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Abstract

Many object localization applications need the relative
locations of a set of objects as oppose to their absolute lo-
cations. Although many schemes for object localization
using Radio Frequency Identification (RFID) tags have
been proposed, they mostly focus on absolute object lo-
calization and are not suitable for relative object localiza-
tion because of large error margins and the special hard-
ware that they require. In this paper, we propose an ap-
proach called Spatial-Temporal Phase Profiling (STPP)
to RFID based relative object localization. The basic idea
of STPP is that by moving a reader over a set of tags dur-
ing which the reader continuously interrogating the tags,
for each tag, the reader obtains a sequence of RF phase
values, which we call a phase profile, from the tag’s re-
sponses over time. By analyzing the spatial-temporal dy-
namics in the phase profiles, STPP can calculate the spa-
tial ordering among the tags. In comparison with prior
absolute object localization schemes, STPP requires nei-
ther dedicated infrastructure nor special hardware. We
implemented STPP and evaluated its performance in two
real-world applications: locating misplaced books in a li-
brary and determining baggage order in an airport. The
experimental results show that STPP achieves about 84%
ordering accuracy for misplaced books and 95% ordering
accuracy for baggage handling.

1 Introduction

1.1 Motivation

Many object localization applications need the relative
locations of a set of objects as oppose to their absolute
locations. The relative location of an object in a set of
objects refers to the order of the object with respect to
other objects along each dimension. The absolute loca-
tion of an object refers to its coordinate value in each
dimension. For example, in a library, to find misplaced

books, we need to obtain the current order of the books
on shelves rather than their absolute coordinate values.

1.2 Limitations of Prior Art
Although many schemes for object localization using
Radio Frequency Identification (RFID) tags have been
proposed [11, 13, 17–20, 23], they mostly focus on ab-
solute object localization. They are not suitable for rel-
ative object localization because of two reasons. First,
as the error margin achieved by most absolute object
localization schemes (e.g., [11, 13, 18, 23]) is still big,
sorting objects based on their absolute coordinate values
may not result in the correct ordering of all objects be-
cause the distance between two objects may be less than
the error margin. For example, the state-of-the-art abso-
lute object localization scheme PinIt achieves an accu-
racy of 16cm at the 90th percentile [18]; however, such
an error margin of 16cm could allow a book to be incor-
rectly ordered several books away from its correct order
on a bookshelf. Second, the absolute object localization
schemes that can achieve small error margins require ei-
ther dedicated hardware (such as USRP) [17] or multi-
ple pre-deployed antennas as reference points [19, 20],
which make them relatively harder and more expensive
to deploy in practice. For example, the state-of-the-art
scheme Togoram [20] can achieve millimeter localiza-
tion accuracy; however, it relies on the collaboration of
multiple reader antennas and requires sophisticated cali-
bration process before putting into use.

1.3 Proposed Approach
In this paper, we propose an approach called Spatial-
Temporal Phase Profiling (STPP) to RFID based relative
object localization. STPP uses commercial off-the-shelf
(COTS) RFID readers and passive tags and requires no
pre-deployed infrastructure. The basic idea of STPP is
that by carefully moving an RFID reader over a set of
tags during which the reader continuously interrogating
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the tags, for each tag, the reader obtains a sequence of
RF phase values, which we call a phase profile, from the
tag’s responses over time. As a reader moves closer to
(or further away from) a tag, the phase value that the
reader obtains from interrogating the tag changes. Thus,
the phase profile of each tag corresponds to the spatial
changes of the reader with respect to the tag. By analyz-
ing the temporal dynamics in the phase profiles of a set of
tags, the reader can obtain the spatial ordering among the
tags. Specifically, STPP is based on the observation that
as we move the reader along a dimension in one direc-
tion, for any tag, its distance to the reader first decreases
and then increases, and becomes the minimum when the
reader is perpendicular above the tag along that dimen-
sion; in other words, the distance values are symmetric
around the minimum distance. Thus, in this reader mov-
ing process, if the reader continuously interrogate the tag,
the phase values that reader can measure from the tag
responses are also symmetric around the perpendicular
point. Based on the symmetry in this observation, by
moving the reader along a dimension in one direction,
we can determine the order that the tags become perpen-
dicular with the reader along that dimension, which is the
order of the tags. Furthermore, by moving the reader two
times, each time along a different dimension in the two
dimensional space, the reader can obtain the order of the
tags along each dimension. Note that an equivalent way
of moving the reader while keeping the tags stationary
is to move the tags altogether (with the relative positions
among tags preserved) while keeps the reader stationary.
For example, for airport baggage handling systems, we
can keep the reader stationary while the baggages move
on a conveyor belt. Therefore, our relative localization
scheme can handle applications in both tag moving and
antenna moving cases.

For simplicity, this paper focuses on relative object lo-
calization in a two dimensional space (i.e., locating the
relative order of tags on a plane). The straightforward
solution to achieve this is to move the reader two times,
each time along a different dimension in the two dimen-
sional space. In this paper, we propose to achieve two di-
mensional object localization by moving the reader only
once along any dimension. This is based on our obser-
vation that given a sequence of objects aligned along
a dimension, as we move the reader along that dimen-
sion in one direction, the larger the distance between the
reader moving trajectory and that dimension, which are
in parallel, the smaller the phase changes as the reader
moves. Thus, given a set of objects placed within x1 and
x2 (where x1 ≤ x2 along the X dimension) and within y1
and y2 (where y1 ≤ y2 along the Y dimension) as shown
in Figure 1, if we move the reader along the X dimension
from x1 to x2 perpendicularly above the line from (x1,y2)
to (x2,y2), objects with smaller values on the Y dimen-

sion will have smaller phase changing rate; similarly, if
we move the reader along the X dimension from x1 to x2
perpendicularly above the line from (x1,y1) to (x2,y1),
objects with larger values on the Y dimension will have
smaller phase changing rate. Based on this observation,
by moving the reader along the X dimension from x1 to
x2 perpendicularly above the line from (x1,y2) to (x2,y2)
(or the line from (x1,y1) to (x2,y1)), we can determine
the order of the objects along the Y dimension for any
point on the X dimension, in addition to obtaining the or-
der of the objects along the X dimension; in other words,
we can determine the relative location of all objects in
the two dimensional region.

