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ABSTRACT
Recent literature advances Wi-Fi signals to “see” people’s
motions and locations. This paper asks the following ques-
tion: Can Wi-Fi “hear” our talks? We present WiHear,
which enables Wi-Fi signals to “hear” our talks without de-
ploying any devices. To achieve this, WiHear needs to de-
tect and analyze fine-grained radio reflections from mouth
movements. WiHear solves this micro-movement detection
problem by introducing Mouth Motion Profile that leverages
partial multipath effects and wavelet packet transformation.
Since Wi-Fi signals do not require line-of-sight, WiHear can
“hear” people talks within the radio range. Further, WiHear
can simultaneously “hear”multiple people’s talks leveraging
MIMO technology. We implement WiHear on both USRP
N210 platform and commercial Wi-Fi infrastructure. Re-
sults show that within our pre-defined vocabulary, WiHear
can achieve detection accuracy of 91% on average for single
individual speaking no more than 6 words and up to 74%
for no more than 3 people talking simultaneously. Moreover,
the detection accuracy can be further improved by deploying
multiple receivers from different angles.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network com-
munications

Keywords
Wi-Fi Radar; Micro-motion Detection; Moving Pattern Recog-
nition; Interference Cancelation

1. INTRODUCTION
Recent research has pushed the limit of ISM (Industri-

al Scientific and Medical) band radiometric detection to a
new level, including motion detection [9], gesture recogni-
tion [32], localization [8], and even classification [12]. We
can now detect motions through-wall and recognize human
gestures, or even detect and locate tumors inside human
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bodies [12]. By detecting and analyzing signal reflection,
they enable Wi-Fi to “SEE” target objects.

Can we use Wi-Fi signals to“HEAR”talks? It is common-
sensical to give a negative answer. For many years, the abili-
ty of hearing people talks can only be achieved by deploying
acoustic sensors closely around the target individuals. It
costs a lot and has a limited sensing and communication
range. Further, it has detection delay because the sensor
must first record the sound and process it, then transmit it
to the receiver. In addition, it cannot be decoded when the
surrounding is too noisy.

This paper presents WiHear (Wi-Fi Hearing), which ex-
plores the potential of using Wi-Fi signals to HEAR people
talk and transmit the talking information to the detector at
the same time. This may have many potential applications:
1) WiHear introduces a new way to hear people talks with-
out deploying any acoustic sensors. Further, it still works
well even when the surrounding is noisy. 2) WiHear will
bring a new interactive interface between human and de-
vices, which enables devices to sense and recognize more
complicated human behaviors (e.g. mood) with negligible
cost. WiHear makes devices “smarter”. 3) WiHear can help
millions of disabled people to conduct simple commands to
devices with only mouth motions instead of complicated and
inconvenient body movements.

How can we manage Wi-Fi hearing? It sounds impossi-
ble at first glance, as Wi-Fi signals cannot detect or memo-
rize any sound. The key insight is similar to radar systems.
WiHear locates the mouth of an individual, and then rec-
ognizes his words by monitoring the signal reflections from
his mouth. By recognizing mouth moving patterns, WiHear
can extract talking information the same way as lip reading.
Thus, WiHear introduces a micro-motion detection scheme
that most of previous literature can not achieve. And this
minor movement detection can also achieve the ability like
leap motion [1]. The closest works are WiSee [32] and WiVi
[9], which can only detect more notable motions such as
moving arms or legs using doppler shifts or ISAR (inverse
synthetic aperture radar) techniques.

To transform the above high-level idea into a practical
system, we need to address the following challenges:

(1) How to detect and extract tiny signal reflections from
the mouth only? Movements of surrounding people, and
other facial movement (e.g. wink) from the target user may
affect radio reflections more significantly than mouth move-
ments do. It is challenging to cancel these interferences from
the received signals while retaining the information from the
tiny mouth motions.



(a) æ (b) u (c) s

(d) v (e) l (f) m

(g) O (h) e (i) w

Figure 1: Illustration of vowels and consonants [31]
that WiHear can detect and recognize, c©Gary C.
Martin.

To address this issue, WiHear first leverages MIMO beam-
forming to focus on the target’s mouth to reduce irrelevant
multipath effects introduced by omnidirectional antennas.
Such avoidance of irrelevant multipath will enhance Wi-
Hear’s detection accuracy, since the impact from other peo-
ple’s movements will not dominate when the radio beam is
located on the target individual. Further, since for a spe-
cific user, the frequency and pattern of wink is relatively
stable, WiHear exploits interference cancelation to remove
the periodic fluctuation caused by wink.
(2) How to analyze the tiny radio reflections without any

change on current Wi-Fi signals? Recent advances harness
customized modulation like Frequency-Modulated Carrier
Waves (FMCW) [8]. Others like [15] use ultra wide-band
and large antenna array to achieve precise motion tracking.
Moreover, since mouth motions induce negligible doppler
shifts, approaches like WiSee [32] are inapplicable.
WiHear can be easily implemented on commercial Wi-Fi

devices. We introduce mouth motion profiles, which partial-
ly leverage multipath effects caused by mouth movements.
Traditional wireless motion detection focuses on movements
of arms or body, which can be simplified as a rigid body.
Therefore they remove all the multipath effects. However,
mouth movement is a non-rigid motion process. That is,
when pronouncing a word, different parts of the mouth (e.g.
jaws and tongue) have different moving speeds and direc-
tions. We thus cannot regard the mouth movements as a
whole. Instead, we need to leverage multipath to capture
the movements of different parts of the mouth.
In addition, since naturally only one individual is talking

during a conversation, the above difficulties only focus on
single individual speaking. How to recognize multiple indi-
viduals’ talking simultaneously is another big challenge. The
reason for this extension is that, in public areas like airports

or bus stations, multiple talks happen simultaneously. Wi-
Hear enables hear multiple individuals’ simultaneously talks
using MIMO technology. We let the senders form multi-
ple radio beams to locate on different targets. Thus, we can
regard the target group of people as the senders of the reflec-
tion signals from their mouths. By implementing a receiver
with multiple antennas and enabling MIMO technology, it
can decode multiple senders’ talks simultaneously.

