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CrossNavi: Enabling Real-time Crossroad Navigation for
the Blind with Commodity Phones

Longfei Shangguan‡, Zheng Yang†, Zimu Zhou‡, Xiaolong Zheng‡, Chenshu Wu†, and Yunhao Liu†
‡CSE Department, Hong Kong University of Science and Technology, Hong Kong

†School of Software and TNList, Tsinghua University, China

ABSTRACT
Crossroad is among the most dangerous parts outside for the
visually impaired people. Numerous studies have exploited
navigating systems for the visually impaired community, pro-
viding services ranging from block detection, route planning
to realtime localization. However, none of them have ad-
dressed the safety issue in crossroad and integrated three key
factors necessary for a practical crossroad navigation system:
detecting the crossroad, locating zebra patterns, and guiding
the user within zebra crossing when passing the road. Our
CrossNavi application responds to these needs, providing an
integrated crossroad navigation service that incorporates all
the essential functionalities mentioned above. The overall
service is fulfilled by the collaboration of built-in sensors on
commodity phones, and requires minimal human participa-
tion. We describe the technical aspects of its design, imple-
mentation, interface, and further improvements to make the
system practical on a wider basis. Experimental results from
three visually impaired volunteers show that the system ex-
hibits promising behavior in both urban and rural areas.

Author Keywords
Smartphone; Crossroad Navigation; Sensors

ACM Classification Keywords
H.3.4. Information Storage and Retrieval: Systems and Soft-
ware

INTRODUCTION
Over 285 million people are estimated to be visually impaired
worldwide [2]. These people cannot walk about unaided, es-
pecially when safely crossing roads in urban areas. Usually
they use a white cane to detect the tactile landmarks (e.g. low-
ered curbs in the sidewalks Fig. 1 (a)) and align themselves
with zebra crossings. However, many crossroads are still not
equipped with proper tactile paving facilities (Fig. 1 (b)). And
situations are even worse in developing countries, where 90%
of the world’s visually impaired live. It is common to see
these assistant facilities damaged (Fig. 1 (c)) or blocked by
improper infrastructure design (Fig. 1 (d)). Moreover, it is
still challenging for the blind to cross the road even if they
have been aligned to the zebra crossings. The crosswalk is
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Figure 1. The assistant facilities are damaged or blocked by improper
infrastructure design.

marked by zebra patterns which are visually identifiable only.
Therefore, blind people may easily veer off the zebra cross-
ings and get stuck in the middle of a busy street.

A crossroad navigation system is critical yet challenging. It
should be able to detect crossroads, locate zebra patterns,
and ensure the user within the area of zebra crossings when
passing the road. Traditional ways such as white canes and
guide dogs provide inadequate information or may receive
limited acceptability, thus rendering them infeasible or per-
nicious in practice. Recent advance in wireless and embed-
ded technology has fostered the flourish of electronic travel
aids (ETAs) market. Representative systems include wear-
able navigating devices [13, 20], intelligent white cane [1],
and anti-veering systems [8, 17]. Unfortunately, such sys-
tems are mostly single-purposed (e.g., detecting obstacles,
planning travel paths, or rectifying veering) and relatively ex-
pensive, thus not accepted worldwide.

The confluence of advanced sensor technology and widely
available smartphones broadens the possibilities for ultra-
portable, low cost navigating approaches. Today’s smart-
phones possess powerful computation capabilities and in-
tegrate multi-functional sensors. These advances lay solid
foundations of ambient sensing for crossroad navigation. In
this context, researchers have leveraged commodity smart-
phones with computer vision techniques to locate cross-
walks [3, 7, 12]. However, the resulting systems require users
to manually take photos with their phones, which is cum-
bersome and even infeasible for the visually impaired. De-
spite intrusiveness issue aforementioned, these systems fail to
bring all of essential services, including crossroad detection,
zebra crossing localization, and veering angle rectification,
together into a practical working application.
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Figure 2. Work-flow of CrossNavi. We purposely blur the face of volun-
teer for double-visually impaireded review.

In this paper, we propose a new smartphone application,
CrossNavi. Rather than a simple zebra crossing localizer,
CrossNavi provides an integrated crossroad navigation ser-
vice that incorporates all the necessary functionalities afore-
mentioned. The overall service is fulfilled by the collabora-
tion of built-in sensors on commodity phones, and requires
minimal human participation. Specifically, CrossNavi first
exploits the unique acoustic features of traffic buzzers for
crossroad detection. It then automatically triggers camera to
shoot images in front and leverages advanced Computer Vi-
sion (CV) techniques, along with orientation data to locate
zebra crossings. After guiding users to align to zebra cross-
ings, CrossNavi records accelerometer and compass readings
to recover the user trail, based on which it provides auditory
hints to rectify unintentional veering during user’s movement,
thereby protecting user from walking outside the crosswalk.

Despite the convenience of CrossNavi, to upgrade it to an ap-
plicable level, the challenges are threefold. First, the system
should be non-intrusive, scheduling sensing tasks automati-
cally without explicit human intervention; Second, CrossNavi
should execute in a realtime manner, providing navigating
service promptly; Third, as an user-end application running
on energy starving devices, CrossNavi should be lightweight,
incurring minimum, or at least ignorable overhead to mobile
devices (e.g., energy, storage, and CPU workload). We ad-
dress these key issues by introducing a module driven struc-
ture and a set of efficient algorithms. For example, instead of
applying computational-intensive stereo vision techniques for
crosswalk localization, we combine low-power sensors with
lightweight CV techniques, and achieve satisfying localiza-
tion accuracy with reduced latency.

