
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

Study group travel behaviour patterns from large-scale smart card Study group travel behaviour patterns from large-scale smart card

data data

Xiancai TIAN
Singapore Management University, shawntian@smu.edu.sg

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Urban Studies Commons

Citation Citation
TIAN, Xiancai and ZHENG, Baihua. Study group travel behaviour patterns from large-scale smart card
data. (2019). 2019 IEEE International Conference on Big Data: December 9-12, Los Angeles: Proceedings.
1232-1237.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4614

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/402?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4614&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Study Group Travel Behaviour Patterns From
Large-Scale Smart Card Data

Xiancai Tian, Baihua Zheng
Living Analytics Research Centre, Singapore Management University, Singapore

{shawntian, bhzheng}@smu.edu.sg

Abstract—In this paper, we aim at studying the group travel
behaviour (GTB) patterns from large-scale auto fare collection
(AFC) data. GTB is defined as two or more commuters inten-
tionally and regularly traveling together from an origin to a
destination. We propose a method to identify GTB accurately and
efficiently and apply our method to the Singapore AFC dataset
to reveal the GTB patterns of Singapore commuters. The case
study proves that our method is able to identify GTB patterns
more accurately and efficiently than the state-of-the-art.

Index Terms—smart card data; spatial and temporal systems;
group travel behaviour; Bloom Filter

I. INTRODUCTION
In this paper, we aim at identifying group travel behaviour

(GTB) patterns of commuters who are travelling using the
public transport system (e.g., buses and/or metro), which is
a relatively new problem. We fully utilize the city-scale data
captured by an automated fare collection (AFC) system to
perform our study.

Without loss of generality, we assume most, if not all,
AFC systems capture the trip information tpi in the form of
〈id, so, to, sd, td, inf〉. Here, id refers to the identity of the
smart card, so and sd refer to the boarding location (i.e.,
the origin) and the alighting location (i.e., the destination)
respectively in terms of the respective bus stop or metro
station, to and td stand for the boarding time stamp and
the alighting time stamp respectively, and inf refers to other
key information captured (e.g., commuting type in terms of
bus ride or metro ride, commuter category in terms of child,
adult, senior and so on) which could vary from system to
system. When the context is clear, we use the term AFC data
interchangeably with the term smart card data or trip records,
and we use the term tap in/tap out interchangeably with the
term boarding/alighting.

In this paper, GTB is defined as two or more commuters
intentionally and regularly traveling together from one location
to another. Implied by previous psychological studies [1, 2]
and our daily experience, group travellers tend to swipe their
cards one right after another. Motivated by this, we propose
a smart card data-driven approach to identify GTB in the
context of the public transport network. The basic idea is that:
if two or more commuters tap in at the same metro station/bus
stop within a very short time window and tap out at the
same metro station/bus stop within a very short time window,
and such synchronization occurs at least a certain number of
times, they are identified as group travellers. In other words,
given two commuters, we determine whether they are group

travellers based on intentionality and regularity of the trips
they make together. We quantify the intentionality based on
the temporal distance and the spatial distance of the swiping
(i.e., tapping in or tapping out) card behavior observed; and
we measure the regularity based on the number of times the
almost-synchronized swiping card behaviors happened.

There are multiple ways to implement the above mentioned
idea to identify whether two or more commuters are group
travellers. For example, we could store a trip record as a point
in a four-dimensional space (i.e., the dimensions of to, td,
so and sd). For a given trip record tpi, we could adopt a
brute-force approach to scan the trip records to locate those
neighboring trips tpj such that tpi.id 6= tpj .id ∧ |tpi.to −
tpj .to| ≤ τ ∧ |tpi.td − tpj .td| ≤ τ ∧ tpi.so = tpj .so ∧
tpi.sd = tpj .sd

1. Parameter τ refers to the temporal threshold
which shall be set to a very small value (e.g., 5 seconds in this
paper). Obviously, this approach might need to scan many trip
records in the collection. Given the fact that the daily ridership
of public transport systems in a metropolitan city is in the
scale of millions or even more, this exhaustive search is not
practical and suffers from very poor scalability. Indexes are
available to speedup the search performance. However, given
the fact that commuting records are generated in a continuous
fashion, updates are expected to happen extremely frequent
and the high index update cost makes indexes not an ideal
solution.

