
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2019

Applying case-based learning for a postgraduate software Applying case-based learning for a postgraduate software

architecture course architecture course

Eng Lieh OUH
Singapore Management University, elouh@smu.edu.sg

Yunghans IRAWAN
Institue of Systems Science

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Higher Education Commons, and the Software Engineering Commons

Citation Citation
OUH, Eng Lieh and IRAWAN, Yunghans. Applying case-based learning for a postgraduate software
architecture course. (2019). ITiCSE '19: Proceedings of the 24th ACM Conference on Innovation and
Technology in Computer Science Education, Aberdeen, July 15-17. 457-463.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4615

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4615&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Applying Case-Based Learning for a
Postgraduate Software Architecture Course

Eng Lieh Ouh
School of Information Systems

 Singapore Management University
elouh@smu.edu.sg

Yunghans Irawan
 Institute of Systems Science

 National University of Singapore
 yirawan@nus.edu.sg

ABSTRACT
Software architecture remains a difficult subject for learners to
grasp and for educators to teach given its level of abstraction. On
the other hand, case-based learning (CBL) is a popular teaching
approach used across disciplines especially in business, medicine
and law where students work in groups apply their knowledge to
solve real-world case studies, or scenarios using their reasoning
skills and existing theoretical knowledge. In this paper, we provide
how we apply case-based learning to address the challenge in
teaching a postgraduate software architecture course. Our learners
are postgraduate students taking a master’s program in software
engineering. We first describe our design of case-based learning
for our software architecture course. We then analyse the survey
ratings and learners’ profile to evaluate the effectiveness of the
proposed case-based design. These data are gathered from 9 class
runs over a period of 8 years. Our analysis results show the
effectiveness of our case-based design and significant relationships
between this effectiveness to the learners’ years of working
experiences and the number of learners. Key contributions in this
paper are our proposed case-based design for software
architecture and the analysis findings.

KEYWORDS
Software architecture; curriculum design; case-based learning;
pedagogical approach

ACM Reference format:
E. L. Ouh and Y. Irawan. 2019. Applying Case-Based Learning for a
Postgraduate Software Architecture Course. In Proceedings of ACM Annual
Conference on Innovation and Technology in Computer Science Education
(ITiCSE’19), July 15-17, 2019, Aberdeen, Scotland, UK. ACM, NY, NY, USA. 6
pages. https://doi.org/10.1145/3304221.3319737

1 INTRODUCTION
In a software system, creating an architecture of a system
comprises of designing the system’s high-level building blocks
within the user’s environment that can exhibit the required non-

functional qualities. These qualities of the system are determined
by the design decisions made of an architect. The abstractness of
architecture concepts poses a key challenge for learners to grasp
and educators to teach.

Galster and Angelov noted in their work [1] that learners often
find it challenging for them to appreciate the fuzziness of software
architecture concepts and unable to switch their mindset from the
concrete aspect of software programming and low-level software
design to abstract architectural thinking. In addition to the
vagueness of the concept of software architecture itself, Boer,
Farenhorst and Vliet also commented in their work [2] that
architecture problems are usually “wicked” and requires
educational methodologies that deviate from the traditional active
lecturer / passive student relation. For one who is used to writing
code and compiles to get a deterministic result, the mindset of
structuring components together in a diagram, justifying their key
decisions with potential trade-offs without a concrete output and
there is no one single perfect solution is a frustrating divergence
from what they are doing. -

The skill set for one be a competent software architect is also
multi-faceted which increase the level of difficulty of teaching it in
a classroom environment. The role of a software architects entails
one to have the following desired skills:

S1. Technical skills to design and structure the software components
from conceptual theoretical thinking to a practical digital
solution. Software architecture is the fundamental organisation
of a system embodied in its components, their relationships
to each other, and to the environment, and the principles
guiding its design and evolution [1].

S2. Analytical skills to evaluate the problems quickly, analyse the
possible root causes and make significant design decisions for the
project. An architect who is unable to make significant design
decisions (principles) on the components and their
relationships in an environment where much is unknown is
unlikely to succeed. “The life of a software architect is a long
and rapid succession of suboptimal design decisions taken
partly in the dark.” [2].