X

Y

Moving direction

hl

(x1,y1)

(x1,y2) (x2,y2)

(x2,y1)
Tag 04
Tag 01 Tag 02

s
Tag 03

Tag 05 Tag 06

Figure 1: Illustration of STPP approach

Our STPP approach achieves relative object localiza-
tion without calculating the absolute coordinate values
of tags. It has two key features in comparison with
prior absolute object localization schemes. First, STPP
requires no dedicated infrastructure. In contrast, prior
RFID based object localization schemes (e.g., [11, 18])
often require dedicated infrastructure such as carefully
deployed anchor tags or antennas as reference points.
Second, STPP uses COTS RFID readers and tags, and
requires no special hardware. In contrast, prior RFID
based object localization schemes (e.g., [17]) often re-
quire special hardware such as USRP.

1.4 Technical Challenges and Solutions

There are three key technical challenges in building a
relative object localization system using our STPP ap-
proach. The first challenge is to achieve high accuracy.
In STPP, phase profiles often come with noises and miss-
ing data points due to multi-path self-interference [22],
which makes finding the perpendicular point for each
tag challenging. To address this challenge, in this paper,
we first acquire the symmetric part of each phase pro-
file, which we call a V-zone. Within the V-zone of each
phase profile, we further perform quadratic fitting on the
incomplete phase values to complete the profile.

The second challenge is to achieve high robustness.
As the mobile reader is often moved manually, the phase
profile will be stretched when the movement slows down
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or compressed when the movement speeds up. To ad-
dress this challenge, we use the Dynamic Time Warping
(DTW) technique to find the V-zone within each phase
profile. DTW compresses or stretches the profiles with
the goal of minimizing the distance between these pro-
files. It naturally compensates for the warps of phase
profiles and is robust to varying reader moving speed.

The third challenge is to achieve low latency. The
time warping distance is calculated using dynamic pro-
gramming algorithm in O(MN) time complexity, where
M and N are the lengths of a phase profile and its ref-
erence phase profile, respectively. This process can take
time, especially for long phase profiles. Furthermore, as
there are typically a large number of tags for localization,
e.g., in a library there are millions of books, detecting the
V zone for each tag’s profile would incur large computa-
tional overhead. To address this challenge, we perform
DTW on the coarser grained representation of phase pro-
files. Specifically, given a phase profile with length M,
we first split it into M

w segmentations where each segment
is of length w. In each segmentation, we record its maxi-
mum and minimum phase values, as well as the start and
end points of this segment on the phase profile. After the
segmentation, this coarser grained phase profile is used
for V zone detection. Using segmentation, we thus can
reduce the time complexity of DTW from O(MN) down
to O(M

w
N
w ) = O(MN

w2 ).

1.5 Key Contributions

This paper represents the first study of relative object lo-
calization. Specifically, we make three key contributions
in this paper. First, we propose the concept of spatial-
temporal phase profiling, which can be used for RFID
based relative object localization. Second, we propose
algorithms to capture the spatial-temporary dynamics of
RF phase profiles and algorithms to determine the tag or-
der along each dimension. Third, we implemented STPP
and evaluated its performance in two real-world appli-
cations: locating misplaced books in a library and deter-
mining the baggage order in an airport. The experimental
results show that we achieve about 84% ordering accu-
racy for misplaced books and 95% ordering accuracy for
baggage handling.

The rest of this paper proceeds as follows. In Sec-
tion 2, we discuss the difficulties on relative localiza-
tion and the concept of spatial-temporal phase profiling
(STPP). In Section 3, we present the design details of our
STPP based relative localization system. In Section 4,
we present the evaluation results of our system. In Sec-
tion 5, we present our findings in deploying our system
in two real-world applications. In Section 6, we present
the limitation and future works. In Section 7, we review
related work. We conclude this paper in Section 9.

2 Spatial-Temporal Phase Profiling
In this section, we first discuss the difficulties that we ex-
perienced in our initial attempts to directly use the infor-
mation that can be measured by commercial readers to-
wards relative localization. Then, we introduce the con-
cept of phase profiling and show how it can capture the
spatial-temperal phase dynamics that helps us to achieve
relative localization.

2.1 Initial Attempts
As an RFID reader sweeps over a set of tags and keeps
querying them, the reader can obtain the following infor-
mation that can be impacted by the changes in the spatial
relationship between the tags and the readers: tag iden-
tification order, the Received Signal Strength Indication
(RSSI), and the received signal phase value. We next ex-
plain the reasons that we did not use these three types of
information for relative localization.

Tag Identification Order: The Class1 Generation2
(C1G2) RFID standard [4] specifies two tag identifica-
tion protocols: frame slotted ALOHA [3] and tree walk-
ing [10]. Unfortunately, in both protocols, the order that
the tags are identified does not correspond to the or-
der that the reader moves across them. In frame slotted
ALOHA, the identification order depends on the random
numbers that tags choose by themseleves. In tree walk-
ing, the order depends on the IDs stored in the tags.
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Figure 2: RSSI values measured over time for two tags

RSSI: RSSI measures the power of received radio sig-
nal, which is inverse proportional to the distance between
the tag and the reader (more precisely, the reader an-
tenna) [6]. As a reader moves across a set of tags, for
each tag, the RSSI values measured by the reader should
increase and then decrease because the distance between
the tag to the reader first decreases and then increases;
thus, by ordering the tags according to the time that their
peak RSSI values appear, the reader obtains the order
of the tags along the moving direction. Unfortunately,
this works only in theory because of the multiple paths
that the signal traverses. To evaluate the multi-path im-
pact, we conducted an experiment by attaching tags to
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the books on a shelf and moving the reader from left
to right as shown in Figure 2(a). Figure 2(b) shows the
RSSI values that the reader measures over time for two
tags labeled 01 and 02, where tag 01 is placed 13cm to
the left of tag 02. The left and right vertical lines corre-
sponds to the time that the reader passes through tag 01
and 02, respectively. From this figure, we first observe
that for both tags, their RSSI values fluctuate and their
peak RSSI values appear before the reader moves across
them. Second, the order of the two tags based on the
time that their peak RSSI values appear is inconsistent
with the actual tag order.