Summary of results: We implemented WiHear in both
USRP N210 [6] and commercial Wi-Fi products. Fig.1 de-
picts some syllables (vowels and consonants) that WiHear
can recognize 1. Overall, WiHear can recognize 14 different
syllables, 33 trained and tested words. Further, WiHear can
correct recognition errors by leveraging related context in-
formation. In our experiments, we collect training and test-
ing samples at roughly the same location with the same link
pairs. All the experiments are per-person trained and tested.
For single user cases, WiHear can achieve an average detec-
tion accuracy of 91% to correctly recognize sentences made
up of no more than 6 words, and it works in both line-of-
sight (LOS) and non-line-of-sight (NLOS) scenarios. With
the help of MIMO technology, WiHear can differentiate up
to 3 individuals’ simultaneously talking with accuracy up to
74%. For through-wall detection of single user, the accuracy
is up to 26% with one link pair, and 32% with 3 receivers
from different angles. In addition, based on our experimen-
tal results, the detection accuracy can be further improved
by deploying multiple receivers from different angles.

Contributions: We summarize the main contributions
of WiHear as follows:

• WiHear exploits the radiometric characteristics of mouth
movements to analyze micro-motion in a non-invasive
and device-free manner. To the best of our knowledge,
this is the first effort using Wi-Fi signals to hear people
talk via PHY layer CSI (Channel State Information)
on off-the-shelf WLAN infrastructure.

• WiHear achieves lip reading and speech recognition in
LOS, NLOS and through-wall scenarios.

• WiHear introduces mouth motion profile using partial
multipath effect and discrete wavelet packet transfor-
mation to achieve lip reading with Wi-Fi.

• We simultaneously differentiate multiple individuals’
talks using MIMO technology.

In the rest of this paper, we first summarize related work
in Section 2, followed by an overview in Section 3. Section 4
and 5 detail the system design. Section 6 extends WiHear
to recognize multiple talks. We present the implementation
and performance evaluation in Section 7, discuss the limita-
tions in Section 8, and conclude in Section 9.

2. RELATED WORK
The design of WiHear is closely related to the following

two categories of research.
Vision/Sensor based Motion Sensing. The flourish

of smart devices has spurred an urge for new human-device
interaction interfaces. Vision and sensors are among preva-
lent ways to detect and recognize motions.

1Jaws and tongue movement based lip reading can only rec-
ognize 30%∼40% of the whole vocabulary of English [19]



Popular vision-based approaches include Xbox Kinect [2]
and Leap Motion [1], which use RGB hybrid cameras and
depth sensing for gesture recognition. Yet they are limited
to the field of view and are sensitive to lighting conditions.
Thermal imaging [29] acts as an enhancement in dim light-
ing conditions and non-line-of-sight scenarios at the cost of
extra infrastructure. Vision has also been employed for lip
reading. [21] and [20] present a combination of acoustic
speech and mouth movement image to achieve higher accu-
racy of automatic speech recognition in noisy environment.
[28] presents a vision-based lip reading system and compares
viewing a person’s facial motion from profile and front view.
Another thread exploits various wearable sensors or hand-

hold devices. Skinput [24] uses acoustic sensors to detect on-
body tapping locations. Agrawal et al. [10] enable writing
in the air by holding a smartphone with embedded sensors.
TEXIVE [13] leverages smartphone sensors to detect driving
and texting simultaneously.
WiHear is motivated by these precise motion detection

systems, yet aims to harness the ubiquitously deployed WiFi
infrastructure, and works non-intrusively (without on-body
sensors) and through-wall.
Wireless-based Motion Detection and Tracking.

WiHear builds upon recent research that leverages radio re-
flections from human bodies to detect, track, and recognize
motions [35]. WiVi [9] initializes through-wall motion imag-
ing using MIMO nulling [30]. WiTrack [8] implemented an
FMCW (Frequency Modulated Carrier Wave) 3D motion
tracking system at the granularity of 10cm. WiSee [32] rec-
ognizes gestures via Doppler shifts. AllSee [27] achieves low-
power gesture recognition on customized RFID tags.
Device-free human localization systems locate a person

by analyzing his impact on wireless signals received by pre-
deployed monitors, while the person carries no wireless en-
abled devices [42]. The underlying wireless infrastructure
varies, including RFID [43], Wi-Fi [42], ZigBee [39], and the
signal metrics range from coarse signal strength [42] [39] to
finer-grained PHY layer features [40][41].
Adopting a similar principle, WiHear extracts and inter-

prets reflected signals, yet differs in that WiHear targets at
finer-grained motions from lips and tongue. Since the mi-
cro motions of the mouth produce negligible Doppler shifts
and amplitude fluctuations, WiHear exploits beamforming
techniques and wavelet analysis to focus on and zoom in the
characteristics of mouth motions only. Also, WiHear is tai-
lored for off-the-shelf WLAN infrastructure and is compati-
ble with the current Wi-Fi standards. We envision WiHear
as an initial step towards centimetre-order motion detection
(e.g. finger tapping) and higher-level human perception (e.g.
inferring mood from speech pacing).

3. WIHEAR OVERVIEW
WiHear is a wireless system that enables commercial Wi-

Fi devices to hear people talks using OFDM (Orthogonal
Frequency Division Multiplexing) Wi-Fi devices. Fig.2 illus-
trates the framework of WiHear. It consists of a transmitter
and a receiver for single user lip reading. The transmitter
can be configured with either two (or more) omnidirectional
antennas on current mobile devices or one directional anten-
na (easily changeable) on current APs (access points). The
receiver only needs one antenna to capture radio reflections.
WiHear can be extended to multiple APs or mobile devices
to support multiple simultaneous users.

