
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2006

Clique percolation for finding naturally cohesive and overlapping Clique percolation for finding naturally cohesive and overlapping

document clusters document clusters

Wei GAO
Singapore Management University, weigao@smu.edu.sg

Kam-Fai WONG

Yunqing XIA

Ruifeng XU

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
GAO, Wei; WONG, Kam-Fai; XIA, Yunqing; and XU, Ruifeng. Clique percolation for finding naturally cohesive
and overlapping document clusters. (2006). Proceedings of the 21st International Conference on
Computer Processing of Oriental Languages (ICCPOL 2006). 97-108.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4602

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4602&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Clique Percolation Method for Finding Naturally

Cohesive and Overlapping Document Clusters

Wei Gao, Kam-Fai Wong, Yunqing Xia, and Ruifeng Xu

Department of Systems Engineering and Engineering Management, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong, China

{wgao, kfwong, yqxia, rfxu}@se.cuhk.edu.hk

Abstract. Techniques for find document clusters mostly depend on
models that impose strong explicit and/or implicit priori assumptions.
As a consequence, the clustering effects tend to be unnatural and stray
away from the intrinsic grouping natures of a document collection. We
apply a novel graph-theoretic technique called Clique Percolation Method
(CPM) for document clustering. In this method, a process of enumerat-
ing highly cohesive maximal document cliques is performed in a random
graph, where those strongly adjacent cliques are mingled to form natu-
rally overlapping clusters. Our clustering results can unveil the inherent
structural connections of the underlying data. Experiments show that
CPM can outperform some typical algorithms on benchmark data sets,
and shed light on its advantages on natural document clustering.

1 Introduction

Clustering is an important technique that facilitates the navigation, search and
analysis of information in large unstructured document collections. It is an un-
supervised process to identify inherent groupings of similar documents, where
documents exhibit high intra-cluster similarity and low inter-cluster similarity.

Many existing clustering algorithms optimize criterion functions with respect
to the employed similarity measures over all the documents assigned to each
possible partition of the collection [10,19]. They always impose some explicit
and/or implicit constraints as to the number, size, shape or disjoint characteris-
tics of target clusters. For example, partitional algorithms like k -means assume
cluster number k and do not allow one document belonging to multiple groups.
Although fuzzy clustering, such as fuzzy C -means algorithm [2,12], does support
overlapping clusters by a membership function and a fuzzifier parameter, they
are still confined by cluster number and can find only spherical shape clusters.
Some algorithms are model-based, e.g., Naive Bayes or Gaussian Mixture model
[1,13]. They assume certain probabilistic distributions of the documents and try
to find a model maximizing the likelihood of data. When data cannot fit the pre-
sumed distribution, poor cluster quality can result. k -way clustering or bisection
algorithms [19] force clusters to be equally sized. Spectral clustering [7,8] has
emerged as one of the most effective clustering tools based on max-flow/min-cut
theorem [4]. However, they prohibit overlapping clusters.

Y. Matsumoto et al. (Eds.): ICCPOL 2006, LNAI 4285, pp. 97–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 W. Gao et al.

We define natural document clustering as a problem of finding unknown num-
ber of overlapping as well as cohesive document groups with varied sizes and
arbitrary distributions of the data. We try to obtain the clustering results with
these free characteristics by reducing as many external constraints as feasible and
leaving things to the inherent grouping nature among documents. For this pur-
pose, we propose a document clustering technique using a novel graph-theoretic
algorithm, named Clique Percolation Method (CPM). The idea is to identify
adjacent maximal complete subgraphs, which is referred to as Maximal Docu-
ment Cliques (MDC), in the document similarity graph using a threshold clique,
and then mingle those strongly adjacent MDCs to form naturally overlapping
document clusters. Although it does introduce an explicit parameter k, which
is the size of the threshold clique, our algorithm can automatically settle the
critical point, at which the natural clustering can be achieved. We show that
CPM outperforms representative clustering methods with experiments on the
benchmark data.

The rest of this paper is organized as follows: Section 2 describes the proposed
CPM; Section 3 presents the algorithmic implementation of this technique; Sec-
tion 4 gives related work; Section 5 presents experimental evaluation results;
Finally, we conclude this paper.

