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Abstract

Coresets are important tools to generate concise summaries of massive datasets for approx-
imate analysis. A coreset is a small subset of points extracted from the original point set such
that certain geometric properties are preserved with provable guarantees. This paper inves-
tigates the problem of maintaining a coreset to preserve the minimum enclosing ball (MEB)
for a sliding window of points that are continuously updated in a data stream. Although the
problem has been extensively studied in batch and append-only streaming settings, no efficient
sliding-window solution is available yet. In this work, we first introduce an algorithm, called
AOMEB, to build a coreset for MEB in an append-only stream. AOMEB improves the prac-
tical performance of the state-of-the-art algorithm while having the same approximation ratio.
Furthermore, using AOMEB as a building block, we propose two novel algorithms, namely
SWMEB and SWMEB+, to maintain coresets for MEB over the sliding window with constant
approximation ratios. The proposed algorithms also support coresets for MEB in a reproduc-
ing kernel Hilbert space (RKHS). Finally, extensive experiments on real-world and synthetic
datasets demonstrate that SWMEB and SWMEB+ achieve speedups of up to four orders of
magnitude over the state-of-the-art batch algorithm while providing coresets for MEB with
rather small errors compared to the optimal ones.

1 Introduction
Unprecedented growth of data poses significant challenges in designing algorithms that can scale
to massive datasets. Algorithms with superlinear complexity often become infeasible on datasets
with millions or billions of points. Coresets are effective approaches to tackling the challenges
of big data analysis. A coreset is a small subset extracted from the original point set such that
certain geometric properties are preserved with provable guarantees [3]. Instead of processing
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the original dataset, one can perform the computation on its coreset with little loss of accuracy.
Various types of problems have been shown to be effective under coreset approximation, e.g., k-
median and k-means clustering [3, 9, 20], non-negative matrix factorization (NMF) [17], kernel
density estimation (KDE) [26, 34], and many others [6, 10, 21].

Coresets for minimum enclosing balls (MEB) [1, 4, 5, 22, 23, 32, 33] have received signifi-
cant attention due to its wide applications in clustering [4, 5, 22], support vector machines [28],
kernel regression [31], fuzzy inference [13], shape fitting [23], and approximate furthest neighbor
search [25]. Given a set of points P , the minimum enclosing ball of P , denoted by MEB(P ), is
the smallest ball that contains all points in P . A subset S ⊂ P is a µ-coreset for MEB(P ) if the
distance between the center c∗(S) of MEB(S) and any point in P is within µ · r∗(S), where r∗(S)
is the radius of MEB(S) [4]. Existing studies [4, 22] show that there always exists a (1+ε)-coreset
of size O(1

ε
) (0 < ε < 1) for the MEB of any point set, which is independent of the dataset size

and dimension.
Most existing methods [4, 5, 22, 23, 32] of coresets for MEB focus on the batch setting and

must keep all points in memory when constructing the coresets. In many applications, such as
network monitoring, financial analysis, and sensor data mining, one needs to process data in the
streaming model [24] where the input points arrive one at a time and cannot be stored entirely.
There have been several methods [1, 2, 11, 33] to maintain coresets for MEB in data streams. The
state-of-the-art streaming algorithm [1] can maintain a (

√
2+ε)-coreset for MEB with a single pass

through the input dataset. However, these algorithms only consider the append-only scenario where
new points are continuously added to, but old ones are never deleted from, the stream. Hence, they
fail to capture recency in time-sensitive applications since the computation may be performed on
outdated data. To meet the recency requirement, the sliding window model [8, 9, 15, 16] that
only considers the most recent N points in the stream at any time is a popular approach for real-
time analytics. One can trivially adapt append-only methods for the sliding window model but
a complete coreset reconstruction is deemed inevitable once an expired point is deleted. To the
best of our knowledge, there is no existing algorithm that can maintain coresets for MEB over the
sliding window efficiently.

Our Results. In this paper, we investigate the problem of maintaining coresets for MEB in the
sliding window model. In particular, our results are summarized as follows.

• In Section 3.1, we present the AOMEB algorithm to maintain a (
√
2 + ε)-coreset of size

O( log θ
ε2

) with O(m log θ
ε3

) computation time per point for the MEB of an append-only stream,
where m is the dimension of the points and θ is the ratio of the maximum and minimum
distances between any two points in the input dataset. AOMEB shows better empirical per-
formance than the algorithm in [1] while having the same approximation ratio.

• In Section 3.2, using AOMEB as a building block, we propose the SWMEB algorithm
for coreset maintenance over a sliding window Wt of the most recent N points at time t.
SWMEB divides Wt into equal-length partitions. On each partition, it maintains a sequence
of indices where each index corresponds to an instance of AOMEB. Theoretically, SWMEB
can return a (

√
2 + ε)-coreset for MEB(Wt) with O(

√
N · m log θ

ε3
) time and O(

√
N · log θ

ε2
)

space complexity, where N is the window size.
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• In Section 3.3, we propose the SWMEB+ algorithm to improve upon SWMEB. SWMEB+
only maintains one sequence of indices, as well as the corresponding AOMEB instances,
over Wt. By keeping fewer indices, SWMEB+ is more efficient than SWMEB in terms
of time and space. Specifically, it only stores O( log

2 θ
ε3

) points with O(m log2 θ
ε4

) processing
time per point, both of which are independent of N . At the same time, it can still return a
(9.66 + ε)-coreset for MEB(Wt).

• In Section 3.4, we generalize our proposed algorithms to maintain coresets for MEB in a
reproducing kernel Hilbert space (RKHS).

• In Section 4, we conduct extensive experiments on real-world and synthetic datasets to eval-
uate the performance of our proposed algorithms. The experimental results demonstrate
that (1) AOMEB outperforms the state-of-the-art streaming algorithm [1] in terms of coreset
quality and efficiency; (2) SWMEB and SWMEB+ can return coresets for MEB with rather
small errors (mostly within 1%), which are competitive with AOMEB and other stream-
ing algorithms; (3) SWMEB and SWMEB+ achieve 2 to 4 orders of magnitude speedups
over batch algorithms while running between 10 and 150 times faster than AOMEB; (4)
SWMEB+ further improves the efficiency of SWMEB by up to 14 times while providing
coresets with similar or even better quality.

2 Preliminaries and Related Work
Coresets for MEB. For two m-dimensional points p = (p1, . . . , pm), q = (q1, . . . , qm), the Eu-
clidean distance between p and q is denoted by d(p,q) =

√∑m
i=1(pi − qi)2. An m-dimensional

(closed) ball with center c and radius r is defined as B(c, r) = {p ∈ Rm : d(c,p) ≤ r}. We use
c(B) and r(B) to denote the center and radius of ball B. The µ-expansion of ball B(c, r), denoted
as µ ·B, is a ball centered at c with radius µ · r, i.e., µ ·B = B(c, µ · r).

Given a set of n points P = {p1, . . . ,pn} ⊂ Rm, the minimum enclosing ball of P , denoted
as MEB(P ), is the smallest ball that contains all points in P . The center and radius of MEB(P )
are represented by c∗(P ) and r∗(P ). For a parameter µ > 1, a ball B is a µ-approximate MEB of
P if P ⊂ B and r(B) ≤ µ · r∗(P ). A subset S ⊂ P is a µ-coreset for MEB(P ), or µ-Coreset(P )
for brevity, if P ⊂ µ · MEB(S). Since S ⊆ P and r∗(S) ≤ r∗(P ), µ · MEB(S) is always a
µ-approximate MEB of P .

Sliding Window Model. This work focuses on maintaining coresets for MEB in append-
only streaming and sliding window settings. For a sequence of (possibly infinite) points P =
〈p1,p2, . . .〉 arriving continuously as a data stream where pt is the t-th point, we first consider the
problem of maintaining a µ-Coreset(Pt) for Pt = {p1, . . . ,pt} at any time t.

Furthermore, we consider the count-based sliding window1 on the stream P : given a win-
dow size N , the sliding window [15] Wt at any time t always contains the latest N points, i.e.,
Wt = {pt′ , . . . ,pt} where t′ = max(1, t − N + 1). We consider the problem of maintaining a
µ-Coreset(Wt) for Wt at any time t.

1In this paper, we focus on the count-based sliding window model. But our proposed approaches can be trivially
extended to the time-based sliding window model [15].