To address the efficiency issue effectively, we fully utilize
the fact that the number of bus stops and metro stations is fixed
and trip records are captured by the AFC system according to
the chronological order naturally. Accordingly, we strategically
store the trip records using tap in chunks and tap out chunks.
Records in the same tap in chunks share the same tap in
location (i.e., tap in at the same bus stop or metro station),
while records in the same tap out chunks have the same tap out
locations (i.e., tap out at the same bus stop or metro station).
To ease the measurement of the temporal distance, we further
partition the records in each chunk using blocks, with records
in the same block having their tap in time stamps or tap out
time stamps fallen within a very short time window. As to be
detailed later, this arrangement effectively reduces the search
space of a trip’s neighboring trips from the initial N trips
to a much smaller number of trips in a few blocks, with N
the total number of trip records. We also adopt Bloom Filter,

1Please refer to Definition 3.1 for the formal definition of neighboring trip.

a probabilistic data structure, to perform the checking which
could further improve the performance. In addition, we carry
out a case study using real dataset captured by the AFC system
in Singapore within one month. We report the performance of
our algorithm and share the meaningful insights about group
travelling.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous studies on several related topics,
including group walking behaviour. Section III presents our
method, including the GTB identifying algorithm BEEP and
some relevant techniques used. Section IV reports performance
of our algorithm and our findings based on one-month trip
records captured by the Singapore AFC system. Section V
concludes this paper.

II. LITERATURE REVIEW

The availability of smart card data provides enormous
opportunities for public transport research [3]. Much of the
existing literature has sought to propose various methods to
investigate travel behavior using smart card data. Nevertheless,
most of the AFC data-related travel behavior analysis tasks
focus on isolated individual travel behaviour (ITB), and few
of them pay attention to the study of GTB. One of the most
well-studied types of GTB is group walking behavior (GWB).
In line with most travel behavior research, early studies on
walking behavior have treated pedestrians as isolated individ-
uals, each having a desired speed and direction of motion [2].

More recently, GWB has received substantial attention [2,
4, 5, 6]. Among these studies, identification of pedestrian
groups is usually done manually using data collected by video
recordings [2, 4]. Other methods have also been adopted, like
3D laser range sensors [6] and accelerometer sensors [7].
While these studies help us understand pedestrian behavior
from a group perspective, GWB has so far only been analyzed
at a micro scale or in a relatively small area, like a commercial
street or a metro station. Thus, these approaches have not been
able to provide an understanding of the characteristics of GWB
versus individual walking behavior (IWB) at a larger spatial
scale, such as a neighborhood, a town or even the entire city.

The only piece of work that studies a similar problem is
presented in [8], which develops a naive method to identify
GTB, using one-week smart card data generated by the metro
system in Beijing. It proposes a feasible but very inefficient
method, which scans the trip records one by one to find
those corresponding to the same boarding station and the same
alighting station and meanwhile being close to each other in
terms of boarding time stamp and alighting time stamp. It does
not consider regularity at all so the identified group travellers
might not be real group travellers. For example, the subway
system in Beijing is well known to be overcrowded during
peak hours, and many commuters might tap in the station
within a short time window especially when there are multiple
gantries in each station. We introduce the concept of regularity
into the definition of GTB, which provides a support to the
identified group travellers.

Different from existing solutions, we adopt a smart card
data-driven approach to identify GTB patterns from large-scale
dataset both accurately and efficiently. To our best knowledge,
this is the first work on identifying GTB patterns from AFC
data that considers the accuracy, the efficiency and also the
scalability.

III. SOLUTION ALGORITHM

In this section, we first formulate the problem of GTB,
introduce the data structure Bloom Filter that will serve as
a key building block of our solution, and then present the
solution.