The only external input that CrossNavi depends on is a set of
road parameters of interest, which is easily obtained via main-
stream positioning service providers such as Google Map and
AutoNavi. Although CrossNavi is specially designed for the
visually impaired, the implications of this system may extend
beyond. For example, the crossroad detection module can la-
bel landmarks (crossroad), and further enhance inertial sensor
based outdoor navigation systems. Our current prototype of
CrossNavi provides auditory feedbacks to assist user to cross
the road. The performance evaluation shows that the system
exhibits promising behavior. In summary, the key contribu-
tions of this paper are:

Audible unit

Figure 3. examples of audible units around crossroads.
1. We identify the opportunity of navigating the visually im-

paired to cross roads with smartphones without user in-
tervention. Our approach leverages the rich sensing ca-
pabilities of smartphones with human movement patterns
to enable an automatic, non-intrusive crossroad navigation
scheme. To our best knowledge, this is the first work that
provides an integrated crossroad navigation service for the
visually impaired with smartphones.

2. To improve system scalability, for example, latency and en-
ergy, we design a module-driven architecture and put for-
ward efficient algorithms for crossroad navigation. Such
design uses modularity to separate each functional unit,
and thus is flexible for individual module upgrading.

3. We fully implemented CrossNavi on Android platforms
and conducted extensive experiments in various scenarios.
The evaluation shows that system exhibits promising per-
formance.

The rest of the paper clarifies each of these contributions, be-
ginning with a system overview, followed by design, imple-
mentation and evaluation of CrossNavi. Finally, we summa-
rize the limitations and point out potential future work.

SYSTEM OVERVIEW
We build the framework of CrossNavi in awareness of three
design objectives: non-intrusive, real-time, and lightweight.
Fig. 2 shows the system architecture. Specifically, the frame-
work consists of three modules, crossroad detection, zebra
crossings localization, and user veering rectification.

1) Crossroad detection: Initially, CrossNavi works in low-
power listening mode. It keeps the microphone open to col-
lect acoustic signals. Once the standard deviation of the
acoustic samples exceeds a pre-calibrated threshold, Cross-
Navi performs the autocorrelation operation on these acous-
tic samples to ascertain the user is approaching the crossroad.
The rationale behind is that beep signals of traffic light around
crossroads show a repetitive pattern which serves as a robust
indicator for crossroad approaching. It is worth noting that all
the other sensors keep in silence in this state. The successful
detection of crossroad then triggers zebra crossings localiza-
tion module.

2) Zebra crossings Localization: CrossNavi uses camera
and orientation sensor to characterize the spatial relationship
between the user and zebra crossings. To achieve a non-
intrusive localization scheme, the phone is required to bound
on the white cane for automatic image shooting. However,
images captured during fast swing can be blurred. The trick
in CrossNavi is to capture the short stable period during each
swing cycle (tip tends to rest on the ground for a while be-
fore swing backwards), and trigger camera accordingly to
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Figure 4. distribution of std values of acoustic traces collected on differ-
ent sites and states.

take clear photos. If zebra crossings are successfully detected,
CrossNavi estimates its location via the calibration of orien-
tation sensor and camera.

3) User veering rectification: Based on the spatial informa-
tion of zebra crossings, CrossNavi then guides users to align
to zebra crossings via voice reminders. Once CrossNavi de-
tects that the zebra crossing is in front of the user, it auto-
matically triggers the veer rectification module to sense user
headings and walking distance, based on which it estimates
the safe veering (based on geometry analysis) and reminds
users to rectify their headings properly. This process contin-
ues until users safely cross the road.

SYSTEM DESIGN

Approaching the Crossroad?
CrossNavi utilizes image processing techniques to detect ze-
bra crossings. However, most image processing techniques
are computationally intensive. To avoid unnecessary com-
putation and reduce energy overhead of image processing, it
is crucial to launch the image-based zebra crossing detection
scheme only when the user approaches a crossroad. An in-
tuitive way for this is using GPS. However, empirical results
demonstrated localization errors up to 50 meters, especially
in urban areas, thus making it inapplicable for fine-grained
crossroad navigation. In this section, we explore the micro-
phone on smart phones to perceive the unique ambient con-
text of crossroad, and accurately identify the moment when
the user is approaching the crossroad.

Characteristics of Beep signals

Audio signals are widely adopted to indicate the status of
crossroads (e.g., Scotland, Hong Kong, Singapore). Fig. 3
shows audible units (buzzers) fixed along with stoplights at
public crossroads in Hong Kong. They periodically send a
short and rapid beep audio to indicate the Go status, while a
slow and repeating pattern for the Stop status. Therefore, we
take advantage of the beep signals to infer whether the user is
approaching a crossroad1.

Despite complicated and noisy acoustic environment at busy
streets, the beep signals can serve as a robust indicator for
crossroad approaching detection for two reasons. First, the
beep signals lead to radical changes of acoustic intensity (e.g.,
1CrossNavi works only on the crossroad where the buzzer works
around-the-clock (without human triggering). We suggest viewers
to learn more on crossroad navigation for the blind in [11].
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Figure 5. Normalized auto-correlation over different acoustic profiles.

the standard deviation of acoustic samples will increase.)
which serve as a good indicator for the presence of cross-
roads. Second, such beeps exhibit repetitive patterns, which
can be robustly detected via autocorrelation.