2 Document Clustering by Clique Percolation Method

2.1 Preliminaries

In general, suppose V = {d1, d2, . . . , d|V |} is a collection of documents. We rep-
resent the collection by an undirect graph G = (V, E), where V is the vertex set
and E is the edge set such that each edge {i, j} is a set of two adjacent vertices
di, dj in V . The adjacent matrix M of the graph is defined by M = [mij]

|V |
i,j=1,

where each entry wij is the edge weight which is the value of similarity metric (in
what follows we use Cosine coefficient) between di and dj . The graph can also
be unweighted where an edge exists indicating the distance of its two vertices
smaller than some threshold, in which case wij is binary.

A clique in G is a subset S ⊆ V of vertices, such that {i, j} ∈ E for all distinct
{di, dj} ∈ S. Thus any two vertices are adjacent in a clique that constitutes a
complete subgraph of G. A clique is said to be maximal if its vertices are not
a subset of the vertices of a larger clique, which is referred to as a Maximal
Document Clique (MDC) in a document similarity graph. MDC is considered
the strictest definition of a cluster [15]. In graph theory, enumerating all maximal
cliques (equivalently, all maximal independent sets or all minimal vertex covers)
is believed NP-hard [3,18].

Suppose |V | number of documents are given in a measure space with a similar-
ity metric wij . We define a binary relation ∼t between documents on G = {V, E}
with respect to parameter t: i ∼t j := wij ≤ t, which is self-reflexive, symmetric
and non-transitive. There is an edge {i, j} ∈ E connecting vertices di and dj

whenever i ∼t j with respect to threshold t. Figure 1 illustrates that given a

CPM for Finding Naturally Cohesive and Overlapping Document Clusters 99

Fig. 1. Graphs with respect to threshold level t and different cohesive MDC clusters
(in dotted regions) resulted from it

matrix reflecting the distances between 7 documents and the t value, a series of
graphs for the relation i ∼t j are produced with different connectivity densities.
Clearly, if each MDC is considered as a cohesive form of cluster, we can discover
different number of clusters from these graphs, where t = 0.5, 2.5 and 3.5 results
in 7, 5 and 3 number of clusters, respectively. They display interesting properties
of natural clusters except for excessive intra-cluster cohesiveness.

The series of graphs parameterized by t above can be seen as random graphs
with constant set of vertices and a changing set of edges generated with prob-
ability p, the probability two vertices can be connected by an edge. Intuitively,
tuning the value of t is somehow equivalent to adding or removing some edges
according to p in monotonic manner. In order for an appropriate t, we first deter-
mine pc, the critical value of p, and then derive t from pc by making use of their
interdependency relationship. The critical value pc is defined as the probability,
under which a giant k-clique percolation cluster will emerge in the graph, and is
known as the percolation threshold for a random network [6]. At this threshold,
the percolation transition takes place (see Section 2.2). For clustering, the as-
sumption behind is that no cluster can be excessively larger than others, which
can be achieved by commanding p < pc.

2.2 Clique Percolation Method in Random Graphs

Concepts of k-Clique Percolation. The concept of k-clique percolation is
fundamental for Clique Percolation Method (CPM) in random networks, which
was studied in [6]. The successful applications of CPM for uncovering commu-
nity structure of co-authorship networks, protein networks and word association
graphs can be found in [14]. Hereby we briefly present some related notions.

100 W. Gao et al.

Definition 1. k-clique is defined as a complete subgraph of k vertices.

Definition 2. k-clique adjacency: Two k-cliques are adjacent if they share k−1
vertices, i.e., if they differ only in a single vertex.

Definition 3. k-clique percolation cluster is a maximal k-clique-connected sub-
graph, i.e., it is the union of all k-cliques that are k-clique adjacent. Obviously,
a k-clique percolation cluster is unnecessarily a MDC, but it must be equivalent
to the union of all MDCs adjacent by at least k − 1 vertices.

Definition 4. k-clique adjacency graph is the compressed form of the original
graph, where the vertices denote the k-cliques of the original graph and there is
an edge between two vertices if the corresponding k-cliques are adjacent.