S3. Learning skills and motivation to keep up to date with the
quickly evolving tools and technologies. Though software
architects do not need to be technology experts in all areas, it
is essential that an architect is motivated to keeps abreast of
the frequently changing technology trends and practices.

S4. Effective communication skills to understand and negotiate
project requirements with relevant stakeholders. Specifically, an
architect should have effective language skills, including

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Request permissions from Permissions@acm.org.
ITiCSE ‘19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6301-3/19/07…$15.00 https://doi.org/10.1145/3304221.3319737

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

457

https://doi.org/10.1145/3304221.3319737
https://doi.org/10.1145/3304221.3319737

speaking, writing, and presentation abilities to address
complex problems with a seemingly simple design that are
easy to grasp.

The design of a software architecture course needs to incorporate
elements that can effectively impart the above skills. Case-based
learning’s main traits are that a case is used to stimulate and
underpin the acquisition of knowledge, skills, and attitudes. These
cases present a disciplinary problem or problems for which
students devise solutions under the guidance of the instructor. The
following bullet points discuss the benefits of applying case-based
learning (CBL) with respect to the desired skills of a software
architect.

 (With respect to S1) CBL provides students with an
opportunity to see theory in practice. This integration of
knowledge and practice in real-world or authentic contexts
expose students to viewpoints from multiple sources.
Students can also see how a decision impact different
participants, both positively and negatively.

 (With respect to S2) During the case discussion, students are
required to analyse data and background information in order
to reach a conclusion. Since many assignments are open-
ended, students practice choosing appropriate analytic
techniques as well.

 (With respect to S3) In the midst of searching answers to the
case problems, students learn the importance of continuous
learning to keep up to date with the solutions available. They
will be motivated to search for new architectural styles and
technologies for a better solution to the case problems.

 (With respect to S4) In CBL, students can develop
communicative and collaborative skills along with content
knowledge. In their effort to find solutions and reach
decisions through discussions, students sort out factual data,
articulate issues, reflect on their relevant experiences and
draw conclusions they can relate to new situations. In the
process, they acquire substantive knowledge and develop
collaborative, and communication skills.

In this paper, we seek to investigate and validate the following two
high-level research questions.

RQ1 How do we design case-based learning in software
architecture for postgraduate students?

RQ2 How is the effectiveness of our case-based design for our
group of learners to learn software architecture?

The rest of the paper is organised as follows: We first describe the
related work in section 2. We seek to address RQ1 with our
proposed case-based design in section 3 and our implementation
of the case-based design in section 4. In section 5, we seek to
address RQ2 by explaining our evaluation design followed by our
evaluation analysis in section 6. Lastly, we explain the threats to
validity in section 7 and conclude this paper in section 8.

2 RELATED WORK
Comparing Problem-Based Learning with Case-Based
Learning: Effects of a Major Curricular Shift at Two
Institutions: Srinivasan, Wilkes, Stevenson, Nguyen and Slavin in
[3] describe their experiences in applying and comparing problem-
based learning (PBL) and case-based learning (CBL) methods to
the medical curriculum for students studying in two major
academic medical centres. The results of their study show that
learners and faculty overwhelmingly preferred guided inquiry-
based of CBL over open inquiry-based of PBL for their medical
curriculum. In our study, we seek to validate the effectiveness of
applying CBL and the design elements of a case for a software
architecture course.

Teaching adult learners on software architectural thinking
skills: Ouh and Irawan [4] present their experiences to teach
software architecture course to adult learners and the insights to
applying both the case-based (CBL) and problem-based (PBL)
methods. Their research shows that learners better appreciate the
open inquiry aspect of PBL where they can learn from other
learners’ experiences and thinking within a short time span. PBL
based approach, which does not have any pre-set goals and
expected outcomes like CBL, tends to in a way works well with
adult learners. On the other hand, there are also learners who
appreciate the guided and structured aspects of the workshop
based on the CBL method. They suspect that this difference may
be due to the level of experiences of their adult learners. The
learners’ level of experiences of learners in their study on average
is slightly higher as compared to the learners’ level of experiences
in our study. Besides the level of experiences, their study also
compares and analyse the effectiveness of case-based learning
against the other possible factors of the learner’s profile.