Figure 2: Framework of WiHear.

WiHear transmitter sendsWi-Fi signals towards the mouth
of a user using beamforming. WiHear receiver extracts and
analyzes reflections frommouth motions. It interprets mouth
motions in two steps:

1. Wavelet-based Mouth Motion Profiling. WiHear
sanitizes received signals by filtering out-band inter-
ference and partially eliminating multipath. It then
constructs mouth motion profiles via discrete wavelet
packet decomposition.

2. Learning-based Lip Reading. Once WiHear ex-
tracts mouth motion profiles, it applies machine learn-
ing to recognize pronunciations, and translates them
via classification and context-based error correction.

At the current stage, WiHear can only detect and recog-
nize human talks if the user performs no other movements
during speaking. We envision the combination of device-free
localization [40] and WiHear may achieve continuous Wi-Fi
hearing for mobile users. For irrelevant human interference
or ISM band interference, WiHear can tolerant irrelevant hu-
man motions 3m away from the link pair without dramatic
performance degradation.

4. MOUTH MOTION PROFILING
The first step of WiHear is to construct Mouth Motion

Profile from received signals.

4.1 Locating on Mouth
Due to the small size of the mouth and the weak extent of

its movements, it is crucial to concentrate maximum signal
power towards the direction of the mouth. In WiHear, we
exploit MIMO beamforming techniques to locate and focus
on the mouth, thus both introducing less irrelevant multi-
path propagation and magnifying signal changes induced by
mouth motions [16]. We assume the target user does not
move when he speaks.

The locating process works in two steps:
1) The transmitter sweeps its beam for multiple rounds

while the user repeats a predefined gesture (e.g. pronouncing
[æ] once per second). The beam sweeping is achieved via a
simple rotator made by stepper motors similar in [44]. We
adjust the beam directions in both azimuth and elevation
as in [45]. Meanwhile, the receiver searches for the time
when the gesture pattern is most notable during each round
of sweeping. With trained samples (e.g. waveform of [æ]



Figure 3: The impact of wink (as denoted in the
dashed red box).

for the target user), the receiver can compare the collected
signals with trained samples. And it chooses the time stamp
in which the collected signals share highest similarity with
trained samples.
2) The receiver sends the selected time stamp back to the

transmitter and the transmitter then adjusts and fixes its
beam accordingly. After each round of sweeping, the trans-
mitter will get the time stamp feedback to adjust the emit-
ted angle of the radio beam. The receiver may also further
feedback to the transmitter during the analyzing process to
refine the direction of the beam.
Based on our experimental results, the whole locating pro-

cess usually costs around 5-7 seconds, which is acceptable in
real-world implementation. And we define correctly locating
as the mouth is within the beam’s coverage. For single user
scenarios, we tested 20 times with 3 times failure, and thus
the accuracy is around 85%. For multiple user scenarios, we
define the correct locating as all users’ mouths are within
the radio beams. We tested with 3 people for 10 times with
2 times failure, and thus the accuracy is around 80%.

4.2 Filtering Out-Band Interference
As the speed of human speaking is low, signal changes

caused by mouth motion in the temporal domain are often
within 2-5 Hz [38]. Therefore, we apply band-pass filtering
on the received samples to eliminate out-band interference.
In WiHear, considering the trade-off between computa-

tional complexity and functionality, we adopt a 3-order But-
terworth IIR band-pass filter [17], of which the frequency
response is defined by equation 1. Butterworth filter is de-
signed to have maximum flat frequency response in the pass
band and roll off towards zero in the stop band, which en-
sures the fidelity of signals in target frequency range while
removing out-band noises greatly. The gain of an n-order
Butterworth filter is:

G2(w) = |H(jw)|2 =
G2

0

1 + ( w
wc

)2n
(1)

where G(w) is the gain of Butterworth filter; w represents
the angular frequency; wc is the cutoff frequency; n is the
order of filter, in our case, n=3; G0 is the DC gain.
Specifically, since normal speaking frequency is 150-300

syllables/minute [38], we set the cutoff frequency to be (60/60-
300/60) Hz to cancel the DC component (corresponding to
static reflections) and high frequency interference. In prac-
tice, as the radio beam may not be narrow enough, a com-
mon low-frequency interference is caused by winking. As
shown in Fig.3, however, the frequency of winking is smaller
than 1 Hz (0.25 Hz on average). Thus, most of reflections
from winking are also eliminated by filtering.

4.3 Partial Multipath Removal
Unlike previous work (e.g. [8]), where multipath reflec-

tions are eliminated thoroughly, WiHear performs partial
multipath removal. The rationale is that mouth motions
are non-rigid compared with arm or leg movements. It is
common for the tongue, lips, and jaws to move in different
patterns and deform in shape sometimes. Consequently, a
group of multipath reflections with similar delays may all
convey information about the movements of different parts
of the mouth. Therefore, we need to remove reflections with
long delays (often due to reflections from surroundings), and
retain those within a delay threshold (corresponding to non-
rigid movements of the mouth).

WiHear exploits CSI of commercial OFDM based Wi-Fi
devices to conduct partial multipath removal. CSI repre-
sents a sampled version of the channel frequency response at
the granularity of subcarrier. An IFFT (Inverse Fast Fouri-
er Transformation) is first operated on the collected CSI to
approximate the power delay profile in the time domain [36].
We then empirically remove multipath components with de-
lay over 500 ns [25], and convert the remaining power delay
profile back to the frequency domain CSI via an FFT (Fast
Fourier Transformation). Since for typical indoor channel,
the maximum excess delay is usually less than 500 ns [25],
we set it as the initial value. The maximum excess delay
of power delay profile is defined to be the temporal exten-
t of the multipath that above a particular threshold. The
delay threshold is empirically selected and adjusted based
on the training and classification process (Section 5). More
precisely, if we cannot get well-trained waveform (i.e. easy
to be classified as a group) of one specific word/syllable, we
empirically adjust the multipath threshold value.