Fig. 4 illustrates the distribution of standard deviation values
(std for short) over different traffic states, with 20000 acous-
tic samples each. As it demonstrates, the std values of acous-
tic traces collected near the crossroad are significantly higher
than those of noises collected on the street. In addition, more
than 95% of the std values of acoustic traces collected on the
street are below 0.02, while all of those values collected near
the crossroad are larger than 0.02. Thus, in CrossNavi, we
set a threshold ✏ as 0.02 (which is empirically optimal) for
crossroad detection.

On Street vs. Around Crossroad
While beep signals lead to large std values of acoustic pro-
file, the inverse is not always true. For example, the unex-
pected car horns may also lead to a large std value. There-
fore, to improve the crossroad detection accuracy, CrossNavi
double-checks the detection result by executing the autocor-
relation on the acoustic profile whose std is greater than ✏.
Specifically, given a sequence of acoustic samples S, Cross-
Navi computes the normalized auto-correlation for lag ⌧ at
the m� th sample as:

�(m, ⌧) =

P
k=⌧�1
k=0 [s

m+k

� µ(m, ⌧)][s

m+k+⌧

� µ(m+ ⌧, ⌧)]

⌧ · �(m, ⌧) · �(m+ ⌧, ⌧)

(1)

Where µ(k, ⌧) and �(k, ⌧) are the mean and standard de-
viation of the normalized sequence of acoustic samples <

s

k

, s

k+1, ..., sk+⌧�1 >, respectively. For ease of presenta-
tion, we denote the maximum value of �(m, ⌧) as �

max

.

Fig. 5 depicts the distribution of �(m, ⌧) computed on differ-
ent acoustic traces. One was recorded on the street, and the
other one was sampled in the vicinity of the crossroad. As
seen from Fig. 5, when � is 0.35 or higher, the probability
that the person is not approaching the crossroad is extremely
low. Thus, we set the threshold � as 0.35 which is empirically
optimal. CrossNavi then recognizes the crossroad as follows:

• if std  ✏, then place = street;

• if std > ✏ and �

max

� �, then place = crossroad;
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Figure 6. (a): the phone coordinate system; (b): the decomposition of cane swing cycle; (c): analytical acceleration profile along the Z axis during a
cane swing cycle; (d): acceleration readings along the Z axis during a cane swing cycle;

(a) (b) (c)

ZigZag Motion trail

Figure 7. An illustration of the motion trail of the white cane.

a

b

CCD/CMOS 
sensor

Object

Figure 8. The wide-angle lens of camera.

Type Optic angle (↵) Detection range (r)
Galaxy S III ⇡63.44� ⇡104.64�
Iphone 5 ⇡59.54� ⇡100.74�
Iphone 4S ⇡59.54� ⇡100.74�
Galaxy Note II ⇡59.54� ⇡100.74�
Iphone 4 ⇡59.54� ⇡100.74�

Table 1. comparison of optic angle of best-selling smart phone in 2013.

Where’s the Zebra?
To guide the visually impaired to go across roads, CrossNavi
should recognize zebra crossings and perceive its location.
The advance of computer vision (CV) ripens the real-time ze-
bra crossing recognition techniques. However, all of these
works (e.g. [3, 7, 12]) assume that the images (containing
zebra crossings) are available and ready for processing or re-
quire the visually impaired to shoot images manually. In prac-
tice, as the visually impaired are insensitive to graphic marks
of zebra crossings, it is difficult and often infeasible for them
to shoot images manually. Besides, due to the hardware lim-
itation, the camera on commodity phones has limited optic
angle. Therefore, to capture zebra crossings, we are often
required to shoot in different directions, which put extra pres-
sure to the visually impaired.

Automatic image shooting mechanism (AIS)

Principle: CrossNavi aims to capture zebra crossings without
human interventions. We use camera motion to emulate a
wide-angle lens. The intuition behind is that when the person
is walking, the white cane in hand will experience a Zigzag
motion trail. By mounting the smart phone on this white cane,
it is possible to expand the optic angle of camera by shooting
multiple images (via in-built camera) in front along different
directions (as shown in Fig. 7).

Feasibility: We introduce detection range (r) to characterize
the expanded optic angle of in-built camera. Fig. 8 illustrates
the schematic plot of camera in motion. Without loss of gen-
erality, we denote the optic angle of a given camera as ↵.
Let � and � be the rotation angle of the white cane to the
left and right, respectively. By elementary geometry, we have
r ⇡ ↵+ � + �.
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Figure 9. Fig. 9(a) shows the distribution of rotation angle of the white
cane during movement. Fig. 9(b) shows the cane swing traces of another
visually impaired volunteer.

Given the focal length (f ) and the CMOS size (a ⇥ b) of
the camera, we can compute the optic angle ↵ based on the
image-forming equation ↵ = 2 · arctan( b

2·f ). On the other
hand, the rotation angle of canes varies from person to person
yet converges for a specific user. As Fig. 9(a) shows, it main-
tains in a relative stable value (around 25

�) for a random cho-
sen visually impaired volunteer. Therefore, one could com-
bine the equations aforementioned to compute the extended
optic range r.

As an example, we pick the best-selling smartphones in 2013
and compute their optical angles ↵ based on the image-
forming equation. Using the orientation reading of the rota-
tion angle � and � in Fig. 9(b), we then compute the detection
range r and list it in Tab. 1. Compared with the standard optic
angle of each smartphone, it is clear that the covering range
of built-in camera has been significantly expanded.

