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Phoneme-Based Transliteration 
of Foreign Names for OOV Problem 

Wei Gao, Kam-Fai Wong, and Wai Lam 

Department of Systems Engineering and Engineering Management,  
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 

{wgao,kfwong,wlam}@se.cuhk.edu.hk 

Abstract. A proper noun dictionary is never complete rendering name transla-
tion from English to Chinese ineffective. One way to solve this problem is not 
to rely on a dictionary alone but to adopt automatic translation according to 
pronunciation similarities, i.e. to map phonemes comprising an English name to 
the phonetic representations of the corresponding Chinese name. This process 
is called transliteration. We present a statistical transliteration method. An effi-
cient algorithm for aligning phoneme chunks is described. Unlike rule-based 
approaches, our method is data-driven. Compared to source-channel based sta-
tistical approaches, we adopt a direct transliteration model, i.e. the direction of 
probabilistic estimation conforms to the transliteration direction. We demon-
strate comparable performance to source-channel based system. 

1   Introduction 

In cross language information retrieval (CLIR), query expressed in a source language 
is used to retrieve information represented in a target language. It involves keyword 
translation from the source to the target language and document translation in the 
opposite direction. Proper nouns, i.e. names of people, places, companies, etc., are by 
far the most frequent targets in queries. Contemporary dictionary-based translation 
techniques are ineffective as name dictionaries can never be comprehensive. New 
foreign names appear almost daily; and they become unregistered vocabulary in the 
dictionary. This brings about the classical Out-Of-Vocabulary (OOV) problem in 
lexicography. OOV names can worsen the performance of translation and retrieval. 

Based on phonology, foreign name can usually be translated, or more appropri-
ately transliterated into its target counterpart in terms of pronunciation similarities 
between them. Transliteration rules are practically mapping templates between the 
phonemes of source and target names. Existing rule bases are compiled manually. 
They are not easy to expand and are mostly non-universal, i.e. they are subjected to 
the interpretation of individual producers. In Mandarin of China mainland, for in-

stance, the name of �Bin Laden� can be translated as /ben la deng1/ ( ), /bin la 
deng/ ( ), /ben la dan/ ( ) and /bin la dan/ ( ). In Taiwan�s Mandarin, 
similar transliteration confusions exist as well: �Hussein� corresponds to /hai shan/ 
( ), /ha shan/ ( ) and /hu sheng/ ( ). Chinese dialects further render rule-
based approach inefficient. Some popular names of celebrities initially transliterated 
                                                           
1  Mandarin pinyin is used as phonetic representation of Chinese characters throughout this 

paper. For simplicity, we ignore the four tones in the pinyin system. 
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by Cantonese are somehow spreading in Mandarin: /lang na du/ ( ), the Canton-
ese transliteration of �Ronaldo�, often appears in Mandarin news media as equivalent 
to its Mandarin transliteration /luo na er duo/ ( ). Thus, rule-based approach 
has been undermined and an effective data-driven transliteration method is required. 

In this paper, we present a statistical method for phoneme-based transliteration of 
foreign names from English to Chinese. Phonological transformation knowledge is 
acquired automatically by machine learning from existing source-target name pairs. 
Unlike source-channel based methods, it starts off with the direct estimation on trans-
literation model, which is then incorporated with target language model for the post-
correction of generated hypotheses. Section 2 summarizes related work, in particular 
with source-channel model; Section 3 presents our model in detail; Section 4 elabo-
rates the implementation of the model; Section 5 gives experimental results and 
analysis; Section 6 concludes the paper. 

2   Related Work 

Virga and Khudanpur [8] described a data-driven transliteration technique based on 
IBM�s source-channel model, which was initially proposed for French-to-English 
statistical machine translation [3]. The fundamental equation is from Bayes� rule: 