A. Problem Formation

Before presenting our solution algorithm in detail, we
introduce two core definitions that will be used throughout
the paper in Definition 3.1 and Definition 3.2 respectively.

Definition 3.1: Neighboring Trip. For a given trip tp,
trip tp′ made by a different commuter is considered as a
neighboring trip of tp, iff trips tp′ and tp board at the same
metro station/bus stop within an time interval of τ , and they
meanwhile alight at the same metro station/bus stop within a
time interval of τ , i.e., tp′.id 6= tp.id ∧ |tp′.to− tp.to| ≤ τ ∧
|tp′.td − tp.td| ≤ τ ∧ tp′.so = tp.so ∧ tp′.sd = tp.sd. Here,
τ is a threshold controlling how close two neighboring trips
should be in the temporal dimension (e.g., we set τ = 5s in
our experiments).

To ease the presentation, we define a Boolean function
NEIG(tpi, tpj). If trip tpi is a neighboring trip of trip
tpj , it returns 1; otherwise, it returns 0. Note that neigh-
boring trip relationship is commutative, i.e., NEIG(tpi, tpj)
= NEIG(tpj , tpi). Based on the concept of neighboring
trips, we define group traveller in Definition 3.2. Note that∑

∀tpi∈Tpi,tpj∈Tpj NEIG(tpi,tpj) captures the total number of
neighboring trips commuters ci and cj make together. Pa-
rameter ρ is the minimum support whose value determines
the confidence when two commuters are reported as group
travellers. In general, a larger ρ corresponds to a higher
confidence level with fewer commuter pairs reported as group
travellers, and a smaller ρ corresponds to a lower confidence
level with more commuter pairs reported as group travellers.

Definition 3.2: Group Traveller. Given commuters ci and
cj , let Tpi and Tpj represent the sets of trips made by ci and
cj respectively. Commuter cj is considered a group traveller
of ci iff

∑
∀tpi∈Tpi,tpj∈Tpj NEIG(tpi, tpj) ≥ ρ. Here, ρ is a

threshold controlling the confidence when two commuters are
reported as group travellers.

Again, to ease the presentation, we introduce a Boolean
function GROUP(ci, cj) that returns 1 if commuter ci is a
group traveller of cj , and returns 0 otherwise. Group traveller
relationship is commutative too. On the other hand, group
traveller relationship is not transitive, e.g., if c2 is a group
traveller of c1 and c3 is a group traveller of c2, commuter c3
may or may not be a group traveller of c1. This is because the
set of neighboring trips commuters c1 and c2 travel together

could be different from the set of neighboring trips commuters
c2 and c3 travel together.

B. Bloom Filter

As proposed in [9], a Bloom filter B is a compact data struc-
ture to represent a set S = {s1, s2, · · · , sn} of n elements,
in the form of m-bits vector 〈B[0], B[1], · · · , B[m − 1]〉. It
chooses k independent hash functions h1, h2, · · · , and hk,
each with a range of [0,m − 1]. Initially, all the bits in the
bloom filter B are set to 0. Thereafter, for each element si ∈ S,
the bits B[h1(si)], B[h2(si)], · · · , and B[hk(si)] in the bloom
filter are set to 1.

To check whether a given element e is in S, we could
just compare the bloom filter of S and that of e. To be
more specific, we generate a m-bits vector Be for element
e, using the same set of k hash functions h1, h2, · · · , and
hk used for constructing the bloom filter B for the set S. We
perform bit-wise and operation (denoted as &&) to determine
whether the 1-bits in Be are also set to 1 in B, i.e., whether
B&&Be = Be. There are only two possible outputs, i.e., a
match or a mismatch. If B&&Be 6= Be (i.e., a mismatch),
element e is guaranteed to be NOT in S, as bloom filter does
not cause any false negative (i.e., B&&Be 6= Be ⇒ e /∈ S);
otherwise (i.e., B&&Be = Be), there is a high probability that
e is in S. In other words, the Bloom filter admits controlled
false positive rates but no false negatives, with its false positive
rate f being (1− (1− 1

m)kn)k.