3



Algorithm 1: CoreMEB [4]
Input : A set of points P = {p1, . . . ,pn}, a parameter ε ∈ (0, 1)
Output: A coreset S for MEB(P )

1 pa ← argmaxp∈P d(p1,p), pb ← argmaxp∈P d(pa,p);
2 S ← {pa,pb};
3 Initialize B(c, r) with c← (pa + pb)/2, r ← d(pa,pb)/2;
4 while ∃p ∈ P \ S : p /∈ (1 + ε) ·B do
5 q← argmaxp∈P\S d(c,p), S ← S ∪ {q};
6 Update B such that B(c, r) = MEB(S);

7 return S;

Related Work. We review the literature on MEB computation and coresets for MEB. Gärt-
ner [19] and Fischer et al. [18] propose two pivoting algorithms that resemble the simplex method
of linear programming for computing exact MEBs. Both algorithms have an exponential com-
plexity w.r.t. the dimension m and thus are not scalable for large datasets with high dimensions.
Subsequently, a line of research work [4, 5, 22, 23, 32] studies the problem of building coresets to
approximate MEBs. They propose efficient batch algorithms for constructing a (1+ε)-Coreset(P )
of any point set P . The basic scheme used in these algorithms is presented in Algorithm 1. First of
all, it selects the point pa furthest from p1 and pb furthest from pa out of P , using S = {pa,pb}
as the initial coreset (Lines 1 & 2). The center c and radius r of MEB(S) can be computed from
pa and pb directly (Line 3). Then, it iteratively picks the point q furthest from the current cen-
ter c, adds q to S, and updates B(c, r) so that B is MEB(S), until no point in P is outside of
the (1 + ε)-expansion of B (Lines 4–6). Finally, it returns S as a coreset for MEB(P ) (Line 7).
Theoretically, Algorithm 1 terminates in O(1

ε
) iterations and returns a (1 + ε)-Coreset(P ) of size

O(1
ε
) [4]. Compared with exact MEB solvers [18, 19], coreset-based approaches run in linear time

w.r.t. the dataset size n and dimension m, and achieve better performance on high-dimensional
data. Nevertheless, they must store all points in memory and process them in multiple passes,
which are not suitable for data stream applications.

Several methods are proposed to approximate MEBs or coresets for MEB in streaming and
dynamic settings. Agarwal et al. [2] and Chan [11] propose algorithms to build (1+ε)-coresets for
MEB in append-only streams. Though working well in low dimensions, both algorithms become
impractical for higher dimensions (i.e., m > 10) due to O(1/εO(m)) complexity. Zarrabi-Zadeh
and Chan [33] propose a 1.5-approximate algorithm to compute MEBs in append-only streams.
Agarwal and Sharathkumar [1] design a data structure that can maintain (

√
2 + ε)-coresets for

MEB and (1.37+ε)-approximate MEBs over append-only streams. Chan and Pathak [12] propose
a method for maintaining (1.22 + ε)-approximate MEBs in the dynamic setting, which supports
the insertions and deletions of random points. To the best of our knowledge, none of the existing
methods can maintain coresets for MEB over the sliding window efficiently. All of them have to
store the entire window of points and recompute from scratch for every window slide, which is
expensive in terms of time and space.
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3 Our Algorithms
In this section we present our algorithms to maintain coresets for MEB. We first introduce a (

√
2+

ε)-approximate append-only streaming algorithm, called AOMEB, in Section 3.1. Using AOMEB
as a building block, we propose the SWMEB algorithm with the same (

√
2 + ε)-approximation

ratio in Section 3.2. Furthermore, we propose a more efficient SWMEB+ algorithm that retains a
constant approximation ratio in Section 3.3.

3.1 The AOMEB Algorithm
The AOMEB algorithm is inspired by CoreMEB [4] (see Algorithm 1) to work in the append-only
streaming model. Compared with CoreMEB, which can access the entire dataset and optimally
select the furthest point into the coreset at each iteration, AOMEB is restricted to process the
dataset in a single pass and determine whether to include a point into the coreset or discard it
immediately after seeing it. Therefore, AOMEB adopts a greedy strategy for coreset maintenance:
adding a new point to the coreset once it is outside of the MEB w.r.t. the current coreset.

Algorithm 2: AOMEB
Input : A set of points P = {p1, . . . ,pn}, a parameter ε1 ∈ (0, 1)
Output: A coreset S for MEB(P )

1 S1 ← {p1} and initialize B1(c1, r1) with c1 ← p1, r1 ← 0;
2 for t← 2, . . . , n do
3 if pt /∈ (1 + ε1) ·Bt−1 then
4 St ← St−1 ∪ {pt};
5 Update Bt−1 to Bt(ct, rt) = MEB(St);
6 else
7 St ← St−1 and Bt ← Bt−1;

8 return S ← Sn;

The pseudo code of AOMEB is presented in Algorithm 2. First of all, it takes S1 = {p1} as
the initial coreset with B1(p1, 0) as MEB(S1) (Line 1). Then, it performs a one-pass scan over the
point set, using the procedure in Lines 3–7 for each point pt: It first computes the distance between
pt and ct−1. If pt ∈ (1 + ε1) · Bt−1, no update is needed; otherwise, it adds pt to the coreset St−1
and updates Bt−1 to MEB(St). Finally, after processing all points in P , it returns Sn as the coreset
S for MEB(P ) (Line 8).

Theoretical Analysis. Next, we provide an analysis of the approximation ratio and complexity
of AOMEB. It is noted that the greedy strategy of AOMEB is also adopted by existing streaming
algorithms, i.e., SSMEB [33] and blurred ball cover (BBC) [1]. Nevertheless, the update procedure
is different: SSMEB uses a simple geometric method to enlarge the MEB such that both the previ-
ous MEB and the new point are contained while AOMEB and BBC recompute the MEB once the
coreset is updated. As a result, AOMEB and BBC are less efficient than SSMEB but ensure a better
approximation ratio. Compared with BBC, which keeps the “archives” of MEBs for previous core-
sets, AOMEB only maintains one MEB w.r.t. St at time t. Therefore, AOMEB is more efficient
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than BBC in practice. Next, we will prove that AOMEB has the same (
√
2 + ε)-approximation as

BBC. First of all, we present the hemisphere property [5] that forms the basis of our analysis.

Lemma 1 (Hemisphere Property [5]). For a set of points P ⊂ Rm, any closed half-space that
contains c∗(P ) must contain at least a point p ∈ P such that d(c∗(P ),p) = r∗(P ).

The proof of Lemma 1 can be found in Section 2 of [5]. Based on Lemma 1, we can analyze
the complexity and approximation ratio of AOMEB theoretically.

Theorem 1. For any pt ∈ Sn, it holds that rt ≥ (1 +
ε21
8
)rt−1.

Proof. If pt ∈ Sn, then d(pt, ct−1) > (1 + ε1)rt−1. We discuss two cases of d(ct, ct−1) separately.
If d(ct, ct−1) ≤ ε1

2
rt−1, then

rt ≥ d(ct,pt) ≥ d(pt, ct−1)− d(ct, ct−1) ≥ (1 +
ε1
2
)rt−1

If d(ct, ct−1) > ε1
2
rt−1, then let H be a hyperplane passing through ct−1 with ct − ct−1 as its

normal. Let H+ be the closed half-space, bounded by H , that does not contain ct. According to
Lemma 1, there must exist a point q ∈ St−1 ∩H+ such that d(ct−1,q) = rt−1. Thus,

rt ≥ d(ct,q) ≥
√
d2(ct−1,q) + d2(ct, ct−1) >

√
1 + (

ε1
2
)2 · rt−1

In addition, 1+ ε1
2
>
√

1 + ( ε1
2
)2 > 1+

ε21
8

as ε1 ∈ (0, 1). Therefore, we prove that rt ≥ (1+
ε21
8
)rt−1

in both cases.

Theorem 2. For any pt ∈ P , it holds that pt ∈ (
√
2 + ε1) ·Bn.

Proof. For any pt ∈ P , we have either pt ∈ Sn or d(pt, ct) ≤ (1 + ε1)rt. If pt ∈ Sn, it is obvious
that pt ∈ (1 + ε1) · Bn. If pt /∈ Sn, we have d(pt, cn) ≤ d(ct, cn) + (1 + ε1)rt. According to
Lemma 1, there must exist a point q ∈ St such that d2(cn,q) ≥ d2(ct, cn) + r2t . Therefore,

d(pt, cn) ≤ d(ct, cn) + (1 + ε1)rt ≤ (d(ct, cn) + rt) + ε1rt

≤
√
2 ·
√
d2(ct, cn) + r2t + ε1rt ≤

√
2 · d(cn,q) + ε1rt ≤ (

√
2 + ε1)rn

We conclude that pt ∈ (
√
2 + ε1) ·Bn,∀pt ∈ P .

Theorem 2 indicates that AOMEB returns a (
√
2 + ε)-Coreset(P ) where ε = O(ε1) for an

arbitrary point set P . According to Theorem 1, the radius of MEB(St) increases by 1 + O(ε2)
times whenever a new point is added to St. After processing p1 and p2, the coreset S2 contains
both points with r2 ≥ dmin/2 where dmin = minp,q∈P∧p 6=q d(p,q). In addition, the radius rn of
Sn is bounded by r∗(P ) < dmax where dmax = maxp,q∈P d(p,q). Therefore, rn/r2 = O(θ) where
θ = dmax/dmin and the size of S is O( log θ

ε2
). Finally, the update procedure for each point pt spends

O(m) time to compute d(ct−1,pt) and O(m log θ
ε3

) time to update Bt.
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Figure 1: An illustration of the SWMEB algorithm. Two arrows indicate the order in which the
points in Wt are processed by A(x1,s1).

