
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2019

CrowdBC: A blockchain-based decentralized framework for CrowdBC: A blockchain-based decentralized framework for

crowdsourcing crowdsourcing

Ming LI
Jinan University - China

Jian WENG
Jinan University - China

Anjia YANG
Jinan University - China

Wei LU
Sun Yat-sen University

Yue ZHANG
Jinan University - China

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
LI, Ming; WENG, Jian; YANG, Anjia; LU, Wei; ZHANG, Yue; HOU, Lin; LIU, Jiannan; XIANG, Yang; and DENG,
Robert H.. CrowdBC: A blockchain-based decentralized framework for crowdsourcing. (2019). IEEE
Transactions on Parallel and Distributed Systems. 30, (6), 1251-1266.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4625

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ming LI, Jian WENG, Anjia YANG, Wei LU, Yue ZHANG, Lin HOU, Jiannan LIU, Yang XIANG, and Robert H.
DENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4625

https://ink.library.smu.edu.sg/sis_research/4625

1

CrowdBC: A Blockchain-based Decentralized
Framework for Crowdsourcing

Ming Li, Jian Weng, Anjia Yang, Wei Lu,Yue Zhang, Lin Hou, Jia-Nan Liu, Yang Xiang, Robert H. Deng

Abstract—Crowdsourcing systems which utilize the human intelligence to solve complex tasks have gained considerable interest and
adoption in recent years. However, the majority of existing crowdsourcing systems rely on central servers, which are subject to the
weaknesses of traditional trust-based model, such as single point of failure. They are also vulnerable to distributed denial of service
(DDoS) and Sybil attacks due to malicious users involvement. In addition, high service fees from the crowdsourcing platform may
hinder the development of crowdsourcing. How to address these potential issues has both research and substantial value. In this
paper, we conceptualize a blockchain-based decentralized framework for crowdsourcing named CrowdBC, in which a requester’s task
can be solved by a crowd of workers without relying on any third trusted institution, users’ privacy can be guaranteed and only low
transaction fees are required. In particular, we introduce the architecture of our proposed framework, based on which we give a
concrete scheme. We further implement a software prototype on Ethereum public test network with real-world dataset. Experiment
results show the feasibility, usability and scalability of our proposed crowdsourcing system.

Index Terms—Decentralized framework, crowdsourcing, blockchain, smart contract.

F

1 INTRODUCTION

O VER the past few years, crowdsourcing has gained consider-
able interest and adoption since it is coined in 2006 by Jeff

Howe [1]. It is a distributed problem-solving model through an
open call for solutions. Nowadays, many large companies choose
crowdsourcing as a problem-solving method, ranging from web
and mobile development to t-shirt designs. There are numerous
famous crowdsourcing applications such as Upwork [2], Amazon
Mechanical Turk [3] and UBER [4]. We can expect that this field
will change the working style of people significantly.

The human intelligence-based crowdsourcing consists of three
groups of roles: requesters, workers and a centralized crowdsourc-
ing system (Fig. 1). Requesters submit tasks which are challeng-
ing for computers but easy for human to complete through the
crowdsourcing system. A set of workers who are interested in this
task compete and submit solutions to the crowdsourcing system,
while requesters will then select a proper solution (usually the first
or the best one that solves the task) and grant the corresponding
workers the reward. Taking the current world’s largest freelancer
marketplace, Upwork, for example, it requires “clients” (requester-
s) to deposit a milestone payment into the escrow account before
work begins. Then “clients” could interview or hire “freelancers”
(workers) to design or write. “Freelancers” who focus on the area

• Ming Li, Jian Weng, Anjia Yang, Yue Zhang, Lin Hou and Jianan Liu
are with the College of Information Science and Technology and the
College of Cyber Security, Jinan University, Guangzhou 510632, China.
Jian Weng is the corresponding author. E-mail: limjnu@gmail.com, cryp-
tjweng@gmail.com, anjiayang@gmail.com

• Wei Lu is with the School of Data and Computer Science, Guangdong Key
Laboratory of Information Security Technology, Sun Yat-sen University,
Guangzhou 510006, China.

• Yang Xiang is the Dean of Digital Research and Innovation Capability
Platform, Swinburne University of Technology;

• Robert H.Deng is with the School of Information Systems, Singapore
Management University.

Fig. 1: The system model of traditional crowdsourcing.

of expertise compete for the job and the winners will obtain the
reward.

However, despite the prosperity of the crowdsourcing systems,
they are subject to the weaknesses of traditional trust-based
model, which brings about some inevitable challenges. First,
traditional crowdsourcing systems are vulnerable to DDoS attacks,
remote hijacking and mischief attacks, which makes the services
unavailable. Elance and oDesk, operated by Upwork presently,
downed services for many workers due to be hit by DDoS
attacks in May 2014 [5]. Second, the majority of crowdsourcing
systems run business on a centralized server, which suffers from
single point of failure inherently. In April 2015, a service outage
emerged due to hardware failure in Uber China, which caused
passengers can’t stop the order at the end of services [6]. Third,
user’s sensitive information (e.g. name, email address and phone
number) and task solutions are saved in the database of crowd-
sourcing systems, which has the risk of privacy disclosure and
data loss. For example, one of the most prevalent crowdsourcing
systems Freelancer [7] was reported to breach the Privacy Act
for uncovering a user’s true identity which contains IP addresses,
active account and dummy accounts by Office of the Australian

Published in IEEE Transactions on Parallel and Distributed Systems,
Volume 30, Issue 6, Pages 1251-1266, June 2019,
https://doi.org/10.1109/TPDS.2018.2881735

2

Information Commissioner (OAIC) in December 2015. Fourth,
when requesters and workers are in dispute, they need help from
the crowdsourcing system to give a subjective arbitration, which
may lead to a behavior known as “false-reporting” [8]. Lastly,
crowdsourcing companies are interested in maximizing their own
benefits and require requesters paying for services, which in
turn increase user’s costs. Currently, most of the crowdsourcing
systems could demand a sliding services fee for 5% to 20% [2].

There have been many works to deal with part of the above
mentioned issues in crowdsourcing systems. Encryption and dif-
ferential privacy (DP) are used to protect data privacy [9], [10],
[11], [12], [13]. Reputation-based mechanisms are proposed to
address “false-reporting” and “free-riding” behavior [14], [15],
[16]. Distributed architectures are designed to prevent single
point of failure and bottleneck problem [17], [18]. However, the
majority of these researches are built on the traditional triangular
structure crowdsourcing models which suffer from breakdown of
trust. Up to now, none of existing works has solved all of the
above issues simultaneously. Thus, this research is motivated by
this: Can we design a decentralized crowdsourcing system with
reliability, fairness, security and low services fee? To answer this
question, we propose a blockchain-based decentralized framework
for crowdsourcing. The framework has many advantages such as
increasing user security and service availability, enhancing the
flexibility of crowdsourcing with Turing-complete programming
language and lowering cost. Therefore, our framework has the
potential to disrupt the traditional model in crowdsourcing. In a
nutshell, our specific contributions are in the following:

• We conceptualize a blockchain-based decentralized frame-
work for crowdsourcing named CrowdBC, which does
not depend on any central third party to accomplish
crowdsourcing process. CrowdBC guarantees privacy by
allowing users to register without true identity and stor-
ing encrypted solutions in the distributed storage. Each
identity makes a deposit before participation, which can
effectively thwart many attacks such as DDoS, Sybil and
“false-reporting” attacks. Moreover, users don’t need to
pay the costly service fees to traditional crowdsourcing
platform anymore, only required to pay a small amount
of transaction fees. Our framework also enhances the
flexibility of crowdsourcing by using Turing-complete
programming language to depict complex crowdsourcing
logics.

• We present a concrete scheme based on the proposed
framework. Smart contract is used to perform the whole
process of crowdsourcing task which contains task posting,
task receiving, reward assignment, etc. We introduce three
standard smart contracts in the scheme: User Register Con-
tract (URC), User Summary Contract (USC), Requester-
Worker Relationship Contract (RWRC), by which crowd-
sourcing functionalities can be achieved such as posting
and receiving a task without relying on any central author-
ity. In particular, compared with the traditional systems,
the most useful feature lies in the evaluation of tasks to be
completed via smart contract rather than a subjective third
party. We expect that this construction will be proved quite
impactful and useful in practice.

• We implement the proposed scheme to verify the feasibili-
ty through a software prototype based on Ethereum public
test network with real-world dataset. Experiment results

show the usability and scalability of our proposed crowd-
sourcing system. Furthermore, we illustrate a discussion of
future improvements to this scheme.

The remainder of the paper is organized as follows. In section
2, we present the related work. The preliminaries of blockchain
and smart contract are given in section 3. In section 4 we
present the system model, threat model, security assumptions and
technical challenges. In section 5, the description of our proposed
framework is given. Next, we present a concrete crowdsourcing
scheme under the framework and analyze the security properties
in section 6. A series of experiments are demonstrated in section 7
and finally we conclude and discuss the future work of the paper
in section 8.

2 RELATED WORK

Research on crowdsourcing has become an emerging trend
with the explosive growth of the internet and mobile devices. We
mainly review some state-of-art works in three primary areas: cen-
tralized crowdsourcing system, distributed crowdsourcing system
and blockchain-based crowdsourcing system.

Centralized crowdsourcing system. Several crowdsourcing
systems are developed in a centralized way [2], [3], [19], [20]. The
crowdsourcing services, like worker selection, incentive mech-
anism and truth discovery, are provided by these centralized
crowdsourcing systems. Upwork [2] and WAZE [19], as two
famous crowdsourcing platforms, allow requesters to efficiently
hire workers to obtain task solutions (e.g., traffic jams, accidents
in WAZE). However, they required users’ detailed information
(e.g., WAZE and Freelancer [20]) and stored user information, task
data in the centralized platform, which may suffer from privacy
leakage [7], DDoS/Sybil attacks [5] and the issue of single point of
failure [6]. [8] proposed auction-based mechanisms EFT and DFT,
[14] proposed reputation-based incentive mechanism to tackle
free-riding and false-reporting attacks in crowdsourcing, but their
methods are based on the traditional three parities model, which
is not relevant with our scheme. Besides, there exist a number of
incentive mechanisms relying on crowdsourcing system to save
the task reward, which has the risk of bankrupt inherently [21].

Distributed crowdsourcing system. There also exist several
researches on designing the distributed crowdsourcing system.
[18] presented D2 protocol to design a distributed crowdsourcing
system in Delay Tolerant Network (DTN). The authors aimed to
complete a computation task in a collaborative way and achieve
the minimal makespan. [22] proposed a task allocation scheme
by utilizing social relationship in crowdsourcing system. They
concentrated on loading balancing in distributed model. [23] in-
troduced an asynchronous and distributed task selection in mobile
crowdsensing. While [18], [22] and [23] focused on task comple-
tion in a distributed way, they actually had a centralized system to
provide services, which is not consistent with the requirement of
our idea that builds the crowdsourcing system in a decentralized
way.