Teaching Software Architecture to Undergraduate Students:
Rupakheti and Chenoweth in [5] describe their experiences and
learnings in teaching software architecture course to
undergraduates. Their course design involves daily quizzes,
homework, paper reviews and project work. They strongly favour
a project-based version of teaching architecture, even at the
undergraduate level. Ouh and Irawan [6] adopt an experiential risk
learning model to design their software architecture course for
undergraduates to address the challenges of teaching abstract
software architecture concepts to undergraduates. The model
comprises of activities to simulate risks that can happen in
practical scenarios, and their role is to be able to recognise these
risks, reflect on the causes and mitigate these risks.

3 PROPOSED CASE-BASED DESIGN FOR
SOFTWARE ARCHITECTURE

One key artifact in case-based learning is the case, and an effective
case design is essential to achieve the benefits of CBL. We review
existing work in CBL and samples of software engineering case
studies available in [7]. To the best of our knowledge, there is no
existing work to discuss the design of a case for software
architecture. In this section, we propose our case-based design for

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

458

software architecture to address our first research question RQ1.
We break down RQ1 into 2 specific sub-questions.

RQ1.1 What is the proposed case-based design for software
architecture?

RQ1.2 How to conduct the case-based design for software
architecture?

We will address RQ1.1 in this section in terms of case format, case
conduct and required elements of a case. RQ1.2 will be discussed
in the next section on the implementation of our case-based
design.

The format of a case influences how to use it with the students
and can be in the form of bullet-cases, mini-cases and descriptive
cases. Bullet-Cases comprises of two or three sentences with a
single teaching point, and students discuss them in small groups or
individually. This format is used during the lectures and generally
conducted in a short duration of 5-15 minutes. These cases enable
the students to quickly review key concepts taught, analyse and
discuss the potential problems. Mini-Cases are designed within a
single class meeting and usually tightly focused, useful for helping
students apply concept within a practical scenario. We use this
format in workshops and usually incur a longer duration from 60
minutes to 2 hours. Descriptive cases are written up to 5 pages (1-2
paragraphs per page), and each page is disclosed to the student
with discussion and development of learning goals and study
questions for each part of the case. This type of cases is typically
used for two or more class meetings. We use the descriptive cases
for assessments where the students can review the case on a
longer duration of days before giving their analysis and
recommendations. The students can gain technical and analytical
skills when they discuss the cases based on these formats. The
descriptive cases also allow the students to learn from other
sources due to the longer duration and less focused on a single
concept.

The conduct of a case teaching can be in the form of discussion,
debate or public hearing. Discussion format refers to the typical
format when the instructor asks probing questions, and the
students analyse the problem depicted in the story with clarity and
brilliance. Debate format is well suited for cases where two
diametrically opposed views are evident. Public hearing format is
an ideal format to allow a variety of people to speak and different
views to be expressed. The students can practice their
communication and collaborative skills during the case conduct.
We use discussion format for bullet-cases during lectures,
discussion or debate formats for mini-cases during workshops and
public hearing format for descriptive cases during assessments.

Based on the earlier discussion of desired skills of a software
architect and a study by Clements, Kazman and Klein et al. [8] on
the duties, skills and knowledge of software architects, the
required elements (RE) of a case for software architecture involve:

RE1. Description of stakeholder and their requirements that
require learners to investigate new architectural styles
and the required components to support the style.

RE2. Description of business and technical environments, tools,
technologies and other necessary components to enable
the learner to describe an architecture in the form of
architectural artifacts.

RE3. Description of constraints to enable the learners to reason
their architectural decisions and justify the trade-offs
among software qualities.

4 IMPLEMENTATIONS OF OUR CASE-BASED
DESIGN FOR SOFTWARE ARCHITECTURE

In this section, we address RQ1.2 with a discussion of how we
implement bullet-cases, mini-cases, and descriptive cases in
lectures, workshops and assessments as shown in Table 1. We
focus our cases in the typical architecture domains of the web,
mobile, cloud and enterprise system architectures. We design
these cases in a guided format for learners to be able to follow the
steps to address specific issues identified in these cases.