Moving a particle along an edge on a k-clique adjacency graph is equivalent to
rolling a k-clique template (threshold clique) from one k-clique on the original
graph to an adjacent one. A k-clique template can be placed onto any k-clique
of the original graph, and rolled to an adjacent k-clique by relocating one of its
vertices and keeping other k − 1 vertices fixed. Thus, the k-clique percolation
clusters are all those subgraphs that can be fully explored by rolling a k-clique
template in them [6]. Note that a k-clique percolation cluster consists of all
MDCs adjacent by at least k − 1 vertices. Thus, the cohesiveness of documents
in a k-clique percolation cluster as well as the overlap degree between clusters
can be tuned by the k value. The goal of CPM is to find all k-clique percolation
clusters.

Percolation Threshold pc. How to estimate the threshold probability pc of
k-clique percolation with respect to k (k ≥ 2)? The clique percolation theory
emphasizes that under such pc (critical point), a giant k-clique percolation cluster
that is excessively larger than other clusters will take place [9,6]. Intuitively, the
greater the p (p > pc) is, the more likely the giant cluster appears, and the larger
its size (which includes most of graph nodes), as if using a k-clique can percolate
the entire graph.

Consider the heuristic condition of template rolling at the percolation thresh-
old: after rolling a k-clique template from a k-clique to an adjacent one by re-
locating one of its vertices, the expectation of the number of adjacent k-cliques,
where the template can roll further by relocating another of its vertices, be equal
to 1. The intuition behind is that a larger expectation value would allow an infi-
nite series of bifurcations for the rolling, ensuring that a giant cluster is present
in the graph. The expectation value can be estimated as (k−1)(|V |−k)pk−1

c = 1,
where (k−1) is the number of template vertices that can be selected for the next
relocation, (|V | − k) is the number of potential destinations for this relocation,
out of which only the fraction pk−1 is acceptable, because each of the new k − 1
edges must exist in order to reach a new k-clique after relocation. Therefore, the
percolation threshold function pc(k) with respect to k and |V | is as follows:

pc(k) = [(k − 1) (|V | − k)]−
1

k−1 (1)

CPM for Finding Naturally Cohesive and Overlapping Document Clusters 101

Generation of Random Graph. According to Eq. (1), we can obtain a series
of critical values with regard to the threshold clique sizes provided, which are
actually the threshold probabilities of connecting two document vertices by an
edge at these critical points. How to generate a random graph with the exactly
desirable connectivity is technically very challenging since the degree distribution
of each vertex needs to be appropriately modeled. Some work on systematically
modeling degree distribution has been done in the field of random networks [9].
In this study, we prefer to simplify our specific problem by using two heuristics.

First, for each vertex, we consider its N-Nearest Neighbors (NNB) instead of
using a fixed similarity threshold value, where N is determined by the formula:

N(k) = pc(k) × |V | − 1
k − 1

(2)

where the factor |V |−1
k−1 actually scale the size of the original graph down to the

level of k-cliques in the graph and pc(k) is considered as the average proportion
of k-cliques are the nearest neighbors of a given clique in the k-clique adjacency
graph. Here we actually use the connectivity of the k-clique adjacency graph
to simulate the original graph. The reason we don’t use N(k) = pc(k) × (|V | −
1) is because the generated graph tends to be over dense since pc(k) is not
the proportion of NNB nodes, but in fact the probability of two vertices being
connected by an edge.

Secondly, we examine the co-relation between p and the similarity threshold
t. Given pc, we can estimate the bound(s) of tc so that the graph with the
approximated connectivity as that under pc could be generated. Because p-t are
monotone, a graph could be produced with edge weights t greater than tc. We
derive tc by a simple approximation:

tc(k) = 0.5 + pc(k) × (wmax − wmin) (3)

where wmax and wmin are the maximum and minimum values of document
similarity in the collection, respectively. Intuitively, we deem that only edge
weights somewhat larger than 0.5 are considered similar. We also observe pc(k)
is well below 0.5 for the normal size of corpus as k is not too large (< 20), which
can be shown in Fig. 2 and guarantees tc ≤ 1.