C. Identifying Group Travelers

According to Definition 3.2, we understand that the effi-
ciency of calculating

∑
∀tpi∈Tpi,tpj∈Tpj NEIG(tpi,tpj) plays a

key role in studying GTB. As explained before, to make the
search faster, we need to control the number of trip pairs (tpi,
tpj) we need to evaluate. As the output of NEIG(tpi, tpj) is
either 1 or 0, only those trip pairs (tpi, tpj) with NEIG(tpi, tpj)
= 1 actually affect the value of

∑
∀tpi∈Tpi,tpj∈Tpj NEIG(tpi,

tpj). In other words, we shall filter out the trip pairs with their
corresponding NEIG(tpi, tpj) = 0 from evaluation as many as
possible.

In this paper, we organize the trip records via a very novel
concept chunk. There are two types of chunks, namely tap in
chunks and tap out chunks, denoted as Cinsi and Coutsi respec-
tively. The former captures all the tap-in actions observed at a
specific metro station/bus stop si, and the latter refers to the
tap-out actions observed at si, both following the chronologi-
cal order. Each record in Cinsi is in the form of 〈id, si, to〉, and
each record in Coutsi is in the form of 〈id, si, td〉. A complete
trip record consists of a record 〈id, si, to〉 ∈ Cinsi and a record
〈id, sj , td〉 ∈ Coutsj such that @〈id, s′j , t′d〉 ∈ ∪Coutsj such that
t′d < td ∧ t′d > to. That is to say a tap in record and its
immediate tap out record form a complete trip record.

The size of Cinsi or Coutsi keeps increasing as new trips
are made by commuters. As neighboring trips only refer to
two trips happening within a very small temporal window
controlled by parameter τ , we further partition the records

Fig. 1: Chunk storage of AFC records (tini = 0)

in Cinsi or Coutsi into small blocks, with each block spanning a
temporal window of size τ .

Fig. 1 provides a visualization to facilitate the understanding
of chunks and blocks. Each black colored rectangular box
containing a set of 〈· · · 〉 is a block, and blocks of the
same column form a chunk. Assume an AFC system starts
working at an initial time stamp tini. Then, all the tap-in
records captured by each station si within the time window
[tini, tini+τ) are preserved by the first block of Cinsi , denoted
as Cinsi [0], all the tap-in records captured at each station si
within the time window [tini + τ, tini + 2τ) are preserved by
the second block in Cinsi , denoted as Cinsi [1], and so on. The
same applies to tap-out records. We further assume tini = 0
for brevity in the rest of the paper. Note that there could be
many empty blocks.

When trip records are preserved by chunks/blocks as ex-
plained above, we can efficiently conduct a search to lo-
cate all the neighboring trips tpj for a given trip tpi =
〈id, so, to, sd, td〉, as stated in Lemma 1. The notation Cinso [x :
y] with x < y refers to the union of blocks Cinso [x]∪C

in
so [x+

1] ∪ · · · ∪ Cinso [y].
Lemma 1: For a given trip tpi = 〈idi, sio, tio, sid, tid〉, let

a = b t
i
o

τ c and b = b t
i
d

τ c. Assume tpj = 〈idj , sjo, tjo, s
j
d, tjd〉 is

a neighboring trip of tpi. It is guaranteed that 〈idj , sjo, tjo〉 ∈
Cinsio

[a− 1 : a+ 1] and 〈idj , sjd, tjd〉 ∈ Coutsid
[b− 1 : b+ 1].