4.4 Mouth Motion Profile Construction
After filtering and partial multipath removal, we obtain

a sequence of cleaned CSI. Each CSI represents the phases
and amplitudes on a group of 30 OFDM subcarriers. To re-
duce computational complexity with keeping the temporal-
spectral characteristics, we explore to select a single repre-
sentative value for each time slot.

We apply identical and synchronous sliding windows on
all subcarriers and compute a coefficient C for each of them
in each time slot. The coefficient C is defined as the peak
to peak value on each subcarrier within a sliding window.
Since we have filtered the high frequency components, there
would be little dramatic fluctuation caused by interference
or noise [17]. Thus the peak-to-peak value can represent
human talking behaviors. We also compute another metric,
the mean of signal strength in each time slot for each sub-
carrier. The mean values of all subcarriers facilitate us to
pick the several subcarriers (in our case, we choose ten such
subcarriers) which represent the most centralized ones, by
analyzing the distribution of mean values in each time slot.
Among the chosen subcarriers, based on C calculated within
each time slot, we pick the waveform of the subcarrier which
has the maximum coefficient C. By sliding the window on
each subcarrier synchronously, we can pick a series of wave-
form segments from different subcarriers and assemble them
into a single one by arranging them one by one. We define
the assembled CSIs as a Mouth Motion Profile.

Some may argue that this peak-to-peak value may be
dominated by environment changes. However, note that the
frequency of Wi-Fi signals is much higher than that of hu-



man mouth movement. We have filtered the high frequency
components, and the sliding window we use is 200 ms (we
can change the duration of sliding window according to dif-
ferent people’s speaking patterns). These two reasons may
ensure that, for most scenarios, our peak-to-peak value is
dominated by mouth movements. Further, we use all the 30
subcarrier information to remove irrelevant multipath and
keep partial multipath in Section 4.3. Thus we do not waste
any information collected from PHY layer.

4.5 Discrete Wavelet Packet Decomposition
WiHear performs discrete wavelet packet decomposition

on the obtained Mouth Motion Profiles as input for the
learning based lip reading.
The advantages of wavelet analysis are two-folds: 1) It fa-

cilitates signal analysis on both time and frequency domain.
This attribute can be leveraged in WiHear for analysing the
motion of different parts on mouth (e.g. jaws and tongue) in
varied frequency domains. It is because each part of mouth
moves at different pace. It can also help WiHear locate the
time periods for different parts of mouth motion when one
specific pronouncing happens. 2) It achieves fine-grained
multi-scale analysis. In WiHear, the motion of mouth when
pronouncing some syllables shares a lot in common (e.g.
[e],[i]), which makes them difficult to be distinguished. By
applying discrete wavelet packet transform to the original
signals, we can figure out the tiny difference which is bene-
ficial for our classification process.
Discrete wavelet packet decomposition is based on the

well-known discrete wavelet transform (DWT), where a dis-
crete signal f [n] is approximated by a combination of ex-
pansion functions (the basis).

f [n] =
1√
M

∑

k

Wφ[j0, k]φj0,k[n]

+
1√
M

∞∑

j=j0

∑

k

Wψ[j, k]ψj,k[n]

(2)

where f [n] represents the original discrete signal, which is
defined in [0,M − 1], including totally M points. φj0,k[n]
and ψj,k[n] are both discrete functions defined in [0,M −
1], called wavelet basis. Usually, the basis sets φj0,k[n]k∈Z
and ψj,k[n](j,k)∈Z2,j≥j0 are chosen to be orthogonal to each
other in order for the convenience of obtaining the wavelet
coefficients in the decomposition process, which means:

< φj0,k[n], ψj,m[n] >= δj0,jδk,m (3)

In discrete wavelet decomposition, during the decomposi-
tion procedure, the initial step splits the original signal into
two parts, approximation coefficients (i.e. Wφ[j0, k]) and
detail coefficients (i.e. Wψ[j, k]). After that, the following
steps consist of recursively decomposing the approximation
coefficients and detail coefficients into two new parts, re-
spectively, using the same strategy as in initial step. This
offers the richest analysis: the complete binary tree in the
decomposition producer is produced as shown in Fig.4:
The wavelet packet coefficients in each level can be com-

puted using the following equations as:

Wφ[j0, k] =
1√
M

∑

n

f [n]φj0,k[n] (4)

Figure 4: Discrete wavelet packet transformation.

Wψ[j, k] =
1√
M

∑

n

f [n]ψj,k[n], j ≥ j0 (5)

whereWφ[j0, k] refers to the approximation coefficients while
Wψ[j, k] represents the detailed coefficients respectively.

The efficacy of wavelet transform relies on choosing prop-
er wavelet basis. One approach that aims at maximizing
the discriminating ability of the discrete wavelet packet de-
composition is applied, in which a class separability func-
tion is adopted [33]. We applied this method for all possi-
ble wavelets in the following families: Daubechies, Coiflets,
Symlets, and got their class separability respectively. Based
on their classification performance, a Symlet wavelet filter
of order 4 is selected.

5. LIP READING
The next step of WiHear is to recognize and translate

the extracted signal features into words. To this end, Wi-
Hear detects the changes of pronouncing adjacent vowels and
consonants by machine learning, and maps the patterns to
words using automatic speech recognition. That is, WiHear
builds a wireless-based provocation dictionary for automatic
speech recognition system [18]. To make WiHear an auto-
matic and real-time system, we need to address the following
issues: segmentation, feature extraction and classification.