RF Phase Values: Phase is a basic attribute of a signal
along with amplitude and frequency. The phase value of
an RF signal describes the degree that the received sig-
nal is offset from sent signal, ranging from 0 to 360 de-
grees. Let l be the distance between the reader antenna
and the tag, the signal traverses a round-trip (2l) in each
backscatter communication. Apart from the RF phase
rotation over the distance, both the antenna and the tag
will introduce additional phase distortion. Specifically,
let θT x, θTAG, and θRx be the phase rotation introduced
by the reader’s transmission circuit, the tag’s reflection
characteristic, and the reader’s receiver circuits, respec-
tively. The phase measurement θ output by the reader
thus can be expressed as:

{
θ = (2π 2l

λ +μ) mod 2π
μ = θT x +θRx +θTAG

(1)

where λ is the wavelength, μ is system noise. Most com-
mercial RFID readers (such as ImpinJ R420 [1]) are able
to report θ as the difference of the transmitted and the
received signal. Given the ultra-high working frequency
of the commercial passive RFID system, it is possible to
achieve mm-level ranging accuracy in theory [20]. How-
ever, as the phase is a periodic function that repeats every
λ in the distance of signal propagation, we cannot use
phase value to pinpoint relative tag locations.

2.2 Phase Profile
The basic idea of our approach is that by carefully mov-
ing an RFID reader over a set of tags during which the
reader continuously interrogating the tags, for each tag,
the reader obtains a sequence of RF phase values, which
we call a phase profile, from the tag’s responses over
time. Considering Figure 1 where the set of tags are
placed within x1 and x2 along the X dimension and within
y1 and y2 along the Y dimension, suppose we move the
reader along the X dimension from x1 to x2 perpendicu-
larly above the line from (x1,y2) to (x2,y2). Taking tag
01 as an example, its distance to the reader first decreases
until the reader is perpendicular above tag 01, and then
increases. According to Equation 1, the phase of the re-
ceived signal will also decrease first and then increase.
Since the range of any phase value is [0,2π), when this

phase value decreases to 0, it immediately jumps to 2π .
This process repeats until the reader reaches the per-
pendicular point right above tag 01, where the received
phase stops decreasing and starts to increase from a cer-
tain value within [0,2π); when the phase value increases
to 2π , it will immediately drop to 0 and then increases
again. Such periodic change of phase values is reflected
visually as follows: (1) The phase profile of each tag has
a “V-zone” where its bottom occurs at the time when
the reader is perpendicular above the tag. (2) Multiple
curves are symmetrically distributed on both sides of the
V-zone where each curve except the V-zone spans the
whole range of [0,2π). A curve is called one period of
the phase profile.

Given a layout of tags and the reader, their relative po-
sitions and the reader moving speed, assuming the speed
is steady, we can calculate the phase profile of each tag,
which we call the reference phase profile. Consider tags
01 and 02 and the reader in Figure 1, and suppose the
reader moves at a constant speed of 0.1m/s along the line
from x1 to x2 perpendicularly above the line from (x1,y2)
to (x2,y2). Suppose the distance between x1 and x2, the
height of the reader, and the distance from tag 02 to the
line from (x1,y2) to (x2,y2) are 3m, 1m and 0.5m, respec-
tively. Figure 3(a) shows the reference phase profiles of
tags 01 and 02 when their distance is 5cm. This figure
shows that the phase profiles of tag 01 and tag 02 have
similar V-zone patterns.
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Figure 3: Reference phase profile along X-axis

Given the phase profiles of multiple tags, the order
that the reader passes through the tags along the X-axis
is consistent with the order that the V-zones reach their
bottom. By ordering the V-zones according to the time
that they reach their bottoms, we can order the tags along
the X-axis. Figure 3(a) shows that the V-zone of tag 01
reaches its bottom earlier than that of tag 02, which is
consistent with the order that the reader passes through
the tags. Furthermore, the longer the distance between
two adjacent tags, the longer the time duration between
the bottoms of two V-zones is. For example, Figure
3(b) shows the reference phase profiles of tags 01 and
02 when their distance is 10cm. As we increase the dis-
tance between the two tags from 5cm to 10cm, the time
duration between the two V-zones also increases.