Proof 1: Let’s prove by contradiction, and assume the above
statement is not true. That is to say there is at least one trip tpj
with NEIG(tpi, tpj) = 1 such that 〈idj , sjo, tjo〉 /∈ Cinsio [a − 1 :

a+ 1] or 〈idj , sjd, tjd〉 /∈ Coutsid
[b− 1 : b+ 1]. If 〈idj , sjo, tjo〉 /∈

Cinsio
[a− 1 : a+1], 〈idj , sjo, tjo〉 ∈ Cinsio [0 : a− 2]∪Cinsio [a+2 :

∞]. That is to say, tjo < (a − 1)τ or tjo ≥ (a + 2)τ . As
tio ∈ [aτ, (a + 1)τ), |tjo − tio| > τ which contradicts with
the fact that NEIG(tpi, tpj) = 1. Similarly, if 〈idj , sjd, tjd〉
/∈ Cout

sid
[b − 1 : b + 1], we have |tid − tjd| > τ which also

contradicts with the fact that NEIG(tpi, tpj) = 1. Consequently,

our assumption is invalid and the above statement is true. �

Although Lemma 1 could effectively shrink the search space
of neighboring trips for a given trip tpi, it could be still
expensive to check whether a tap in record rin appearing in
Cinsio

[a − 1 : a + 1] and a tap out record rout appearing in
Cout
sid

[b− 1 : b+ 1] could form a neighboring trip of trip tpi.
If rin and rout could form a neighboring trip of trip tpi, they
must have the same ID, i.e., the tap in action and the tap out
action are indeed performed by the same commuter. Motivated
by this observation, we propose to take the advantage of bloom
filter to facilitate the checking.

Given a target trip tpi in the form of 〈idi, sio, tio, sid, tid〉, let
tap out record rout = 〈id, sd, td〉 be one tap out record with
sd = sid ∧ |td− tid| ≤ τ ∧ id 6= idi. We need to verify whether
there is a tap-in record rin belonging to id present in Cins [x]
such that the tap in record rin and the tap out record rout
could form a trip tpj that is a neighboring trip of trip tpi.

To make the above mentioned search faster with the help
of bloom filter, we, for each non-empty block Cins [x], build a
bloom filter Bxs to represent the IDs corresponding to all the
tap-in records preserved by Cins [x]. To check whether there
is a record rin ∈ Cins [x] representing the tap in action of
rout, we first need to guarantee that rout.id appears in Cins [x].
Accordingly, we construct a bloom filter for rout.id, denoted
as Bid, and check whether Bxs&&Bid = Bid, as explained in
Section III-B. If Bxs&&Bid 6= Bid, it is guaranteed that there
is no tap in record preserved by the block Cins [x] that is related
to rout. Consequently, the tap out record rout can not be a part
of any neighboring trips of trip tpi, and hence could be safely
pruned. Otherwise, we scan the records in Cins [x] one by one.
There are two purposes behind the scanning. First, we need
to verify that whether there is a record rin ∈ Cins [x] with
rin.id = rout.id as bloom filter might cause false positive.
Second, if there is a such record (i.e., true positive), we need
to compare rin.to with the tap in time stamp of trip tpi to
make sure it is within τ away from tio.

Now we are ready to introduce the block-based neighboring
trip search algorithm (in short BEEP), with its pseudo code
presented in Algorithm 1. It locates all the neighboring trips,
if any, for a given trip record tpi (i.e., the target trip). First,
we locate the blocks Cinsio [a] and Cout

sid
[b] that accommodate

the tap in record and tap out record of the target trip tpi
respectively, and initialize result to be an empty set (Line
1). Note, result is a set to store all the neighboring trips of
the target trip. Next, we check each tap out record rout in the
form of 〈id, sd, td〉 in Cout

sid
[b−1 : b+1], as guided by Lemma 1

(Lines 3-9). For a tap out record rout, if its id is the same as
the id of the target trip, or the temporal difference between its
tap out timestamp and that of target trip is larger than τ , it
can be safely pruned. Otherwise, we continue the evaluation.
We generate a bloom filter Bid based on rout.id (Line 4).
Note the function BLOOMFILTER() is the construction algorithm
employed to generate bloom filters ∪Bxs corresponding to all
the tap-in blocks. We compare Bid with that of tap in blocks.
If the bloom filter indicates a match, we invoke the function

Algorithm 1: Block-based Neighboring Trip Search
Algorithm (BEEP)