5.1 Segmentation
The segmentation process includes inner word segmenta-

tion and inter word segmentation.
For inner word segmentation, each word is divided into

multiple phonetic events [26]. And WiHear then uses the
training samples of pronouncing each syllable (e.g. sibilants
and plosive sounds) to match the parts of the word and then
using the syllables’ combination to recognize the word.

For inter word segmentation, since there is usually a short
interval (e.g. 300 ms) between pronouncing two successive
words, WiHear detects the silent interval to separate word-
s apart. Specifically, we first compute the finite difference
(i.e., sample-to-sample difference) of the signal we obtained,
which is referred as Sdif . Next we apply a sliding window to
Sdif signal. Within each time slot, we compute the absolute
mean value of signals in that window to determine whether
this window is active or not, w.r.t, by comparing with a dy-
namically computed threshold, we can determine whether
the user is speaking within time period that the sliding win-



(a) æ (b) u (c) s
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Figure 5: Extracted features of pronouncing differ-
ent vowels and consonants.

dow covers. In our experiments, the threshold is set to be
0.75 times the standard deviation of the differential signal
across the whole process of pronouncing a certain word. This
metric identifies the time slot when signal changes rapidly,
indicating the process of pronouncing a word.

5.2 Feature Extraction
After signal segmentation, we can obtain wavelet profiles

for different pronunciations, each with 16 4th-order sub-
waveforms from high frequency to low frequency compo-
nents. We then apply a Multi-Cluster/Class Feature Se-
lection (MCFS) scheme [22] to extract representative fea-
tures from wavelet profiles to reduce the quantity of sub-
waveforms. MCFS produces an optimal feature subset by
considering possible correlations between different features,
which better conforms to the dataset. Fig.5 shows the fea-
tures selected by MCFS w.r.t. the mouth motion reflections
in Fig.1, which differ in each pronunciation.

5.3 Classification
For a specific individual, his speed and rhythm of speak-

ing each word share similar patterns. We can thus directly
compare the similarity of the current signals and previously
sampled ones by generalized least squares [14].
For scenarios where the user speaks at different speeds, we

can use dynamic time warping (DTW) [37] to classify the
same word spoken at different speeds into the same group.
DTW overcomes the local or global time series’ shifts in time
domain. It calculates intuitive distance between two time
series waveforms. For more information, we recommend [34]
which describes it in detail. Further, for people that share
similar speaking patterns, we can also use DTW to enable
word recognition with only 1 training individual.

(a) Representive signals of user1 speaking

(b) Representive signals of user2 speaking

Figure 6: Feature extraction of multiple human talks
with ZigZag decoding on a single Rx antenna.

5.4 Context-based Error Correction
So far we only explore direct word recognition with mouth

motions. However, since the pronunciations spoken are cor-
related, we can leverage context-aware approaches widely
used in automatic speech recognition [11] to improve recog-
nition accuracy. As a toy example, when WiHear detects
“you” and “ride”, if the next word is “horse”, WiHear can
automatically distinguish and recognize “horse” instead of
“house”. Thus we can easily reduce the mistakes in recog-
nizing words with similar mouth motion pattern, and fur-
ther improve recognition accuracy. Therefore, after apply-
ing machine learning for classification of signal reflection-
s and mapping to their corresponding mouth motions, we
use context-based error correction to further enhance our
lip reading recognition.

6. EXTENDING TO MULTIPLE TARGETS
For one conversation, it is common that only one person is

talking at one time. Therefore it seems sufficient for WiHear
to track one individual each time. To support debate and
discussion, however, WiHear needs to be extended to track
multiple talks simultaneously.

A natural approach is to leverage MIMO techniques. As
shown in previous work [32], we can use spatial diversity to
recognize multiple talks (often from different directions) at
the receiver with multiple antennas. Here we also assume
that people stay still while talking. To simultaneously track
multiple users, we can first let each of them perform a unique
pre-defined gesture (e.g. Person A repeatedly speaks [æ],
Person B repeatedly speaks [h], etc.). Then we try to locate
radio beams on them. The detailed beam locating process
is illustrated in Section 4.1. After locating, WiHear’s multi-
antenna receiver can detect their talks simultaneously by
leveraging spatial diversity in MIMO system.

However, due to additional power consumption of multiple
RF links [27] and physical sizes of multiple antennas, we
explore an alternative approach called ZigZag cancelation to
support multiple talks with only one receiving antenna. The
key insight is that, for most of the circumstances, multiple
people do not begin pronouncing each word exactly at the



Figure 7: Floor plan of the testing environment.

same time. Therefore we can use ZigZag cancelation. After
we recognize the first word of a user, we can predictably
recognize the word he would like to say. Then in the middle
of the first person speaking the first word, the second person
speaks his first word. We can rely on the previous part of
the first person part of first word, and use this information
to predict the following part of his first word, and we can
cancel the following part of first person speaking the first
word and recognize the second person speaking. And we
repeat the process back and forth. Thus we can achieve
multiple hearing without deploying additional devices.
Fig.6(a) and Fig.6(b) depict the speaking of two users,

respectively. After segmentation and classification, we can
see each word as encompassed in the dashed red box. As is
shown, three words from user1 have different starting and
ending time compared with those of user2. Take the first
word of the two users as an example, we can first recognize
the beginning part of user1 speaking word1, and then use
the predicted ending part of user1’s word1 to cancel in the
combined signals of user1 and user2’s word1. Thus we use
one antenna to simultaneously decode two users’ words.

7. IMPLEMENTATION AND EVALUATION
We implement WiHear on both commercial Wi-Fi infras-

tructure and USRP N210 [6] and evaluate its performance
in typical indoor scenarios.