4.1 Implementing Bullet-Cases in Lectures
Bullet-cases are good to discuss during a lecture for students to
reflect on an important concept. We typically inject bullet cases
after about 15-30 minutes of slides, which provide a good change
in teaching style from passive slide-based lectures to discussion-
based. Learners are typically grouped into small groups of 2-3 or
individually to address the case questions.

As an example, after a lecture on ISO 25010 software qualities [9],
which can be dry given the long list of software qualities, we
introduce a bullet case where specific examples (e.g. online
banking when one-time authentications or OTP are required) are
discussed for the potential quality trade-offs and mitigation
actions to minimize the trade-off. Using the same example of
online banking, we highlight that the design for confidentiality
trade-offs the usability of the system and can be mitigated if OTP
is required only at certain transactions instead of at the login page.
Students are also welcomed to give their own examples that they
have experienced.

4.2 Implementing Mini-Cases in Workshops
For mini-cases, learners form larger groups of 4-5 and we use both
the discussion and debate format. The learners are required to
solve specific questions in these practical business cases, present
and discuss with the class. The duration of the workshop can take
between 60 minutes to 2 hours. Each group might be doing the
same case or a different one. They are playing the role of an
architect and have to address the stakeholders’ concerns, played
by other groups of learners in the class. We conduct a reflection
session after the learners have presented which is vital for the
learners to recap on their understandings and for instructors to
ensure the learning outcomes are achieved.

An example of a case is a web/ mobile enterprise system
integrated with some internet of things (IoT) devices that are
monitoring the environment, which provides continuous
environment updates such as haze and weather information. The
learner’s role is to design this enterprise system with efficient

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

459

delivery of this information to the users in a timely manner. A
point to ponder is the scalability of the design that is required to
be handled situations when a large number of concurrent users are
assessing the system during serious environmental conditions. We
discuss the usage of caching instead of retrieving the data from the
internal system to increase performance. Another case adopted is
about a multi-tenant system to be built and deployed on the cloud.
The learner’s role is to review the requirements and designs on
how to handle the multi-tenancy aspect of the system. There are
design decisions and trade-offs for each of the multi-tenancy
options that impact qualities. Points to ponder include the
decisions of shared vs isolated designs. Deciding on a shared
platform might ensure a lower cost but trade-off the security
aspect. Deciding on a no-shared platform isolates the system in
terms of security but at a more significant cost and maintenance
for the service provider [10].

4.3 Implementing Descriptive Cases in
Assessments

For descriptive cases used in assessments, learners form groups of
4-6 and we use the public hearing format. The learners are
exposed to case studies that are of a broader scope and require
them to make more decisions and produce more concrete
architecture deliverables as in a real-life project. Each group
analyse the case and provide their recommendations with
justifications to the rest of the groups within 3-5 class sessions.
Other groups are allowed to participate with questions during the
public hearing session.

An example of a descriptive case being adopted in our course is
when the learners are given a real-life integration case study, and
they are required to address specific key issues on enterprise
integration. In this case study, the company wishes to migrate its
legacy mainframe system to a modern application architecture
based on Java. During the migration phases, they wish to adopt an
architecture also to migrate the subsystems integrated into the
legacy system. The learner’s role is to design the integration
architecture for the migration of the subsystems. The learners are
given the current architecture diagram and interface details of
each subsystem and the legacy system with specific requirements
such as minimum disruption to the subsystems. Points to ponder
include the performance impact due to the additional layer of
computation between the legacy system and subsystems when the
learner designs an enterprise service bus (ESB) between the
systems.

In another example of a descriptive case, we describe a case of a
nationwide healthcare system designed with the objective to
monitor students’ health in primary, secondary and tertiary
institutions. The learner is required to architect a distributed
system that still addresses the security, performance,
maintainability and scalability qualities. Decisions made on the
architecture design can favour one of the qualities but likely trade-
off another. For example, the learner will need to decide whether
to first persist the healthcare data in the storage available in each
institution during the screening process or directly access a

centralised remote system to persist the data. Adopting the former
can allow for better decoupling of the system but risk data
inconsistency across all institutions. On the other hand, adopting
the latter can achieve better maintainability of the architecture and
data consistency but risks single point of failure (SPOF) at each
institution. For each trade-off, the learners should be able to
recommend mitigation actions. In the earlier case, the learners can
propose redundancy designs to address SPOF.