3.2 The SWMEB Algorithm
In this subsection, we present the SWMEB algorithm for coreset maintenance over the sliding
window Wt. The basic idea is to adapt AOMEB for the sliding window model by keeping multiple
AOMEB instances with different starting points over Wt. However, the key problem is to identify
the appropriate indices, i.e., starting points, for these instances. A naive scheme, i.e., creating
a set of indices that are evenly distributed over Wt, cannot give any approximation guarantee of
coreset quality. Therefore, we design a partition-based scheme for index maintenance in SWMEB:
dividing Wt into equal-length partitions and keeping a sequence of indices on each partition such
that at least one instance can provide an approximate coreset for MEB(Wt) at any time t.

The procedure of SWMEB is illustrated in Figure 1. It divides Wt into l = N/L partitions
{P1, . . . , Pl} of equal length L. It keeps a sequence of si indices 〈xi,1, . . . , xi,si〉 from the end to
the beginning of each partition Pi. As Wt slides over time, old points in P1 expire (colored in grey)
while new points are temporarily stored in a bufferQ. The index x1,s1 on P1, which is the closest to
the beginning ofWt, will be deleted once it expires. When the size ofQ reaches L, it will delete P1

and shift remaining partitions as all points in P1 must have expired. Then, it creates a new partition
Pl for the points in Q and the indices on Pl. Moreover, each index xi,j corresponds to an AOMEB
instance A(xi,j) that processes P [xi,j, t] = {pxi,j , . . . ,pt} at any time t. Specifically, A(xi,j) will
process the points from the end of Pi to pxi,j when xi,j is created and then update for each point
till pt. Finally, the coreset is always provided by A(x1,s1).

The pseudo code of SWMEB is presented in Algorithm 3. For initialization, the latest partition
ID l is set to 0 and the buffer Q as well as the indices X0 are set to ∅ (Line 1). Then, it processes
all points in the stream P one by one with the procedure of Lines 3–20, which can be separated
into four phases as follows.

• Phase 1 (Lines 3–8): After adding a new point pt to Q, it checks the size of Q. If |Q| = L,
a new partition will be created for Q. When t ≤ N , it increases l by 1 and creates a new
partition Pl. Otherwise, P1 must have expired and thus is dropped. Then, the partitions
{P2, . . . , Pl} (and the indices on each partition) are shifted to {P1, . . . , Pl−1} and a new
partition Pl is created.

• Phase 2 (Lines 9–16): Next, it creates the indices and corresponding AOMEB instances on
Pl. It runs an AOMEB instance A to process each point in Pl inversely from pt to pt−L+1.

7



Algorithm 3: SWMEB
Input : A sequence of points P = 〈p1,p2, . . .〉, the window size N , the partition size L, two

parameters ε1, ε2 ∈ (0, 1)
Output: A coreset St for MEB(Wt)

1 Initialize l← 0, Q← ∅, X0 ← ∅;
2 for t← 1, 2, . . . do
3 Q← Q ∪ {pt}, Xt ← Xt−1;
4 if |Q| = L then
5 if t ≤ N then
6 l← l + 1, create a new partition Pl ← Q;
7 else
8 Drop P1, shift Pi (as well as the indices on Pi) to Pi−1 for i ∈ [2, l], and create a new

partition Pl ← Q;

9 Initialize an instance A of Algorithm 2, rl ← 0, sl ← 0;
10 for t′ ← t, . . . , t− L+ 1 do
11 A processes pt′ with Line 3–7 of Algorithm 2 and maintains a coreset S[t, t′] and its

MEB B[t, t′];
12 if r[t, t′] ≥ (1 + ε2)rl then
13 rl ← r[t, t′], sl ← sl + 1;
14 xl,sl ← t′, Xt ← Xt ∪ {xl,sl};
15 A(xl,sl)← A after processing pt′ ;

16 Q,Pl ← ∅;

17 if x1,s1 < t−N + 1 then
18 Xt ← Xt \ 〈x1,s1〉, terminate A(x1,s1), and s1 ← s1 − 1;

19 for i← 1, . . . , l and j ← 1, . . . , si do
20 A(xi,j) processes pt with Line 3–7 of Algorithm 2 and maintains a coreset S[xi,j , t] and its

MEB B[xi,j , t];

21 return St ← S[x1,s1 , t] as the coreset for MEB(Wt);

Initially, the number of indices sl on Pl and the radius rl w.r.t. the latest index xl,sl are 0.
We denote the coreset maintained by A after processing pt′ as S[t, t′]. Then, MEB(S[t, t′])
is represented by B[t, t′] with radius r[t, t′]. If r[t, t′] ≥ (1+ ε2)rl, it will update rl to r[t, t′],
add a new index xl,sl to Xt, and use the snapshot of A after processing pt′ as A(xl,sl). After
the indices on Pl is created, Q will be reset for new incoming points.

• Phase 3 (Lines 17–18): It checks whether x1,s1 , i.e., the earliest index on P1, has expired. If
so, it will delete x1,s1 from Xt and terminate A(x1,s1) accordingly.

• Phase 4 (Lines 19–20): For each index xi,j ∈ Xt with i ∈ [1, l] and j ∈ [1, si] at time t, it
updates the corresponding AOMEB instance A(xi,j) by processing pt.

Finally, it always returns S[x1,s1 , t] fromA(x1,s1) as the coreset St for MEB(Wt) at time t (Line 21).
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Theoretical Analysis. In the following, we will first prove the approximation ratio of St re-
turned by SWMEB for MEB(Wt). Then, we discuss the time and space complexity of SWMEB.

We first prove the following lemma that will be used in subsequent analyses.

Lemma 2. For any two point sets P1, P2 such that P2 ⊂ P1, it must hold that d2(c∗(P1), c
∗(P2)) ≤

(r∗(P1))
2 − (r∗(P2))

2.

Proof. Obviously, Lemma 2 must hold when c∗(P1) = c∗(P2). When c∗(P1) 6= c∗(P2), we
consider a hyperplane H passing through c∗(P2) with c∗(P1) − c∗(P2) as its normal. Let H+ be
the close half-space, bounded by H , that does not contain c∗(P1). According to Lemma 1, there
must exist q ∈ P2 ∩H+ such that d(c∗(P2),q) = r∗(P2). In addition, d(c∗(P1),q) ≤ r∗(P1) for
q ∈ P1. Finally, as c∗(P1) /∈ H+, q ∈ H+, and c∗(P1) − c∗(P2) is the normal of H , we acquire
d2(c∗(P1),q) ≥ d2(c∗(P2),q) + d2(c∗(P1), c

∗(P2)). Thus, it holds that d2(c∗(P1), c
∗(P2)) ≤

(r∗(P1))
2 − (r∗(P2))

2 and we conclude the proof.

Theorem 3. For any p ∈ Wt, it holds that p ∈ (
√
2 + ε) ·MEB(St) where ε = O(ε1 +

√
ε2).

Proof. According to Algorithm 3, the instance A(x1,s1) is always used to return the coreset St.
Since A(x1,s1) has already processed the points from px1,s1 to pt, these points must be contained
in (
√
2 + ε1) ·MEB(St) according to Theorem 2. Thus, we only need to consider the points from

pt−N+1 to px1,s1−1. To create the indices on P1, we process the points of P1 with an AOMEB
instance (see Line 11). Here we use S1, B1(c1, r1) and S2, B2(c2, r2) to denote the coresets of
this instance and the corresponding MEBs after processing px1,s1 and pt′ (t − N < t′ < x1,s1)
respectively. For each point pt′ , it holds that pt′ ∈ (1 + ε1) · B2 and r2 < (1 + ε2)r1. In addition,
as S1 ⊆ S2, we have d2(c1, c2) ≤ r22 − r21 from Lemma 2. Therefore,

d(c1,pt′) ≤ d(c1, c2) + d(c2,pt′) ≤ (1 + ε1)r2 +
√
r22 − r21

≤ (1 + ε1)(1 + ε2)r1 +
√

(1 + ε2)2 − 1 · r1 =
(
1 +O(ε1 +

√
ε2)
)
r1

In addition, according to Lemma 1, there must exist a point q ∈ S1 such that d2(ct,q) ≥
d2(c1, ct) + r21. Let ε = O(ε1 +

√
ε2), we have

d(pt′ , ct) ≤ d(c1, ct) + (1 + ε)r1 ≤
(
d(c1, ct) + r1

)
+ εr1

≤
√
2 ·
√
d2(c1, ct) + r21 + εr1 ≤

√
2 · d(ct,q) + εr1 ≤ (

√
2 + ε)rt

We prove that pt′ ∈ (
√
2 + ε) ·Bt and thus conclude the proof.