Shooting point detection

As demonstrated in the previous section, the swing of a white
cane significantly extends the optical angle of the phone cam-
era. However, it entails subtle challenges to obtain effec-
tive photos for efficient zebra crossing recognition. On one
hand, images captured during fast swing can be blurred which
may render the zebra crossing almost unrecognizable. On
the other hand, as cameras are more power-hungry than other
sensory modalities such as inertial sensors and microphones,
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Figure 10. Acoustic profile of bumps subjects to blocks, visually im-
paired tracks and bituminous roads in the noisy environment.

Figure 11. Examples of parallel lines extracted from the images.

it would quickly drain phone batteries to take photos contin-
uously. Therefore, it is important to trigger photo shooting
only when the camera remains stable.

To identify such stable moments (denoted as shooting points),
we analyse the typical swing cycle of a white cane during
walking, and exploit the built-in accelerometer to detect the
stable moments. Fig. 6(c) portrays the acceleration profile
along the Z axis during a cane swing cycle. As is shown,
the user slightly raises the cane from one side (position a),
swings across the middle (position b) with sharp acceleration,
and starts to decelerate before the tip reaches the other side
(position c). The cane tip is usually protected by a cortex rub-
ber sleeve. Thus, when the tip contacts the solid ground, the
ground repulses the tip gradually (the bumping phase). More-
over, since the tip tends to rest on the ground for a while be-
fore swinging backwards (possibly due to change of swing di-
rection), it creates a short (yet sufficiently long) period when
the camera stays still to take clear photos. Therefore, we
choose these bump points as the shooting points.

The next challenge is to detect bump point and triggers the
camera for image capturing in realtime. As the smart phone
sways with the white cane, the acceleration readings (along
the Z axis) will decrease first and then increase, after which
it keeps stable during the bumping period. Thus, an intuitive
way is to identify the stable period of acceleration readings
for bump detection. However, due to the cushioning process
and sensor noise, the acceleration readings during these peri-
ods may jump and fluctuate continuously (show in Fig. 6 (d))
which makes stableness-based method error-prone. Another
possible way is to predict the bump period based on the repet-
itive pattern of swing process. However, as Fig. 6 (d) indi-
cates, the period of each swing action varies significantly for
the same people. As a result, it is difficult or even infeasible
to capture the bumping event via prediction methods.

(a) (b) (c)

ZigZag Motion trail

Figure 12. An illustration of rotation angle and lateral shift computa-
tion.

In CrossNavi, we leverage the sound effect of bumps for
bump detection. The rationale behind is when the tip con-
tacts the ground, it will generate whomps which potentially
serves as an indicator for bump event. To demonstrate it, we
record acoustic samples during white cane’s movement with
a smartphone in a noisy environment. The sampling rate is
set to 8KHz. Fig. 10 portrays the acoustic profiles of bumps
subjects to different kinds of roads, including blocks, tracks
for the visually impaired and bituminous roads. As this figure
reveals, all of these acoustic profiles show a remarkable peak
when the tip contacts with the solid ground, indicating a bump
happening. In this paper, we use a threshold-based method to
detect bumps. When the normalized amplitude of acoustic
sample is larger than 0.4 (empirically optimal in our experi-
ments), we ascertain a bump happens, otherwise we delete it
and go through the next sample.

Zebra crossing recognition

CrossNavi relies on computer vision techniques for zebra
crossing recognition. There are plenty of algorithms [3, 12,
21, 22] that can successfully detect zebra crossings and we
borrow the idea from [21] with little modification. In their
method, the algorithm first executes Hough transformation
on the input image to detect straight lines. As zebra signs
are regular stripes and parallel to each other, the algorithm
then picks out groups of nearly parallel lines and checks their
concurrency as hypotheses for zebra crossings.

However, performing Hough transformation on the raw im-
age may result in abundant straight lines which potentially
expands the parallel line searching space and increases com-
putational complexity. Instead of searching straight lines
globally, CrossNavi separates the foreground from the back-
ground and executes Hough transformation on the foreground
only. The intuition behind is that the contrast ratio of white
stripes of zebra crossings is significantly higher than that of
other objects in view, making zebra crossings outstanding and
prone to be recognized as foreground. Fig. 11 shows run-
ning results of our algorithm. As the result shows, most of
the white stripes are successfully categorized as foreground,
which are then recognized as zebra crossings with our algo-
rithm. Although our system is primarily designed to detect
zebra patterns, it can be easily configured to recognize other
mark patterns of crosswalks by other algorithms.

Relative position Inference

Once a zebra crossing is recognized, CrossNavi then lever-
ages the sensor readings to infer its relative position with re-
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Figure 13. An illustration of motion trails of two visually impaired vol-
unteers.

spect to the user. The position is characterized by a tuple:
< rotation angle(✓), lateral shift(d) >. Fig 12 illustrates
the relative position between the user and zebra crossing.

The rotation angle is the angle that a user needs to rotate in
order to be orthogonal to zebra crossings. Let µ be the slope
of the stripe closest to the observer with respect to the horizon
line of the image. Recall that photos are taken at the bump
point. Taking the rotation angle of camera into consideration,
and then based on the elementary geometry, we have:

✓ =

⇢
µ+ �, if shoot on the left side of the body;
µ+ �, if shoot on the right side of the body;

The lateral shift is the displacement that is required by the
visually impaired people to be at the center of the zebra stripe
that is closest to the sidewalk. Let s be the distance between
the user and the line segment closest to the user in pixel units.
Given the calibration information of the camera (i.e., focal
length f ), as well as the orientation of the camera (captured
already, i.e., ↵ and �) and height from the ground, it is easy
to compute the ground distance d in meters. Due to the page
limitation, we omit the computation details and refer inter-
ested readers to [3]. Given this value, we further estimate the
lateral shift d by the equation: d = s · cos(µ) + l

2 , where l is
the length of the zebra strip. In our experiments, we find that
the localization accuracy of our methods is insensitive to the
image size. Therefore, we choose to compress the image to a
size of 486 x 648, which saves image processing latency to a
great extent.