We then apply the two heuristics incrementally during the graph genera-
tion process, i.e. by generating connections between NNBs for each vertex at
first place and then prune the edges with weights less then tc. The intuition is
that denser graphs are penalized more heavily by the combination of the two
heuristics.

3 Algorithmic Implementation of CPM

The clustering process is turned out to be a problem of finding all MDCs and
then merging those with at least k−1 common nodes into clusters. The proposed
CPM clustering algorithm includes 5 major steps:

102 W. Gao et al.

p-k relationship

0

10

20

30

40

50

60

70

80

90

100

2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

k-clique specified

T
h

r
e
s
h

o
ld

 p
r
o

b
a
b

il
it

y
 (

p
)

o
f

k
-c

li
q

u

p
e
r
c
o

la
ti

o
n Reuter-2340

20-Newsgroups-20000

Reuters-21578

TDT-2-64527

Fig. 2. The curve of p-k relationship given typical sizes of benchmark corpora indicates
pc is below 0.5 when k < 20

1. Preprocessing: Eliminate words in the stop list, use Porter’s stemmer as
the stemming algorithm, build document vectors, and create a |V | × |V |
document similarity matrix A;

2. Given k as parameter, compute Eq. (1) for pc(k), Eq. (2) for N(k) and Eq.
(3) for tc(k);

3. Create document similarity graph G from A, where each vertex is connected
with N(k) NNBs. For each edge, prune it if its weight wij < tc(k);

4. Enumerate all MDCs in G using Algorithm 1;
5. Create a M ×M adjacent matrix B (where M is the number of MDCs), find

k-clique percolation clusters using Algorithm 2 on B.

Enumerating Maximal Document Cliques. Algorithms for finding maxi-
mal cliques (step 4) were studied in [3] and achieved processing time bounded
by O(v2) where v is the number of maximal cliques. Their algorithms are dis-
tinctive because they can be applied to a graph of comparatively large size. We
implement an efficient counterpart of the algorithm using back-tracking method
(see Algorithm 1). A MDC is output at each end of back-track. The running
time is O(v).

Finding k-Clique Percolation Clusters. When all the MDCs are enumer-
ated, a clique-clique adjacent matrix is prepared. It is symmetric where each
row and column represents a MDC and the entries are the number of com-
mon vertices between two cliques (the diagonal values are the sizes of MDCs).
The k-clique percolation clusters are one-to-one correspondent to the connected
components in the clique-clique adjacency graph represented by the matrix,
which can be obtained using Algorithm 2 (step 5 above). The algorithm first

CPM for Finding Naturally Cohesive and Overlapping Document Clusters 103

Algorithm 1. Enumerate All MDCs
input: Vertex set V and edge set E of graph G.
output: All MDCs of G into C.

procedure EnumMDC (C, U , E)

1: if (U = φ) then
2: output C
3: return
4: end if
5: for every vertex u ∈ U do
6: U := U − {u}
7: EnumMC (C ∪ {u}, U ∩ {v|(v, u) ∈ E})
8: end for

end procedure

C := φ
EnumMDC (C, V , E)

creates a clique-clique adjacent matrix B, in which every off-diagonal entry
smaller than k − 1 and every diagonal element smaller than k are erased (line
2–12), and then carrying out a depth-first-search (DFS) to find all the connected
components.

4 Related Work

Traditional hierarchical agglomerative clustering (HAC) are intrinsically graph-
based like CPM. HAC treats each data point as a singleton cluster and then
successively merges pairs of clusters until all clusters have been merged into a
single cluster that contains all documents. Single-link, complete-link and average-
link are the most popular HAC algorithms.