We also change the style in certain classes to allow the teams to
propose their own case. In this case, instructors evaluate these
cases and inject specific questions to be addressed instead. This
format helps the learners to be exposed to more variety of case
studies but increase the difficulty for the instructors to have a
standard rubric to assess their performance. We partially
addressed this concern by incorporating feedbacks from other
teams in the final assessments.

5 Evaluation of our Case-Based Design for
Software Architecture

In this section, we seek to address our second research question
RQ2. We break down RQ2 into 2 specific questions.

RQ2.1 Is our case-based design effective for our learners to learn
software architecture?

RQ2.2 What are the factors in our learners’ profile that impact
the effectiveness of our case-based design?

We first describe our evaluation design, followed by an evaluation
analysis to address RQ2.1 and RQ2.2. The evaluation of our case-
based design is conducted over 9 class runs in 8 years for 386
postgraduate students taking a software architecture course with
our proposed case-based design.

5.1 Evaluation Design
The learners are required to provide survey ratings based on a 5-
point Likert scale to the following key survey questions:

(1) “Is the case-based sessions effective to learn software
architecture?” with ratings of “1-Poor, 2-Unsatisfactory, 3-
Satisfactory, 4-Good, 5-Excellent.”

(2) “What is your expected grade for the case-based assessment?”
with ratings of “1-F, 2-D, 3-C, 4-B, 5-A”.

The survey ratings and information of the learners’ profile are
averaged out over the number of students in each course run.
Table 2 shows these average ratings obtained from the first class in
2010 to the last class in 2017. There are two class runs in 2010 and
one class run for the rest of the years.

We compile their profile based on their postgraduate admission
data in terms of their years of working experiences, their basic
degrees and their job domain. We categorised their basic degrees
into 3 types - (1) IT-Related (e.g. Computer Science, Information
Systems, and Information Technology), (2) Engineering (e.g.
Electrical, Electronics Engineering) and (3) Non-IT/Engineering
(e.g. Mathematics, Physics). In the column “Proportion of Learners
with IT-Related Basic Degree” of Table 2, we show the percentage

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

460

of learners with a basic degree that is of IT-Related type per class
run. We categorised the learner’s job domain into 5 types - (1)
Academic and Research, (2) Financial and Insurance, (3)
Government and Medical, (4) Services and Product and (5) Others
(Telecoms, Transport, Energy). Our workshop and assessment
cases scenarios are based on domains of type (2) and (3). In the
column “Proportion of Learners with Case-Related Job Domain” of
Table 2, we show the percentage of learners with their job
domains that match the domains in our case scenarios per class
run.

6 Evaluation Analysis
We first explain the general trends of the survey results to address
RQ2.1, followed by an analysis of these results to address RQ2.2.
For RQ2.1, the effectiveness ratings for the case-based design are
generally good and above (above 4) except for two years falling
just below the good rating. These ratings are considered good in
the 5-point scale for our department, giving us confidence that the
learners are able to learn software architecture using the case-
based design effectively. The expected grade rating is fairly
consistent over the years ranging between 4 and 4.4 except for the
year 2012 with 3.974 which is still very close to 4 (B grade). For
improvements, we seek to find out the reasons for the drop of
effectiveness in 2013 and 2017 by performing a correlation analysis
(as shown in Table 3) between the survey ratings and the learner’s
profile to derive more insights to address RQ2.2. Following are the
key takeaways:
 We realised that the learner’s years of experiences are highly

negatively co-related (-0.815) to the effectiveness of the case-
based design. A regression analysis of the learners’
experiences against the effectiveness also shows a statistically
significant relationship with a p-value of 0.007 (<0.01). This
result implies that with longer the years of working
experiences, the effectiveness of our case-based design
actually decreases. A possible qualitative explanation is due
to the guided-inquiry aspect of our case design. For learners’
with less working experiences, the case design with guided-
inquiry discussions enable these learners to understand and

apply the knowledge gained. However for learners’ with
longer years of working experiences, the case design with
guided-inquiry discussion might not be as effective as these
learners might already being exposed to similar case
scenarios which limit what they can learn from these cases. A
possible suggestion based on the study [4] is to adopt another
teaching approach - Problem Based Learning with open-
inquiry.