)()|(maxarg)()|(maxarg)|(maxarg� ||
1

||
1

||
1

... ||21

CCE

cccCC
cpcepCpCEpECpC

C

===  . 
(1) 

where ||21
||

1 ... E
E eeeeE ==  denotes a |E|-phoneme English name as the observation 

on channel output, and ||21
||

1 ... C
C ccccC ==  represents E�s |C|-phoneme Chinese 

translation as the source of channel input. |E| and |C| are the number of sound units 
they contain. The channel decoder reverses the direction, i.e. to find the most prob-
able pinyin sequence Ĉ given an observation E, which indirectly maximizes the pos-
terior probability p(C|E) via optimal combination of the inverted-transliteration 
model p(E|C) and the target language model p(C). p(E|C) was trained on name pairs 
represented by ARPABET symbols at English side and pinyin notations at Chinese 
side. It proceeded with a standard bootstrapping of IBM�s translation model training 
in GIZA++ [1]: 5 EM iterations of Model-1 followed by 5 of Model-2, 10 of HMM 
and 10 of Model-4. p(C) was trained on a pinyin vocabulary using tri-gram with 
Good-Turing smoothing and Katz back-off by CMU-Cambridge Language Modeling 
Toolkits [4]. Decoding was done by using USC-ISI ReWrite Decoder [5]. Note that 
the estimation of p(E|C) is in the reversed direction, i.e. from Chinese to English. In 
fact, this is within the same framework as the generative model for Japanese-to-
English backward transliteration proposed by [6]. The method demonstrated pinyin 
error rates in edit distance by 42.5%~50.8% on different data [8].  

3   Our Forward Transliteration Model 

3.1   Pitfalls of Source-Channel Model 

The source-channel model in Eq-1 has two limitations for our task: 
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1. It is hard to extend the baseline of transliteration model by introducing additional 
dependencies [7], such as flexible neighboring or contextual phoneme features; 

2. It allows only one target language phoneme to be associated with a contiguous 
group of source language phonemes, but not vice versa. The example in [8] ex-
poses this limitation (see Fig. 1): /u/ and the second /i/ in the third line have to be 
looked as �spuriously� produced from dumb sound ε. Under IBM�s model, such 
�inserted� symbols are known as zero fertility �words�. They are �deleted� by 
source-channel during training and �reproduced� when decoding by considering 
inserting one of them before each target symbol of each remaining unaligned 
source phoneme according to the number of possible zero fertility symbols [5]. 
Although adding zero fertility symbols may increase the probability of hypothe-
ses, incorrect transliterations are still abundant as such insertions are frequent. 
Without the loss of generality, it would be more natural and easier to handle if /f-
u/ and /s-i/ were looked as initial-final clusters converted from single English 
phoneme /F/ and /S/. This is feasible under our direct model. 

 

Fig. 1. An example depicting the process of English-to-Chinese transliteration in [8] 

3.2   Soundness of Direct Model 

We substitute p(C|E) for p(E|C) in Eq-1 so that we have a different forward translit-
eration method as follows: 
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The basic idea is that a direct transliteration model p(C|E) concentrates on produc-
ing the most likely transcriptions for a given E, probably with ill-formed pinyin se-
quences though, and the language model p(C) helps make corrections on the forms, 
e.g. eliminating illegal pinyin strings and yields better rankings of result syllables. 
Although Eq-2 is beyond the Bayes� theorem, it is mathematically sound under the 
more general Maximum Entropy (MaxEnt) principle [2,7]. We explain it briefly for 
completeness.  

MaxEnt is a well-founded framework for directly modeling the posterior probabil-
ity, where a set of M feature functions hm(E, C) and their corresponding model pa-
rameters λm, m = 1, ..., M, are introduced. The direct transliteration probability is 
given by: 
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[7] suggested we could obtain the target sequence Ĉ that maximizes the posterior 
probability by omitting the normalization constant denominator: 

[ ]{ }∑ =
== M
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CC
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),(expmaxarg)|(maxarg� λ  . (4) 

Then we select two feature functions and parameters: h1(E, C) = log pθ(C|E), 
h2(E, C) = log pγ(C), λ1 = λ2 = 1. Thus the Eq-2 maximization obtains in combination 
of the direct pθ(C|E) and pγ(C) with respect to model parameters θ and γ. The optimal 
parameters are to be estimated individually on parallel training corpus. 

