal performance in open
tests to closed ones.

Figure 5 shows the average percentage of the number of transliterations dis-
tributed over their C.A. values (on all data). For C.A. ranging from 0% to
80%, BL produced more transliterations throughout the four ranges than IM. In
the remaining C.A. ranges, IM produced more high-quality transliterations (see
C.A. ≥ 80%) and considerably more correct transliterations (see C.A. = 100%)
than BL.
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Fig. 5. Comparison of baseline (BL) and improved (ML) models on C.A.D.

Table 2. Results of comparisons on different systems

Systems/Accuracy SC BL IM
Close 66.35% 68.18% 76.97%

C.A.
Open 65.15% 67.18% 75.08%
Close 20.73% 23.47% 36.19%

W.A.
Open 18.27% 21.49% 32.50%

5.4 Comparisons with Source-Channel System

We compared our work with the source-channel (SC) system described in [13].
Their method (the first translation system) was replicated with the only excep-
tion that we obtained phoneme sequences of foreign names via a lookup of CMU’s
pronunciation dictionary, whereas they adopted the Festival text-to-speech sys-
tem for English pronunciations. Then we tested the SC system, our BL system
and IM system using the entire data pool with 41,674 instances for training and
the remaining 4,631 for testing. The language model of SC system was trained
on the 41,674 pinyin sequences in the training portion, similarly using trigram
by CMU-Cambridge toolkits as [13]. The results are shown in Table 2. Our BL
and IM system outperformed the source-channel approach by about 3% and 10%
respectively in all tests using the same data set.
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6 Conclusion

We modeled English-to-Chinese transliteration as direct phonetic mapping from
English phonemes to a set of basic pinyin symbols plus dynamically discovered
mapping units from training. Contextual features of each phoneme are taken
into consideration in the model. An effective algorithm for precise alignment
of phoneme chunks was presented, which demonstrated improvements on per-
formance. Comparisons show that our approaches significantly outperforms tra-
ditional source-channel model. Future work will include incorporating different
features, such as additional contexts, target language model, or even the com-
position of direct and inverted transliteration model under MaxEnt framework.
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