7.1 Hardware Testbed
We use a TP-LINK TL-WDR4300 wireless router as the

transmitter, and a 3.20GHz Intel(R) Pentium 4 CPU 2GB
RAM desktop equipped with Intel 5300 NIC (Network Inter-
face Controller) as the receiver. The transmitter possesses
directional antennas TL-ANT2406A and operates in IEEE
802.11n AP mode at 2.4GHz. The receiver has 3 working
antennas and the firmware is modified as in [23] to report
CSI to upper layers.
During the measurement campaign, the receiver continu-

ously pings packets from the AP at the rate of 100 packets
per second and we collect CSIs for 1 minute during each
measurement. The collected CSIs are then stored and pro-
cessed at the receiver.
For USRP implementation, we use GNURadio software

platform [3], and implement WiHear into a 2×2 MU-MIMO

(a) (b) (c)

(d) (e) (f)

Figure 8: Experimental scenarios layouts. (a) line-
of-sight; (b) non-line-of-sight; (c) through wall Tx
side; (d) through wall Rx side; (e) multiple Rx; (f)
multiple link pairs.

system with 4 USRP N210 [6] boards and XCVR2450 daugh-
terboards, which operate in the 2.4GHz range. We use IEEE
802.11 OFDM standard [7], which has 64 sub-carriers (48 for
data). We connect USRP N210 nodes via Gigabit Ethernet
to our laboratory PCs, which are all equipped with a qual-
core 3.2GHz processor, 3.3GB memory and running Ubuntu
10.04 with GNURadio software platform [3]. Since USRP
N210 boards cannot support multiple daughter boards, we
combine two USRP N210 nodes with an external clock [5]
to build a two-antenna MIMO node. We use the other two
USRP N210 nodes as clients.

7.2 Experimental Scenarios
We conduct the measurement campaign in a typical office

environment and run our experiments with 4 people (1 fe-
male and 3 males). We conduct measurements in a relatively
open lobby area covering 9m × 16m as Fig.7. To evaluate
WiHear’s ability to achieve LOS, NLOS and through-wall
speech recognition, we extensively evaluate WiHear’s per-
formance in the following 6 scenarios (shown in Fig.8).

• Line of sight. The target person is on the line of
sight range between the transmitter and the receiver.

• None line of sight. The target person is not on the
line of sight places, but within the radio range between
the transmitter and the receiver.

• Through wall Tx side. The receiver and the trans-
mitter are separated by a wall (roughly 6 inches). The
target person is on the same side as the transmitter.

• Through wall Rx side. The receiver and the trans-
mitter are separated by a wall (roughly 6 inches). The
target person is on the same side as the receiver.

• Multiple Rx. One transmitter and multiple receivers
are on the same side of a wall. The target person is
within the range of these devices.

• Multiple link pairs. Multiple link pairs work simul-
taneously on multiple individuals.

Due to the high detection complexity of analyzing mouth
motions, for practical issues, the following experiments are
per-person trained and tested. Further, we tested two dif-
ferent types of directional antennas, namely, TL-ANT2406A
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Figure 9: Automatic segmentation accuracy for (a) inner-word segmentation on commercial devices; (b)
inter-word segmentation on commercial devices; (c) inner-word segmentation on USRP; (d) inter-word seg-
mentation on USRP.
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mance.
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Figure 11: Training overhead.

and TENDA-D2407. With roughly the same location of
users and link pairs, we found that WiHear does not need
training per commercial Wi-Fi device. However, for devices
that have huge differences like USRPs and commercial Wi-Fi
devices, we recommend per device training and testing.

7.3 Lip Reading Vocabulary
As previously mentioned, lip reading can only recognize a

subset of vocabulary [19]. WiHear can correctly classify and
recognize following syllables (vowels and consonants) and
words.
Syllables: [æ], [e], [i], [u], [s], [l], [m], [h], [v], [O], [w], [b],

[j], [S].
Words: see, good, how, are, you, fine, look, open, is, the,

door, thank, boy, any, show, dog, bird, cat, zoo, yes, meet,
some, watch, horse, sing, play, dance, lady, ride, today, like,
he, she.
We note that it is unlikely any words or syllables can be

recognized by WiHear. However, we believe the vocabulary
of the above words and syllables are sufficient for simple
commands and conversations. To further improve the recog-
nition accuracy and extend the vocabulary, one can leverage
techniques like Hidden Markov Models and Linear Predic-
tive Coding [14], which is beyond the scope of this paper.

7.4 Automatic Segmentation Accuracy
We mainly focus on two aspects of segmentation accura-

cy in LOS and NLOS scenarios like Fig.8(a) and Fig.8(b):
inter word and inner word. Our tests consist of speaking
sentences with varied quantity of words ranging from 3 to 6.
For inner word segmentation, due to its higher complexity,
we try to speak 4-9 syllables in one sentence. We test on

both USRP N210 and commercial Wi-Fi devices. Based on
our experimental results, we found that the performance for
LOS (i.e. Fig.8(a)) and NLOS (i.e. Fig.8(b)) achieve simi-
lar accuracy. Given this, we average both LOS and NLOS
performance as the final results. And Section 7.5, 7.6, 7.7
follow the same rule.

Fig.9 shows the inner-word and inter-word segmentation
accuracy. The correct rate of inter-word segmentation is
higher than that of inner-word segmentation. The main
reason is that for inner-word segmentation, we directly use
the waveform of each vowel or consonant to match the test
waveform. Since different segmentation will lead to differen-
t combinations of vowels and consonants, even some of the
combinations do not exist. In contrast, inter-word segmen-
tation is relatively easy since it has a silent interval between
two adjacent words.