Theorem 3 shows that St returned by SWMEB is a (
√
2 + ε)-Coreset(Wt) where ε = O(ε1 +√

ε2) at any time t. To analyze the complexity of SWMEB, we first consider the number of indices
in Xt. For each partition, SWMEB maintains O( log θ

ε2
) indices where θ = dmax/dmin. Thus, Xt

contains O( l log θ
ε2

) indices and the number of points stored by SWMEB is O( l log
2 θ

ε21ε2
+ L). Further-

more, the time of SWMEB to update a point pt comprises (1) the time to maintain the instance
w.r.t. each index in Xt for pt and (2) the amortized time to create the indices for each partition.
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Figure 2: An illustration of the SWMEB+ algorithm.

Overall, the time complexity of SWMEB to update each point is O( lm log2 θ
ε31ε2

). As l = N/L, the

number of points maintained by SWMEB is minimal when L = log θ
ε1
·
√

N
ε2

. In this case, the num-

ber of points stored by SWMEB is O(
√
N · log θ

ε2
) and the time complexity of SWMEB to update

one point is O(
√
N · m log θ

ε3
).

3.3 The SWMEB+ Algorithm
In this subsection we present the SWMEB+ algorithm that improves upon SWMEB in terms of
time and space while still achieving a constant approximation ratio. The basic idea of SWMEB+
is illustrated in Figure 2. Different from SWMEB, SWMEB+ only maintains a single sequence
of s indices Xt = {x1, . . . , xs} over Wt. Then, each index xi also corresponds to an AOMEB
instance A(xi) that processes a substream of points from pxi to pt. We use S[xi, t] for the coreset
returned by A(xi) at time t and B[xi, t] centered at c[xi, t] with radius r[xi, t] for MEB(S[xi, t]).
Furthermore, SWMEB+ maintains the indices based on the radii of the MEBs. Specifically, given
any ε2 > 0, for three neighboring indices xi, xi+1, xi+2, if r[xi, t] ≤ (1 + ε2)r[xi+2, t], then xi+2

is considered as a good approximation for xi and thus xi+1 can be deleted. In this way, the radii
of the MEBs gradually decreases from x1 to xs, with the ratios of any two neighboring indices
close to (1 + ε2). Any window starting between xi and xi+1 is approximated by A(xi+1). Finally,
SWMEB+ keeps at most one expired index (and must be x1) in Xt to track the upper bound for the
radius r∗(Wt) of MEB(Wt). The AOMEB instance corresponding to the first non-expired index
(x1 or x2) provides the coreset for MEB(Wt).

The pseudo code of SWMEB+ is presented in Algorithm 4. In the initialization phase, X0 and
s are set to ∅ and 0 respectively (Line 1). Then, all points in P are processed one by one with the
procedure of Lines 3–12, which includes four phases as follows.

• Phase 1 (Lines 3–4): Upon the arrival of pt at time t, it creates a new index xs = t and
adds xs to Xt; accordingly, an AOMEB instance A(xs) w.r.t. xs is initialized to process the
substream beginning at pt.

10



Algorithm 4: SWMEB+
Input : A sequence of points P = 〈p1,p2, . . .〉, the window size N , two parameters ε1, ε2 ∈ (0, 1)
Output: A coreset St for MEB(Wt)

1 Initialize s← 0, X0 ← ∅;
2 for t← 1, 2, . . . do
3 s← s+ 1, xs ← t, and Xt ← Xt−1 ∪ 〈xs〉;
4 Initialize an instance A(xs) of Algorithm 2;
5 while x2 < t−N + 1 do
6 Xt ← Xt \ 〈x1〉, terminate A(x1);
7 Shift the remaining indices in Xt, s← s− 1;

8 for i← 1, . . . , s do
9 A(xi) processes pt with Line 3–7 of Algorithm 2, maintaining a coreset S[xi, t] and its

MEB B[xi, t];

10 while ∃i : 1 ≤ i ≤ s− 2 ∧ r[xi, t] ≤ (1 + ε2)r[xi+2, t] do
11 Xt ← Xt \ 〈xi+1〉, terminate A(xi+1);
12 Shift the remaining indices in Xt, s← s− 1;

13 if x1 ≥ t−N + 1 then
14 return St ← S[x1, t] as the coreset for MEB(Wt);
15 else
16 return St ← S[x2, t] as the coreset for MEB(Wt);

• Phase 2 (Lines 5–7): When there exists more than one expired index (i.e., earlier than the
beginning of Wt), it deletes the first index x1 and terminates A(x1) until there is only one
expired index. Note that it shifts the remaining indices after deletion to always guarantee xi
is the i-th index of Xt.

• Phase 3 (Lines 8–9): For each xi ∈ Xt, it updates the instance A(xi) for pt. The update
procedure follows Line 3–7 of Algorithm 2. After the update, A(xi) maintains a coreset
S[xi, t] and its MEB B[xi, t] by processing a stream P [xi, t] = 〈pxi , . . . ,pt〉.

• Phase 4 (Lines 10–12): It executes a scan of Xt from x1 to xt to delete the indices that can
be approximated by their successors. For each xi ∈ Xt (i ≤ s−2), it checks the radii r[xi, t]
and r[xi+2, t] of B[xi, t] and B[xi+2, t]. If r[xi, t] ≤ (1 + ε2)r[xi+2, t], then it deletes the
index xi+1 from Xt, terminates A(xi+1), and shifts the remaining indices accordingly.

After performing the above procedure, it returns either S[x1, t] (when x1 has not expired) or S[x2, t]
(when x1 has expired) as the coreset St for MEB(Wt) at time t.

Theoretical Analysis. The strategy of index maintenance based on the ratios of radii is inspired
by Smooth Histograms [8] for estimating stream statistics over sliding windows. However, Smooth
Histograms cannot be applied to our problem because it requires an oracle to provide a (1 + ε)-
approximate function value in any append-only stream [16] but any practical solution (i.e., [1] and
AOMEB) only gives a (

√
2+ε)-approximation for r∗(P ) of an append-only stream P . In addition,

Smooth Histograms are also used for submodular maximization in the sliding window model [16,
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Figure 3: An illustration of Example 1.

29, 30]. Nevertheless, such an extension is still not applicable for our problem because the radius
function r∗(·) is not submodular in the view of set functions, which is shown by Example 1. In the
following, we will prove that SWMEB+ still has a constant approximation ratio by an analysis that
is different from [8, 16].

Example 1. A function f(·) is submodular if f(P ∪ {p}) − f(P ) ≥ f(Q ∪ {p}) − f(Q) for
any set P ⊆ Q and point p /∈ Q. In Figure 3, for P1 = {p1,p2,p3} and P2 = {p2,p3},
r∗(P1 ∪ {p4}) − r∗(P1) > 0 but r∗(P2 ∪ {p4}) − r∗(P2) = 0. As P2 ⊂ P1, we show that r∗(·) is
not a submodular function.

We first present two lemmas that will be used in our analysis of SWMEB+.

Lemma 3. For a set of points P , let B∗(c∗, r∗) = MEB(P ) and B(c, r) = MEB(S) where S ⊆ P
is the coreset returned by Algorithm 2. If r

∗

r
= µ (1 ≤ µ ≤

√
2+ε1), thenB∗ ⊂ (µ+

√
µ2 − 1)·B.

Proof. According to Lemma 2, d2(c∗, c) ≤ (r∗)2 − r2 because of S ⊆ P .
Then ∀p∗ ∈ B∗, it holds that

d(c,p∗) ≤ d(c∗, c) + d(c∗,p∗) ≤
√

(r∗)2 − r2 + r∗ = (µ+
√
µ2 − 1)r

and we conclude the proof.

Lemma 4. For any two balls B1(c1, r1) and B2(c2, r2) with B2 ⊂ B1, it holds that µ · B2 ⊂
µ ·B1, ∀µ ≥ 1.

Proof. First, we can prove d(c1, c2) ≤ r1 − r2 by contradiction. Then, based on the above result,
we can see that, ∀p2 ∈ µ ·B2,

d(c1,p2) ≤ d(c2,p2) + d(c1, c2) ≤ µr2 + (r1 − r2) ≤ µr1

where the last inequality holds from r1 ≥ r2. Thus, ∀p2 ∈ µ ·B2, p2 ∈ µ ·B1.

According to the above results, we prove the following lemma.