Blockchain-based crowdsourcing system. [24] proposed
CrowdJury which is a blockchain-based crowdsourcing applica-
tion for court processing of adjudication. This is most related to
our approach, but the details about the design of crowdsourcing
protocols are not provided. [25] and [26] presented a blockchain-
based crowdfunding which is a specific type of crowdsourcing.
[27] raised an alternative protocol employing blockchain to tackle
the issue of small-value transactions in crowdsourcing. In addition,

3

the research on blockchain-based crowdsourcing has also gained
considerable interest in industry recently, such as microwork [28],
Gems [29]. The above mentioned works are limited to their spe-
cific applications (i.e., CrowdJury with court adjudication), whilst
in comparison, we conceptualize a blockchain-based decentralized
framework with much broader goals, such as providing a direction
for system designers to design a class of decentralized protocols
in crowdsourcing.

3 BACKGROUND

3.1 Blockchain

Bitcoin [30] is the first idea of a decentralized currency which
has attracted lots of attentions. A set of time-ordered transactions
are recorded in files called “blocks”. Each block contains the hash
value of the previous block, and they eventually form a hash chain
called “blockchain” which is essentially a public, immutable and
ordered distributed ledger. Users offer computing resources to
compete for the right of recording transactions into blockchain,
and the winner will be rewarded with coins and transaction
fee. Blockchain technology provides a new direction for us to
reduce the role of the middleman in current society [31]. And
we can easily associate blockchain with the financial sector (e.g.
Bitcoin), but the innovative potential of blockchain applications is
much more than this. The applications in different areas, such as
Micropayment schemes [32], naming and storage system [33] and
health records sharing [34], are based on blockchain technology.

Transaction: Defined as a data structure, transaction consists
of three segments: inputs, outputs and digital signature. For a
valid coin transaction, the input must be an unspent of a previous
transaction. And all transactions during a period of time are linked
together as a structure (e.g. Merkle tree) and filled into a block by
a miner. Once the block is confirmed, these transactions will not
be able to be changed anymore.

Consensus Protocol: Consensus protocol aims to determine
which miner’s block will be appended on the blockchain. Gen-
erally, the miner gets the recording right by affording a valid
proof which can be confirmed correct by other miners, such as
a challenging computational puzzle in Bitcoin. In particular, the
consensus blockchain is also the longest chain, which refers to
the largest work to be produced. There exist several kinds of
consensus protocol, such as proof of work (PoW) [30] and proof
of stake (PoS) [35].

Network: Blockchain uses a peer-to-peer (P2P) network,
which is a distributed application architecture [36]. Unlike the
traditional Client/Server mode, Nodes in P2P network have equal
privilege without a central coordination by servers or stable hosts,
i.e., they are both suppliers and consumers of resources.

Blockchain Paradigm: Blockchain can be viewed as a
transaction-based state machine [37]. Each state includes informa-
tion like a nonce, account balances, data expressing information
of the physical world, etc. It’s updated from a genesis state to a
final state after each transaction. In this scheme, we focus on smart
contract execution and state transition. Let’s give a description of
blockchain paradigm by describing a simplified transaction that
depicts a smart contract execution here. A transaction T x could
activate the code execution of smart contract. Then, a valid state
transition from σ to σt+1 via T x is denoted as: σt+1 = F(σ ,T x),
where F refers to arbitrary computation which is carried out by
blockchain, and σ can store arbitrary state between transactions.

Fig. 2: The system model of CrowdBC.

3.2 Smart Contract
Smart contract, which refers to the Blockchain 2.0 space [38],

is proposed by Nick Szabo in 1994 [39]. It depicts complex logics
by programming common process into code and represents the
implementation of contract-based agreement. It is essentially a
self-executing digital contract in a secure environment with no
intervention and verified through network peers. The main reason
for difficult to realize smart contract before is that it’s hard to
find a secure environment which is decentralized, unalterable and
programmable. The advent of blockchain technology could solve
this problem perfectly. Currently, there exist several blockchain
platforms supporting smart contract, two famous of which are
Ethereum [37] and Hyperledger [40]. They are designed to run
smart contract without frauds, downtime or any third party inter-
ference.

4 SYSTEM MODEL

In this section, we present the system model and the workflow
for blockchain-based crowdsourcing. Based on the system model,
we formulate the threats and analyze the technical challenges.
Before formulating the problem, we show the notations within
this paper as in table 1.

4.1 Decentralized Crowdsourcing System Model
As shown in the Fig. 2, there exist four roles in the model of

the proposed framework: Requester, Worker, CrowdBC Client,
and Miner.

Requesters, identified by R = {R1, ...,Ri, ...,Rn}, post a task
by transferring task descriptions into programs. To stimulate
workers participating in and prevent any unfair event, a certain
amount of reward v and and a monetary penalty πR are required
as the deposit (i.e., depositR = v+πR) which cannot be redeemed
before deadline.

Workers, identified by W={W1, ...,Wj, ...,Wm}, are the com-
munity who have certain skills and compete for tasks to get
rewards. Worker Wj is selected depending on a tuple of reliabil-
ity value {βW j ,categoryk(εk,ϕk)}, where categoryk(εk,ϕk) denotes
that worker Wj has received the task of categoryk and submitted
solutions to this category task for εk times and got ϕk high
evaluation. We require that each worker makes a deposit πW j on
blockchain to thwart DDoS and Sybil attack. Upon the evalua-
tion of the solution, Wj is assigned with corresponding rewards
vR. Note that we define the solutions submitted by workers as
s = {s1, ...,s j, ...,sm}.

CrowdBC Client, served as a medium for R and W, is not
controlled by any third party, just like Bitcoin Core in Bitcoin. It

4

TABLE 1: The notations of explanation.

Notation Explanation
R = {R1, ...,Ri, ...,Rn} Set of requesters, i = 1, ...,n

W = {W1, ...,Wj, ...,Wm} Set of requesters, j = 1, ...,m
βW j The reputation value of worker Wj

K p
u ,Ks

u,K
a
u The public key, secret key and address of

user u
H(M) The hash value of the message M

Sign(M)Ks
u The digital signature on message M with

secret key Ks
u

Verify(M)K p
u

The function to check u’s digital signature
M with public key K p

u

coins(v) The virtual coin of value v
s j The submitted solution of worker Wj

T Ideadline The task deadline which refers to the future
block height

T Icon f irm The task confirmation time which refers re-
quester should finish solution confirmation
in the special block height

T T refer to the task information

could run locally on user’s personal computer. R and W reach to
the agreement by transactions in CrowdBC.

Miners mainly add past transactions into a block and provide
a valid proof to claim the block reward and transaction fees (i.e.,
mining). The security of the underlying blockchain is built on top
of these miners. Note that R and W can also be viewed as miners
if they participate in the mining work.

In our scheme, we require that R and W register to get
the credentials before obtaining services from our system, i.e.,
Ri = (K p

Ri
,Ks

Ri
,Ka

Ri
) and Wj = (K p

W j
,Ks

W j
,Ka

W j
) (private key is

saved by users). Then, Ri can post a special category task
T by utilizing CrowdBC Client which sends a transaction to
the blockchain. There have many category of tasks (e.g., JAVA
software development, logo design) which are pre-defined in
program, category = {category1, ...categoryk}. The authenticated
worker whose reliability value satisfies the minimum condition
can receive the task. Using the Turing-complete programs in
blockchain, W can reach agreements with R. Upon the evaluation
of the solution, W are assigned with corresponding rewards.

4.2 Threat Models

The potential malicious requesters and workers have specif-
ically different goals to maximize their own profits. We firstly
define the threat model which illustrates potential threats and
malicious behaviors as follows:

Malicious Requesters: Malicious requesters aim to collec-
t useful solutions without losing the deposit, which is false-
reporting attack in essential. To achieve this goal, they may
misreport the evaluation solution as low level even if workers
contribute high-quality of solution. In addition, they may even
deny they have obtained the solutions. Besides, we require re-
questers make a deposit in our protocol, while they may benefit
from not following or even breaking the protocol, which means
that malicious requesters may attempt to create a fork chain after
they receive the solutions.

Malicious Workers: Malicious workers attempt to obtain re-
wards without paying sufficient effort, which is free-riding attack.
The same as the malicious requesters, they may benefit from not
following or even breaking time-locked deposit protocol, which

means malicious workers may try to create a fork chain if they
receive low level evaluation. They may receive the task but not
submit solutions on time, which could discourage requesters from
participating in the crowdsourcing system. In particular, they may
deny the low-quality solution because there does not exist a third
party to audit it, which is a trust problem. Besides, since their
reputation and expertise data play a vital role in verifying the
qualification when receiving the task, they may improve these data
with posting a task by themselves.

Malicious Miners: The malicious miners attempt to earn
much virtual coins by forking a chain or colluding with malicious
requesters or workers to break the normal execution of program
on blockchain.

We formalize a security property as fully fraud resistant and
give the definition as follows:

Definition. (Fully Fraud Resistant) The crowdsourcing sys-
tem is fully fraud resistant if none of the following condition
happens:

• Requesters can bring back their rewards for workers if they
get effective solutions.

• Workers can redeem their deposits if they do not submit
solutions on time or contribute low-quality solutions.

4.3 Security Assumption
Majority Honest Security: The security of crowdsourcing

task in CrowdBC is related with the security of blockchain. Con-
sidering that requesters and workers can take part in mining, we
assume that the attacker (including malicious requesters, workers
and miners) cannot break the fundamental security of blockchain,
namely, the attacker does not have the majority of power or
resource to control the blockchain network and the majority of
miners are honest. The network has low latency and messages are
synchronous between honest miners.

Assume that there exist n total miners in crowdsourcing system
(including requesters and workers who participate in maintaining
the system as miners), and α be percentage of malicious miners
who try to create a fork chain to their own advantage. Each
miner tries to find a block (e.g., provides a POW solution) with
probability p for every hash computation, and for the total number
of q computations in a round (which can be viewed as a function of
current time T, r = r(T)). The parameter that reflects the hashing
power of the honest miners can be denoted by X = (1−α)npq,
and similarly Z =αnpq represents the hashing power of malicious
miners. For malicious miners, they may violate the blockchain
protocol by withholding blocks and not broadcasting them to the
network, while for honest miners they can only accept one block
in a round no matter how many blocks were generated. Thus the
probability that honest miners find at least one block in a round is
1− (1− p)(1−α)nq, and the probability that honest miner find only
one block is (1−α)nqp(1− p)((1−α)nq−1). We denote Y the lower
bound of the probability, that for p < 0.1 and θ ∈ (p,2), we have:

1− (1− p)(1−α)nq ≥ (1−α)nqp(1− p)((1−α)nq−1)

≥ θe(−θ−p) = Y
(1)

Secure Transfer with Wallet: Compared with traditional
crowdsourcing system in money reward or exchange, we use
virtual coins in blockchain. Coins can be obtained by mining
or transferring with others. We assume that each user who has
the secret key can securely possess and transfer it with the client
wallet.