In single-link algorithm [16], the similarity between clusters is measured by
their most similar members (minimum dissimilarity). Generally, agglomerative
process are rather computationally intensive because the minimum of inter-
cluster distances must be found at each merging step. For single-link clustering,
an efficient implementation of Minimum Spanning Tree (MST) algorithms of a
weighted graph is often involved. Therefore, single-link produces clusters that
are subgraphs of the MST of the data and are also connected components. It
is capable of discovering clusters of varying shapes, but often suffers from the
so-called chaining effect. Complete-link [11] measures the similarity between two
clusters by their least similar members (maximum dissimilarity). From graph-
theoretic perspective, complete-link clusters are non-overlapping cliques and are
related to the node colorability of graphs. Complete-link is not vulnerable to
chaining effect, but generates excessive compact clusters and is thus very sensi-
tive to outliers. Average-link clustering [5] is a compromise between single-link

104 W. Gao et al.

Algorithm 2. Find All k-Clique Percolation Clusters
input: A set of all MDCs C and k.
output: All k-clique percolation clusters into P .

procedure Find-k-CPC (P , C, k)

1: B := 0 //Initialize B’s elements as 0
2: for i from 1 to M do
3: for j from 1 to M do
4: B[i][j] := |Ci ∩ Cj | //# of common nodes of two MDCs
5: if (i = j) ∧ (B[i][j] < k) then
6: B[i][j] := 0 //Off-diagonal element < k is replaced by 0
7: end if
8: if (i �= j) ∧ (B[i][j] < k − 1) then
9: B[i][j] := 0 //Diagonal element < k − 1 replaced by 0

10: end if
11: end for
12: end for
13: P := φ; i := 1 //Initialize output container P and recursion counter i
14: DFS(P ,B,i) //DFS to output connected components in B into P
15: output P

end procedure

Find-k-CPC(P , C, k)

and complete-link: the similarity between one cluster and another is the averaged
similarity from any member of one cluster to any member of the other cluster;
it is less susceptible to outliers and elongated chains.

5 Experimental Evaluations

5.1 Data Sets

We conduct the performance evaluations based on Reuters-215781 corpus, which
is popular for document classification evaluation purpose. It contains 21,578 doc-
uments manually grouped into 135 topic classes. The size of classes is very unbal-
anced, ranging from 1 to 3945. Many documents have multiple category labels,
and documents in each cluster have a broad scape of contents. In our experi-
ments, we select documents that are assigned to one or more topics, and have the
attribute LEWISSPLIT=“TEST” with <BODY> and </BODY> tags. There
are 2,745 such original documents, denoted by OC2745, from which we then
extract 2,349 documents with unique class labels to form our data set UC2349,
and the rest of 396 documents with multiple classes to form MC396. Table 1
shows the statistics of these three resulted data sets.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578

CPM for Finding Naturally Cohesive and Overlapping Document Clusters 105

Table 1. Statistics of data sets OC2745, UC2349 and MC396 extracted from Reuter-
21578 corpus

OC2745 UC2349 MC396

of documents 2745 2349 396
of classes 92 58 87

max class size 1045 1041 127
min class size 1 1 1
avg. class size 38 41 13

5.2 Evaluation Metrics

We adopt two quality metrics widely used for document clustering [17], i.e., F-
measure and Entropy. The F-measure of a class i is defined as F (i) = 2PR

P+R .
The precision and recall of a cluster j with respect to a class i are defined as:
P = Precision(i, j) = Nij

Nj
and R = Recall(i, j) = Nij

Ni
, where Nij is the number

of members of class i in cluster j, Nj is the size of cluster j, and Ni is the size
of class i. The overall F-measure of the clustering result is the weighted average
of F (i):

F =
∑

i(|i| × F (i))
∑

i |i|
where |i| is the number of documents in class i.

Entropy provides a measure of homogeneity of a cluster. The higher the homo-
geneity, the lower the entropy, and vice versa. For every cluster j in the clustering
result, we compute pij , the probability that a member of cluster j belonging to
class i. The entropy of each cluster j is calculated using Ej = −∑

i pij log(pij),
where the sum is taken over all classes. The total entropy for a set of clusters is
calculated as the sum of entropies of each cluster weighted by its size:

E =
m∑

j=1

(
Nj

N
× Ej)

where Nj is the size of cluster j, m is the number of clusters, and N is the size
of document collection.