Given the phase profiles of multiple tags, the larger
the bottom phase value of a V-zone is, the longer the
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distance between the tag that corresponds to the V-zone
and the reader. By ordering the V-zones according to
the phase value of their bottoms, we can order the tags
along the Y-axis. Figure 4(a) shows that the V-zone bot-
tom phase value of tag 04 is smaller than that of tag 01,
which means that tag 04 is farther away than tag 01 with
respect to the reader. Furthermore, the larger the two
bottom phase values of two V-zones differ, the larger the
distance between the two corresponding tags along the
Y-axis. Figure 4(a) and (b) shows the phase profiles of
tag 01 and 04, whose distances along the Y-axis are 5cm
and 10cm, respectively. We observe that by increasing
the tag distances from 5cm to 10cm, the distances be-
tween the bottom phase values of the two corresponding
V-zones increases.
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Figure 4: Reference phase profile along Y-axis

To validate the above observations from reference
phase profiles, we reproduce the layout of tags in Fig-
ure 1 on a white board. We attach an RFID reader on
a shopping cart and wheel the cart along the X-axis in
the positive direction. The speed of the cart is also set
to be 0.1m/s. Figure 5 and Figure 6 shows the two mea-
sured phase profiles. From these figures, we can derive
the same observations as above. Besides, we also found
that due to channel instability, the phase profiles outside
the V-zone are fragmentary. It is thus error-prone to con-
nect the whole profile into a big V-zone for tag ordering.
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Figure 5: Measured phase profile along X-axis
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Figure 6: Measured phase profile along Y-axis

3 System Design
In this section, we present the details of our STPP ap-
proach to obtain the order of the tags along the X- and Y-
axis, respectively. Without loss of generality, we assume
that the reader moves along the X-axis from left to right.

3.1 Tag Ordering along X-axis
The profile segment within the V-zone differs from the
other parts of the phase profile from two aspects. First,
it changes continuously without jumping from 0 to 2π .
Second, it is self-symmetric around the time point that
the reader is perpendicular with the tag, which we call
the perpendicular point. A straightforward solution to
detect the V-zone is to use a sliding window to find the
profile segment that satisfies these two properties. How-
ever, in reality, due to multi-path self-interference, the
phase profile often has missing values within the V-zone
as shown in Figure 6(a). Thus, this solution is unreliable
for V-zone detection.

3.1.1 Detecting V-zone with Time Warping
Our basic approach is to match the measured phase pro-
file against a pre-calculated reference phase profile, and
try to find where the V-zone appears in the measured
phase profile. As the reader is often hand held and moved
manually, the phase profile become stretched when the
movement slows down and compressed when the move-
ment speeds up during the movement. Thus, subse-
quence matching algorithms (such as the KMP algorithm
[7]) will not work for our V-zone detection. To find the
place where the V-zone appears, we need to stretch or
compress the calculated profile to match the correspond-
ing V-zone on the given phase profile.

To address this issue, we use the Dynamic Time Warp-
ing (DTW) technique to match the V-zone in the calcu-
lated phase profile against the measured phase profile.
DTW is a transformation that automatically compresses
or stretches a sequence with the goal of minimizing the
distance between these sequences. It naturally compen-
sates for the shifts among different phase profiles caused
by the varying reader moving speed. The input to the
DTW algorithm consists of a reference phase profile P
of length N and a measured phase profile Q of length M.
DTW first constructs a distance matrix DM×N where each
element Di, j is defined as the Euclidean distance between
pi and q j:

Di, j = �pi −q j�
where pi and q j are the ith and jth elements of the phase
profiles P and Q, respectively. The output of the DTW
algorithm is a warping path L = {l1, l2, ..., lk} such that
the total cost CL of the warping path L is minimized:

argmin
L

CL =
k

∑
i=1

Dx(li),y(li)

5
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where li = (x,y) ∈ [1 : M]× [1 : N] for l ∈ [1 : k].
To generate the optimal warping path, DTW con-

structs the cost matrix Ci, j using dynamic programming.
The optimal substructure is defined as:

Ci, j = Di, j +min {Ci, j−1,Ci−1, j,Ci−1, j−1}

Figure 7(b) shows the matching result using DTW. It
shows that the V-zone of the measured profile matches
well with that of the reference profile. On the reference
profile, as the start and the end point of the V-zone is
known a priori, it is easy to locate the corresponding V-
zone on the measured profile.
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Figure 7: V-zone detection using DTW

3.1.2 Optimizing V-zone Detection Efficiency
The core of DTW is dynamic programming whose com-
plexity is O(NM). This process may take some time
because the phase profiles may be long (e.g., typically
around 400 samples) and the number of tags may be
large. To improve efficiency, we apply DTW on the
coarser grained representations of phase profiles. Given
a phase profile P, we split it into d segments: SP =
{sP,1,sP,2, ...,sP,d}. For each segment sP,i, we further
record its segment range sR

P,i and time interval sT
P,i. For-

mally, the segment range sR
P,i is defined as:

sR
P,i = {sL

P,i,s
U
P,i}

sL
P,i = min {pa, ..., pb}, sU

P,i = max {pa, ..., pb}

where sL
P,i and sU

P,i are the minimum and maximum phase
values within ith segment. a and b are the begin and the
end index of the phase profile within this segment. Note
that if within a segment the phase value jumps from 0 to
2π , we split the segment into two segments at that point
so that no segment contains such phase value jumping.
Figure 8 shows an example segmentation. In this figure,
we represent the original profile with 25 segments, with
each consists of its segment range and time interval.

Given two phase profiles P and Q, we first acquire
their segmented presentation SP and SQ, with each con-
tained J and K segments, respectively. Similar to DTW,
we construct a distance matrix DJ×K , where each ele-
ment Di, j is defined as the distance between the segmen-
tation sP,i and sQ, j. It is intuitively the distance of their
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Figure 8: Phase profile segmentation;

two closest points:

Di, j =

⎧
⎪⎨
⎪⎩

�sL
P,i − sU

Q, j�, i f (sL
P, j > sU

Q, j)

�sL
Q, j − sU

P,i�, i f (sL
Q,i > sU

P,i)

0, otherwise

After compute each element in the matrix DJ×K , we
align SP and SQ using dynamic programming. The opti-
mal substructure defined as follows:

Ci, j = min {sT
P,i,s

T
Q, j} ·Di, j +min {Ci, j−1,Ci−1, j,Ci−1, j−1}

Using segmentation, we reduce the time complexity of
DTW from O(MN) down to O(M

w
N
w ) = O(MN

w2 ) where w
is the length of each segment. We need to choose the
value for w carefully to tradeoff between efficiency and
accuracy. The larger the w is, the more efficient DTW
is, but the less accurate our V-zone detection is due to
the unclear outline of the segmented phase profile. In
Section 4, we investigate how to select a proper w value.