We summarize 4 possible general conditions mapping an English phoneme to 
items in pinyin�s vocabulary in accordance with this direct model: 

1. An English phoneme maps to an initial or a final, which is the most usual case;  
2. An English phoneme maps to an initial-final cluster, e.g. /F/ - /fu/ and /S/ - /si/ in 

previous example;  
3. An English phoneme maps to dumb sound ε, e.g. /S T AE N F ER D/ (Stanford) 

to /si tan fu/ ( ), where /D/ is omitted in translation; 
4. Insert additional pinyin syllables, e.g. /F L OY D/ (Floyd) to /fu luo yi de/ 

( ), where /yi/ is inserted to cater for the sound /OY/ that has already been 
mapped to /uo/. 

4   Direct Model Training 

4.1   Alignment of Phoneme Chunks 

We first introduce alignment indicators in a pair of sound sequences. Within total 39 
phonemes (24 consonants, 15 vowels) in the English sound inventory and 58 pinyin 
symbols (23 initials and 35 finals) in Chinese, there are always some indicative sound 
units (indicators) that help for alignment. For E, they are: all the consonants; vowel at 
the first position; and the second vowel of two contiguous vowels. In C, accordingly, 
they are: all the initials; final at the first position; and the second final of two contigu-
ous finals. Note that similar indicators are easily identifiable in other Romanized 
systems in Chinese. They are independent of alignment model. 

We define the following variables: τ(S) = # of indicators in sequence S, t = 
max{τ(E), τ(C)}, and d = | τ(E) -  τ(C)|. We chunk E and C by tagging their indicators 
and compensate the one with fewer indicators by inserting d dumb sound ε(s) at its 
min{τ(E), τ(C)} possible positions ahead of its indicators. ε is practically also an indi-
cator defined for alignment. This ensures that both sequences end up with the same 
number of indicators. The t chunks separated by indicators in E should align to the 
corresponding t chunks in C in the same order. They are called alignment chunks. 

There are 
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with respect to different positions of ε. 
This method can guarantee each chunk contains two sound units at most. Thus, in 

a pair of aligned chunks, only three mapping layouts are possible for individual units: 
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1. e-to-c1c2: The alignment would be e-to-c1c2 where c1c2 is considered as an initial-
final cluster; 

2. e1e2-to-c1c2: The alignment would be e1-to-c1 and e2-to-c2; 
3. e1e2-to-c: By adding a ε at C side, the alignment would be considered as e1-to-c 

and e2-to-ε or e1-to-ε and e2-to-c. In this case, we update ||A|| = ||A|| + 1. 

Fig. 2 shows the alignment chunks (indicators are tagged using �|�) between the 
example pair /AE L B AH K ER K IY/ (Albuquerque) and /a er bo ke er ji/ 
( ), where 5 alignments are possible at chunk level. But the total possible 
alignments would be 9 due to the existence of /K ER/ - /er/ in the first 4 alignments. 

 

 

Fig. 2. An example depicting alignments of phoneme chunks between a name pair 

4.2   EM Training for Symbol-Mapping Probabilities 

We then applied EM training to find the most probable alignment (Viterbi alignment) 
for each name pair and compute symbol-mapping probabilities. The training goes as 
follows: 
1) Initialization: For each name pair, assign equal weights ||A||-1 to 

all alignments based on phoneme chunks. 
2) Expectation: For each of the 40 English phonemes, count the instances 

of its different mappings on all alignments produced. Each alignment 
contributes counts in proportion to its own weight. Normalize the 
scores of the pinyin sound units it maps to so that the mapping prob-
ability sums to 1. 

3) Maximization: Re-compute the alignment scores. Each alignment is 
scored with the product of the scores of the symbol-mappings it con-
tains. Normalize the alignment scores so that each pair’s alignments 
scores sum to 1. 

4) Repeat step 2-3 until the symbol-mapping probabilities converge, i.e. 
the variation of each probability between two iterations becomes less 
than a specified threshold. 

Compared to the brutal-force alignment [6], our EM training based on aligned 
phoneme chunks produces much fewer possible alignments, thus fewer possible map-
pings for each English phoneme. Mappings crossing chunks are also avoided. There-
fore, the symbol-mappings tend to be more accurate. For each pair, the Viterbi align-
ment is found whose alignment score (weight) approaches to 1 with the iteration. 
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Dumb sound ε is introduced to both sides of phonetic alphabets during the process-
ing of phoneme chunks. It plays an important role for the case 3 and 4 in Section 3.2. 
The EM training also calculates the transition probabilities from English phonemes to 
initial-final clusters. The algorithm identifies these clusters and dynamically appends 
them to pinyin inventory as additional candidates for transcriptions. This can improve 
the shortcomings caused by zero fertility symbols in source-channel model. 