Lemma 5. For any three point sets P1, P2, P3 such that P2 ⊂ P1 and P3 6⊂ P1, if r∗(P1)
r∗(P2)

= z, then

it holds that r
∗(P1∪P3)
r∗(P2∪P3)

≤ z +
√
2
2

.
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Proof. Let z1 =
r∗(P3)
r∗(P2)

, z2 =
d(c∗(P2),c∗(P3))

r∗(P2)
. First, we have

r∗(P1 ∪ P3) ≤
1

2

(
r∗(P1) + d(c∗(P1), c

∗(P3)) + r∗(P3)
)

≤ 1

2

(
z +
√
z2 − 1 + z1 + z2

)
· r∗(P2)

(1)

Next, we consider three cases separately.

• Case 1 (r∗(P3) + d(c∗(P2), c
∗(P3)) ≤ r∗(P2)): In this case, we have r∗(P2 ∪ P3) = r∗(P2)

and z1 + z2 ≤ 1. Thus, we can acquire

r∗(P1 ∪ P3)

r∗(P2 ∪ P3)
≤ 1

2
(z +

√
z2 − 1 + z1 + z2) ≤

1

2
(1 + z +

√
z2 − 1) ≤ z +

1

2

• Case 2 (r∗(P2) + d(c∗(P2), c
∗(P3)) ≤ r∗(P3)): In this case, we have r∗(P2 ∪ P3) = r∗(P3)

and 1 + z2 ≤ z1. Thus, we can acquire

r∗(P1 ∪ P3)

r∗(P2 ∪ P3)
≤ z +

√
z2 − 1 + z1 + z2

2z1
= f1(z, z1, z2)

We can transform it into the following problem:

max f1(z, z1, z2)− z (2)
s.t. 1 + z2 ≤ z1, z ≥ 1, z2 ≥ 0

Solving Problem 2, we can get r
∗(P1∪P3)
r∗(P2∪P3)

≤ z + 1
2
.

• Case 3 (Otherwise): It holds that z2 > 0, 1 + z2 > z1, and z1 + z2 > 1. In addition,
we have d(c∗(P2), c

∗(P3)) > 0 because the criteria of either Case 1 or 2 must be satisfied
when d(c∗(P2), c

∗(P3)) = 0. As d(c∗(P2 ∪ P3), c
∗(P2))

2 ≤ r∗(P2 ∪ P3)
2 − r∗(P2)

2 and
d(c∗(P2 ∪ P3), c

∗(P3))
2 ≤ r∗(P2 ∪ P3)

2 − r∗(P3)
2 according to Lemma 2, we can get√

r∗(P2 ∪ P3)2 − r∗(P2)2 +
√
r∗(P2 ∪ P3)2 − r∗(P3)2 ≥ d(c∗(P2), c

∗(P3)) (3)

Considering Equations 1 and 3 collectively, we have

r∗(P1 ∪ P3)

r∗(P2 ∪ P3)
≤ z2(z +

√
z2 − 1 + z1 + z2)√(

(1− z1)2 + z22
)(
(1 + z1)2 + z22

) = f2(z, z1, z2)

We can transform it into the following problem:

max f2(z, z1, z2)− z (4)
s.t. 1 + z2 > z1, z1 + z2 > 1, z ≥ 1, z1 > 0, z2 > 0

Solving Problem 4, we can get r
∗(P1∪P3)
r∗(P2∪P3)

≤ z +
√
2
2

.
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In all the three cases, we prove Lemma 5.

Considering previous results collectively, we can prove the approximation ratio of SWMEB+
in the following theorem.

Theorem 4. For any p ∈ Wt, it holds that p ∈ (9.66 + ε) ·MEB(St) where ε = O(
√
ε1 +

√
ε2).

Proof. We consider four different cases of St returned by SWMEB+ at time t.

• Case 1 (x1 ≥ t − N + 1): In this case, we have t < N , x1 = 1, and Wt = P [x1, t].
Therefore, it holds that St = S[x1, t] and p ∈ (

√
2 + ε1) · MEB(St) for any p ∈ Wt

according to Theorem 2.

• Case 2 (x1 < t − N + 1 ∧ x2 = x1 + 1): In this case, we have x2 = t − N + 1 and
Wt = P [x2, t]. Similarly, St = S[x2, t] and p ∈ (

√
2 + ε1) ·MEB(St) for any p ∈ Wt.

• Case 3 (x1 < t − N + 1 ∧ r[x1,t]
r[x2,t]

≤ 1 + ε2): In this case, we have Wt ⊂ P [x1, t] and

Wt ⊂ B∗[x1, t] = MEB(P [x1, t]). Then, we can acquire 1 ≤ r∗[x1,t]
r[x1,t]

, r
∗[x2,t]
r[x2,t]

≤
√
2 + ε1 from

Theorem 2. Given r∗[x2,t]
r[x2,t]

= µ, it holds that p ∈
(√

2+ε3
µ

+
√

2+ε3
µ2
− 1
)
·B∗[x2, t],∀p ∈ Wt,

where ε3 = O(ε1 + ε2). Additionally, we have B∗[x2, t] ⊂ (µ +
√
µ2 − 1) · B[x2, t] from

Lemma 3. According to Lemma 4, it holds that ∀p ∈ Wt,

p ∈
(√

2+ε3
µ

+
√

2+ε3
µ2
− 1
)
(µ+

√
µ2 − 1) ·B[x2, t] (5)

By finding the maximum of f(µ) =
(√

2+ε3
µ2
− 1
)
(µ +

√
µ2 − 1) in Equation 5 on range

[1,
√
2 + ε1], we can acquire p ∈

(
3.36 +

√
ε3
)
·B[x2, t] for any p ∈ Wt.

• Case 4 (x1 < t−N+1∧ r[x1,t]
r[x2,t]

> 1+ε2): At time t′ < twhen x1 and x2 become neighboring

indices, it holds that r[x1,t′]
r[x2,t′]

≤ 1 + ε2. Then, r∗[x1,t′]
r∗[x2,t′]

≤ (1 + ε2)(
√
2 + ε1) where r∗[x1, t′]

and r∗[x2, t′] are the radii of the MEBs for P [x1, t′] and P [x2, t′] respectively. Furthermore,
according to Lemma 5, we have r∗[x1,t]

r∗[x2,t]
≤ (1 + ε2)(

√
2 + ε1) +

√
2
2

. According to Lemmas 3
and 4, we can acquire that ∀p ∈ Wt,

p ∈
(
4 +O(

√
ε1 +

√
ε2)
)
·B∗[x2, t] (6)

Moreover, we have r∗[x2,t]
r[x2,t]

≤
√
2 + ε1 and thus

B∗[x2, t] ⊂
(√

2 + 1 +O(
√
ε1)
)
·B[x2, t] (7)

Combining Equations 6 and 7, we finally get p ∈
(
4
√
2 + 4 + ε

)
· B[x2, t] ≈ (9.66 + ε) ·

B[x2, t],∀p ∈ Wt, where ε = O(
√
ε1 +

√
ε2).

Considering all above cases collectively, we conclude the proof.
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According to Theorem 4, SWMEB+ can always return a (9.66 + ε)-Coreset(Wt) at any time t.
In practice, since r[x1, t]/r[x2, t] is bounded by 1 + O(ε2) in almost all cases, the approximation
ratio of SWMEB+ can be improved to (3.36 + ε) accordingly. Furthermore, for any xi ∈ Xt (i ≤
s− 2), either r[xi+1, t] or r[xi+2, t] is less than (1 + ε2)r[xi, t]. In addition, it holds that r[x1, t] ≤
dmax and r[xs−1, t] ≥ 0.5 · dmin. Therefore, the number of indices in Xt is O( log θ

ε
). Accordingly,

the time complexity for SWMEB+ to update each point is O(m log2 θ
ε4

) while the number of points
stored by SWMEB+ is O( log

2 θ
ε3

), both of which are independent of N .