After we detect the V-zone for a tag in its phase profile,
we search for the time point with the smallest phase value
within the V-zone. However, due to the multi-path self-
interference, the measured phase profile often contains
noise and missing values, which may cause the nadir of
the V-zone profile to wrap around. In this work, we use
the quadratic fitting technique to minimize such influ-
ences. Once the fitting function is determined, by refer-
ring the time point when the fitting function achieves the
minimum value, we sort this tag together with those tags
whose V-zones have already been determined. Figure 9
shows a concrete example. In this example, three tags are
attached on a white board, then the antenna moves along
the X-axis from the right to the left at a speed of approx-
imate 0.1m/s. The distance between tag 03 and tag 01,
tag 01 and tag 02 are 15cm and 2cm, respectively. After
performing the quadratic fitting on these phase profiles,
we see a clear lag between the phase profiles of these
three tags. Based on the time point when the fitting func-
tion achieves the minimum value, we further determine
the order of these three tags as 01, 02, and 03, which is
coherent with the actual order.
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3.2 Tag Ordering along Y-axis
The movement model of the reader when it passes by
two tags at a constant speed v is shown in Figure 10. In-
tuitively, the radial velocity vR of the tag is inverse pro-
portional to its distance with respect to the antenna. That
is, the larger the distance between the tag and the mov-
ing trajectory of the reader, the lower the radial veloc-
ity of this tag. The lower radial velocity further leads
to a smaller phase changing rate, therefore a shallower
V-zone profile. Based on the above observation, we pro-
pose another segmentation based method to determine
the tag order along the Y-axis.

3.2.1 Tag Ordering via V-zone Profile Comparison
The basic idea to determine tag ordering along the Y-axis
is to comparing their phase changing rates. One straight-
forward method is to first derive the span and offset of
the quadratic model, and then uses these two parameters
to calculate the phase changing rate. However, in reality,
if the tags are placed close to each other (such as 5cm),
the V-zone profiles of these tags would be similar and
would lead to similar curve fitting results. In STPP, we
compare the phase changing rate by jointly considering
multiple local phase profile segments within the V-zone
profile. Notice that the V-zone profile may vary in length
due to the random access property of ALOHA proto-
col [3]. Thus, we first split each profile into equal num-
ber of segments to facilitate the comparison. Within each
segment of the V-zone profile, we calculate the mean
value of phase values. Therefore, given a phase profile
P, we can get its coarse representation by using the set
of mean values, i.e., we represent the V-zone profile P
by S(P) = {sP,1,sP,2, ...,sP,k}, where k is the number of
segments and sP,k is the mean value of kth segment. Av-
eraging over all phase values within each segment will
eliminate the impact of noise introduced in phase value
measurements. Since each segment corresponds to one
specific time window, the average phase value also re-
flects the accumulated phase changing rate within each
segment. By calculating the average phase values, we
can improve the robustness of our scheme. Figure 11
shows an example coarse representation of the V-zone

profile. In this figure, the phase value within each seg-
ment is represented by its mean value.

To determine the order of two tags along the Y-axis,
we compare the coarse representation of their V-zone
profiles, say S(P) and S(Q), using the following metric:

O(P,Q) =
k

∑
i=1

�
sP,i − sQ,i

sP,i
�

Generally, if the phase changing rate of P is smaller
than that of Q, for each segment i, sP,i will be larger than
sQ,i. Therefore, O(P,Q) will be close to k. On the con-
trary, if the phase changing rate of P is larger than that of
Q, sP,i will be no larger than sQ,i. Here O(P,Q) will be
close to 0 accordingly. Therefore, we can determine the
tag order along the Y-axis based on the value of O(P,Q).

3.2.2 Optimizing the Ordering Efficiency
The core of determining the tag order along the Y-axis
is to compare the V-zone profiles by using the metric
O(P,Q). This process may take some time because we
need to compare each pair of phase profiles. For exam-
ple, it takes M(M−1)

2 comparison to determine the order
of M tags along the Y-axis. To speed up this process, we
further introduce a new metric G(P,Q) to measure the
gap between two phase profiles P and Q. It is defined as
follows:

G(P,Q) =
k

∑
i=1

�sP,i − sQ,i�

where �sP,i − sQ,i� is the Euclidean distance between the
mean phase value sP,i and sQ,i. In an intuitive level,
G(P,Q) is proportional to the physical spacing of these
two tags. i.e., the larger the physical spacing between
these two tags, the larger the G(P,Q) will be. For M
tags, we then randomly choose one tag as the pivot. Let
P be the V-zone profile of this pivot, then we calculate
O(P,Q) and G(P,Q) between P and each profile Q of
the remaining tags. By doing so, we can not only deter-
mine the relative order between the pivot tag and other
tags, but also acquire the relative distance of these tags.
Therefore, we can order these M tags with only M − 1
comparison, which is significantly smaller than M(M−1)

2 .
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Figure 14: Antenna moving case

Tag population size within a reading zone
n=5 n=10 n=15 n=20 n=25 n=30

Tag moving case along X-axis 0.963 0.954 0.952 0.937 0.906 0.884
along Y-axis 0.917 0.903 0.878 0.874 0.863 0.856

Antenna moving case along X-axis 0.873 0.865 0.861 0.852 0.841 0.813
along Y-axis 0.809 0.806 0.798 0.779 0.765 0.754

Table 1: Tag population vs. ordering accuracy

4 System Evaluation

4.1 Implementation
Hardware: Our system consists of a COTS UHF RFID
reader, a directional antenna, and a set of passive tags.
To account for device diversity, we have tested our sys-
tem using different hardware, including an ImpinJ R420
reader, an ImpinJ Threshold RFID Antenna IPJ-A0311,
an Alien ALR-8696-C antenna, and four types of pas-
sive tags: Alien ALR-9610, ALN-9662, ALN-9634, and
ALN-9720. For diversity, we choose four types of tags
of different size and shape.