Safely Crossing it?
Once the visually impaired people are aligned to zebra cross-
ings, they can safely enter the zebra patterns for road cross-
ing. However, without the ability to refer to environmental
cues such as the sun and tangible signs, the visually impaired
people are prone to veer and walk in circles [23]. To demon-
strate this, we recruited two visually impaired volunteers and
asked them to walk inside zebra crossings (with size of 3.5m
x 12.3m). Then, we recorded their motion trails with a video
camera and plot them in Fig. 13. As this figure indicates, even
under the guidance of white canes, both of these two volun-
teers veered intermittently along their movements. What is
worse, we find that both of them surpassed the boarder of ze-
bra crossings and nearly collided with stopping cars.

To navigate users to walk within the zebra crossing, a possible
way is to use GPS-based navigating service. However, GPS
service provides trivial information in maintaining headings,
e.g., at crossroad, and it may simply state ”go straight” or
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Figure 14. An illustration of user headings rectification estimation.

”turn left” without any further details. Moreover, the remark-
able localization errors of GPS (around 5m for civil users
and increases significantly in urban areas 2.) also blocks the
widespread applicability of GPS in fine-grained road crossing
navigation service. In CrossNavi, we explore combinations of
multiple sensing dimensions, along with observations on hu-
man behavior to identify the walking headings of users, infer
their movement trails, and rectify veering promptly.

Walking heading inference

The principle of walking headings inference module is based
on such an observation: when the visually impaired are walk-
ing along zebra crossings, the front face headings of their
phones (bound on the canes) are always aligned with user
headings, serving as a good indicator of their walking head-
ings. CrossNavi employs built-in compass to capture the front
face heading of the smartphone and infers user headings as
follows. It first partitions the user motion trial into sub trails
T

j

, with each lasting k swing cycles. In each swing cycle i

(1  i  k), CrossNavi detects two bumps (the cane con-
tacts with the ground) and records compass readings o

l

i

and
o

r

i

accordingly. The walking headings in each swing cycle
i, therefore, approximates to o

l

i

+o

r

i

2 . After getting k contin-
uous walking headings in sub trail T

j

, CrossNavi computes
the walking headings ✓

j

within this sub trail by the formula:
✓

j

=

1
k

P
k

i=1
o

l

i

+o

r

i

2 .

Basically, the parameter k is critical for the effectiveness of
crossroad navigation. If k is too large, then the user may walk
too long to surpass the boarder of zebra crossings. While if k
is too small, it will take significant computation resources and
drain the battery quickly. In the experiment part, we study the
relationship between k and system performance.

Mitigating the sheering

Let � be the headings of zebra crossings. Ideally, if ✓
j

= �

for each j, we can ascertain that the user is walking straightly
along zebra crossings. However, as aforementioned, the in-
ability of recognizing visual signs renders the visually im-
paired veer intermittently during movement. Thus, CrossNavi
should perceive the user motion trail and provide rectification
warnings for safety.

In CrossNavi, we design an Incremental Walking headings
Rectification scheme (IWR) based on geometry analysis. As
Fig. 14 shows, suppose the user departs from a and veers in
the first sub trail and reaches the point b. The walking dis-
tance h is easily computed by multiplying the average mov-
ing distance p (empirically set to 30cm) in each swing cycle
and the number of swing cycles k. As cane movement has
2http://www.gps.gov/systems/gps/
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(a) Urban (b) Rural

Figure 15. An illustration of experimental field. The red dot denotes the
locations where our experiments are conducted. We purposely blur the
images for double-visually impaireded review.

similar repetitive pattern as human walking, similar to [18],
here we also employ an auto-correlation based step counting
method for moving distance computation. Given the moving
distance h and user heading ✓

j

, CrossNavi computes the min-
imum and maximum angles ✓

min

, ✓
max

that the user should
rectify by the following equations:

✓

min

= arctan(

l

2 � h · sin(✓
j

)

w � a · cos(✓
j

)

) (2)

✓

max

= ✓

j

+ arctan(

l

2 + h · sin(✓
j

)

w � a · cos(✓
j

)

) (3)

In these equations, l and w are the length and width of ze-
bra crossings which are open sources and accessible in public
transportation administration web sites. ✓

min

and ✓

max

in-
dicate the necessary rectification angles for users to follow.
After computing ✓

min

and ✓

max

, CrossNavi averages these
two values and conservatively guide user to rectify his/her
walking headings with the angle of ✓

min

+✓

max

2 .

In practice, as human brain is incapable of guiding the body to
turn certain angles, it is impossible to follow the rectification
angles manually without assistance. In the current version
of CrossNavi, we simply ask users to rotate their canes and
leverage compass readings to measure rectification angle. For
example, in our implementation, CrossNavi broadcasts short-
term beeps to indicate the proper rotation angle of the cane.
Users then rectify their headings with this angle.

IWR continuously captures the readings of compass, mic-
phone and acceleromater, and infers user headings in each
sub trail. It computes user’s walking distance and rectifies
veering until the user reaches the other side of the road.