5

Secure Encryption Algorithm: We assume that the solution is
encrypted by leveraging a secure public key encryption algorithm.
Workers use the corresponding requester’s public key to encrypt
the solutions. Requesters could decrypt the solutions successfully
by the secret key. Specifically, the solutions are saved as cipher
text in distributed database.

4.4 Technical Challenges

Traditional crowdsourcing relies on a centralized system to
post and receive tasks, which is essentially a three-party system
model. The blockchain technology has provided a promising way
to solve the trust issue among multiple parties. One may simply
adopt the blockchain technology in crowdsourcing by using smart
contract to depict the process of task crowdsourcing: requester
posts a task with the task reward by smart contract and workers
can receive it by operating the contract. When the task is finished,
workers give solutions to requester in off-chain. However, as
pointed out in the threat model, requesters and workers may ben-
efit from not following this process. Requesters may evaluate the
solution to be low-quality even if workers pay high effort, or deny
obtaining workers’ solutions for short of the arbiters. Workers may
pay low effort to submit solutions for the sake of task reward, or
even receive the task but not submit solution. Different from the
digital currency transfer in Bitcoin, it could be more complicated
that numerous malicious behaviors may discourage requesters and
workers from participating in the blockchain-based crowdsourcing
system. Therefore, how to ensure the fairness between requesters
and workers under the decentralized crowdsourcing system is our
first challenge:

Challenges 1: Utilizing the blockchain technology to enhance
crowdsourcing, while lacking an efficient scheme to ensure the
fairness between requesters and workers under the fully decen-
tralized framework.

The blockchain is an infinite extended ledger that new blocks
will be created continuously. It is improper to put too much
data on blockchain. However, crowdsourcing task may contain
huge size of data. Taking image tagging task for example, there
may be thousands of images to be labeled, which is impossible
to put these data in block. What’s worse, huge block data has
an effect on the message synchronization and takes too much
disk size. For example, at 29 May 2018, a full mining node of
bitcoin needs to occupy 156G total disk space to synchronize with
the network. Thus, how to store the large-scale crowdsourcing
data under blockchain-based crowdsourcing system is our second
challenge:

Challenges 2: Performing large scale crowdsourcing process
atop on blockchain technology while limited data storage on block.

5 CROWDBC: BLOCKCHAIN-BASED DECENTRAL-
IZED FRAMEWORK FOR CROWDSOURCING

5.1 Overview of CrowdBC

Combining the advantages of blockchain, we formalize a de-
centralized crowdsourcing framework named CrowdBC. It allows
users to finish a crowdsourcing process in the logic plane and store
their encrypted solutions in the data plane. First and foremost,
CrowdBC Client is designed as the user interface in the logic
plane, and it runs locally on user’s personal computer without
depending on any central server. More importantly, CrowdBC

Client allows workers and requesters to interact with the underly-
ing blockchain. Requesters and workers reach an agreement on top
of blockchain which is used to achieve eventual consensus on the
state of each task. It supports all operations for the crowdsourcing,
such as registration, posting task and receiving task.

Three Layers Architecture: Inspired by [33], we divide
CrowdBC into three layers: the application layer, blockchain layer
and storage layer. As shown in Fig. 3, two layers (application and
blockchain layer) lie in the logic plane and one layer (storage
layer) lies in the data plane. Workers with special skills could
query and compete tasks which are posted by requesters in the
application layer. The blockchain layer uses the task state changes
as input to achieve consensus between workers and requesters.
Notice that, there exist lots of data collected from requesters
and workers, because of the limited data storage capacity in
blockchain. We separate the logic layer and the data layer and
believe this separation can improve CrowdBC’s data storage
significantly. We put the task metadata (such as data size, owner,
hash value, pointer) in the blockchain layer and raw data in the
storage layer. Thus, users do not need to trust the data saved in
the data layer and they can verify the integrity and authenticity of
data in the logic layer.

Underlying Blockchain: Without loss of generality, the
blockchain we adopt supports execution of any arbitrary “pro-
gram” which is short for Turing-complete program (e.g. smart
contract). We assume that each blockchain platform has a “Com-
piler” to compile the “program”. And how to build a compiler is
out of the scope of this paper and we do not depict here. We design
an user interface module in the client for workers and requesters
to interact with the “program” and the blockchain.

State Machine Construction: Our framework constructs a
state machine to depict task processing. It depicts the task life
cycle, and each state represents the global status of the task. The
task is triggered from the current state to the next state with users’s
valid input in the application layer. Fig. 4 shows the different
states that a task can be in and how the state transfers. Each task
generates a new state machine and the global state of the task
is updated successfully when a new block is created. There exist
six states: Pending, Unclaimed, Claimed, Evaluating, Canceled,
Completed. Users can query task’s current state at any time by
themselves.

5.2 CrowdBC Layers

Now, we present the architecture of CrowdBC which contains
two planes: the logic plane and the data plane. The logic plane,
which consists of the application layer and blockchain layer, is
used as providing user management and task management for
requesters and workers. The data plane which is responsible for
task data or solution storage mainly refers to the storage layer.

5.2.1 Application Layer
The application layer mainly refers to CrowdBC Client. It

provides users with entrance to finish a crowdsourcing task and
contains three main modules: User Manager (UM), Task Manager
(TM) and Program Compiler. The client runs correctly without
relying on a central server, even there exist some failed nodes,
the services for crowdsourcing are not affected in CrowdBC. This
design can improve the security of crowdsourcing system.

To make it more clearly, we introduce each module’s function
respectively. UM acts as the registration and user information

6

User Manager

Miner Miner

Program Compiler

Consensus Protocol

Miner

Block

Cloud Cloud

Metadata: Pointer, hash
value, signature, etc.

Task data or solutions

Network Transaction

Miner

Layer 3:
Storage
Layer

Layer 2:
Blockchain
Layer

Layer 1:
Application
Layer

block n block n+1 block n+2 block n+3

Task Manager

CrowdBC Client

block n+4

Fig. 3: Overview of CrowdBC’s architecture.

management. Users should first register before starting the crowd-
sourcing task. They do not need to provide true identities and just
register with key pairs (a public key and private key). Meanwhile,
each identification is related with a default reputation value. The
value is changed upon the worker’s behavior and cannot be
updated by himself/herself. A new user fills personal informa-
tion which refers mainly on key pair and description with the
client, and creates a new “program” in the blockchain. A middle
module “Program Compiler” is built to convert the new creating
“program” into executable language of the blockchain layer. Once
the “program” is written into the blockchain, the user registers
successfully. Then, he/she can post or receive a task based on TM
which is the task management module. Crowdsourcing tasks are
depicted into “program” and run in the blockchain, including task
posting, task receiving, solution submission and reward assign-
ment. Remarkably, in order to get satisfactory results, the requester
only allows qualified workers who reach a minimum reputation
value to receive the task. We will give the detailed description
about the decentralized crowdsourcing protocol in section 6.4.

5.2.2 Blockchain Layer
The blockchain layer is the middle tier and serves two pur-

poses: 1) providing consensus on the order in which “program”
is written and 2) running state machine. The “program” is sent to
the blockchain layer after being compiled, then they are written
to the blockchain after being confirmed by miners. The proposed
framework defines the logic of state transition by the “program”
via cryptographically-secured transactions. State machine uses
valid input from the application layer and triggers task state
changes in the blockchain layer ultimately.

Generally speaking, blocks in blockchain layer should not hold
too much data. Otherwise, it will have an affect on the network
synchronization and take too much disk space. In order to reduce
the data size stored on blockchain, we separate the metadata
(including owner, time stamp, pointer, data hash value, etc.) from
the actual storage of data. In detail, the task attachments and
solution data are stored off-blockchain in the distributed database.
A data pointer which consists of a query string is saved in the
blockchain and can be used to find the data in the storage layer.
Besides, the hash value of the data is saved in the blockchain,

Fig. 4: State machine model for a task.

which can guarantee the data have not been changed in the storage
layer. By this way, the data storage capacity of our framework
increases obviously.

5.2.3 Storage Layer

The storage layer is the lowest tier, which is mainly used to
store the actual data values of tasks and solutions. We do not
adopt any particular storage in the framework, instead allowing
multiple storage providers to coexist, such as S3, IPFS [41] or
a distributed Hashtable (e.g. Kademilia [42]). The data values
are signed by private keys of the owners. Users donnot need to
believe the data stored in the storage layer, and they could check
the authenticity and integrity of the data values by data’s hash
and digital signature in the blockchain layer. In addition, worker
submits a solution to the system and use requester’s public key
to encrypt the solution, which means only requester can decrypt
it. In this way, we can ensure data security and prevent data from
being leaked to irrelevant users. In particular, by storing task data
outside of the blockchain, CrowdBC allows values of arbitrary
size and satisfies actual demands for crowdsourcing.

5.3 The Crowdsourcing Process in CrowdBC

In this section, we describe the general process of our frame-
work. Based on CrowdBC Client, our framework consists of six
steps as follows:

Step1. In the first step, requesters and workers register in
CrowdBC. CrowdBC Client transfers users’ information into the
input of “program” which is written into a transaction and will be
sent to blockchain. Each registered user is assigned with a public
key pair.

Step2. Updating “program” can be seen as a transaction which
needs to be confirmed by miners. The following steps are all
related with this step and it depicts that the data and status are
recorded on the blockchain permanently.

Step3. It is performed by requester to post tasks. Requesters
are required to pay reward in advance and payments are deposited
on the blockchain. Meanwhile, a rule for workers is set by
requesters to ensure that qualified workers could ultimately receive
the task. An evaluation function is also required, and thus the
solution can be evaluated by miners on the blockchain instead of
the requester or the crowdsourcing system.

Step4. Registered workers receive the posted task by interact-
ing with CrowdBC Client. Each worker receives a task should

7

deposit some coins or a reputation value to ensure the quality of
the task.

Step5. Workers submit solutions before the task deadline when
they finish the task. The solutions are encrypted with the requester
public key and sent to the distributed storage. Meanwhile, a hash
value and pointer are stored on the blockchain. Requester could
find the solutions by the pointer and decrypt them with his private
key.

Step6. The last step is about solution collection, reward as-
signment and task evaluation. Workers or requesters can complete
this step initiatively by publishing a transaction to the blockchain.
Rewards are automatically assigned to workers according to the
evaluation results which determine how many rewards they can
obtain and are related to their efforts. High efforts and good
performances will get more reward and improve the reputation.

6 A CONCRETE IMPLEMENTATION OF CROWDBC
6.1 Crowdsourcing Smart Contracts

In this section, we present a concrete scheme of CrowdBC.
The blockchain which supports smart contracts is adopted in
the design. From here on, we denote the “program” as smart
contract. We implement three types of smart contracts: User Reg-
ister Contract (URC), User Summary Contract (USC), Requester-
Worker Relationship Contract (RWRC). Fig. 5 shows the contract
structures and relationships.