Software: We implemented our algorithms in Java,
which were executed on a Lenovo PC equipped with an
Intel(R) Celeron G530 CPU and 4G RAM. The PC is
connected to the RFID reader via Ethernet. The reader is
programmed to continuously query the RFID tags on the
6th channel in the 920 ∼ 926 MHz ISM band and returns
the signal phase for each tag reply.

4.2 Deployment
One deployment issue is to determine the number of pe-
riods that the reference phase profile should contain. In
theory, the reference phase profile should contain the
same number of periods as the measured profile. In or-
der to obtain a proper reference phase profile, we put the
reader 30cm (a common distance between a librarian and
a bookshelf) away from the tags. We collected phase
profiles by holding the reader and passing 200 tags for
15 times. Of the 3,000 phase profiles that we collected,
more than 97% of them contain 4 partial or complete pe-
riods. Thus, we generate a 4-period reference phase pro-
file as the default setting in our experiment.

Another deployment issue is to determine the height
that the antenna should be moving across the tags. As

STPP uses the phase changing rate of each tag to deter-
mine its relative order along the Y-axis, we need to place
the antenna at a height such that the tags with different
Y coordinates differ in phase changing rate. This can be
ensured if all the tags are either above or below the an-
tenna along the Y-axis since their antenna to tag distances
would differ from each other. For example, in library, we
can put the antenna at the bottom of the lowest shelf so
that each tag has a different distance to the reader, which
is moving along the X-axis. In our experiments, we sim-
ply place the antenna at a height below all tags.

4.3 Micro-Benchmarks
Experimental setup: We have two experimental cases:
the antenna moving case and the tags moving case. In
the antenna moving case, we partition 150 tags into 3
groups and attach them on a white board as shown in Fig-
ure 15(a). The antenna is fixed on a wheeled chair which
is pushed manually at a rough speed of 0.3m/s. This ex-
perimental setup simulates the misplaced book locating
application in libraries where a librarian moves a reader
across a bookshelf.

In the tag moving case, we use a conveyor belt and
a tape to compose a mobile RFID system as shown in
Figure 15(b). The antenna is placed 1m away from the
tape and 1m above the top of the winder. We attach a set
of tags on the tape, which move at a constant speed of
0.3m/s. This case simulates the baggage handling appli-
cation in airports where baggage or cargos attached with
RFID tags are delivered on a conveyor belt.

Evaluation Metrics: We mainly use the metric of or-
dering accuracy defined in Equation 2. A tag is ordered
incorrectly in a sequence of tags if and only if the de-
tected order of the tag is not equal to the actual order of

8
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Figure 15: Experimental setup

that tag. For example, suppose there are five tags and the
correct order of these five tags is 1-2-3-4-5. If the output
of our scheme is 1-2-4-3-5, then we immediately know
that the tag 4 and tag 3 are ordered incorrectly, and thus
the accuracy is 3/5=60%.

Ordering Accuracy =
# o f tags ordered correctly

# o f tags in total
(2)

Determining a proper window size w: In general, a
larger window size contributes to higher efficiency but
lower accuracy. As shown in Figure 12, the ordering
accuracy of STPP remains high for small window sizes
(e.g., nearly 98% when w = 3), decreases slightly with
window sizes increased from 3 to 5, and drops sharply
for window sizes larger than 5. Therefore we set w to
be 5 in our experiments to tradeoff between latency and
accuracy.

Tag-to-tag distance vs. Ordering accuracy: As
shown in Figure 13, when each tag pair is placed very
close (e.g., 2cm apart), STPP achieves an ordering accu-
racy of only 42% along the X-axis and 23% along the Y-
axis in the tag moving case. The ordering accuracy then
increases dramatically as we slightly increase the tag-to-
tag distance: 92% and 88% along the X-axis and the Y-
axis respectively for tag-to-tag distance of 10cm. The
similar trend is observed for the antenna moving case as
shown in Figure 14 where the ordering accuracy remains
high for tag-to-tag distances larger than 8cm.

Tag population vs. Ordering accuracy: Commer-
cial RFID reader have limited reading rate. If the reading
zone of the antenna contains a large number of tags, we
will have under-sampling of phase readings which po-
tentially degrades the ordering accuracy. We change the
tag populations from 5 to 30 within the reading zone of
the antenna and examine the performance of STPP. The
distance between two adjacent tags is randomly chosen
in the range of [2cm,10cm]. We present the experimen-
tal results in Table 1 to compare the data values. As
shown in this table, when the tag population is small
within the reading zone of the antenna, e.g., n = 5, STPP
achieves satisfactory performance, with ordering accu-
racies of above 90% and 80% for the tag moving and
antenna moving cases, respectively. As we steadily in-
crease the tag population within the reading zone, the

ordering accuracy degrades gradually in both two cases.
When the tag population reaches 30, the ordering accu-
racy remains at an acceptable level, with average accura-
cies of above 0.85 and 0.75 for tag and antenna moving
cases, respectively. This result indicates that the perfor-
mance of STPP will degrade a little bit when the tag pop-
ulation increases.

4.4 Macro-Benchmarks
We evaluated STPP in comparison with the following
four schemes that are implementable on COTS RFID
readers:

1. G-RSSI: This is a straightforward scheme that uses
RSSI value changes to infer tag orders along the X-
axis.

2. OTrack [16]: This scheme combines RSSI dynam-
ics and tag successful reading rates to determine tag
orders along the X-axis.