Input: trip records preserved by blocks ∪Cins and
∪Couts Bloom filters ∪Bxs for all the
tap-in blocks target trip
tp(idi, sio, t

i
o, s

i
d, t

i
d) and parameters τ

Output: all the neighboring trips of tp
1 a← b t

i
o

τ c, b← b
tid
τ c, result← ∅

2 for each tap out record rout ∈ Coutsid
[b− 1 : b+ 1] do

3 if rout.id 6= idi ∧ |rout.td − tid| ≤ τ then
4 Bid ← BLOOMFILTER(rout.id)
5 for (x← a− 1;x < a+ 1;x← x+ 1) do
6 if Bid&&Bxsio

= Bid then
7 temp← SCANNING(tp, rout.id, Cinsio [x],

τ))
8 if temp 6= ∅ then
9 result← result ∪ temp, break

10 return the set of neighboring trips result

SCANNING() to perform the detailed examination (Line 6-7).
The examination of a tap out record rout could be safely
terminated once it is reported that rout is part of a neighboring
trip of the target trip (Lines 8-9). The search completes when
all the tap out records in Cout

sid
[b−1 : b+1] have been evaluated.

We return the result set result to end the process (Line 10).
With the help of BEEP algorithm, we can find the group

travellers of any target commuter easily. Let id be the smart
card id of our target commuter ci, and we want to locate all
the group travellers for ci based on AFC data collection X .
First, we can locate all the trips Tpi made by the commuter ci.
For each trip tp ∈ Tpi, we look for its neighboring trips via
BEEP, and assume the returned result is stored by a set neigtp.
If neigtp is not empty, we scan the trips in neigtp one by one.
Each trip tp′ ∈ neigtp increases the counter associated with
the pair of commuters 〈id, tp′.id〉 by one. When a counter
reaches the parameter ρ, tp′.id will be reported as a group
traveller of id.

The above mentioned group traveller identification algo-
rithm can also be easily adjusted to the online setting where
new trip records keep coming. Let C be the set of IDs of
our target commuters. When new tap in actions and tap out
actions are performed, we preserve all the records using blocks
(i.e., new blocks are generated, and new bloom filters are
constructed). If a tap in action is taken by one of the target
commuters say ci ∈ C, we monitor the immediate tap out
action. Once the tap out action is performed, we have the
complete information of the latest trip made by commuter ci.
We then invoke BEEP algorithm to locate the neighboring trips
and use the neighboring trips to update the counter values of
qualified commuter pairs. Because of the superior efficiency of
BEEP algorithm, we are able to support real-time identification
of group travellers in a city scale (i.e., C could contain millions

of IDs).

IV. CASE STUDY
To verify our solution, we perform a case study using the

trip records collected in the month of April 2016 by the
Singapore AFC system. For illustration purposes, we randomly
pick one million smart cards and apply our algorithm solution
to identify group travelers for each smart card. We first report
the search performance of our algorithm solution and then
share our findings.

Commuters’ travel patterns depend on multiple factors, e.g.,
the day of the week, the time of the day, and the commuter
category. This study investigates the underlying GTB patterns
among four age groups of commuters, i.e., children, students,
adults, and seniors2.

A. Efficiency Evaluation

One of the key contributions of this work is an efficient
search algorithm that can detect the group travellers in real-
time on the city scale. To demonstrate the superior search
performance of BEEP based search algorithm, the first set of
experiments is to evaluate the search performance. In the
following, we first study the sensitivity of parameter ρ and
then report the search performance.

As mentioned in Section III, the value of ρ determines
the confidence of identified group travellers. To find out the
influence of ρ on the number of identified group travellers, we
conduct a sensitivity analysis to determine the optimal value of
ρ. As reported in Fig 2, we sample the trips made by 10, 000
out of the 1 million sample commuters in Singapore within
one month’s period and report the ratio of group travelers, with
ρ varied from 1 to 10. Based on the elbow criterion, 4 or 5
would be most suitable for identifying GTB in the Singapore
case. In what follows, we have therefore set ρ to the value of
five to identify GTB, i.e., two commuters shall take at least
five neighboring trips together within one month in order to
be reported as group travellers.