Basically, user (R or W) information is divided into two parts:
basic information and detailed information. The basic information
which contains name, address and type are saved in the global
URC contract. The latter, including one user’s profile, expertise,
reputation and task list, are saved in USC and updated with the
task processing. Notice that USC is created simultaneously when
a user successfully registers in URC. Besides, R and W reach the
agreement in RWRC which depicts the constraint condition in the
task processing.

Specially, there exist three important algorithms: coin
processing algorithm lockUtil(·), reputation updating algorith-
m updateReputation(·) and solution evaluation algorithm
solutionEvaluate(·). The first algorithm is to lock the deposits
on the blockchain before the deadline and assign reward to the
workers upon the last algorithm result. The second algorithm is to
manage workers’ reputation. The value of reputation and expertise
are automatically updated only with the completed task. Crowd-
BC evaluates the solution on blockchain with the automatically
executed smart contract. With respect to the last algorithm, we
assume that there exists a trustful truth discovery algorithm that
can evaluate the solutions submitted by a well-defined function
solutionEvaluate(·) in the programs. There exist some emerged
technologies supporting this process [43], [44], [45], [46], such
as indistinguishability obfuscation [47], homomorphic encryption
[48]. How to design an appropriated evaluation mechanism in
the decentralized crowdsourcing framework is an important is-
sue and we will extend this work in the future. The reward
assignment and reliability value updating rely on the output of
solutionEvaluate(·). For simplicity, the output will be “H” (high
level of effort) or “L” (low level of effort).

Traditional crowdsourcing systems focus on detecting cheating
or malicious behaviors after workers have submitted results. In
contrast, CrowdBC selects trustworthy workers based on reputa-
tion and reliability value in smart contract, which can effectively
improve the quality of results. In order to achieve this goal,

Alice

Bob

...

User Register Contract (URC)

Address USC address

Address USC address

Alice address

Profile Reputation

Expertise Activity

User Summary Contract (USC)

Requester-Worker Relationship
Contract (RWRC)

id1 RWRC address

id2 RWRC address
...

Owner Status

Task pointer

Deposit Evaluation

Task list

URC

USC
(worker1)

USC
(worker2)

USC
(requester1)

USC
(requester2)

RWRC RWRC

Taskid address taskid address taskid address

Address discovery

Status

Status
...

...

...

Task 2Task 1

Fig. 5: The structure of smart contracts in CrowdBC and data
references.

we combine expertise-aware with reputation to choose worker-
s in RWRC. Each worker Wj is associated with an attribute
Lists[] which contains the crowdsourcing task in special type
that they have received and finished. In particular, Lists[] =
{category1(ε1,ϕ1), ...,categoryk(εk,ϕk)}. The reliability relk of
Wj in category categoryk task can be calculated by relk = εk/ϕk.
It can be used to verify if a worker is somehow topic expert in
special category.

6.1.1 User Register Contract (URC)
Upon registration, each requester or worker does not need

to submit his/her true identity, and will be assigned with a
key pair: a “public key” and a “private key”. The global URC
contract produces a user’s address by generating a hash with the
public key. The address contains no information about the user,
which provides users with much higher-level privacy than users
in traditional crowdsourcing systems. Meanwhile, a USC contract
corresponding to the new registered user will be created.

As mentioned above, users are allowed to use pseudonyms
to finish transactions. However, some workers may register with
true identity that can be authenticated in certified institutions,
which can increase the probability of receiving task in CrowdBC.
Besides, we set rules into the URC contract that registering new
identities will be recognized and the mapping of the total user
list could be updated. Notice that updating or creating a contract
need transaction fee which is paid by the party who publishes it.
Transaction fee is given to miners who confirm the transaction and
support CrowdBC running persistently.

6.1.2 User Summary Contract (USC)
This contract stores the personal statistics information and

evaluation for requesters and workers according to their past
behavior. We establish multi-metrics to evaluate workers and re-
questers in USC for the sake of reducing any subjective judgment,
including profile, reputation, task general description and activity.
Profile mainly describes user basic information, including skills,
profession, etc. Specially, if users register with true identities,
profile also contains a digital signature signed by a certificate

8

authority, and users can authenticate identities by their public
keys. This metric is set up when users register at the first time
and can be updated by themselves. Reputation βW is an important
parameter which is initialized with default value and updated
with the completion of the task. In our framework, we build
the reputation-based incentive mechanism based on [14], which
will be described in section 6.3. High reputation value reflects
a user’s good performance in the past. Task general description
refers to the summary information about task statistics, including
total receiving task lists and high evaluation task list (i.e., (ε,ϕ)).
Activity describes the level of activity and working extent for users,
including proportion of task-delay, biding number. High activity
level depicts hard working with tasks. It is worth noting that these
metrics cannot be changed easily by any single third party and are
automatically updated only with the related completed task.

Workers find an uncompleted task by querying requester’s task
list in USC. Each task in USC has a status. Tasks in the state of
Pending or Unclaimed illustrate that they still accept solutions
and the qualified workers can receive the task and verify the task
signature with requester’s public key. USC also contains a list
of task addresses which can point to user’s previous task in the
Requester-Worker Relationship Contract (RWRC).

6.1.3 Requester-Worker Relationship Contract (RWRC)
Requester-Worker Relationship Contract (RWRC) depicts

the agreement between requesters and workers, which is about
the process of task posting, task receiving, solution evaluation,
and reward assignment. It is created when requester posts a task
T and publishes the task information, T = {desc,K p

R ,coins(v+
πR),(βk,εk,ϕk),λT Ideadline,T Icon f irm,soluationEvaluation(·)}.
Requester posts the task T in a transaction with his/her private
key and other workers could check it by the corresponding public
key.

When Wj wants to receive task, RWRC contains a validation
function checkWorkerQualification(·) and checks if worker’s
reputation and reliability value satisfy the minimum limited.
Generally, a minimum reputation and reliability value is set to
avoid low level workers. Meanwhile, requester defines a fixed
worker pool Wpool to store workers’ addresses, the size of workers
pool λ is corresponding to required workers, and each worker who
satisfies the validation function would add his/her address to Wpool .
If workers are qualified, they update RWRC by publishing it to
the blockchain, which represents they receive a task successfully.
RWRC contract cannot receive workers if the size of Wpool
exceeding λ . Requester cannot assign the task to workers more
than he/she could pay, because smart contract is published on the
network and each miner would verify.

As mentioned before, the data saved on the blockchain should
not be too large due to the limited storage. Thus we put only
the task metadata on the blockchain by RWRC and other detail
information to the distributed storage layer. Moreover, in order to
prevent requesters from behaving as “false-reporting” and workers
from behaving as “free-riding” in pursuit of self-interest maxi-
mization, a timed-locked deposit protocol is constructed, which
will be depicted in section 6.2. Making a deposit before processing
crowdsourcing task is a unique feature which is necessary under
our framework to guarantee the fairness of the users. Note that
if worker submits an effective solution which is confirmed by a
miner, the deposit will be returned back to him/her; otherwise, the
coin will be deducted by requester and worker’s reputation value
will be reduced.

Different from the traditional model in which solutions are
evaluated by requester or the crowdsourcing system, the solutions
in CrowdBC are evaluated by miners. The evaluation function
solutionEvaluate(·) is posted with RWRC by requester and
miners could verify the solutions without knowing the solution
details.

As to data storage, a particular space is allocated for each
RWRC in the storage layer. Task attachments and solutions are
stored in the space, and the corresponding hash values are recorded
in the blockchain to guarantee solutions unaltered at the source.
Especially, to protect data privacy, workers use requester’s public
key to encrypt the solutions. Requester can decrypt them and
verify the integrity of the data values in the blockchain layer.
On the other hand, a pointer is created once worker submits the
solution successfully. It is also written in RWRC and can be used
to find the solution for requester.

6.2 Time-locked Deposit Protocol for Crowdsourcing
Our key idea is letting requesters and workers obtain fair

results atop on blockchain without relying on central crowdsourc-
ing platform. To prevent false-reporting and free-riding attacks,
participants are required to make a time-locked deposit as a
guarantee to regulate their behavior. The deposit which can be
funds or reputation value (only for workers) will be assigned to
designated entities according to the pre-defined smart contract.
Some works have been done to achieve time-locked blockchain
deposit protocol [49], [50], [51]. These protocols enable one party
(payer) to exchange with other parities (payee) to lock a certain
coins as a guarantee on blockchain. To prevent equivocation
attack, the party cannot redeem the deposit until deadline even
if he/she has the secret key. However, these protocols cannot be
directly applied to crowdsourcing scenario with two reasons: one
is that workers are not explicit when requester makes the deposit.
The other is that they assume that payees are honest and may not
perform malicious behavior, while this is not always the case in
CrowdBC.

Inspired by [52], [53], we illustrate F∗RR (RR stands for
“refund-or-reward”), a time-locked deposit protocol for crowd-
sourcing. The adversary will be punished with monetary or repu-
tation penalty when he/she aborts or breaks the task crowdsourcing
protocol which is pre-defined in F∗RR. The other honest party will
be compensated with adversary’s deposit. F∗RR allows requester
to send coins to worker under some condition. In special, the
condition is to verify if the solutions submitted by workers satisfy
pre-defined requirements (i.e., solutionEvaluate(·)). We define
F∗RR scheme to be a tuple of phases as shown in Fig. 6.

6.3 Reputation Management
CrowdBC builds the incentive mechanism based on users’ past

behavior. Requesters are demanded to pay money before they post
task, so we mainly focus on workers’ reputation. Each worker is
assigned with a reputation which can be viewed as one of the
important references for requesters when they choose workers. A
high reputation reflects their good behaviors on solving tasks in
the past; otherwise, they will be limited to participate in some
tasks.

Unlike traditional crowdsourcing systems where the reputation
management is implemented by the third party, we define the
protocols and implement them in the decentralized blockchain.
Each worker is tagged with a reputation βW . βW is an integer

9

4

TABLE 1: The notations of explanation.

Time-locked Deposit Protocol for Crowdsourcing F∗RR

Phase 1. RDeposit. Upon receiving RDepositRi := {sid,T,T Ideadline,T Icon f irm,K
p
Ri
,(βk,εk,δk),λ ,coins(v+πRi)T I ,solutionEvaluate(·)} from

the requester Ri, record the message RDepositRi to the blockchain network by creating RWRC and workers can find it, where sid is the
session id, coins(v+πRi)T I is the deposit that can only be unlocked after T Ideadline by the requester or the task being received by workers
W = {W1, ...,Wj, ...,Wm} with the signature in Phase 2.