 The effectiveness of the case-based design is also negatively
co-related (-0.721) with the total number of students. A
regression analysis of the total number of students against
the effectiveness also shows a statistically significant
relationship with a p-value of 0.028 (<0.05). It might be good
to hear views from diverse groups of students, but it can be
ineffective when the number of students is too large, and
some students are no longer involved in the discussions. One
possible mitigation strategy is to assign each group to
understand at least one other group and they are required to
pose challenging questions to that group.

 The proportion of learners with IT-related basic degree is
positively related (0.66) to the effectiveness of the case-based
design. Although we expect this outcome, the co-relations are
not as strong as expected with the regression analysis
showing a p-value of 0.051 (>0.05). We also realised that
many of these learners took other diplomas and certifications,
which might have made their basic degree less relevant to the
effectiveness of our case-based design.

 The proportion of learners with case-related job domain does
not show significant co-relations (0.066) to the average
effectiveness rating. Even though our cases primarily focus
on domains of Financial and Insurance, Government and
Medical, the decision to focus on these domains does not
impact the effectiveness of the case-based design to learn
software architecture. We believe the reason is that the
learnings of our cases are to a certain extent generic enough
to be applicable to many other domains.

Table 1. Implementation of Proposed Case-Based Design and Implementation

Case Type and
Objective

Case
Format

Case Conduct
Case
Duration

Examples of a Case and its relationships to the
required Case Required Elements

Bullet-Cases - Reinforce
single teaching point

Discussion
Format

Lectures
15-30
minutes

Discussion on ISO 25010 software qualities (RE3)

Mini-Cases –
Apply focused concepts
in a practical scenario

Discussion
and Debate
Formats

Workshops
60 minutes
to 2 hours

Web / Mobile Architecture for a Government Agency
(RE2, RE3)
Multi-Tenant Cloud Architecture based on e-Commerce
(RE2, RE3)

Descriptive Cases –
Detailed scenarios to
apply multiple concepts

Public
Hearing
Format

Assessments
3-5 class
sessions

Distributed Architecture based on a Healthcare domain
(RE1, RE2, RE3)
Enterprise Integration Architecture based on Insurance
domain
(RE1, RE2, RE3)

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

461

 The average expected grade rating is not showing any
significant co-relations to any of the factors in the learners’
profile. A possible reason is that the expected grade is more
related to their type of skills rather than the years of working
experiences or basic degree or job domain. We realised that
learners with prior job scope requiring them to make
architectural design and decisions tends to be more confident
of their performance when taking this course.

7 Threats to Validity
The learners’ years of experiences and job domain obtained during
their postgraduate admission might differ when they actually take
the course. They can take this course in their first or second year
and we adjust their years of experiences accordingly. Their job
domain might also differ and we further verify and adjust
accordingly against their LinkedIn profile if available.

Our findings are on the application of CBL with the guided-
inquiry format in a postgraduate software architecture course.
These findings remain to be validated in other course scenarios
(e.g. software design, software testing) or other groups of learners
(e.g. undergraduates) or other formats (e.g. open-inquiry).

8 Conclusion
Teaching software architecture to postgraduate students poses
challenges due to its inherent level of abstraction. In this paper, we

describe how we design case-based learning into our course to
enable our postgraduate students to learn software architecture
more effectively. This paper explains the benefits of applying case-
based learning that corresponds well with the required skills of a
software architect. We provide how we design our cases for
software architecture and how we implement these cases in a
postgraduate course over a period of 8 years.

We evaluate the effectiveness of our case-based design in software
architecture based on survey ratings and analyse the relationships
of the survey ratings to our learners’ profile. Our survey ratings
show that our proposed case-based design in software architecture
is effective for our group of learners. Our analysis results show the
learners’ years of working experiences and the number of students
have significant negative co-relationships to the effectiveness of
the case-based design. On the other hand, the learners’ job domain
and basic degree do not have significant co-relationships with the
effectiveness of the case-based design.