USER INTERFACE
We implement CrossNavi on Android 4.3 Jelly Bean operat-
ing system. The current version consists of about 1100 lines
of code and provides auditory feedbacks to assist the user to
cross the road3. The phone running CrossNavi can be easily
3Once a blind person approaches the crossroad, he can hear the
beeper signals, and thus will know the crossroad is not far away.
Hence it is unnecessary to give acoustic indication to the user when
it is about to approach the zebra crossing. A friendly reminder from
the beeper detection module may help remind the user to get pre-
pared and concentrate on crossing the road, and we will consider it
in future versions of our system.

mounted on the cane by using a phone holder which is eas-
ily accessible on the market. When CrossNavi locates zebra
crossings or when the user deviates from the desired heading,
feedback is produced to navigate/rectify users. With this sim-
ple interface, the users can determine the location of zebra
crossings, align themselves to it, and rectify veers for safety.
In the current version, the users are required to launch and
shut down CrossNavi manually, which may be difficult for
the visually impaired. However, we believe, with the advance
of Speech Recognition technique such as Siri 4 and S Voice 5,
it is possible to operate CrossNavi via voice control message,
which will alleviate user’s overhead.

EXPERIMENTAL RESULTS

Experimental Setup
We implement CrossNavi APK on three types of smartphones
– Samsung Nexus I9250, Motorola MT788, and Xiaomi 2S.
All types of phones are equipped with necessary sensors. The
Samsung Nexus I9250 is equipped with 1GB RAM and dual-
core 1.5GHz processor; the Motorola MT788 has 1GM RAM
and single-core 2.0 GHz processor; the Xiaomi 2S has 2GB
RAM and quad-core 1.2 Ghz processor.

To give a comprehensive evaluation of CrossNavi, we recruit
three visually impaired volunteers and ask them to use our ap-
plication for crossroad navigation. The dataset for evaluation
is collected over 200 times of road crossings from 14 cross-
roads (spanning from noisy urban areas to relatively quiet
rural areas) over totally 2.1km walking distances (shown in
Fig. 15). Each experiment is conducted multiple times and
the results are averaged for final evaluation. Although the vi-
sually impaired would be more familiar with the spatial lay-
outs after crossing a specific crosswalk multiple times, we
noticed that some participants walked more relaxed after sev-
eral times of crossing at certain simple spatial layouts, yet still
occasionally tended to veer off. Hence our system can still be
useful and timely remind the relaxed users even if they may
have been familiar with the spatial layouts.

Micro Benchmarks
Performance of crossroad detection

In this trail of experiments, we collect acoustic samples in
14 different sites and examine the effectiveness of the cross-
road detection module. Fig. 16 illustrates the relationship
between the user-to-crossroad distance and detection success
rate. As it indicates, the detection success rate increases when
user approaches the crossroad in both rural and urban areas.
In particular, when the user is far away from the crossroad,
e.g., more than 10 meters away from the crossroad, the beep
signal attenuates to an indistinguishable level for crossroad
detection. However, as the user approaches the crossroad,
the detection success rate boosts rapidly and finally climbs to
80% and 93% in urban and rural areas, respectively. It clearly
demonstrates that CrossNavi is insensitive to acoustic noises
and is able to detect crossroad promptly.

Further, we investigate the detection success rate under dif-
ferent traffic conditions. The results are shown in Fig. 17.
4http://www.apple.com/hk/en/ios/siri/
5http://www.samsung.com/global/galaxys3/svoice.html
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Figure 16. distance between the user and the
cross road vs. detection success rate.
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Figure 17. detection success rate under different
traffic conditions.
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Figure 18. crossroad detection confusion matrix.

1944x29521652x2203 1361x1814 1069x1426 778x1037 486x648 194x259
0

10

20

30

40

50

60

image size

Ti
m

e 
(s

)

 

 
without modification
after modification

Figure 19. latency vs. image size.

5

10

15

20

25

1 2 3 4
distance between user and zebra crossings (m)

an
gu

la
r o

ffs
et

 (o )

Figure 20. distance between the user and the
cross road vs. angular offset.
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Figure 21. distance between the user and the
cross road vs. ranging errors.

As these bar charts indicate, in urban areas the detection
success rate varies significantly under different traffic con-
ditions. Nearly 80% crossroads are identified in pass state
(green light) when the user-to-crossroad distance is within
2m. However, this figure declines by approximately 5% in
alert state and 15% in stop state at every measurement point.
This is coherent with our illustrative experiment (Fig. 5) that
the beep signals of stop state are relative indistinguishable
from ambient noises. Nevertheless, CrossNavi still achieves
65% success rate in this state. As for rural cases, the quiet
environment renders CrossNavi much superior than in urban
areas. Specifically, when the user is 1 meter away from the
crossroad, CrossNavi achieves as high as 92% success rate in
pass state, 90% in alert state, and 89% in stop state.

Fig. 18 presents the confusion matrix showing how false pos-
itive/negative crossroad detection is distributed. For each in-
tended subject along the X-axis, the size of the circle reflects
the proportion of detection results in the corresponding Y-
axis. On the whole, CrossNavi achieves competitive detec-
tion results, with an accuracy of over 90% true positive suc-
cess. 13% are processing failures, in which cases CrossNavi
mistakes the street as crossroad and invokes the zebra cross-
ing localization module. Nevertheless, the false positive rate
is relative small (below 10%), which demonstrates the effec-
tiveness of the acoustic-based crossroad detection module.