When comparing between commercial devices and USRP-
s, we find the overall segmentation performance of commer-
cial devices is a little better than USRPs. The key reason
may be the number of antennas on the receiver. The receiv-
er NIC card of commercial devices has 3 antennas whereas
MIMO-based USRP N210 receiver only has two receiving
antennas. Thus the commercial receiver may have richer in-
formation and spacial diversity than USRP N210’s receiver.

7.5 Classification Accuracy
Fig.10 depicts the recognition accuracy on both USRP

N210s and commercial Wi-Fi infrastructure in LOS (i.e.
Fig.8(a)) and NLOS (i.e. Fig.8(b)). We also average the
performance of LOS and NLOS for each kind devices. Al-
l the correctly segmented words are used for classification.
We define the correct detection as correctly recognizing the
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whole sentence and we do not use context-based error correc-
tion here. As is shown in Fig.10, the accuracy performance
of commercial Wi-Fi infrastructure system achieves 91% on
average with no more than 6-word sentences. In addition,
with multiple receivers deployed, WiHear can achieve 91%
on average with fewer than 10-word sentences, which is fur-
ther discussed in Section 7.8.
Results show that the accuracy of commercial Wi-Fi in-

frastructure with directional antenna is much higher than
that of USRP devices. The overall USRP accuracy perfor-
mance for 6-word sentences is around 82%. The key reasons
are two-folds: 1) the USRP N210 uses omni-directional an-
tennas which may introduce more irrelevant multipath. 2)
the receiver of commercial Wi-Fi product has one more an-
tenna, which gives one more dimension of spacial diversity.
Since overall commercial Wi-Fi devices perform better

than USRP N210, we mainly focus on commercial Wi-Fi
devices in the following evaluations.

7.6 Training Overhead
WiHear requires a training process before recognizing hu-

man talks. We evaluate the training process in LOS and
NLOS scenarios in Fig.8(a) and Fig.8(b), and then average
the performance. Fig.11 shows the training overhead of Wi-
Hear. For each word or syllable, we present the quantity of
training set and its corresponding recognition accuracy. As a
whole, we can see that for each word or syllable, the accuracy
of word-based is higher than syllable-based scheme. Given
this result, empirically we choose the quantity of training
sample ranging from 50 to 100, which has good recognition
accuracy with acceptable training overhead.
However, the training overhead of word-based scheme is

much larger than syllable-based one. Note that the amount

of syllables in a language is limited, but the quantity of
words is huge. We should make a trade off between syllable-
based recognition and word-based recognition.

7.7 Impact of Context-based Error Correction
We evaluate the importance of context-based error cor-

rection in LOS and NLOS scenarios as in Fig.8(a), Fig.8(b),
and then average the performance. We compare WiHear’s
recognition accuracy with and without context-based error
correction. We divide the quantity of words into 3 groups,
namely fewer than 3 words (i.e. <3), 4 to 6 words (i.e. 4-6),
more than 6 words but fewer than 10 words (i.e. 6<). By
testing different quantity of words in each group, we average
the performance as the group’s recognition accuracy. The
following sections follow the same rule.

As shown in Fig.12, without context-based error correc-
tion, the performance drops dramatically. Especially in the
scenario of more than 6 words, context-based error correc-
tion achieves 13% performance gain than without it. This
is because the longer the sentence, the more context infor-
mation can be exploited for error correction.

Even with context-based error correction, the detection
accuracy still tends to drop for longer sentences. The main
problem is segmentation. For syllable-based technique, it is
obviously hard to segment the waveforms. For word-based
technique, even though a short interval often exists between
two successive words, the magnitudes of waveforms during
these silent intervals are not strictly 0. Thus some of them
may be regarded as part of the waveforms of some words.
This may cause wrong segmentation of the words and de-
crease the detection accuracy. Thus the detection accuracy
is dependent on the number of words. The performance in
the following parts suffers from the same issue.



(a) GOOD 0◦ (b) GOOD 90◦ (c) GOOD 180◦

Figure 18: Example of different views for pronouncing words.

7.8 Performance with Multiple Receivers
Here we analyze radiometric impacts of human talks from

different perspectives (i.e. scenarios like Fig.8(e)). Specifi-
cally, to enhance recognition accuracy, we collect CSI from
different receivers in multiple angle of views.
Based on our experiments, even though each NIC receiv-

er has 3 antennas, the spatial diversity is not significant
enough. In other words, the mouth motion’s impacts on
different links in one NIC are quite similar. This may be
because the antennas are closely placed to each other. Thus
we propose to use multiple receivers for better spatial di-
versity. As shown in Fig.18, the same person pronouncing
the word “GOOD” has different radiometric impacts on the
received signals from different perspectives (from the angles
of 0◦, 90◦ and 180◦).
With WiHear receiving signals in different perspectives,

we can build upMouth Motion Profile with these dimensions
of different receivers. Thus it will enhance the performance
and improve recognition accuracy. As depicted in Fig.13,
with multiple (3 in our case) dimensional training data, Wi-
Hear can achieve 87% accuracy even when the user speaks
more than 6 words. It ensures the overall accuracy to be
91% in all three words’ group scenarios. Given this, if it is
needed for high accuracy of Wi-Fi hearing, we recommend
to deploy more receivers from different views.

7.9 Performance for Multiple Targets
Here we present WiHear’s performance for multiple tar-

gets. We use 2 and 3 pairs of transceivers to simultaneously
target on 2 and 3 individuals, respectively (i.e. scenarios like
Fig.8(f)). As shown in Fig.14, compared with a single tar-
get, the overall performance decreases with the number of
targets increasing. Further, the performance drops dramat-
ically when each user speaks more than 6 words. However,
the overall performance is acceptable. The highest accuracy
of 3 users’ simultaneously talking less than 3 words is 74%.
The worst situation can achieve nearly 60% accuracy with
3 users speaking more than 6 words at the same time.
For ZigZag cancelation decoding, since NIC card [23] has

3 antennas, we enable only one antenna for our measure-
ment. As depicted in Fig.15, the performance drops more
severely than that of multiple link pairs. The worst case (i.e.
3 users, 6<words) only achieves less than 30% recognition
accuracy. Thus we recommend to use ZigZag cancelation
scheme with no more than 2 users who speak fewer than
6 words. Otherwise, we increase link pairs to ensure the
overall performance.