3.4 Generalization to Kernelized MEB
In real-world applications [13, 28, 31], it is required to compute the coreset for MEB in a re-
producing kernel Hilbert space (RKHS) instead of Euclidean space. Given a symmetric pos-
itive definite kernel k(·, ·) : Rm × Rm → R and its associated feature mapping ϕ(·) where
k(p,q) = 〈ϕ(p), ϕ(q)〉 for any p,q ∈ Rm, the kernelized MEB of a set of points P is the smallest
ball B∗(c∗, r∗) in the RKHS such that the maximum distance from c∗ to ϕ(p) is no greater than
r∗, which can be formulated as follows:

min
c,r

r2 s.t.
(
c− ϕ(pi)

)′(
c− ϕ(pi)

)
≤ r2,∀pi ∈ P (8)

However, it is impractical to solve Problem 8 directly in the primal form due to the infinite dimen-
sionality of RKHS. We transform Problem 8 into the dual form as follows:

max
α

α′diag(K)−α′Kα s.t. α ≥ 0,α′1 = 1 (9)

where α = [α1, . . . , αn]
′ is the n-dimensional Lagrange multiplier vector, 0 = [0, . . . , 0]′ and

1 = [1, . . . , 1]′ are both n-dimensional vectors, K = [k(pi,pj)]
n
i,j=1 is the n × n kernel matrix of

P , and diag(K) is the diagonal of K. Problem 9 is known to be a quadratic programming [7] (QP)
problem. According to the KKT conditions [7], the kernelized MEB B∗ of P , can be recovered
from the Lagrange multiplier vector α as follows:

c∗ =
n∑
i=1

αi · ϕ(pi), (r∗)2 = α′diag(K)−α′Kα (10)

Here the center c∗ is represented implicitly by each point pi in P and the corresponding αi’s. Then,
the distance between c∗ and ϕ(q) for any q ∈ Rm can be computed by:

d(c∗, ϕ(q))2 =
n∑

i,j=1

αiαjk(pi,pj) + k(q,q)− 2
n∑
i=1

αik(pi,q) (11)

Next, we introduce how to generalize AOMEB in Algorithm 2 to maintain coresets for kernel-
ized MEB. First, to represent the center ct and compute the distance from ϕ(pt) to the center, it
always keeps the Lagrange multiplier vector α. In Line 1, α1 is initialized to 1 so that c1 = ϕ(p1).
Then, in Line 3, Equation 11 is used to compute the distance between ct−1 and ϕ(pt). If pt is
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added to St, it will re-optimize Problem 9 on St to adjust α so that Bt = MEB(St) in Line 6.
Specifically, the Frank-Wolfe algorithm [14, 32] is used to solve Problem 9 as it is efficient for QP
problems with unit simplex constraints. SWMEB and SWMEB+ can also maintain coresets for
kernelized MEB by using the generalized AOMEB instance in Algorithms 3 and 4.

Theoretically, the generalized algorithms have the same approximation ratios and coreset sizes
as the original ones. However, the time complexity will increase by a factor of 1

ε
because the time

to compute the distance from ct−1 to ϕ(pt) using Equation 11 is O(m
ε
) instead of O(m).

3.5 Discussion
For ease of presentation, we describe Algorithms 2–4 in the single-update-mode where the coreset
is maintained for every new point. In practice, it is not required to update the coreset at such an
intense rate. Here we discuss how to adapt these algorithms for the mini-batch-mode.

In the mini-batch-mode, given a batch size b, each update will add b new points while deleting
the earliest b points at the same time. The adaptations of AOMEB in Algorithm 2 for the mini-
batch-mode are as follows: (1) In Line 1, an initial coreset Sb is built for the first b points using
CoreMEB in Algorithm 1. (2) In Lines 3–7, the coreset is updated for a batch of b points collec-
tively. Specifically, it adds the points not contained in (1 + ε1) · Bt−b in the batch to St and then
updates Bt. To adapt SWMEB and SWMEB+ for the mini-batch-mode, each AOMEB instance
should run in the mini-batch-mode as shown above. In addition, the indices and AOMEB instances
in SWMEB and SWMEB+ are created and updated for batches instead of points. Note that the ap-
proximation ratio and coreset size will remain the same in the mini-batch-mode but the efficiency
will be improved as fewer indices are created.

4 Experiments
In this section we evaluate the empirical performance of our proposed algorithms on real-world
and synthetic datasets. First of all, we will introduce the experimental setup in Section 4.1. Then,
we will present the experimental results on effectiveness and efficiency in Section 4.2. Finally, the
experimental results on scalability are presented in Section 4.3.

4.1 Experimental Setup
Algorithms. We compare the following eight algorithms for computing MEBs or building coresets
for MEB in our experiments.

• COMEB [18]: a combinatorial algorithm for computing the exact MEB of a set of points in
the Euclidean space. It has an exponential time complexity w.r.t. the dimension m. More-
over, it is not applicable to kernelized MEB.

• CoreMEB [4]: a batch algorithm for constructing a (1+ε)-approximate coreset for the MEB
of a set of points. The procedure is as described in Algorithm 1.
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Table 1: Statistics of datasets
dataset source size m θ γ

Census UCI 2,458,285 68 228.5 8984.58
CovType LIBSVM 297,711 54 246.8 3.734

GIST TEXMAX 1,000,000 960 45.77 4.0409
Gowalla SNAP 6,442,892 2 ≈3000 7455.33
HIGGS UCI 5,829,123 28 13.69 38.8496
SIFT TEXMAX 1,000,000 128 12.14 298919.5

Synthetic - 10,000,000 50 2.96 100.6

• SSMEB [33]: a 1.5-approximation algorithm for computing a MEB in an append-only
stream. We adopt the method described in [27] to compute a kernelized MEB by SSMEB.

• Blurred Ball Cover (BBC) [1]: an append-only streaming algorithm to maintain a (
√
2+ε)-

approximate coreset for MEB.

• DyMEB [12]: a 1.22-approximate dynamic algorithm for MEB computation. It keeps a data
structure that permits to insert/delete random points without fully reconstructions.

• AOMEB: our append-only streaming algorithm presented in Section 3.1. It has the same
(
√
2 + ε)-approximation ratio as BBC.

• SWMEB: our first sliding-window algorithm presented in Section 3.2. It can maintain a
(
√
2 + ε)-coreset for MEB over the sliding window.

• SWMEB+: our second sliding-window algorithm presented in Section 3.3. It has higher
efficiency than SWMEB at the expense of a worse approximation ratio.

We do not compare with the algorithms in [2, 11] because they cannot scale to the datasets with
m > 10. In our experiments, all algorithms run in the mini-batch-mode with batch size b =
100. Furthermore, all algorithms, except for SWMEB and SWMEB+, cannot directly work in the
sliding window model. The batch and append-only streaming algorithms store the entire sliding
window and rerun from scratch for each update. DyMEB also stores the entire sliding window
for tracking the expired point to delete. For each update, it must execute one deletion/insertion
for every expired/arrival point in a mini-batch to maintain the coreset for MEB w.r.t. the up-to-
date window. The implementations of our algorithms are available at https://github.com/
yhwang1990/SW-MEB.

Datasets. The dataset statistics are listed in Table 1. We use 6 real-world datasets and 1
synthetic dataset for evaluation. All real-world datasets are downloaded from publicly available
sources, e.g., UCI Machine Learning Repository2, LIBSVM3, SNAP4, and TEXMAX5. The gen-
eration procedure of the Synthetic dataset is as follows. We first decide the dimension m. By

2https://archive.ics.uci.edu/ml/index.php
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
4http://snap.stanford.edu
5http://corpus-texmex.irisa.fr
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Table 2: The average errors of different algorithms for Euclidean MEB

Algorithm average error
Census CovType GIST Gowalla HIGGS SIFT Synthetic

COMEB 0 0 0 0 0 0 0
CoreMEB 6.03e-04 3.66e-04 4.32e-04 2.01e-04 4.59e-04 4.97e-04 4.49e-04
SSMEB 5.90e-02 1.56e-01 1.10e-01 7.19e-03 1.59e-01 1.61e-01 9.49e-02

BBC 1.59e-03 8.05e-03 4.47e-04 1.53e-03 1.33e-02 5.83e-03 2.05e-02
DyMEB 9.14e-04 3.27e-03 4.51e-04 1.98e-04 2.19e-03 4.34e-03 5.96e-03
AOMEB 9.55e-04 4.55e-03 4.55e-04 2.23e-04 4.73e-03 2.86e-03 1.14e-02
SWMEB 6.12e-04 8.36e-03 2.31e-04 2.57e-04 3.87e-03 2.94e-03 1.11e-02

SWMEB+ 8.98e-04 4.17e-03 1.81e-03 1.93e-04 9.67e-03 3.01e-03 1.52e-02

Table 3: The average update time of different algorithms for Euclidean MEB

Algorithm average update time (ms)
Census CovType GIST Gowalla HIGGS SIFT Synthetic

COMEB 1150.7 1914.8 3813.7 13.52 146.67 12861.8 2793.7
CoreMEB 643.1 1275.1 2647.2 30.19 337.72 2789.1 1698.8
SSMEB 43.75 44.11 262.8 24.55 45.66 74.16 54.46

BBC 193.4 767.4 961.8 37.61 118.19 6807.2 1150.4
DyMEB 1639.4 2725.9 7498.8 80.32 3483.2 9195.1 2786.3
AOMEB 95.74 507.3 1755.5 17.82 125.48 1413.9 480.63
SWMEB 2.129 25.08 127.77 0.1593 4.861 57.61 19.9

SWMEB+ 1.467 5.414 72.31 0.1887 2.592 14.37 5.679

default, we set m = 50. For testing the scalability of different algorithms w.r.t. m, we vary m
from 10 to 100 and from 1,000 to 10,000. Then, we generate a point by drawing the values of
m dimensions from a normal distribution N (0, 1) independently. For kernelized MEB, we adopt
the Gaussian kernel k(pi,pj) = exp(−d(pi,pj)2/γ) where γ = 1

n2

∑n
i,j=1 d(pi,pj)

2 is the kernel
width. In practice, we sample 10,000 points randomly from each dataset to compute γ. The results
are also listed in Table 1. Note that the values of γ vary withm (γ ≈ 2m) on the Synthetic dataset.
More details on datasets are provided in Appendix A.3.