Performance of zebra crossing localization

To demonstrate the effectiveness of the zebra crossing local-
ization scheme, we collect images under different weather
conditions, including a bright sunny day and a cloudy rainy
day. We first examine the effectiveness of the zebra crossing
detection scheme by examining the image processing latency
before and after we distinguish the foreground under different
image size settings. All the running time is calculated by av-
eraging the processing latency on three kinds of smartphones.
As Fig. 19 indicates, the image processing latency is propor-
tional to the image size for both these cases, yet our method

considerably surpasses the unmodified CV technique, requir-
ing less than 2

3 of time for processing relative large images.
Although the gap between these two methods decreases as the
image becomes smaller, our method still saves about 1.2s and
0.3s when the image size is 486x648 and 194x259.

We next examine the effectiveness of the relative position in-
ference module. It includes the rotation angle inference and
lateral shift estimation. We first investigate the relationship
between the user-to-crossroad distance and the rotation an-
gle inference errors (termed as angular offset). As Fig. 20
shows, the angular offset increases with the rising of user-to-
crossroad distance. When the user is in the vicinity of the
crossroad (about 1 meter away), CrossNavi achieves remark-
able inference accuracy, with an angular error of 11� on aver-
age. The mean value of angular offsets then increases steadily
when the user stays further from the crossroad, and reaches
23� when the user is 4 meters away from the crossroad.

We also investigate the relationship between the user-to-
crossroad distance and lateral shift ranging accuracy. As the
box chart illustrates (Fig. 21), initially, when the user is 1 me-
ter away from the crossroad, the ranging error is confined in
a relatively small scope, with an error of 0.37m on average.
As the user moves further to the crossroad, the ranging ac-
curacy degrades gradually. The distribution of ranging errors
tends to be more sparsely. Once the user is 4 meters away
from the crossroad, the ranging errors climbs to 1.5m. Never-
theless, CrossNavi still achieves promising ranging accuracy,
with 1.2m ranging error on average.

Performance of navigation

To achieve a comprehensive result, each person is required to
cross the zebra crossings (with a size of 2.5m x 22.5m) ten
times. During each testing, we use an HD camera to record
user trail as ground-truth.

Fig. 22 gives a snapshot of user locations when CrossNavi
broadcasts veer rectification warnings under various k set-
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settings.

urban area rural area
6

8

10

12

14

16

18

20

22

an
gu

la
r o

ffs
et

 (o )

Figure 23. angular offset in different area.
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Figure 25. user trace for energy consumption de-
tection. We purposely blur the images for double-
visually impaireded review.

0 10 20 30 40 50 60
70

75

80

85

90

95

100

Time (min)

Ba
tte

ry
 le

ve
l (

%
)

 

 

Xiaomi 2S
Motorola MT788 
Samsung Nexus I9250

Figure 26. energy consumption of CrossNavi over
three smartphones.

Figure 27. crossing T-junction.

tings. The black lines inside the figure are the boarder of
zebra crossings. As aforementioned, the parameter k is crit-
ical for the effectiveness of crossroad navigation. If k is too
large, then the user may walk too long to surpass the boarder
of zebra crossings. While if k is too small, it will take sig-
nificant computation resources and drain the battery quickly.
As this figure indicates, when k is relative small (e.g., k=5),
CrossNavi continuously reports veer rectification warnings
for user heading correction. As a result, users are notified
promptly, thereby are always walking within the center part
of zebra crossings. As we gradually increases k, warning
frequency drops significantly, which results in significant la-
tency in veering rectification message delivering. Such la-
tency renders the user deviate from routes and even surpasses
the boarder line of zebra crossings (when k=15, and k=20).
Suggested by this figure, we configure k to be 10 in the fol-
lowing experiments.

Further, we examine the accuracy of rectification angles pro-
vided by CrossNavi. The results are shown in Fig. 23. As
this figure shows, when the user is in rural areas, the angular
offsets are within the range of 7.5� to 18�. When the similar
experiment is conducted in urban areas, the range of angular
offsets extends gradually, with the maximum offset over 22�

and the minimum offset below 7�. The experiment result indi-
cates that our system tends to suffer limited compass induced
errors. This is because when the user is walking, the cane
held in hand just waves around in a pattern similar to that in
Figure 8. It is well-known that holding the phone in front and
waving it around as in Figure 8 is an efficient way to rectify
the compass. Moreover, as CrossNavi computes the walking
heads every 10 swing cycles, such short period prevents the
expansion of angular offset.

System Overhead

CPU utilization

We launch CrossNavi on a Samsung Nexus I9250 (dual core)
smartphone, and write a logger to record the CPU utilization
trace. The results (average utilization of CPU1 and CPU2)
are shown in Fig. 24. For comparison, we also record the
CPU utilization trace of this phone in its idle (no program
is running except for system processes), calling, and gam-
ing state. As this figure indicates, when the phone is in idle
state, the CPU utilization maintains in a low and relative sta-
ble level, with a little fluctuation over 20%. The utilization in-
dex then increases slightly and hovers at 39% when the user is
making phone calls. Further, as we launch the CrossNavi for
crossroad navigation, the CPU activities gradually accelerate,
achieving an utilization of 43% on average over crossroad de-
tection process (<40s) and 57% as the camera is triggered
for zebra crossings localization (>40s and <52s). The high-
est utilization appears in gaming state, during which the CPU
utilization peaks 89% and maintains in a relative high level
during the whole process. The results are clearly not perfect,
but, it still shows that CrossNavi is compatible with the nor-
mal use of a phone (calling), and achieves significantly lower
resources compared with mainstream games. We believe with
the advance of more powerful processors (i.e., quad core), the
CPU utilization of CrossNavi will decreases dramatically to
an ignorable level.