4.3   WFST for Phonetic Transition 

We then build a weighted finite state transducer (WFST) based on the symbol-
mapping table for the transcription of each English phoneme into its possible pinyin 
counterparts. Each arc carries the transition labels and transition costs. Fig. 3 shows 
part of the transducer. Note that the arcs such as [AA:uo|0.904] are split into multiple 
arcs, i.e. [AA:u|0.904] and [ε:o|0] jointed by intermediate nodes 1, 2,...5,... This is for 
the following transducer for pinyin syllable segmentation being able to connect with 
it. 

 

Fig. 3. Part of the WFST2 based on p(C|E) Fig. 4. Part of the FST for pinyin syllabifica-
tion 

4.4   Issues of Illegal Pinyin Syllables 

Many pinyin symbol sequences produced by the transliteration model cannot be syl-
labified or include illegitimate syllables as the transducer has no knowledge about 
pinyin�s regulations. Actually only 396 of 23*25 possible combinations of initials and 
finials can constitute legal pinyin syllables. We can easily collect them from our cor-

                                                           
2  Label �eps� in the figure represents dumb sound ε  (epsilon). 
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pus by using an automatic scanning program. Based on this knowledge, we construct 
a FST as shown in Fig. 4. It is composed with the previous WFST for sifting out 
illegal pinyin sequences and segmenting them into syllables. 

4.5   Language Model Training and Bi-gram WFSA 

A syllable-based bi-gram language model of pinyin is trained using the Chinese part 
of the same 41,674 instances, on which the transliteration WFST is built. The model 
P(C) is approximated by counting the frequencies of syllable occurrences in this data 
set using the equation: 

∏ ∏ −
− ≅≅

i i i

ii
ii ccount

cccountccpCp
)(
)()|()( 1

1
 . (5) 

where ci is the pinyin syllable of a Chinese character. 
We then implement the bi-gram model using a weighted finite state acceptor 

(WFSA) with one state for each item in the pinyin syllable vocabulary. Between each 
pair of states, say x/y, there is a single transition whose label is the syllable y and 
whose probability is p(y|x). We then add a special final state with transitions leading 
to it from every other state labeled by ε with probability 1.0. Finally, a start state is 
added with transitions to every state y with label y and probability p(y).  

The WFSA is used to re-rank the pinyin syllable sequences yielded from the com-
position of the previous two transducers and the search results of k-best path algo-
rithm. Because the search space of the syllables produced by the previous transducers 
is extremely large, we apply the bi-gram search to only the first few hundred candi-
dates for each English name. 

5   Experiments and Evaluation 

5.1   Similarity Measurement 

Similarity measurement is based on edit distance, which is defined as the minimum 
number of insertions, deletions and substitutions required for transforming one string 
to the other. The performance of transliteration is measured by error rate, which is 
defined as: e = d(S1, S2) / |S2|, where S1 is the machine transliteration and S2 the stan-
dard, d(S1, S2) denotes the edit distance between the two transliterations, and |S2| is 
the length of S2. 

The process is participated by a bilingual dictionary (LDC�s English-Chinese bi-
lingual named entity list beta v.1.0), an English pronunciation dictionary (CMU�s 
pronunciation dictionary) and a Chinese character-pinyin table (LDC�s Chinese char-
acter table with pinyin). We harvest 46,305 name pairs from the bilingual dictionary, 
all of which also appear in the pronunciation dictionary with deterministic phonemic 
representations. We obtain English name pronunciations and their Chinese equiva-
lents by looking up the pronunciation dictionary and the character-pinyin conversion 
table. In the experiments, 41,674 name pairs are used for training, in which a portion 
of 4,631 pairs is used for close test, and the remaining 4,631 pairs for open test. 
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5.2   Experimental Results 

Experiment I. Only top-1 machine transliteration of each name is chosen for com-
parison with the standard translation. We set up six error rate ranges: [0%], 

(0%~20%], (20%~40%], (40%~60%], (60%~80%] and (80%~100%]3. We count the 
number of names whose error rate falls in each range and the accumulative percent-
ages are listed in Table 1. 