In an experiment, all points in a dataset are processed sequentially by each algorithm in the
same order as a stream and the results are recorded for every batch of points.

Parameter Setting. The default window size N is 105 in all experiments except the ones for
testing the scalability w.r.t. N , where we vary N from 105 to 106. The parameter ε1 in AOMEB,
SWMEB, and SWMEB+ (as well as ε in CoreMEB, BBC, and DyMEB) is 10−3 for Euclidean
MEB and 10−4 for kernelized MEB. Then, we use ε2 = 0.1 in SWMEB and ε2 = min(4i−1· ε1

10
, 0.1)

for each xi ∈ Xt in SWMEB+. Finally, the partition size L in SWMEB is N
10

. The procedure of
parameter tuning is shown in Appendix A.5.

Environment. All experiments are conducted on a server running Ubuntu 16.04 with a 1.9GHz
processor and 128 GB memory. The detailed hardware and software configurations are in Appen-
dices A.1 and A.2.
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Table 4: The average errors of different algorithms for kernelized MEB

Algorithm average error
Census CovType GIST Gowalla HIGGS SIFT Synthetic

CoreMEB 9.31e-05 9.16e-05 9.76e-05 7.97e-05 9.64e-05 9.40e-05 9.53e-05
SSMEB 2.22e-01 1.73e-01 1.83e-01 2.26e-01 2.08e-01 1.67e-01 1.40e-01

BBC 1.21e-03 1.55e-03 1.78e-05 1.15e-02 9.02e-04 1.60e-03 1.48e-03
DyMEB 1.62e-04 6.07e-05 1.18e-04 2.07e-03 1.57e-04 9.91e-05 4.26e-05
AOMEB 5.63e-04 6.02e-04 1.62e-06 1.02e-04 6.08e-04 7.55e-04 4.59e-04
SWMEB 7.77e-04 4.71e-03 5.01e-03 1.19e-04 5.82e-03 3.12e-03 4.99e-03

SWMEB+ 5.86e-04 1.01e-03 4.85e-04 1.67e-04 2.10e-03 6.78e-04 1.61e-03

Table 5: The average update time of different algorithms for kernelized MEB

Algorithm average update time (ms)
Census CovType GIST Gowalla HIGGS SIFT Synthetic

CoreMEB 75041.6 91571.8 36522 5813.1 87875.1 149386 76223.1
SSMEB 208.67 251.12 2893.9 118.71 169.92 395.5 255.25

BBC 14914.5 34728.1 704506 410.30 59789.6 148539 44383.9
DyMEB 106093 256616 2484757 7142.1 345400 1333728 513587
AOMEB 2002.1 5716.6 42961.2 253.87 6471.1 19163.7 10556.2
SWMEB 146.09 545.9 4550.3 18.118 606.2 1705.7 1077.2

SWMEB+ 26.847 52.06 372.4 4.769 55.85 130.46 87.21

4.2 Effectiveness and Efficiency
The result quality of different algorithms is evaluated by average error computed as follows. For
a sliding window Wt, each algorithm (except COMEB and SSMEB) returns a coreset St for
MEB(Wt). The errors of coreset-based algorithms are acquired based on the definition of core-
sets: we compute the minimal λ′ such that Wt ⊂ λ′ · MEB(St), and use ε′ = λ′·r∗(St)−r∗(Wt)

r∗(Wt)
for

the relative error. Since SSMEB directly returns MEBs, we compute its relative error according
to the definition of approximate MEB, i.e., ε′ = r(B′t)−r∗(Wt)

r∗(Wt)
where B′t is the approximate MEB

for Wt. It is noted that for kernelized MEB we use the radius of the MEB returned by CoreMEB
when ε = 10−9 (i.e., the relative error is within 10−9) as r∗(Wt) since exact MEBs are intractable
in a RKHS [28]. On each dataset, we take 100 timestamps over the stream, obtain the result of
each algorithm for the sliding window at each sampled timestamp, compute the relative errors of
obtained results, and use the average error as the quality metric. The efficiency of different algo-
rithms is evaluated by average update time. We record the CPU time of each algorithm to update
every batch of 100 points and compute the average time per update over the entire dataset.

The average errors and average update time of different algorithms for Euclidean and ker-
nelized MEBs are presented in Tables 2–5 respectively. Note that COMEB cannot be applied to
kernelized MEB and thus is not included in Tables 4 and 5.

In general, all algorithms except SSMEB can provide MEBs or coresets for MEB with rather
small errors (at most 1.5%) in all cases. Furthermore, the update time for kernelized MEBs is one
to two orders of magnitude longer than that for Euclidean MEB due to (1) higher time complexity
for distance evaluation, (2) larger coresets caused by the infinite dimensionality of RKHS, and
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Figure 4: The performance for Euclidean MEB with varying N on the Census dataset.

(3) smaller ε1 (or ε) used. In terms of effectiveness, the error of COMEB for Euclidean MEB
is always 0 because it can return exact results. Additionally, as CoreMEB guarantees a (1 + ε)-
approximation ratio theoretically, the errors of the coresets returned by CoreMEB are less than
10−3 for Euclidean MEB and 10−4 for kernelized MEB. With regard to the efficiency for Euclidean
MEB, COMEB only runs faster than CoreMEB on low-dimensional datasets (i.e., Gowalla and
HIGGS). CoreMEB can always outperform COMEB when m ≥ 30. The reason is that COMEB
has a higher time complexity than CoreMEB for its exponential dependency on m.

There are three append-only streaming algorithms in our experiments, namely BBC, SSMEB,
and our proposed AOMEB. Among them, the result quality of SSMEB is not competitive with
any other algorithms, though its update time is shorter than BBC and AOMEB. This is because
the simple geometric method for update in SSMEB is efficient but largely inaccurate. The errors
of BBC and AOMEB are slightly higher than those of CoreMEB while they are more efficient
than CoreMEB. These experimental results are consistent with our theoretical analysis: AOMEB
and BBC have a lower (

√
2 + ε)-approximation ratio but only require a single-pass scan over the

window. Finally, AOMEB can run up to 9 times faster than BBC while having similar or better
coreset quality because AOMEB maintains fewer MEBs than BBC, which leads to a more efficient
update procedure.

The dynamic algorithm, i.e., DyMEB, shows slightly better coreset quality than AOMEB and
BBC but runs even slower than CoreMEB. There are two reasons for such observations: first, the
data structure maintained by DyMEB contains all points in Wt for coreset construction, which nat-
urally leads to good quality; second, the performance of DyMEB depends on the assumption that
the probability of deleting any existing point is equal. However, the sliding window model always
deletes the earliest point, which obviously violates this assumption. As a result, when expired
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Figure 5: The performance for kernelized MEB with varying N on the Census dataset.

points are deleted, DyMEB frequently calls for (partial) coreset reconstructions. In practice, the
average update time of DyMEB even exceeds the time to build the coreset from scratch.

Finally, our sliding-window algorithms, namely SWMEB and SWMEB+, achieve two to four
orders of magnitude speedups over CoreMEB across all datasets for both Euclidean and kernelized
MEBs. In addition, they run 10 to 150 times faster than AOMEB. The reason for their superior
efficiency is that they can maintain the coreset incrementally over the sliding window without
rebuilding from scratch. In terms of effectiveness, the errors of SWMEB and SWMEB+ are slightly
higher than those of AOMEB. Although both algorithms use AOMEB instances to provide the
coresets, the index schemes inevitably cause quality losses since the points between the beginning
ofWt (i.e., t−N+1) and the first non-expired index (i.e., x1,s1 in SWMEB and x2 in SWMEB+) are
missing from the coresets. Lastly, SWMEB+ runs up to 14 times faster than SWMEB owing to the
fact that SWMEB+ maintains fewer indices than SWMEB. At the same time, SWMEB+ can return
coresets with nearly equal quality to SWMEB, which means that the radius-based index scheme
of SWMEB+, though having a worse theoretical guarantee, is competitive with the partition-based
scheme of SWMEB empirically.

4.3 Scalability
We compare the scalability of different algorithms with varying the window size N and dimension
m. The performance for Euclidean and kernelized MEBs with varying N is shown in Figures 4
and 5. Here we only present the results on the Census dataset. The experimental results on other
datasets are shown in Appendix B.

First, we observe that the average errors of different algorithms basically remain stable w.r.t. N
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Figure 6: The performance for Euclidean MEB with varying m on the Synthetic dataset.