Phase 2. WDeposit. Before T Ideadline, Wj checks if the remaining deposit is not redeemed and receives the task if he/she satis-
fies the conditions (i.e., βW j ≥ βk and the expertise value satisfies relW j ≥ relk and δW j ≥ δk). Then, Wj sends WDepositW j :=
{sid,T,T Ideadline,T Icon f irm,K

p
Ri
,K p

W j
,coins(vRi)T I ,coins(πW j)T I ,redeem(·)} to the blockchain network. coins(vRi)T I is transferred in-

to WDepositW j with worker’s signature. Creating the redeem script that takes task solution as input following the protocol:
redeem(·) =Verify({·})K p

Ri
∧ (Verify({·})K p

Wj
∨solutionEvaluation(·))

Phase 3. Claim. Before T Ideadline, Wj submits the solution to the distributed storage system and gives the address to Ri. Ri confirms the
solution and sends Sign(s j)Ks

Ri
to Wj. Then, Wj submits the claim transaction in RWRC by providing signature Sign(s j)Ks

Ri
and Sign(s j)Ks

Wj
)

to redeem the reward: Claim := {sid,T,K p
Ri
,K p

W j
,coins(vRi)T I ,coins(πW j)T I ,Sign(s j)Ks

Ri
,Sign(s j)Ks

Wj
}.

Phase 4. Reward. Before T Icon f irm, Ri or Wj may initially launch the reward phase. They check if RDepositRi and WDepositW j are not
deleted and get enough confirmations in blockchain for security. Then, one of them broadcasts a transaction that redeems the deposit:

- If solutionEvaluate(·)=H, sending coins(vRi +πW j) to the worker Wj.

- If solutionEvaluate(·)=L, sending coins(vRi) to the requester Ri and coins(πW j) to the worker Wj.

CrowdBC Client, served as a medium for R and W, is not
controlled by any third party, just like Bitcoin Core in Bitcoin. It
could run locally on user’s personal computer. R and W reach to
the agreement by transactions in CrowdBC.

Miners mainly add past transactions into a block and provide
a valid proof to claim the block reward and transaction fees (i.e.,
mining). The security of the underlying blockchain is built on top
of these miners. Note that R and W can also be viewed as miners
if they participate in the mining work.

In our scheme, we require that R and W register to get
the credentials before obtaining services from our system, i.e.,
Ri = (K p

Ri
,Ks

Ri
,Ka

Ri
) and Wj = (K p

W j
,Ks

W j
,Ka

W j
) (private key is

saved by user). Then, Ri can post a special category task T
by utilizing CrowdBC Client which sends a transaction to the
blockchain. There have many category of tasks (e.g., JAVA
software development, logo design) which are pre-defined in
program, category = {category1, ...categoryk}. The authenticated
worker whose reliability value satisfies the minimum condition
can receive the task. Using the Turing-complete programs in
blockchain, W can reach agreements with R. Upon the evaluation
of the solution, W are assigned with corresponding rewards.

4.2 Threat Models

The potential malicious requesters and workers have specif-
ically different goals to maximize their own profits. We firstly
define the threat model which illustrates potential threats and
malicious behaviors as follows:

Malicious Requesters: Malicious requesters aim to collec-
t useful solutions without losing the deposit, which is false-
reporting attack in essential. To achieve this goal, they may
misreport the evaluation solution as low level even if workers
contribute high-quality of solution. In addition, they may even
deny they have obtained the solutions. Besides, we require re-
questers make a deposit in our protocol, while they may benefit
from not following or even breaking the protocol, which means
that malicious requesters may attempt to create a fork chain after
they receive the solutions.

TABLE 2: The notations of explanation.

Notation Explanation
R = {R1, ...,Ri, ...,Rn} Set of requesters, i = 1, ...,n

W = {W1, ...,Wj, ...,Wm} Set of requesters, j = 1, ...,m
βW j The reputation value of worker Wj

K p
u ,Ks

u,K
a
u The public key, secret key and address of

user u
H(M) The hash value of the message M

Sign(M)Ks
u The digital signature on message M with

secret key Ks
u

Verify(M)K p
u

The function to check u’s digital signature
M with public key K p

u

coins(v) The virtual coin of value v
s j The submitted solution of worker Wj

T Ideadline The task deadline which refers to the future
block height

T Icon f irm The task confirmation time which refers re-
quester should finish solution confirmation
in the special block height

T T refer to the task information

Malicious Workers: Malicious workers attempt to obtain re-
wards without paying sufficient effort, which is free-riding attack.
The same as the malicious requesters, they may benefit from not
following or even breaking time-locked deposit protocol, which
means malicious workers may try to create a fork chain if they
receive low level evaluation. They may receive the task but not
submit solutions on time, which could discourage requesters from
participating in the crowdsourcing system. In particular, they may
deny the low-quality solution because there does not exist a third
party to audit it, which is a trust problem. Besides, since their
reputation and expertise data play a vital role in verifying the
qualification when receiving the task, they may improve these data
with posting a task by themselves.

Malicious Miners: The malicious miners attempt to earn
much virtual coin by forking a chain or colluding with malicious
requesters or workers to break the normal execution of program

Fig. 6: The time-locked deposit protocol for crowdsourcing.

number from the finite set set(0,1, ...,β Max
W), where β Max

W repre-
sents the max size of this set. hk is the average reputation of the
whole workers. Updating βW depends on the outcome of solu-
tionEvaluation(·) in RWRC. If a miner confirms a solution and
gives the positive evaluation, worker’s reputation will be increased
and recorded in blockchain. Note that worker cannot update the
reputation by himself, because miners will not confirm this type of
transactions. Let “a” refer to the output of the evaluation function.
“a = H” stands for high effort of action and “a = L” stands for
low effort of action. Thus, the reputation βW can be computed as
follows:

βW =

min(β Max

W ,βW +1), if a = H and βW ≥ hk

βW −1, if a = L and βW ≥ hk +1
0, if a = L and βW = hk

βW +1, if βW < hk +1

(2)

where hk denotes the threshold of the selected social strategy,
which is a method of using social norms to control workers’
behaviors [14]. If the worker’s reputation falls to hk and receives an
“L” feedback by using the evaluation function, his/her reputation
will fall to 0 and cannot receive most of the tasks. He/she needs
to receive enough simple tasks and get positive feedback until his
reputation value reaching hk again.

6.4 The Proposed Decentralized Crowdsourcing Proto-
col

In the section, to formalize the decentralized crowdsourc-
ing protocols, we adopt a designed notational system such that
readers may understand our constructions without understanding
the precise details of our formal modeling. It consists of six
algorithms: Register, TransactionConfirmation, TaskPosting,
TaskReceiving, SolutionSubmitting, SolutionEvaluation, Re-
wardAssignment. Users interact with the blockchain by Crowd-
BC Client. To make it clearer, we elaborate the general contract
flow of CrowdBC in Fig. 7.

6.4.1 Register
We require that requesters and workers register in CrowdBC to

get their identities (mainly refer to public key, private key and pub-

... ... CrowdBC Client Blockchain

Register

Register

TaskPosting

T
ra

n
sa

ct
io

n
C

on
fi

rm
at

io
n

TaskReceiving

SolutionSubmitting

Storage

SolutionEvaluation

send reward &
redeem

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 3

send original
data

read original
data

Workers Requesters

update URC &
create USC

update URC &
create USC

create RWRC

update RWRC

update RWRC

update RWRC

RewardAssignment

Fig. 7: The process of crowdsourcing in CrowdBC and smart
contract updating.

lic address) via URC contract, i.e. Ri = (K p
Ri
,Ks

Ri
,Ka

Ri
), i = 1, ...,n

and Wj = (K p
W j
,Ks

W j
,Ka

W j
), j = 1, ...,m. Worker’s initial reputation

value βW is is the average reputation value of all workers.

6.4.2 TransactionConfirmation
The processes of creating and updating a contract can be seen

as a transaction which needs to be confirmed in the blockchain.
Miners can verify the effectiveness of transactions. Workers
and requesters can participate in the blockchain as a “miner”
and contribute their resources to achieve a trustworthy chain.
To model the confirmation of the transaction and the execution
of blocks, we define the blockchain state as a pair (BCσ ,BC),
where BCσ is the previous block and BC is the current one. BC =
{Maddr,(T x1..T xc..T xk), timestamp,blockid, preblockhash},
where Maddr is the address of a miner, and T xc is the contract

10

which needs to be confirmed. Users need to wait for several
blocks to ensure that the contract is recorded immutably in
blockchain.

6.4.3 TaskPosting
After registration, requester could post a task T to Crowd-

BC, T = {sid,T,T Ideadline,T Icon f irm,K
p
R ,(βk,εk,δk),λ ,coins(v +

πR)T I ,solutionEvaluate(·)}. For each task, there is a limited
condition (βk,εk,δk) which means the minimum corresponding
value of workers who can receive the task. It is worth noting that
setting these data too large will have an affect on the number
of participants. λ refers to the number of workers required to
complete the task. In order to avoid denial of payment by re-
quester, we specify that requester makes a deposit by following
F∗RR. Algorithm 1 illustrates the implementation of posting task.

Algorithm 1: Post task
Input: requester Ri, task description T , task reward coins(vRi +πRi),

the limited condition of workers (βk,εk,δk), finish time
T Ideadline, confirm time T Icon f irm, maximum workers number λ ,
USC address USCaddr

Ri
Output: RWRC contract RWRCT , result validation function

solutionEvaluation(·), update USCRi
1 if Ri is unregistered then
2 Ri has not been registered;
3 goto final;

4 if lockUtil(K p
Ri
,coins(vRi +πRi),T Ideadline +T Icon f irm) is not success

then
5 Ri deposits the reward on blockchain failed ;
6 goto final;

7 checkWorkerQualification(·)← (βk,εk,δk) ;
8 solutionEvaluation(·)← T ;
9 W list

T (1, ...,λ)← λ ;
10 receivedWorkerNumT ← 0 ;
11 RDepositR ← {T,W list

T (1, ...,λ),(βk,εk,δk),coins(vRi +
πRi),T Ideadline,T Icon f irm,solutionEvaluation(·))} ;

12 USC
Tpool
Ri

put RWRCaddr
T ;

13 updateUSCContract(RWRCaddr
T ,USCRi) ;

14 final ;
15 return RWRCT , solutionEvaluation(·);

6.4.4 TaskReceiving
Worker finds uncompleted tasks in requester’s USC contract

and receives a task if he/she satisfies the condition set by requester.
The condition function checkWorkerQualification(T,βW j ,relW j)
means that a task T can be received by a worker Wj with the
value βW j ≥ βT , relW j ≥ relT . Besides, for the sake of making
workers do the job industriously, worker deposits a coin or certain
reputation value before receiving the task. If he/she chooses
coin coins(v) as the deposit, we still use the function lockU-
til(K p

W j
,coins(v),T Ideadline + T Icon f irm). Otherwise, reputation is

reduced by βW j within the process of this task and added after
completing the task if the worker submits solution on time. Worker
signs on T with the Ks

W j
, which can ensure the correctness for

task reward assignment in the end. Algorithm 2 illustrates the
implementation of receiving task.