5.3 Performance Evaluation

Experiment 1. Table 2 shows the performance of CPM given the size of thresh-
old clique. Obviously CPM produces more clusters than the number of categories
in the benchmark. This is because Reuters corpus are manually classified ac-
cording to a set of pre-defined keywords (one for each class roughly). Thus the
schema of categorization is rather unifarious. One document may belong to far
more groups since the grouping criterion could be diverse. CPM is less limited
by external constrains, which favors multifarious categorization schemes, and
thus has more clusters. The least number of clusters are found at k = 2 where

106 W. Gao et al.

CPM is degenerated to find connected components, which actually partitions
the collections. With larger k, the cluster number increases as larger k allows for
more overlapping clusters.

In terms of both F-measure and Entropy, CPM performance improves rapidly
at the first few k augments, but worsens slowly with the further increases. In-
terestingly, there are some close optimal values of k on these data sets around
4–6. Unlike our expectation, the results on MC396, which contains documents
all belonging to multiple classes, show inconsistencies on F-measure and En-
tropy. For Entropy, it is reasonable that CPM performs the best on MC396
since CPM favors overlapping clusters. But F-measure gives the worst results on
it. F-measure seems very sensitive to outliers and penalizes their recalls heavily.
As we found relatively larger proportion of outliers in MC396 clustering results,
this may explain the low F-values.

We originally expected that the results on OC2745 would be far and few be-
tween UC2349 and MC396, but the worst Entropy results are observed on it.
One possible reason is that Entropy favors small cluster number and cluster
size. This may also explain the obviously low Entropy values on MC396 other
than the advantages on overlapping clusters. Note that when k = 2, the perfor-
mance is significantly poorer than other choices. This is also because at k = 2,
CPM algorithm can only find connected components, which are the most relaxed
criterion for clustering.

Table 2. Performance of CPM with respect to different sizes of the threshold clique

of clusters F-measure Entropy
k OC2745 UC2349 MC396 OC2745 UC2349 MC396 OC2745 UC2349 MC396

2 1045 874 212 0.093 0.083 0.234 0.596 0.366 0.749
3 1157 962 281 0.287 0.353 0.287 0.499 0.413 0.177
4 1455 1318 281 0.398 0.407 0.302 0.481 0.376 0.140
5 1964 1813 286 0.525 0.503 0.294 0.490 0.383 0.153
6 2390 2392 291 0.495 0.594 0.289 0.543 0.411 0.153
7 3177 3045 294 0.488 0.568 0.284 0.635 0.458 0.163
8 3782 3762 297 0.421 0.501 0.277 0.740 0.514 0.164
9 4503 4330 300 0.409 0.488 0.269 0.903 0.549 0.164
10 5261 4894 300 0.401 0.441 0.269 0.907 0.587 0.164

Experiment 2. In this experiment, we compare CPM with the other two repre-
sentative clustering algorithms, k-means and complete-link. Because it is impos-
sible to command CPM to produce exact number of clusters with the benchmark,
we use k = 4, at which CPM reaches nearly optima based on Table 2. To make
comparisons fair under this condition, we examine both k-means and complete-
link twice: one uses the same number of clusters as the benchmark, and the
other uses the same number of clusters as CPM, which are denoted by KM-B,
KM-C, CL-B, and CL-C (suffixes B and C represent Benchmark and CPM, re-
spectively). Furthermore, because k-means is well-known to be sensitive to local

CPM for Finding Naturally Cohesive and Overlapping Document Clusters 107

optima, we repeat the algorithm 50 times with different initial centroids and av-
erage the outcomes achieved. The threshold for complete-link distance measure
is set according to the computed values of tc by CPM (see Section 3). This is to
align with CPM.

Table 3 shows that CPM performs worse than k-means and complete-link
if the standard number of clusters as the benchmark are produced. Because
CPM generates far more clusters than the standard, this comparison is some-
what unfair to CPM. However, when the number of CPM clusters is used, its
advantages can be clearly observed. Under this condition, k-means performs the
worst among the three. Its poor performance on MC396 is very obvious because
k-means can only produce partitioning of the corpus. Complete-link clusters are
non-overlapping MDCs. The results show that CPM outperforms complete-link
on all three test sets as well. This testifies the advantages of our method over
the typical conventional clustering algorithms in terms of unrestraint cluster
number.