(around 10−3 for SWMEB & SWMEB+). The update time of all algorithms, except SWMEB and
SWMEB+, increases with N because the number of points processed per update is equal to N .
For SWMEB and SWMEB+, the number of indices in Xt hardly changes N . Besides, the update
frequency of any AOMEB instance decreases over time, when the coreset grows larger and fewer
new points can be added. Since both algorithms contain “older” instances when N is larger, they
take less time for each update on average. In addition, the coreset sizes of our algorithms are 3–5
times larger than that of CoreMEB because the greedy strategy used by AOMEB inevitably adds
some redundant points to coresets. Despite this, the coreset sizes are at most 0.3% ·N . Moreover,
the coreset size for kernelized MEBs is around 5 times larger then that for Euclidean MEBs due
to the infinite dimensionality of RKHS. In terms of space, SWMEB stores up to 100 times more
points than SWMEB+ since it not only maintains more AOMEB instances that SWMEB+ but also
needs to keep a buffer Q, whose size is at most 10% · N . Specifically, SWMEB stores at most
13% ·N points while SWMEB+ only keeps up to 2, 000 points, which barely changes with N .

The update time and space usage of different algorithms with varying the dimensionm is shown
in Figure 6. Here we only present the results for Euclidean MEBs as the trend is generally similar
for kernelized MEBs. As plotted in log-log scale, we can observe that the update time of all al-
gorithms except SSMEB increases almost linearly with m. Nevertheless, SWMEB and SWMEB+
still demonstrate their superiority in efficiency on high-dimensional datasets. Furthermore, both
algorithms store more points when m is larger because the coreset size grows with m. But even
when m = 10, 000 the ratios of stored points are at most 25% and 5% for SWMEB and SWMEB+
respectively, whereas any other algorithms require to store the entire window of points.
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5 Conclusion
We studied the problem of maintaining a coreset for the MEB of a sliding window of points in
this paper. Firstly, we proposed the AOMEB algorithm to maintain a (

√
2 + ε)-coreset for MEB

in an append-only stream. Then, based on AOMEB, we proposed two sliding-window algorithms,
namely SWMEB and SWMEB+, for coreset maintenance with constant approximation ratios. We
further generalized our proposed algorithms for kernelized MEBs. Empirically, SWMEB and
SWMEB+ improved the efficiency of the state-of-the-art batch algorithm by up to four orders of
magnitude while providing coresets with rather small errors compared to the optimal ones. For
future work, we plan to explore the applications of coresets to various data mining and machine
learning problems in the streaming or sliding window model.
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A Details on Experimental Setup
In this section, we present the details of our experimental setup for reproducibility.

A.1 Hardware Configuration
All the experiments are conducted on a server with the following specifications:

• CPU: Intel(R) Xeon(R) E7-4820 v3 @ 1.90GHz

• Memory: 128GB (8×16GB) RAM 2133MHz DDR4 memory

• Hard Disk: a 480GB SATA-III solid-state drive

A.2 Software Environment
The server runs Ubuntu GNU/Linux 16.04.3 LTS 64-bit with kernel v4.11.0-rc2. All the code is
written in Java 8 only using the standard libraries. No third-party software/library is required. The
version of JVM for compilation is Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10.0.2+13).
In the experiments, each instance is limited to use a single thread for computation to ensure the
fairness of comparison. In addition, we use a JVM option “-Xmx80000m” to restrict the maxi-
mum heap size used by each instance. Note that the memory usage is much less than 80GB and
our purpose is to guarantee that the bottleneck is not in memory and I/O.
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A.3 Datasets
The statistics of the datasets used in our experiments are listed in Table 1. Here we briefly describe
the real-world datasets we use and the preprocessing procedures.

• Census contains a one percent sample of the Public Use Microdata Samples person records
drawn from the full 1990 census sample. It is downloaded from UCI Machine Learning
Repository.

• CovType is a dataset for predicting forest cover type from cartographic variables. It is
available on UCI Machine Learning Repository and LIBSVM. We download the dataset
from LIBSVM. In the preprocessing, we only retain the data with class label “0”.

• GIST is an image collection retrieved from TEXMAX.

• Gowalla is a collection of user check-ins over the period of February 2009 – October 2010
on gowalla.com. It is downloaded from SNAP. In the preprocessing, we extract the latitude
and longitude of each check-in as a two-dimensional point and dispose other attributes.

• HIGGS is a dataset for distinguishing between a signal process which produces Higgs
bosons and a background process which does not. It is downloaded from UCI Machine
Learning Repository. In the preprocessing, we only retain the data with class label “1” (i.e.,
signal process).

• SIFT is an image collection retrieved from TEXMAX.

The procedure of generating Synthetic has been introduced in the main paper. We transform
each dataset into a single file that stores the points in dense format: each point is represented by
one line in the file and different dimensions of the point are split by a single space. After dataset
preprocessing and format transformation, we shuffle all points of each dataset randomly. It is
guaranteed that a dataset must be processed by all algorithms in the same order for the fairness of
comparison.

A.4 Implementation Issues
The algorithms we compare in the experiments are as listed in Section 4.1. The implementations
of our algorithms are available at https://github.com/yhwang1990/SW-MEB. Here we
discuss the implementations of these algorithms.

We use the Java code published by the authors, which is available at https://github.
com/hbf/miniball, for the implementation of COMEB [18]. All the other algorithms are
implemented by ourselves. First of all, the basic scheme of CoreMEB [4] is presented in Algo-
rithm 1. Our practical implementations are based on two improved versions of CoreMEB, i.e.,
Figure 2 in [23] for Euclidean MEB and Algorithm 4.1 in [32] for kernelized MEB. They use the
same scheme as shown in Algorithm 1 but have lower computational costs and quicker conver-
gence rates. The implementation of SSMEB is based on Section 2 of [33], which is extended to
kernelized MEB according to Section 4.2 of [27]. We implement the Blurred Ball Cover (BBC)
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algorithm according to Section 2 of [1]. In addition, DyMEB is implemented based on Algo-
rithms 1–3 in [12]. Finally, our proposed methods, i.e., AOMEB, SWMEB and SWMEB+, are
implemented according to Algorithms 2–4 in this paper.

A.5 Parameter Tuning
The procedure of parameter tuning is as follows. Generally, there are three parameters used in
our experiments: ε1 (or ε) in all algorithms except COMEB and SSMEB, ε2 in SWMEB and
SWMEB+, the partition size L in SWMEB.

First of all, we choose appropriate ε1 for Euclidean and kernelized MEBs respectively. The
parameter ε1 determines the trade-off between coreset quality and efficiency. We test the effect
of ε1 by validating on [10−1, 10−2, . . . , 10−6]. For Euclidean MEB, the coreset quality hardly
improves but the running time increases rapidly when ε1 < 10−3. Therefore, we set ε1 = 10−3 for
Euclidean MEB. Using the same method, we set ε1 = 10−4 for kernelized MEB.

After choosing appropriate ε1’s, we further test the remaining parameters in SWMEB and
SWMEB+. Specifically, ε2 is also selected from [10−1, 10−2, . . . , 10−6]. In SWMEB, ε2 affects
the index construction on each partition. When ε2 ≤ 0.01, SWMEB suffers from high overhead
because of containing too many indices. Thus, we use ε2 = 0.1 for SWMEB. Additionally, to avoid
the indices being too sparse, we restrict the maximal distance between any neighboring indices in
the same partition to L

10
. In SWMEB+, ε2 adjusts the number of indices in Xt. Firstly, we observe

that the coreset quality cannot be improved any more when ε2 < ε1
10

. Secondly, we scale ε2 by a
factor of λ > 1 among indices, i.e., ε2 = λi−1 · ε1

10
for xi ∈ Xt, to reduce the index size without

seriously affecting the quality. We select λ from {2, 4, 8, 16} and use λ = 4 for SWMEB+ since the
quality seriously degrades when λ > 4. Thirdly, we set 0.1 as the upper bound of ε2 to ensure the
theoretical soundness. To sum up, we use ε2 = min(4i−1 · ε1

10
, 0.1) for each xi ∈ Xt in SWMEB+.

Finally, the partition size L in SWMEB affects the balance between space and time complexity. If
L is smaller, Wt will be divided into more partitions, which leads to more indices in Xt, but fewer
points will be stored in the buffer Q, and vice versa. We try to select L from range [N

5
, N
10
, . . .]. The

results show that SWMEB cannot scale to large datasets when L < N
10

for too many indices in Xt.
Therefore, the partition size L in SWMEB is set to N

10
.

B Additional Experimental Results
We present additional experimental results for scalability on different datasets in Figures 7–11.
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Figure 7: The performance for Euclidean MEB with varying N on the HIGGS dataset.
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Figure 8: The performance for kernelized MEB with varying N on the HIGGS dataset.
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Figure 9: The performance for Euclidean MEB with varying N on Synthetic dataset (m = 50).
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Figure 10: The performance for kernelized MEB with varying N on Synthetic dataset (m = 50).
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Figure 11: The average error for Euclidean MEB with varying m on Synthetic dataset.
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