6.4.5 SolutionSubmitting
Worker could submit solution to requester if he/she completes

the task (algorithm 3). The task solution, encrypted by requester’s
public key K p

R and signed by worker’s private key K p
W , is stored

on the distributed database (e.g., IPFS). The hash and pointer of
the solution is stored on the blockchain. Requester could get the
solution by the pointer and decrypt it using his/her private key.

Algorithm 2: Receive task
Input: RWRC contract RWRCT , worker Wj , worker deposit coin

coin(πW j), worker deposit reputation RepT , worker USCW j
Output: update RWRC contract RWRCT and USC contract USCW j

1 if Wj is unregistered then
2 Wj has not been registered;
3 goto final;

4 if checkWorkerQualification(T,βW j ,relW j) is dissatisfactory then
5 Wj does not satisfy the condition;
6 goto final;

7 if receivedWorkerNumT >=Wnum then
8 Task T cannot be accepted anymore;
9 goto final;

10 if
coin(πW j)6=0 & lockUtil(K p

W j
,coin(πW j),T Ideadline +T Icon f irm−now)

is success then
11 Wj deposits reward on blockchain succeeded ;

12 else if βW j 6=0 & updateUSCContract(USCW j ,K
p
W j
,(βW j −RepT)) is

success then
13 Wj deposits reputation on blockchain succeeded ;

14 else
15 Wj makes a deposit in blockchain failed ;
16 goto final;

17 SignW j ← Digital signature on T with Sign(T)Ks
Wj

;

18 W list
T (1...Wnum)(T) add SignW j ;

19 USC
Tpool
W put RWRCaddr

T ;
20 receivedWorkerNumT ++ ;
21 WDepositW j ←
{T,T Ideadline,T Icon f irm,K

p
Ri
,K p

W j
,coins(vRi)T I ,coins(πW j)T I ,redeem(·)};

22 updateUSCContract(RWRCaddr
T ,USCW j) ;

23 final ;
24 return RWRCT and USCW j ;

Algorithm 3: Submit solution
Input: RWRC contract RWRCT , task solution s j , worker Wj , requester

Ri
Output: solution pointer sponiter

j , solution hash value shash
j

1 if now > T Ideadline then
2 s j cannot be submitted for timeout;
3 goto final;

4 Signs j ← Digital signature on s j with Sign(s j)Ks
Wj

;

5 sencrypted
j ← Encrypt the solution {s j,Signs j)} with K p

Ri
;

6 shash
j ← H(sencrypted

j) ;
7 sponiter

j ← sendDataToIPFS(sencrypted
j) ;

8 T Isubmit ← now ;
9 RWRCslist

T ← {shash
j ,sponiter

j ,T Isubmit} ;
10 updateUSCContract(RWRCaddr

T ,USCW j) ;
11 updateUSCContract(RWRCaddr

T ,USCRi) ;
12 final ;
13 return sponiter

j and shash
j ;

6.4.6 RewardAssignment

After submitting the solution, workers could demand for the
process of task evaluation and reward payment, or requesters
initiatively finish them when the finish time is on. In our design,
we assume that the evaluation result is given under the evaluation
function and miners on the blockchain could confirm. As shown in
algorithm 4, the task reward paid to workers is quality-contingent
payment (i.e., better performance will get more reward). The
evaluation result will be automatically synchronized with worker’s
USC contract to update his/her reputation.

11

Algorithm 4: Evaluate task and send reward
Input: RWRC contract RWRCT , requester Ri, workers list Wlist ,

selected social strategy hk
Output: update RWRC contract RWRCT and USC contract

USCRi ,USCW j , send reward to related worker Wj
1 rewardNeedSend← coins(v)/λ ;
2 for each Wj in Wlist do
3 if T Isubmit ≤ T Ideadline then
4 if Verify(shash

j)K p
Wj

is not success then

5 Check K p
W j

signature failed ;
6 continue ;

7 evaluationResult j ← solutionEvaluation(T,sponiter
j ,shash

j) ;
8 oldRep← βW j +RepT ;
9 if oldRep≥ hk & evaluationResult j ≡ H then

10 βW j ← min{β Max
W j

,oldRep+1} ;
11 rewardNeedSend← coins(vRi +πW j) ;

12 else if oldRep≥ hk & evaluationResult j ≡ L then
13 βW j ← oldRep−RepT ;
14 rewardNeedSend← coins(πW j) ;

15 else if oldRep≡ hk & evaluationResult j ≡ L then
16 βW j ← 0 ;
17 rewardNeedSend← coins(πW j) ;

18 else if oldRep < hk then
19 βW j ← oldRep+1 ;
20 rewardNeedSend← coins(πW j) ;

21 else
22 evaluationResult j ← L ;
23 rewardNeedSend← 0 ;
24 βW j ← βW j −RepT ;

25 isSendRewardSuc← sendReward(K p
W j
,rewardNeedSend) ;

26 updateReputation(USCW j ,K
p
W j
,βW j) ;

27 updateUSCContract(RWRCaddr
T ,USCW j) ;

28 updateUSCContract(RWRCaddr
T ,USCRi) ;

29 updateAvgReputation(·)
30 final ;
31 return RWRCT ,USCRi ,USCW j ,isSendRewardSuc;

6.5 Security Analysis
In our design, CrowdBC fulfills several security properties and

we discuss them here.
Fully Fraud Resilient. With the majority honest security assump-
tion in section 4.3, we discuss the fully fraud resilient property in
CrowdBC.

Theorem. Assume that Y ≥ (1 + δ)Z with δ ∈ (0,1), then
the probability that CrowdBC-based system violates fully fraud
resilient property with parameter t is at most e(−Ω(δ 3t)).

Proof. The event that CrowdBC does not meet fully fraud
resilient property happens if either a malicious requester or a
malicious worker succeeds in building a fork chain which was
finally accepted by honest miners in the system. We firstly define
C1 and C2 as follows:
• C1: the malicious chain that requesters or workers violate

fully fraud resilient property.
• C2: the normal chain that requesters or workers follow.
We show that for any t, the probability that C1 and C2 diverge

at time (T − t) is at most e(−Ω(δ 3t)). First, we show the probability
that malicious miners can use blocks mined before time T − (1+
δ/8)t to compensate is at most e(−Ω(δ 3t)). Let t∗ ≤ T − (1+δ/8)
be the time that the latest block was found by honest miner in
adversary’s chain C1. If at time t ′ ≥ T − t, the malicious chain
C1 is accepted by honest miner, then malicious miners must find
more blocks than honest miners during [t∗, t ′] where all honest

blocks become orphans. Let X̂ denote the total number of rounds
when honest miners find blocks, and Ẑ denote the number of all
block that are mined by the adversary during [t∗, t ′]. Since t ′−t∗ ≥
(δ/8)t, according to Chernoff bounds [54], we have:

Pr[X̂ ≤ (1−δ/5)Y · r(δ t/8)]≤ e−Ω(Y δ 2r(δ t/8)) = e−Ω(δ 3t)

Pr[Ẑ]≥ (1+δ/3)Z · r(δ t/8)]≤ e−Ω(Zδ 2r(δ t/8)) = e−Ω(δ 3t)
(3)

Then with overwhelming probability that:

X̂ ≥ (1−δ/5)Y · r(δ t/8)≥ (1−δ/5)(1+δ)Z · r(δ t/8)

> (1+δ/4)(1+δ/3)Z · r(δ t/8)> (1+δ/4)Ẑ
(4)

It contradicts the assumption.
During time t, malicious miners will try to obtain a large

number of blocks to maintain the advantages of C1 over C2.
However, whenever only one block was found by honest miner,
it would be a chance for honest miners to consent. Let Z̃ denote
the number of all block that are mined by the adversary during
(1+δ/8)t, and Ỹ denote the number of rounds in which only one
honest miner find a block. By Chernoff bounds, we have:

Pr[Z̃ ≥ (1+δ/9)(1+δ/8)Z · r(t)]≤ e−Ω(Zδ 2r(t))

Pr[Ỹ ≤ (1−δ/4)Y · r(t)]≤ e−Ω(Y δ 2r(t))
(5)

With overwhelming probability that:

Ỹ ≥ (1−δ/4)Y · r(t)≥ (1−δ/4)(1+δ)Z · r(t)
> (1+δ/9)(1+δ/8)Z · r(t)> Z̃

(6)

Finally, we could conclude that the probability C1 catching up
with C2 is exponentially small in t.
Security against False-reporting and Free-riding Attacks. In
CrowdBC, solutions are evaluated with the automatically pre-
defined smart contract. Under the assumption that the majority of
miners are honest, malicious requesters cannot tamper the results
of smart contract to launch false-reporting attack. In addition, we
have proved that malicious requesters have limited probability
to create a fork chain which is in their favor. With respect to
free-riding attack, workers are required to make deposits in F∗RR
before receiving tasks. They are automatically assigned rewards
according to the results of evaluation function. Thus, if they
contribute low-quality solutions, they will not get rewards.
No Single Point of Failure (SPOF). No single point of failure
is obvious with the blockchain-based decentralized architecture. If
there are k (k≥ 3) miners in crowdsourcing, more than bk/2cmin-
ers are honest and available in CrowdBC with the majority honest
security assumption. According to the peer-to-peer architecture,
even though there remains only one miner, requesters and workers
can access the crowdsourcing service normally. Thus, CrowdBC
is exempted from SPOF.
Pseudonymity. Unlike traditional crowdsourcing systems with
some true identity in registration phase, which has the risk of user
sensitive information leakage, CrowdBC utilizes the pseudony-
mous Bitcoin-like addresses to denote requesters and workers,
which enables privacy-preserving without submitting true identity
to finish a crowdsourcing task.
No Trusted Third Party. Requesters and workers could directly
finish the crowdsourcing task and share their data without the
intervention of any third party. CrowdBC stores task data and
solutions in the distributed storage system, and utilizes time-
locked deposit protocol and monetary penalty to ensure fairness
between requesters and workers. Users are authorized to post

12

or receive task under the tamper-resistant smart contract, which
means that they cannot refute these behaviors even there is no
third party.
DDoS and Sybil Attack Resistant. CrowdBC requires deposits
from requesters and workers to thwart DDoS and Sybil attacks.
In addition, users need to pay transaction fees (even though it’s
few) for miners who maintain the blockchain network. Therefore,
malicious attackers may pay a huge cost to launch these attacks
under the deposit-based mechanism (the main threat is that attack-
ers have enough coins to launch attacks, which is not this paper
concern currently).
Trustworthy Worker Selection. Reputation and expertise statistic
value are important factors for workers receiving a task. High
reputation and reliability mean high probability to receive the
task. In CrowdBC, updating these values can only happen when
worker really completes a crowdsourcing task in RWRC contract.
USC contract cannot be created by workers themselves and
updateReputation(·) function in USC can only be invoked by
RWRC contract. In particular, RWRC contract needs to make the
deposit and pay transaction fee. Therefore, if a malicious worker
wants to brush his reputation or reliability, he needs to pay a
high cost. In this way, we can anticipate that requesters can select
proper workers by setting the reputation and reliability value and
workers would work honestly and diligently.