7.10 Through Wall Performance
We tested two through wall scenarios, target on the Tx

side (Fig.8(c)) and on the Rx side (Fig.8(d)). As shown in
Fig.16, although recognition accuracy is pretty low (around
18% on average), compared with the probability of random
guess (i.e. 1/33=3%), the recognition accuracy is accept-
able. Performance with target on the Tx side is better.

We believe by implementing interference nulling as in [9]
can improve the performance, which unfortunately cannot
be achieved with commercial Wi-Fi products. However, an
alternative approach is to leverage spatial diversity with
multiple receivers. As shown in Fig.17, with 2 and 3 re-
ceivers, we can analyze signals from different perspectives
with the target on the Tx side. Especially with 3 receivers,
the maximum accuracy gain is 7%. With trained samples
from different views, multiple receivers can enhance through
wall performance.

7.11 Resistance to Environmental Dynamics
We evaluate the influence of other ISM-band interference

and irrelevant human movements on the detection accura-
cy of WiHear. We test these two kinds of interference in
both LOS and NLOS scenarios as depicted in Fig.8(a) and
Fig.8(b). The resistance results of these two scenarios also
share high similarity. Thus here we depict environmental
effects on NLOS scenarios in Fig.19.

As shown in Fig.19, one user repeatedly speaks a 4-word
sentence. For each of the following 3 cases, we collect the
radio sequences of speaking the repeated 4-word sentence
for 30 times and draw the combined waveform in Fig.19.
For the first case, we remain the surroundings stable. With
pre-trained waveform of each word that the user speaks, as
shown in Fig.19(a), we can easily recognize 4 words that
user speaks. For the second case, we let three men ran-
domly stroll in the room but always keep 3 m away from
the WiHear’s link pair. As shown in Fig.19(b), the word-
s can still be correctly detected even though the waveform
is loose compared with that in Fig.19(a). This loose char-
acter may be the effect of irrelevant human motions. For
the third case, we use a mobile phone to communicate with
an AP (e.g. surfing online) and keep them 3 m away from
WiHear’s link pair. As shown in Fig.19(c), the generated
waveform fluctuates a little compared with that in Fig.19(a).
This fluctuation may be the effect of ISM band interference.

Based on above results, we can conclude that WiHear
can be resistant to ISM band interference and irrelevan-
t human motions 3m away without significant recognition
performance degradation.



(a) Waveform of a 4-word sentence without interference of
ISM band signals or irrelevant human motions

(b) Impact of irrelevant human movements interference

(c) Impact of ISM band interference

Figure 19: Illustration of WiHear’s resistance to en-
vironmental dynamics.

8. DISCUSSION
So far we assume people do not move when they speak.

It is possible that a person talks while walking. We believe
the combination of device-free localization techniques [40]
and WiHear would enable real-time tracking and continuous
hearing. We leave it as a future direction.
Generally, people share similar mouth movements when

pronouncing the same syllables or words. Given this, we
may achieve Wi-Fi hearing via DTW (details in Section 5.3)
with training data from one person, and testing on another
individual. We leave it as part of the future work.
Due to the longer distance between the target person and

the directional antenna, the larger noise and interference
occurs. For long range Wi-Fi hearing, we recommend grid
parabolic antennas like TL-ANT2424B [4] to accurately lo-
cate the target for better performance.
To support real-time processing, we can only use CSI on

one subchannel to reduce the computational complexity. S-
ince we found the radiometric impact of mouth motions is
similar across subchannels, we may safely select one repre-
sentative subchannel without sacrificing much performance.
However, the full potential of the whole CSI information is
still under-explored.
We can extend WiHear to detect other micro motions,

e.g. finger motions, like the vision-based device Leap Motion

[1]. By deploying multiple link pairs from different angles,
we can detect simple finger motions such as which one or
multiple fingers are moving ups and downs.

9. CONCLUDING REMARKS
This paper presents WiHear, a novel system that enables

Wi-Fi signals to hear talks. WiHear is compatible with ex-
isting Wi-Fi standards and can be extended easily to com-
mercial Wi-Fi products. To achieve lip reading, WiHear
introduces a novel system for sensing and recognizing micro-
motions (e.g. mouth movements). WiHear consists of two
key components, mouth motion profile for extracting fea-
tures, and learning-based signal analysis for lip reading. Fur-
ther, Mouth motion profile is the first effort that leverage
partial multipath effects to get the whole mouth motions’
impacts on radio. Extensive experiments demonstrate that
WiHear can achieve recognition accuracy of 91% for single
user speaking no more than 6 words and up to 74% for hear-
ing no more than 3 users simultaneously.

WiHear may have many application scenarios. Since Wi-
Fi signals do not require LOS, even though experimental
results are not promising, we believe WiHear has the po-
tential to “hear” people talks through walls and doors with-
in the radio range. In addition, WiHear can “understand”
people talking, which can get more complicated information
from talks than gesture-based interfaces like Xbox Kinect
[2] (e.g. mood). Further, WiHear can also help disabled
people to conduct simple commands to devices with mouth
movements instead of inconvenient body gestures. We can
also extend WiHear for motion detection on hands. Since
WiHear can be easily extended into commercial products,
we envision it as a practical solution for Wi-Fi hearing in
real-world deployment.
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