Table 3. Comparisons of CPM and the other two representative algorithms, k-means
(KM) and complete link (CL). We use k = 4.

of clusters F-measure Entropy
OC2745 UC2349 MC396 OC2745 UC2349 MC396 OC2745 UC2349 MC396

CPM 1455 1318 281 0.398 0.407 0.302 0.481 0.376 0.140
KM-B 92 58 87 0.510 0.503 0.391 0.319 0.270 0.117
KM-C 1455 1318 281 0.294 0.251 0.190 0.520 0.475 0.358
CL-B 92 58 87 0.531 0.511 0.437 0.276 0.203 0.105
CL-C 1455 1318 281 0.362 0.305 0.285 0.503 0.447 0.266

6 Conclusion and Future Work

We present a novel clustering algorithm CPM by applying clique percolation
technique introduced from the area of biological physics. A more generalized
framework related to it is the so-called “small-world network” describing many
kinds of community structures in nature and society, which is extensively studied
in random networks [9]. This is the pioneer work for the CPM being applied
in document clustering. The preliminary results demonstrate it is feasible and
promising for document clustering. We are confident that CPM is interesting
and worth of further studies. There are still many issues left to be studied more
deeply. So far, the heuristic relationship between pc, N and tc has not been well
studied. To generate an appropriate random graph, an alternative is to make
use of the degree distribution of graph vertices. For each vertex, some nearest
neighbors associated with the precise degree distribution can be considered. This
will lead to the further exploration on techniques to analyze complex networks.
Furthermore, due to the NP-hardness of MDC enumeration algorithms, the CPM
is time-consuming. Improvements on efficiency are required. In the future, we
will also compare CPM to some more advanced clustering algorithms.

108 W. Gao et al.

References

1. Baker, L., McCallum, A.: Distributional clustering of words for text classification.
In Proc. of ACM SIGIR (1998):96–103

2. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum
Press, New York

3. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph. Communications
of the ACM 16 (1971):575–577

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein C.: Introduction to algorithms,
2nd Edition. McGraw-Hill

5. Cutting, D., Karger, D., Pedersen, J., Tukey, J.W.: Scatter/Gather: A cluster-
based approach to browsing large document collections. In Proc. of the 15th ACM
SIGIR Conference (1992):318–329

6. Derenyi, I., Palla, G., Vicsek T.: Clique percolation in random networks. Physics
Review Letters 95 (2005):160202

7. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral grpah
partitioning. In Proc. of the 7th ACM-KDD (2001): 269–274

8. Ding, C.H.Q., He, X.F., Zha, H.Y., Gu, M., Simon, H.D.: A min-max cut algorithm
for graph partitioning and data clustering. In Proc. of IEEE ICDM (2001) 107–114

9. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Oxford Press, New York
10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing

Surveys 31 (1999):264–323
11. King, B.: Step-wise clustering procedures. Journal of the American Statistical As-

sociation 69 (1967):86–101
12. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.Y.: Low-complexity fuzzy rela-

tional clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems
9 (2001):595–607

13. Liu, X., Gong, Y.: Document clustering with clustering refinement and model se-
lection capabilitities. In Proc. of ACM SIGIR (2002):191–198

14. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex netowrks in nature and society. Nature 435 (2005):814–818

15. Raghavan, V.V., Yu, C.T.: A comparison of the stability characteristics of some
graph theoretic clustering methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence 3 (1981):393–402

16. Sneath, P.H.A., Sokal, R.R.: Numerical taxonomy: the principles and practice of
numerical classification. Freeman, London, UK

17. Steinbach, M., Karypis, G., Kumar, V.: A comparison of doucment clustering tech-
niques. In Proc. of KDD-2000 Workshop on Text Mining (2000)

18. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing 6 (1977):505–517

19. Zhao, Y., Karypis, G.: Criterion functions for document clustering. Technical Re-
port #01-40, Department of Computer Science, University of Minnesota

	Clique percolation for finding naturally cohesive and overlapping document clusters
	Citation

	Introduction
	Document Clustering by Clique Percolation Method
	Preliminaries
	Clique Percolation Method in Random Graphs

	Algorithmic Implementation of CPM
	Related Work
	Experimental Evaluations
	Data Sets
	Evaluation Metrics
	Performance Evaluation

	Conclusion and Future Work