7 EVALUATION RESULTS AND ANALYSIS
7.1 System Design

The primary goal of CrowdBC is to design a secure and
decentralized crowdsourcing system. We implemented a software
prototype on Ethereum public test network to test our proposed
scheme and depicted the complex process of crowdsourcing by
smart contract1. We evaluated the accuracy of CrowdBC by asking
the workers to tag images with labels, which was a type of multi-
labeling tasks. Extensions to other arbitrary tasks are also possible,
requiring to change the evaluation function to evaluate the result
accordingly.

CrowdBC was implemented on official Ethereum public test
network Ropsten with program language including solidity, java
and javascript with roughly 9963 lines of codes, among which, on-
ly about 950 lines are for implementing smart contracts in solidity.
Solidity is an object-oriented programming language designed for
writing smart contracts in Ethereum. Besides, CrowdBC interacts
with Ethereum based on web3j, a lightweight library for java
applications on the Ethereum network. Especially, we constructed
BCCompiler based on web3j. As above mentioned, each new
registering of a user and new task could create a new contract.
The task information was input by CrowdBC Client which was
developed based on javascript. Then it was transformed into the
contract, and compiled by BCCompiler. In order to reduce the
storage requirement, we build the local IPFS proxy and store these
images IPFS. There are 168 connected peers in IPFS currently.

7.2 Time Complexity
To evaluate the utility, security and performance of CrowdBC,

we conducted 20 sets of experiments to process image tagging
task on the CIFAR-10 dataset which consists of ten classes of
images, such as airplane, automobile, bird and cat. The CIFAR-
10 dataset contains five training batches and one test batch,

1. https://github.com/lim60/crowdBC

(a) Transaction confirmation in task
posting (Ropsten)

(b) Transaction confirmation in task
receiving

(c) Transaction confirmation in
solution submitting

(d) Time consumption for task
posting in IPFS

(e) Time consumption for task
receiving in IPFS

(g) Time consumption for solution
submitting in IPFS

(a) (b)

(c) (d)

(e) (f) (e) (f)

(c) (d)

(a) (b)

Fig. 8: The time complexity of task crowdsourcing in Ropsten.

each batch with 10000 images. For each set of experiment, we
randomly choose images from the training batch to recognize
images. Furthermore, 5 workers and 1 requester are registered
and each registered user is assigned with 20 ETH coins. Each task
is finished by 3 workers. We randomly selected 500, 1000, 1500,
2000, 2500 images from the training batch, which are identified by
task 500, task 1000, task 1500, task 2000, task 2500. Further,
task solutions are encrypted with requester’s public key and saved
in the data storage, thus no malicious users can decrypt and read
them. In particular, we design evaluation function by majority
voting to verify if the solutions belong to the ten classes of images.
Moreover, the gas price is set at the average market price, about
20000000000 Wei [55] (Wei is the smallest subdenomination of
ETH [37]). The cost of ETH is computed under the Ethereum gas
rules by the formula: COSTET H =COSTgas ∗GASprice/1018.

We deployed URC, USC, RWRC contract in Ropsten. The
average block time for mining in Ropsten is 10s. In our ex-
periments, it consisted of 700 transactions, each of which was
mined into one block with block number ranging from 3,213,538
to 3,219,692. As shown (a), (b) and (c) in Fig 8, the average
transaction confirmation time (including the execution time in
CrowdBC Client) on task posting, task receiving and solution
submission were about 37.35s, 32.28s and 36.82s, respectively.
Namely, each transaction was confirmed in about 34̃ block time.

If we did not provide enough transaction fees for our contracts,
these transactions were waiting to be confirmed in the transaction
pool. As shown in Fig 8 (d) and (f), the average data uploading
time (including the execution time in CrowdBC Client) in Rop-
sten on task posting and solution submission were the positive
correlation with the data size. However, if the data size was small
enough (e.g., solution submission), the uploading time was almost
the same (about 246.57ms). In addition, data was downloaded
from multiple nodes simultaneously in IPFS, which made the data
download very fast (about 13.27ms in task receiving). In particular,

13

Fig. 9: The comparison of growth rate of cost in CrowdBC and
AMT.

there existed some large points at task 2000 in Fig. 8 (f). We found
that it was relevant with the uploading data size in the specified
time within the whole IPFS system.

We completed part of set experiments to tag images and
recorded the accuracy of image tagging by workers with different
number of images in each task. The average accuracy was 93.22%
on 7500 images, among the error results, these images were really
unclear. This indicated the good utility of CrowdBC. Besides, we
found that part of miners were offline in the experiments, but it
did not affect the process of crowdsourcing and users could still
normally post or receive the task, which demonstrates the feature
of decentralization in our framework.

7.3 Task Cost

In our experiments, the average transaction fee was 0.011 ETH
per 100 image. According to AMT reward policy, about 0.45$ is
paid for each 100 images tagging or identifying task. It’s worth
noting that when we first designed the experiment in February
2017, 1 ETH price was about 12$, and the cost was acceptable
(i.e.,0.14$). As the sharp rise of ETH price in May 2018, 1 ETH
was up to 784.21$ according to the ETH market price [55], which
was unpractical in real life. We can see that the cost was general
lower than AMT platform by using the ETH price in February
2017, and the more image quantities had, the cheaper the cost was.
Note that the cost (including transaction fee and gas) in CrowdBC
has not changed a lot with the image number increased to 2500,
while the cost in AMT added about 400% (Fig. 9). Therefore, we
can conclude that CrowdBC is applicable for the task with large
reward.

In sum, we conducted the whole crowdsourcing process
with a practical example in CrowdBC, which illustrates that
the blockchain-based framework is feasible. However, we realize
that a more low-cost and public blockchain for CrowdBC is
necessary. Hyperledger as a well known blockchain fabric might
be a solution, which is also a future work of our framework.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented the design of CrowdBC, a
blockchain-based decentralized framework for crowdsourcing. We
analyzed that the traditional centralized crowdsourcing system
suffers from privacy disclosure, single point of failure and high
services fee. We formalized CrowdBC to handle these centralized

TABLE 2: Time consumption on data uploading and
downloading in IPFS

Name
Task Posting
(Uploading)

Task Receiving
(Downloading)

Solution Submission
(Uploading)

Size
(Kb)

Time
(ms)

Size
(Kb)

Time
(ms)

Size
(Kb)

Time
(ms)

Task 500 1179.69 499.40 1179.69 4.55 4.7846 237.00

Task 1000 2357.45 607.54 2357.45 7.90 9.6877 238.15

Task 1500 3541.86 731.81 3541.86 13.85 15.0338 256.15

Task 2000 4723.76 906.05 4723.76 11.60 20.2921 258.70

Task 2500 5901.87 1308.65 5901.87 18.10 25.7626 478.90

problems. Meanwhile, we enhanced the flexibility of crowdsourc-
ing by smart contract to depict complex crowdsourcing logic.
A series of design algorithms based on smart contract were
proposed to construct a concrete scheme under the framework.
Besides, we evaluated our approach on Ethereum by implementing
components providing decentralized crowdsourcing services.

We are still in the early stage of blockchain technology and
identify several meaningful future works. First, we only imple-
mented the basic process of crowdsourcing currently, but there
exist much more complex scenes to handle. Second, designing an
efficient evaluation mechanism is crucial in CrowdBC. We resume
that requester could provide an evaluation function when posting
the task. However, we should also consider that requester does not
know about the solution, and thus giving an efficient evaluation
function is becoming difficult.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Plan of China
(Grant No. 2017YFB0802203), National Natural Science Founda-
tion of China (Grant Nos. U1736203, 61732021, 61472165 and
61373158), Guangdong Provincial Engineering Technology Re-
search Center on Network Security Detection and Defence (Grant
No. 2014B090904067), Guangdong Provincial Special Funds for
Applied Technology Research and development and Transforma-
tion of Important Scientific and Technological Achieve (Grant
No. 2016B010124009), the Zhuhai Top Discipline–Information
SecurityGuangzhou Key Laboratory of Data Security and Privacy
Preserving, Guangdong Key Laboratory of Data Security and Pri-
vacy Preserving, China Postdoctoral Science Foundation funded
project (Grant No. 2017M612842).

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 53, no. 10,
pp. 1–4, Oct. 2006.

[2] “Upwork,” ”https://www.upwork.com/”, [Online].
[3] “Amazon mechanical turk,” ”https://www.mturk.com/mturk/welcome”,

[Online].
[4] “Uber,” ”https://www.uber.com/”, [Online].
[5] “Elance and odesk hit by ddos,” ”https://gigaom.com/2014/03/18/

elance-hit-by-major-ddos-attack-downing-service-for-many-freelancers/”,
[Online].

[6] “Uber china statement on service outage,” ”http://shanghaiist.com/2015/
04/18/uber\ chinese\ operations\ recently\ hacked.php/”, [Online].

[7] “Freelancer,” ”http://www.smh.com.au/business/
freelancer-contests-20000-privacy-breach-fine-from-oaic-20160112-gm4aw2.
html”, [Online].

14

[8] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Keep your promise:
Mechanism design against free-riding and false-reporting in crowdsourc-
ing,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 562–572, 2015.

[9] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private
location protection for worker datasets in spatial crowdsourcing,” IEEE
Transactions on Mobile Computing, vol. 16, no. 4, pp. 934–949, 2017.

[10] G. Zhuo, Q. Jia, L. Guo, M. Li, and P. Li, “Privacy-preserving verifiable
set operation in big data for cloud-assisted mobile crowdsourcing,” IEEE
Internet of Things Journal, vol. 4, no. 2, pp. 572–582, 2017.

[11] B. Halder, “Evolution of crowdsourcing: potential data protection, priva-
cy and security concerns under the new media age,” Revista Democracia
Digital e Governo Eletrônico, vol. 1, no. 10, pp. 377–393, 2014.

[12] J. R. Kan Yang, Kuan Zhang, “Security and privacy in mobile crowd-
sourcing networks: challenges and opportunities,” IEEE Communications
Magazine, vol. 53, no. 8, pp. 75–81, 2015.

[13] E. Toch, “Crowdsourcing privacy preferences in context-aware applica-
tions,” Personal and Ubiquitous Computing, vol. 18, no. 1, pp. 129–141,
2014.

[14] M. v. d. S. Yu Zhang, “Reputation-based incentive protocols in crowd-
sourcing applications,” in 2012 Proceedings IEEE INFOCOM, Florida,
USC, 2012, pp. 2140–2148.

[15] X. F. J. T. Dejun Yang, Guoliang Xue, “Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing,” in Proceedings
of the 18th annual international conference on Mobile computing and
networking, Mobicom 2012, Istanbul, Turkey, 2012, pp. 173–184.