3. Landmarc [13]: This scheme uses multiple refer-
ence tags to calculate the absolute location of a tag
in 2 dimensional region.

4. BackPos [11]: This scheme uses RF phase values
and the hyperbolic positioning technique to calcu-
late the absolute location of a tag in 2 dimensional
region.

Our experimental results show that STPP significantly
outperforms the other four schemes for the accuracy of
relative localization. We compare the ordering accuracy
of these schemes under various layout settings as shown
in Figure 16. In each setting, we repeat the experiment
100 times and use their average ordering accuracy val-
ues. The distance between adjacent tags ranges from
1cm to 10cm. As shown in Figure 17, G-RSSI and Land-
marc achieve similar low ordering accuracy values of be-
low 25% along both axes. Using both RSSI dynamics
and tag successful reading rates, OTrack outperforms G-
RSSI and Landmarc, yet can only reach an ordering ac-
curacy of below 50%, which is too low for real-world
applications. With more precise signal measurement,
BackPos can locate each tag and further distinguish their
relative order with an average ordering accuracy of 80%.
In contrast, STPP achieves an average ordering accuracy
of more than 88%.

Our experimental results show that STPP scales bet-
ter than the other four schemes as adjacent tag distance
decreases. To perform this evaluation, we choose a pop-
ulation of 20 tags and vary the adjacent tag distance from
100cm to 10cm. Figure 18 shows the box plot of the ac-
curacy values of different schemes as we vary the dis-
tance. The whisker indicates values outside the upper
and lower quartiles. From this figure, we can observe
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Figure 16: Tag layout settings
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that the median accuracy of STPP is significantly higher
than that of other four schemes. Besides, the likely range
of variation (IQR) of STPP is the smallest as the adjacent
tag distance decreases.

Our experimental results show that STPP scales bet-
ter than the other four schemes as tag population size
increases. To perform this evaluation, we choose 10cm
to be the adjacent tag distance and vary the tag popula-
tion from 5 to 30. As G-RSSI, Landmarc, and BackPos
are insensitive to tag population sizes, we thus compare
STPP with OTrack. Figure 19 shows the box plot of the
accuracy values of different schemes as we vary the tag
population size. From this figure, we observe that likely
range of variation (IQR) of STPP is significantly smaller
than that of OTrack.

5 Case Studies
We deployed our STPP based relative RFID tag localiza-
tion system in two real-world applications: a misplaced
book locating system in a library and a baggage handling
system in an airport. In this section, we present our ex-
perimental results with these two case studies. Note that
our relative localization scheme is not limited to these
two applications. Other applications (such as locating
suspicious baggage and warehouse stocktaking) can also
benefit from our localization scheme.

5.1 Misplaced Book Locating in Library
A major task for librarians is to locate misplaced books
and relocate them to the right place. Note that library
books are typically strictly ordered based on their IDs so
that borrowers can find a specific book easily. To help
locate misplaced books, we deploy our STPP system in a
school library. For one bookshelf in the library, we attach

90 RFID tags to 90 books, one tag per book. These books
are placed on three levels. The thickness of each book
spans from 3cm to 8cm. We attach an RFID antenna on
a cart and manually push it across the bookshelf from left
to right, as shown in Figure 20. Here we simply put the
antenna at the height

RFID tagAntenna

Reader

S1

S2

S3

S2 < S1 < S3

Figure 20: Locaking misplaced books

This case study also shows that STTP can achieve high
relative localization accuracy. We sweep these 90 books
over 50 times. The result shows that our relative local-
ization scheme achieves an accuracy of 0.84 on average.
This implies that in most cases, STPP can precisely pin-
point the relative location of the misplaced book. For the
remaining cases, although STPP cannot correctly find the
relative location of tags, it still helps the librarian to nar-
row down the searching space. Figure 21 shows the order
of the books that we obtained in one experiment, whee
each dot represents a book and each cross represents a
book that we ordered incorrectly. Note that the gap be-
tween two dots reflects the distance between two tags.

10
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From this figure, we observe that all incorrectly ordered
books are those thin ones as their tags are much closer.
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Figure 21: Layout of detected books by STPP

We also conducted experiments to evaluate the abil-
ity of STPP in detecting misplaced books. We randomly
picked one book, two books, and three books from a
bookshelf and inserted them into a differently chosen lo-
cation on this bookshelf. This location is randomly cho-
sen from the range of 2 books away from the original
place to 10 books away. Each case was repeated 100
times. The detection success rate is shown in Table 2.

Detection success rate
1 book 98%
2 books 97%
3 books 98%

Table 2: Result of misplaced book detection by STPP

5.2 Baggage Handling in Airport
To avoid mis-delivered baggages, baggage handling sys-
tems in airports need to find the order of the baggages on
the conveyor belt [2]. Although the size of one baggage
item is usually large, the distance between adjacent tags
(attached to different baggages) can be rather close due
to the arbitrary orientation of baggage on the convey belt.
It is thus critical to pinpoint the relative order of baggage
with high resolution. We deployed our STPP system
at Terminal One, Sanya Phoenix airport, Sanya, Hainan
Province, China. Three RFID reader antennas are de-
ployed at three places on the tunnel as shown in the left
figure in Figure 22(b). Based on the tag ordering infor-
mation, the visualization module displays each baggage
and tracks its movement on the baggage conveyor belt,
as shown in the right figure in Figure 22(b). As reference
tags and antennas, which are the essential part of the lo-
calization scheme Landmarc and BackPos, cannot be de-
ployed on the commercial baggage handling system, we
thus compare STPP with OTrack and G-RSSI in this case
study. Our experiments were carried out during three
periods: 7:00AM∼9:00AM, 13:00PM∼15:00PM, and

(a) RFID tag for baggage check-in

Antenna

Project to

(b) Baggage handling in Terminal One, Sanya Phoenix airport

Figure 22: Baggage handling in the airport

19:00PM∼21:00PM, during which over 1,000 pieces of
baggage from 9 flights are handled.