Next, we compare the execution time required by our
algorithm solution and a baseline solution to identify group
travellers, with the same experimental setup. A filtering-and-
refinement alike model is implemented as the baseline, where
all the trip records are sorted based on tap-in time stamp (i.e.,
to) in ascending order. Given a trip tp, the baseline searches
for all the trips that are within τ distance to tp in the to
dimension based on binary search to form a candidate set.
It then evaluates each trip in the candidate set to test if it
meets the neighboring trip criteria in other dimensions. Note
this model performs much better than the brute-force approach
mentioned in Section I.

Fig. 3 reports the execution time with the size of cards
varied. It can be observed that the execution time of both
models increases linearly as the number of cards becomes
larger. However, the execution time of the two models grows at
very different speeds. On average, our model is running five

2Commuter category is an attribute associated with each smart card and
meanwhile captured by the AFC system in Singapore.

times faster than the baseline approach and it demonstrates
much better scalability. We also test the time required to find
all the neighboring trips of a trip in a real-time online setting.
On average, it takes BEEP 15 milliseconds to retrieve all the
neighboring trips of a given trip during a peak hour. That is
to say, the throughput is about 66 trips per second at one
server (i.e., a server can find the neighbouring trips for 66
independent trips within one second) which is far beyond the
tap out rate at any station/bus stop. This further demonstrates
that the proposed approach can handle the detection of GTB
in a city scale efficiently.

B. Characteristics of Group Travelling Patterns

1) Ratio of group travellers: We plot the ratio of group
travellers for each commuter category in Fig. 4. As we can
observe clearly from the plot, the ratio of group travellers
differs significantly across commuter categories, i.e., children
and students have a much higher ratio of group travelers than
adults and seniors. One possible reason is that children (i.e.,
kids below 7 years old) and some students (e.g., primary
students) are too young to travel alone, particularly when
making long-distance trips, and are usually accompanied by at
least one caregiver. On the other hand, seniors have a higher
ratio of group traveller than adults, which is consistent with
our expectation that seniors have more free time and are more
actively engaged in group events (e.g., community events,
group exercise classes and celebration events) than working
adults, which may contribute to the higher ratio of group
travellers.

2) Ratio of group trips: For two commuters ci and ci that
are identified as the group travellers (i.e., GROUP(ci, cj) = 1),
we name the neighboring trips made by ci and cj as the group
trips. In this set of experiments, we study, for each commuter
ci that is identified as a group traveller, the rate of the number
of group trips made by ci with any of his group travellers to
the total number of trips ci makes, namely group trip ratio.
The result is plotted in Fig. 5.

We could observe that children have a much higher group
trip ratio than the other three categories of commuters. The
group trip ratio for most children is around 80%, which is
reasonable since children are almost always supervised by
someone else when traveling. Interestingly, the kernel density
plot for student commuters displays a double-peak style. The
second peak at the end of higher group trip ratios is very likely
to be contributed by younger students, e.g., primary school stu-
dents who are still expected to travel together with caregivers,
while the elder students (e.g., secondary school students and
above) can travel alone. Adults and senior travellers complete
most of their trips on their own, which is reflected by their
right-skewed distributions of the group trip ratios.

3) Group size: Next, we study the size of groups, which
is defined as the number of commuters involved in the same
group trip. The overall group size distribution is reported in
Fig. 6. Obviously, group trips by two commuters dominate
the share of all group trips for all the four categories of
commuters. In particular, seniors travel in pairs in more than

1 2 3 4 5 6 7 8 9 10
Minimum support ρ

0%

20%

40%

60%

80%

100%

Ra
tio

 o
f g

ro
up

 tr
av

el
er
s

Fig. 2: Sensitivity analysis of ρ

2000 4000 6000 8000 10000
Number of commuters

0

2500

5000

7500

10000

12500

15000

17500

CP
U

Ti
m

e
(S

ec
on

ds
)