 
Table 1. Results of experiment I 

Error rate (%) 0 0~20 20~40 40~60 60~80 80~100 
Close 12.33% 10.39% 34.36% 28.34% 9.91% 4.67% 
Open 10.20% 12.13% 33.58% 29.29% 10.40% 4.40% 

Experiment II. The system yields top-50 candidates for each foreign name. We 
count the number of correct transliterations whose error rate is 0. The accumulative 
percentage is listed in Table 2. This test evaluates the proportion of instances whose 
correct transliteration can be found in top-n generated candidates. 

Table 2. Results of experiment II 

Top n 1 10 20 30 40 50 
Close 12.33% 50.32% 59.20% 61.81% 62.98% 63.63% 
Open 10.20% 46.56% 54.87% 57.82% 58.84% 59.23% 

Experiment III. For comparison with source-channel based system, we implement 
the work desribed in [8]. We replicate their first traslation system [8] with the only 
exception that we obtain phoneme sequences of English names via looking up pro-
nunciation dictionary instead of text-to-speech system. We test our system and our 
implementation of [8]�s system on the aforementioned data set. The averaged error 
rate of top-1 machine transliterations is shown in Table 3. 

Table 3. Transliteration error rates compared to the source-channel based system 

Systems Source-Channel Ours 
Close 33.65% 38.00% 
Open 34.85% 38.50% 

 

So far, the transliteration model and the language model are both trained on the 
same 41,674 instances. To explore the influence of the two components separately, 
we train our transliteration model on the 4,631 instances for close test and keep the 
language model intact. We achieve error rate of 42.67% in open test. Then we train 
the language model on this 4,631 instances and reuse the previous transliteration 
model. This time, the error rate rises up to 46.78%. 

                                                           
3  (M%~N%] denotes > M% AND ≤ N%. 
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5.3   Discussions 

In experiment I, the possibility of finding correct transliterations in top-1 result can-
didates is fairly low, evidenced as only 12.33% and 10.20% of test instances end up 
with correct transliterations. If we consider acceptable transliterations whose error 
rate is less than 20%, the accumulative percentage would be 22.72% and 22.33% for 
the close and open test respectively. Two pinyin sequences having 20% edit distance 
can be exemplified as /ben la deng/ ( ) and /ben la dan/ ( ). Hence, ma-
chine transliterations with 20% error rate or less can be considered as phonetically 
equivalent but misspelled.  

From experiment II where top-50 transliterations are examined, nearly half of the 
test instances (50.32% for close test and 46.56% for open test) can have their correct 
transliterations within top-10 transliteration candidates. We also note the considerable 
increase on the percentage of correct transliterations if we examine top-20 candidates 
compared to only top-1. But no apparent improvement is achieved if we further yield 
more top candidates. 

In experiment III, our approach demonstrates comparable performance to source-
channel based system, but slightly worse by 4.35% on close test and 3.65% on open 
test in averaged error rates. The error rates (between 30% and 40%) indicate that the 
top-1 transliterations from the two systems are generally acceptable. Error rate more 
than 50% should be unacceptable since two pinyin sequences with 50% difference in 
edit distance are identified as phonetic representations of nearly different names like 
/ya li shan da/ ( ) and /ya li shi duo de/ ( ).  

Furthermore, the distinct rise of error to 46.78% indicates that our approach is 
more sensitive to the language model than to the transliteration model. The paucity of 
data can affect the search using language model, evidenced by the serious error in-
crease as the language model is trained on sparse data. The reason is that translitera-
tion model only reflects symbol-mapping relationships among phonemes rather than 
sequences, leaving lots of work to be done by language model. The problem is sup-
posed to be alleviated by improving the transliteration model further.  

6   Conclusion and Future Work 

We model the statistical transliteration problem as a direct phonetic symbol transcrip-
tion model plus a language model for post-adjustment. The baseline indicates a com-
parable performance suggested by source-channel based system. The advantage of 
direct method is its flexibility for incorporating features with respect to dependencies 
among surrounding phonemes. We can expand our transliteration model in the future 
using contextual feature functions within MaxEnt framework [2]. Also, we will im-
prove our language model using tri-gram for a better accuracy or smoothing tech-
niques for overcoming data sparseness. 
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