[16] G. C. Dan Peng, Fan Wu, “Pay as how well you do: A quality based
incentive mechanism for crowdsensing,” in Proceedings of the 16th ACM
International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc 2015, Hangzhou, China, 2015, pp. 177–186.

[17] E. Toch, “Crowdsourcing privacy preferences in context-aware applica-
tions,” Personal and ubiquitous computing, vol. 18, no. 1, pp. 129–141,
2014.

[18] S. Zhang, J. Wu, and S. Lu, “Minimum makespan workload dissemina-
tion in dtns: Making full utilization of computational surplus around,” in
Proceedings of the fourteenth ACM international symposium on Mobile
ad hoc networking and computing. ACM, 2013, pp. 293–296.

[19] “Waze,” ”https://www.waze.com/”, [Online].
[20] “Freelancer,” ”https://www.freelancer.com/”, [Online].
[21] “Quirky,” ”http://siliconangle.com/blog/2015/12/14/

bankruptcy-judge-approves-sale-of-quirky-assets”, ”[Online]”.
[22] P. Yang, Q. Li, Y. Yan, X.-Y. Li, Y. Xiong, B. Wang, and X. Sun, “friend

is treasure: Exploring and exploiting mobile social contacts for efficient
task offloading,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 7, pp. 5485–5496, 2016.

[23] M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Distributed time-
sensitive task selection in mobile crowdsensing,” in Proceedings of the
16th ACM International Symposium on Mobile Ad Hoc Networking and
Computing. ACM, 2015, pp. 157–166.

[24] A. S. Federico Ast, “The crowdjury, a crowdsourced justice system for
the collaboration era,” 2015.

[25] V. Jacynycz, A. Calvo, S. Hassan, and A. A. Sánchez-Ruiz, “Betfunding:
A distributed bounty-based crowdfunding platform over ethereum,” in
Distributed Computing and Artificial Intelligence, 13th International
Conference, vol. 474, Sevilla, Spain, 2016, pp. 403–411.

[26] H. Zhu and Z. Z. Zhou, “Analysis and outlook of applications of
blockchain technology to equity crowdfunding in china,” Financial
Innovation, vol. 2, no. 1, p. 29, 2016.

[27] F. Buccafurri, G. Lax, S. Nicolazzo, and A. Nocera, “Tweetchain: An
alternative to blockchain for crowd-based applications,” in International
Conference on Web Engineering. Springer, 2017, pp. 386–393.

[28] “Microwork,” ”http://www.microwork.io/”, ”[Online]”.
[29] “Gems,” ”https://icodrops.com/gems/”, ”[Online]”.
[30] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[31] A. Wright and P. De Filippi, “Decentralized blockchain technology and

the rise of lex cryptographia,” 2015.
[32] “Wikipedia. list of cryptocurrencies,” ”https://en.wikipedia.org/wiki/

List\ of\ cryptocurrencies”, [Online].
[33] R. S. M. J. F. Muneeb Ali, Jude Nelson, “Blockstack: A global naming

and storage system secured by blockchains,” in USENIX Annual Techni-
cal Conference, USENIX ATC 2016, Denver, CO, 2016, pp. 181–194.

[34] T. V. Asaph Azaria, Ariel Ekblaw, “Medrec: Using blockchain for
medical data access and permission management,” in 2nd International
Conference on Open and Big Data, OBD 2016, Vienna, Austria, Aug.
2016, pp. 25–30.

[35] J. C. A. N. J. A. K. E. W. F. Joseph Bonneau, Andrew Miller, “Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies,”

in IEEE Symposium on Security and Privacy, S&P 2015, CA, USA, May.
2015, pp. 17–21.

[36] D. Christian and W. Roger, “Information propagation in the bitcoin
network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on. IEEE, 2013, pp. 1–10.

[37] W. Gavin, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[38] S. Melanie, Blockchain: Blueprint for a new economy. ”O’Reilly Media,
Inc.”, 2015.

[39] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[40] “Hyperledger white paper (2015),” ”www.the-blockchain.com/docs/
Hyperledger\%20Whitepaper.pdf”, [Online].

[41] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[42] D. M. Petar Maymounkov, “Kademlia: A peer-to-peer information sys-
tem based on the xor metric,” in International Workshop on Peer-to-Peer
Systems, vol. 2429, MA, USA, March 2002, pp. 53–65.

[43] A. T. M. S. T. J. N. Robin Wentao Ouyang, Lance M. Kapla, “Parallel
and streaming truth discovery in large-scale quantitative crowdsourcing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 10,
pp. 1045–9219, Oct. 2016.

[44] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao,
and K. Ren, “Cloud-enabled privacy-preserving truth discovery in crowd
sensing systems,” in Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems. ACM, 2015, pp. 183–196.

[45] X. Z. Depeng Dang, Ying Liu, “A crowdsourcing worker quality e-
valuation algorithm on mapreduce for big data applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 7, pp.
1879–1888, July 2016.

[46] H. Z. B. Y. Z. Gang Wang, Tianyi Wang, “Man vs. machine: Practical ad-
versarial detection of malicious crowdsourcing workers,” in Proceedings
of the 23rd USENIX Security Symposium. Usenix Security 2014, vol. 14,
San Diego, CA, 2014.

[47] B. W. Amit Sahai, “How to use indistinguishability obfuscation: deniable
encryption, and more,” in Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, STOC 2014, New York, USA, 2014,
pp. 475–484.

[48] Y. Kan, Z. Kuan, R. Ju, and S. Xuemin, “Security and privacy in
mobile crowdsourcing networks: challenges and opportunities,” IEEE
Communications Magazine, vol. 53, no. 8, pp. 75–81, 2015.

[49] D. M. Marcin Andrychowicz, Stefan Dziembowski, “Secure multiparty
computations on bitcoin,” in IEEE Symposium on Security and Privacy,
S&P 2014, San Jose, CA, 2014, pp. 443–458.

[50] T. Ruffing, A. Kate, and D. Schröder, “Liar, liar, coins on fire!: Penalizing
equivocation by loss of bitcoins,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 219–230.

[51] X. Yu, M. T. Shiwen, Y. Li, and R. D. Huijie, “Fair deposits against
double-spending for bitcoin transactions,” in Dependable and Secure
Computing, 2017 IEEE Conference on. IEEE, 2017, pp. 44–51.

[52] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct
computations,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 30–41.

[53] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair pro-
tocols,” in International Cryptology Conference. Springer, 2014, pp.
421–439.

[54] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2015,
pp. 281–310.

[55] “Ethereum market,” ”https://etherscan.io/”, [Online].

Ming Li received his B.S. in electronic informa-
tion engineering from University of South China
in 2009, and M.S. in information processing from
Northwestern Polytechnical University in 2012.
From 2012 to 2015, he worked in Huawei Tech-
nologies Co., Ltd. He is currently a Ph. D. stu-
dent at Jinan University. His research interests
include crowdsourcing, blockchain and its priva-
cy and security.

15

Jian Weng is a professor and the Executive
Dean with College of Information Science and
Technology in Jinan University. He received B.S.
degree and M.S. degree at South China Univer-
sity of Technology in 2001 and 2004 respectively,
and Ph.D. degree at Shanghai Jiao Tong Univer-
sity in 2008. His research areas include public
key cryptography, cloud security, blockchain, etc.
He has published 80 papers in international con-
ferences and journals such as CRYPTO, EURO-
CRYPT, ASIACRYPT, TCC, PKC, CT-RSA, IEEE

TDSC, etc. He also serves as associate editor of IEEE Transactions on
Vehicular Technology.

Anjia Yang received the B.S. degree from Jilin
University in 2011, and the Ph.D. degree from
the City University of Hong Kong in 2015, re-
spectively. He is currently a postdoctoral re-
searcher in Jinan University, Guangzhou. His
research interests include blockchain security,
RFID security and privacy, applied cryptography,
and cloud computing.

Wei Lu received the B.S. degree in Automation
from Northeast University, China in 2002, the
M.S. degree and the Ph.D. degree in Comput-
er Science from Shanghai Jiao Tong University,
China in 2005 and 2007 respectively. He was
a research assistant at Hong Kong Polytechnic
University from 2006 to 2007. He is currently
an Associate Professor with the School of Data
and Computer Science, Sun Yat-sen University,
Guangzhou, China. His research interests in-
clude multimedia forensics and security, signal

processing, computer vision and machine learning.
Yue Zhang received his B.S. in information se-
curity from Xi’an University of Posts & Telecom-
munications in 2013, and M.S. in information se-
curity from Xi’an University of Posts & Telecom-
munications in 2016. From 2016, he started his
Ph. D. at Jinan University. His research interests
include blockchain, system security and Android
security.

Lin Hou is a Ph.D. student in Jinan University.
She received her bachelor degree from Wuhan
University of Technology and a dual degree from
Huazhong University of Science and Technolo-
gy. Her research mainly focuses on asymmetric
cryptography and privacy.

Jia-Nan Liu is a Ph.D. student of Jinan Uni-
versity. He was born in July, 1992. He received
B.S. degree and M.S. degree at Zhengzhou Uni-
versity and Jinan University in 2013 and 2016
respectively. His research interesting includes
cryptography and cloud computing security.

Yang Xiang received his PhD in Computer Sci-
ence from Deakin University, Australia. He is
currently the Dean of Digital Research & Inno-
vation Capability Platform, Swinburne University
of Technology. He is the Director of the Network
Security and Computing Lab (NSCLab) and the
Associate Head of School (Industry Engage-
ment). He is the Chief Investigator of several
projects in network and system security, funded
by the Australian Research Council (ARC). His
research interests include network and system

security, distributed systems, and networking. He serves as an As-
sociate Editor of the IEEE TRANSACTIONS ONCOMPUTERS, IEEE-
TRANSACTIONS ONPARALLEL AND DISTRIBUTED SYSTEMS, and
Security and Communication Networks, and an Editor of the Journal of
Network and Computer Applications.

Robert H. Deng obtained his M.S. Degree from
National University of Defense Technology, Chi-
na, in 1981, and B.S. and Ph.D. Degrees from
Illinois Institute of Technology in 1983 and 1985
respectively. He has been a professor at the
School of Information Systems, Singapore Man-
agement University since 2004. Prior to this,
he was the principal scientist and manager in
the Infocomm Security Department, Institute for
Infocomm Research, Singapore. His research
interests include data security and privacy, mul-

timedia security, network and system security. He was an associate
editor of the IEEE Transactions on Information Forensics and Security
from 2009 to 2012. He is currently an associate editor of the IEEE
Transactions on Dependable and Secure Computing, and member of
Editorial Board of the Journal of Computer Science and Technology
(the Chinese Academy of Sciences), and the International Journal of
Information Security (Springer), respectively.

	CrowdBC: A blockchain-based decentralized framework for crowdsourcing
	Citation
	Author

	tmp.1577954831.pdf.rzDb2