Energy overhead

Let us recall the key steps in CrossNavi from the energy us-
age perspective. Initially, CrossNavi fires the microphone to
sense the ambient acoustic data. If the crossroad is detected,
it automatically triggers the camera and orientation sensors
to locate zebra crossings. After the user is aligned to zebra
crossings, CrossNavi shuts down the orientation sensors and
initiates the accelerometer and the compass to infer user trail
for veer rectification. Thus, CrossNavi attempts to conserve
energy in two ways: first, it keeps the sensors activated only
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around the right time; second, it adopts low-power sensors to
reduce energy consumption on localization process.

For a fair evaluation, we drain the energy of these phones and
then charge each one with an equal period (10 hours). The
volunteers are asked to go along the planned route (Fig. 25)
with our CrossNavi activated in these phones. Fig. 26 shows
the phone’s battery duration as a function of execution time
of CrossNavi. As it indicates, the energy consumption shows
a similar trend yet differs in amount for all of these three
phones. Specifically, CrossNavi consumes negligible energy
(below 1% on average) for most sampling periods. With time
passing by, the cumulative energy consumption increases
gradually, and finally ends up with 6% for Samsung Nexus
I9250, 9% for Motorola MT788, and 15% for Xiaomi 2S.
This figure clearly demonstrates that CrossNavi is energy ef-
ficient, thus is applicable for mainstream smartphones.

DISCUSSION
Manual Trigger and Route Planning: CrossNavi is tailored
as an aid of safe road crossing, and its current version expects
the user to manually launch the app when he intends to pass
a crosswalk. However, it happens that the user may forget
to close it afterwards. Consequently, due to its beep-trigger
mechanism and extended sensing range, CrossNavi may be
falsely triggered when the user approaches a crosswalk, yet
does not intend to pass it (Fig. 27). Manual input of user
plans in advance would help, but since CrossNavi can be eas-
ily integrated with route planning services [26, 27], we en-
vision CrossNavi to know the user’s intention at each inter-
section automatically to avoid such false alarms and provide
more comprehensive and convenient outdoor navigation ser-
vices for the blind.

Enhancing Veer Detection: In purpose of energy efficiency,
CrossNavi employs inertial sensors to detect veers. While
these modalities significantly reduce energy consumption and
provide sufficient accuracy for 2-lane roads, the intrinsic mea-
surement error accumulation of low-cost inertial sensors may
drift user trial estimation on relatively wide roads (e.g. 16-
lane) without re-calibration. As our on-going work, we are
exploring occasional visual references via CV techniques to
rectify user trail estimation with minimal extra energy con-
sumption. Although the CV-based technique is sensitive to
the light condition, it is still suitable for zebra crossing detec-
tion since the crossroad is usually configured with the street-
light which can enhance the illumination density around.

RELATED WORKS
Wayfinding systems: Great efforts have been paid on inves-
tigating Geographic Information System (GIS) and Global
Positioning System (GPS) for visually impaired navigation.
Golledge et al. [9] pioneered this field by introducing a wear-
able Personal Guidance System (PGS). This system consists
of a GPS receiver, a notebook computer and a fluxgate com-
pass for point-to-point outside navigation. Wilson et al. [25]
introduced a GPS-based system which leverages camera and
light sensors to detect blocks on road for safe outdoor naviga-
tion. Latter on, Angin et al. [5] proposed a mobile-cloud col-
laborative approach for visually impaired navigation by ex-

ploiting the powerful computational capability of the Cloud
as well as the wealth of location-specific resources avail-
able on the Internet. Further, researchers also try to lever-
age advanced localization devices for visually impaired nav-
igation, including ultrasonic based systems [19, 6, 15], and
HD-camera based systems [14, 16].

Anti-veering systems: Several researchers also focused on
the design of anti-veering systems for crossroad navigation.
David [10] presented a gyroscope-based anti-veering system
to correct human veering via speech cues. Panels et al. [17]
built up an anti-veering system on commercial portable de-
vices. It takes advantage of the built-in sensors on smart-
phones. However, both of these works assume that the visu-
ally impaired are already aligned with zebra crossings, which
is difficult, or even infeasible for the visually impaired with-
out any guidance. There are also pioneer works on leveraging
RFID technology for user veering rectification. Sesamonet
project [24] equipped an RFID reader on the white cane to
sense tags embedded in the ground to guide visually impaired
people to walk along a safe path. Alghamdi et al. [4] com-
bined RFID navigation with QR-code, and proposed a hybrid
anti-veering system to assist visually impaired people to reach
their destination of interest via the shortest path.

These systems can provide partial assistance in crossroad
navigation. However, all of them are overly dependent on
costly hardware, including ultrasonic emitter, tactile input de-
vices, as well as pre-deployment of RFID tags, which raises
the important issues of price and confines the usability world-
wide. By utilizing equivalent technology integrated in com-
mercial smartphones, CrossNavi aims to provide a more com-
pact and cost-effective solution. This we believe is one of the
major contributions of this paper, and it potentially opens the
door to wide-scale deployment.

CONCLUSION
Designing crossroad navigation systems for the visually im-
paired is critical yet challenging. Existing solutions either
rely on costly hardware or require explicit user participa-
tion. In this paper, we present CrossNavi, a smartphone-based
visually impaired navigation system which helps to detect
crossroad, locate zebra patterns, and monitor the user within
the width of the crosswalk when passing the road. Limited
by sixpenny phone sensors, the ranging and localization ac-
curacy is still undesirable. However, we believe that Cross-
Navi explores the possibility of making crossroad navigation
as easy as possible, taking a significant step towards pervasive
visually impaired navigation services.
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