This case study shows that STTP can achieve high rel-
ative localization accuracy. Table 3 shows the accuracy
results of STPP in comparison with G-RSSI and OTrack
during the three time periods. During the peak hours
of 7:00AM∼9:00AM and 19:00PM∼ 21:00PM, during
which the distance between each baggage is typically
smaller than 20cm, our STPP achieves accuracy values
of 97% and 96%, respectively; whereas OTrack achieves
an accuracy of 88% for both time periods and G-RSSI
achieves accuracy values of 59% and 51%, respectively.
During the off peak hours of 13:00PM∼15:00PM, our
STPP, OTrack, and G-RSSI achieve accuracy values of
97%, 95%, and 72%, respectively.

7:00∼9:00 13:00∼15:00 19:00∼21:00
STPP 388/400=97% 224/230=97% 422/440=96%

OTrack 352/400=88% 218/230=95% 388/440=88%
G-RSSI 234/400=59% 166/230=72% 226/440=51%

Table 3: Accuracy of STPP, OTrack, and G-RSSI

We further examine the ordering latency of OTrack
and STPP. In this trial of experiments, we use OTrack
and STPP to detect the order of 100 baggages on a mov-
ing conveyor. The CDF of the ordering latency incurred
by each scheme is shown in Figure 23. As the result in-
dicates, the average latency of STPP is 1.473s, which is
slightly hight than that of OTrack.

0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
D

F

STPP
OTrack

Figure 23: Ordering latency of STPP and OTrack
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6 Limitation and Future Works
Improving accuracy: Our accuracy still has room to
improve. One possible direction is to sweep tags mul-
tiple times and average their results. In future, we plan
to leverage the advanced signal processing techniques to
minimize the phase noises and exploit the geometry rela-
tionship among tags to improve the localization accuracy.
Enhancing robustness: Currently we require the reader
to move along a straight line that crosses the targeting
items. However, the line may not be strictly straight in
practice. In future, we plan to model the impact of irreg-
ular reader motions on the phase profile, and enhance the
robustness of our relative localization scheme by filtering
out phase values introduce by irregular reader motions.
Extending to 3-Dimensional space: Currently we focus
on the relative tag localization in a 2D space. A straight-
forward approach to handle the 3D space is to move the
reader three times, each time along a different dimension
in the 3D space. Thus, the reader can obtain the order
of the tags along each dimension. In future, we plan to
study ways to extend our spatial-temporal phase profiling
approach for 3D relative tag localization.

7 Related Work

RSSI based approach: Early RF-based localization
schemes primarily rely on RSSI information to acquire
the absolute location of an object [13, 16, 21, 23]. They
typically pre-deploy tags densely on a monitoring region
as anchors, and then use the RSSI values of these an-
chor tags as references to locate a specific tag [13, 23].
Succeeding works explore the anchor-free approach by
either modeling the signal propagation process in com-
plex environment [21] or taking a combination of var-
ious signal features (e.g. the RSSI and the tag’s read-
ing rate [16]). The major limitation of RSSI-based ap-
proaches is that they are highly sensitive to multi-path
propagation, and thus difficult to achieve high-precision
localization. Furthermore, RSSI is also impacted by an-
tenna gain [8], which adds uncertainty to localization ac-
curacy.

Phase based approach: There is a growing interest
in using phase values to estimate the absolute location
of an object. Pioneer work uses hyperbolic localization
techniques [11, 19] or Angle of Arrival (AoA) informa-
tion [5,9,14] to locate tags by measuring the phase differ-
ence between the received signals at different antennas.
To reduce the hardware deployment cost, state-of-the-art
systems use synthetic aperture radar (SAR) to simulate
multiple antennas to extract RF information [15,18]. For
instance, by leveraging antenna motion, PinIt achieves a
location accuracy on the order of centimeters [18]. An-
other line of work employs multiple antennas to con-
struct a hologram for tag localization [12, 20].

Our work is inspired by the above works in phase-
based tag localization, but we focus on leveraging reader
mobility to generate phase profiles for tag localization.
In this setting, PinIt [18] is perhaps most related to ours.
It locates RFID tags by analyzing their multi-path pro-
files collected by a moving antenna. However, the in-
tuition behind PinIt is that nearby RFID tags experience
a similar multi-path environment and thus exhibit simi-
lar multi-path profiles. In contrast, the intuition behind
our scheme is that by analyzing the spatial-temporal dy-
namics in the phase profiles of a set of tags, we can cal-
culate the spatial ordering among tags. Moreover, PinIt
relies on dedicated hardware (i.e., USRP) to capture the
multi-path profile of each tag and requires densely de-
ployed reference tags. In contrast, our scheme works on
COTS devices and does not rely on any reference tags.
Although both PinIt and our scheme leverage DTW met-
ric and optimize its execution for tag localization, the tar-
gets of the DTW optimization in these two schemes are
different. PinIt leverages derivative DTW (DDTW) tech-
nique to handle the power scaling problem, whereas our
scheme optimizes the computational efficiency by apply-
ing the DTW on the coarse-grained representation of the
phase profile.

8 Conclusions
In this paper, we propose the phase profiling approach
to relative localization of RFID tags by exploiting the
spatial-temporal dynamics in tag phase profiles. We
show that relative localization can be achieved without
the absolute location of tags. Our approach requires nei-
ther dedicated infrastructure nor special hardware. We
implemented our approach and conducted experiments
in two realistic case studies: locating misplaced books
in a library and determining baggage ordering in an air-
port. The result shows that our approach can achieve
high accuracy in realistic settings. This paper represents
an early comprehensive study of relative localization of
RFID tags. Our system can be used in a wide range of ap-
plications such as inventory control, asset management,
and customer behavior tracking.
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