BEEP Baseline

Fig. 3: Efficiency comparison

Adult Child Senior Student0%

10%

20%

30%

40%

50%

Ra
tio

 o
f g

ro
up

 tr
av

el
er
s

23.67%

51.70%

29.05%

50.95%

Fig. 4: Ratio of group travelers

0% 20% 40% 60% 80% 100%
Ratio of group trips

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ilit

y
de

ns
ity

Adult Child Senior Student

Fig. 5: Ratio of group trips

Adult Child Senior Student0%

20%

40%

60%

80%

100%

Ra
tio

Group size
2 3 >3

Fig. 6: Group size

Adult Child Senior Student0%

20%

40%

60%

80%

100%

Ra
tio

Group traveler
Adult Child Senior Student

Fig. 7: Who travel with me

95% of group trips. In addition, we find that students are more
likely to travel in bigger groups, i.e., group trips with 3 or more
commuters.

4) Who travel with whom?: Last but not least, we are
interested in finding out who travels with whom, with the
results plotted in Fig. 7. On the one hand, the most popular
category of group travelers for both adults and children is
adults, since about 80% of their group travelers are adults. On
the other hand, seniors like to take public transport with fellow
seniors, and students travel together very frequently with
students, which are possibly their classmates or schoolmates.

V. CONCLUSION
In this paper, we have madethe following main contribu-

tions. First, we demonstrate the potential of using smart card
records to gain insights into GTB patterns of public transport
users. Second, we propose an efficient method to identify GTB
patterns on large-scale datasets. Third, we report insights of
GTB patterns in the context of Singapore public transport.
We are confident that the proposed method does shed the
first light on the pattern of GTB at the metropolitan scale.
In the near future, we plan to extend the model to study
the group behaviors of activities beyond commuting (e.g.,
shopping, dining).

ACKNOWLEDGMENTS

This research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Interna-
tional Research Centres in Singapore Funding Initiative. The
authors would like to thank the Land Transport Authority
(LTA) of Singapore for providing the data. However, we
declare that all the findings shared in this paper represent the
opinions of the authors but not LTA.

REFERENCES

[1] James A Cheyne and Michael G Efran. “The effect
of spatial and interpersonal variables on the invasion
of group controlled territories”. In: Sociometry (1972),
pp. 477–489.

[2] Mehdi Moussaıd et al. “The walking behaviour of pedes-
trian social groups and its impact on crowd dynamics”.
In: PloS one 5.4 (2010), e10047.

[3] Xiancai Tian and Baihua Zheng. “Using Smart Card
Data to Model Commuters’ Responses Upon Unexpected
Train Delays”. In: IEEE Big Data’18. 2018, pp. 831–840.

[4] Ursula Polzer. “Nonverbal behavior in public space as a
function of density and group size”. PhD thesis. uniwien,
2011.

[5] Giuseppe Vizzari, Lorenza Manenti, and Luca Crociani.
“Adaptive pedestrian behaviour for the preservation of
group cohesion”. In: Complex Adaptive Systems Model-
ing 1.1 (2013), p. 7.

[6] Francesco Zanlungo, Dražen Brščić, and Takayuki
Kanda. “Pedestrian group behaviour analysis under dif-
ferent density conditions”. In: Transportation Research
Procedia 2 (2014), pp. 149–158.

[7] Kleomenis Katevas et al. “Walking in Sync: Two is
Company, Three’s a Crowd”. In: ACM WPA-15. 2015,
pp. 25–29.

[8] Yongping Zhang, Karel Martens, and Ying Long. “Re-
vealing group travel behavior patterns with public transit
smart card data”. In: Travel Behaviour and Society 10
(2018), pp. 42–52.

[9] B. Bloom. “Space/Time Trade-Offs in Hash Coding with
Allowable Errors”. In: Communications of the ACM 13.7
(1970).

	Study group travel behaviour patterns from large-scale smart card data
	Citation

	tmp.1577955262.pdf.fesre