We hope that these findings can guide course designers to design
case-based learning for courses with similar challenges and better
understand the relationships of the learner’s profile to the
application of case-based learning. In our future work, we seek to
compare and analysis our current case-based learning design with
other design approaches and investigate across groups of adult
learners including undergraduate and more experienced working
adults to derive new insights.

Table 2. Survey ratings and Learners’ Profile

Year/Run

Survey Ratings Learners’ Profile
Average

Effectiveness
Rating

Average
Expected

Grade

Years of
Working

Experience

Total
Number of
Learners

Proportion of Learners
with IT-Related Basic

Degree

Proportion of
Learners with Case-
Related Job Domain

2010 Run 1 4.265 4.317 5.47 34 73.33% 28.57%

2010 Run 2 4.244 4.333 4.36 41 66.67% 32.00%

2011 Run 3 4.212 3.974 5.30 41 68.75% 19.05%

2012 Run 4 4.255 4.304 5.45 47 77.27% 22.50%

2013 Run 5 3.977 4.386 6.26 44 54.76% 14.29%

2014 Run 6 4.27 4.243 4.80 37 61.54% 14.29%

2015 Run 7 4.152 4.25 5.86 46 54.17% 16.67%

2016 Run 8 4.14 4.43 5.86 37 68.00% 6.90%

2017 Run 9 3.9 4.4 6.69 59 57.50% 28.57%

Table 3. Relationships between Survey Ratings and Learners’ Profile

 Average Effectiveness
Rating

Average Expected Grade

Years of Working Experience -0.815 0.199
Total Number of Learners -0.721 0.191

Proportion of Learners with IT-Related Basic Degree 0.666 -0.169
Proportion of Learners with Case-Related Job Domain 0.066 0.004

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

462

REFERENCES
[1] M. Galster and S. Angelov, “What makes teaching software architecture

difficult?” In IEEE/ACM International Conference on Software Engineering
Companion (ICSE-C), 2016.

[2] R. C. d. Boer, R. Farenhorst and H. v. Vliet, “A community of learners approach
to software architecture education.” In 22nd Conference on Software
Engineering Education and Training, 2009. CSEET ‘09, 2009.

[3] M. Srinivasan, M. Wilkes, F. Stevenson, T. Nguyen and S. Slavin, “Comparing
problem-based learning with case-based learning: effects of a major curricular
shift at two institutions.” In Academic Medicine, 82(1), 74-82, 2007.

[4] E. L. Ouh and Y. Irawan, “Teaching Adult Learners on Software Architectural
Thinking Skills.” In Frontiers in Education, 2018.

[5] C. R. Rupakheti and S. V. Chenoweth, “Teaching software architecture to
undergraduate students: an experience report.” In IEEE/ACM 37th IEEE
International Conference on Software Engineering (ICSE), 2015.

[6] E. L. Ouh and Y. Irawan, “Exploring Experiential Learning Model and Risk
Management Process for an Undergraduate Software Architecture Course.” In
Frontiers in Education, 2018.

[7] V. Saini, P. Singh and A. Sureka, “Seabed:An open-source software engineering
case-based learning database.” In Computer Software and Applications
Conference (COMPSAC), 2017 IEEE 41st Annual (Vol. 1, pp. 426-431). IEEE.

[8] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy and P. Verma, “The
duties, skills, and knowledge of software architects.” In Software Architecture,
2007. WICSA’07. The Working IEEE/IFIP Conference on (pp. 20-20). IEEE.

[9] “ISO/IEC 25010:2011 Systems and software engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and software quality
models.” 2011. [Online]. Available: https://www.iso.org/standard/35733.html.

[10] E. L. Ouh and S. Jarzabek, “An Adaptability-Driven Model and Tool for Analysis
of Service Profitability.” In International Conference on Advanced Information
Systems Engineering. Springer, 2016.
.

Session 7D: Software Architecture and Algorithms ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

463

	Applying case-based learning for a postgraduate software architecture course
	Citation

	Insert Your Title Here

