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ABSTRACT
Like traditional supervised and semi-supervised algorithms, learn-
ing to rank for information retrieval requires document annotations
provided by domain experts. It is costly to annotate training data
for different search domains and tasks. We propose to exploit train-
ing data annotated for a related domain to learn to rank retrieved
documents in the target domain, in which no labeled data is avail-
able. We present a simple yet effective approach based on instance-
weighting scheme. Our method first estimates the importance of
each related-domain document relative to the target domain. Then
heuristics are studied to transform the importance of individual
documents to the pairwise weights of document pairs, which can
be directly incorporated into the popular ranking algorithms. Due
to importance weighting, ranking model trained on related domain
is highly adaptable to the data of target domain. Ranking adaptation
experiments on LETOR3.0 dataset [27] demonstrate that with a fair
amount of related-domain training data, our method significantly
outperforms the baseline without weighting, and most of time is
not significantly worse than an “ideal” model directly trained on
target domain.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Storage
and Retrieval – Retrieval models

General Terms
Algorithms, Experimentation

Keywords
instance weighting, related domain, learning to rank, domain adap-
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1. INTRODUCTION
Ranking in information retrieval (IR) aims to order retrieved doc-

uments according to their relevance to a given query. In recent
years, learning-based ranking algorithms, known as learning to rank,
were extensively studied in IR related communities [5, 6, 15, 18,
35]. Compared to the traditional approaches, such as vector space
model [30], BM25 [29] and language-modeling method [26, 37],
learning to rank aims to optimize a ranking function that incorpo-
rates a wide variety of relevance features and avoid tuning a large
number of parameters empirically.

Like supervised algorithms, learning to rank requires large train-
ing sets annotated for the specific domain where search tasks are
performed, for which much effort should be made by domain ex-
perts. For example, building a medical search engine needs experts
and labeling standard different from what a musical search engine
does; in TREC’s Web track [11], named page finding and topic
distillation are different tasks, and separate sets of queries and rele-
vance judgements have to be prepared. It is prohibitive to annotate
documents for each search domain, especially when fast deploy-
ment of a ranking model is demanded.

A promising direction for solving this predicament is to trans-
fer ranking knowledge from the training data of a related domain
to the target domain, where only a few or no labeled data is avail-
able1. Since common information may exist between two domains,
we can expect to reuse the training data to derive a ranking model
for the target domain considering this kind of commonality. How-
ever, due to the different joint distributions of feature and relevance,
ranking model directly trained on the related domain generally can-
not perform well when tested in target domain.

Cross-domain adaptation has been well studied for classification
in nature language processing [4, 12, 21] and machine learning [2,
3, 13]. Although the similar intuition can be applied in ranking
adaptation, the fundamental distinctions between ranking and clas-
sification need to be considered in algorithm design. In ranking, the
main concern is the preference order of two documents or the full
order of a list of documents. It is difficult to directly apply classifier
adaptation for ranking [14, 17].

Recently, ranking adaptation was received more and more atten-
tion [7, 8, 10, 16, 17]. Existing approaches assume a small amount
of training data in target domain, which plays an important role in
transferring ranking knowledge across domains. However, a small
set of labeled data of target domain can only convey limited rank-

1Throughout this paper, target domain refers to the domain where
the search and ranking is performed, and related domain refers to a
domain where large training sets are available for learning a rank-
ing model. Related domain was also called source domain in the
literature.
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ing knowledge, and other useful information not contained in them
can be important but is ignored.

In this paper, we assume a more general scenario where no la-
beled data but a large number of unlabeled data are available with
target domain. We propose to learn a target ranking model by
only using related-domain training data that are weighted appro-
priately with the aid of unlabeled data in target domain. A sim-
ple yet effective instance-weighting framework is created that con-
sists of two steps: (1) we estimate the importance of each related-
domain document to the target domain; (2) heuristic schemes are
explored to transform the document importance to the weights of
document pairs that can be directly incorporated into the popular
pairwise ranking algorithms. Due to importance weighting, the
ranking function trained on the related-domain data can be highly
adaptable to the data in target domain.

The remainder of the paper is organized as follows: Related
work are given in Section 2; Section 3 reviews general ranking
framework; Section 4 analyzes the problem in ranking across do-
mains; Section 5 presents our importance weighting on documents
for ranking adaptation; Experiments and results are discussed in
Section 6; Finally, we conclude in Section 7.

2. RELATED WORK
Learning to rank is to optimize a ranking function given data

consisting of queries, the retrieved documents and their relevance
judgements. Given a new query, the learned function is used to
predict the order of retrieved documents. Based on input spaces,
three categories of approaches have been proposed, namely point-
wise, pairwise and listwise approach. Probabilistic classification
and metric regression are typically used in pointwise approach.
Popular ranking models like Ranking SVM [18], RankBoost [15],
RankNet [5], etc., aim to optimize pairwise loss based on order
preference and classify the relevance order between two documents,
thus falling into the pairwise approach. Listwise approach [6, 35]
considers the entire group of documents associated with the same
query in the input space. A comprehensive survey on learning to
rank is given in [23].

Domain adaptation was originally to address the classification
problems where training data and test data do not follow the same
distribution. Existing approaches can be grouped into two direc-
tions, namely instance-based and feature-based approaches. The
former assumes the same feature space between two domains and
attempts to estimate the weights of individual examples in the re-
lated domain, which measures their importance to the target do-
main [19, 21, 36]. The latter tries to infer some common feature
representation to bridge the gap between data distributions of two
domains, which is regarded as feature weighting scheme [2, 4, 12,
24]. Our method falls into instance-weighting approach.

Existing ranking adaption methods assume a large set of train-
ing data in related domain and a small amount of labeled data in
target domain. A tree-based adaptation algorithm was proposed
by [10]. Gradient Boosting Tree (GBT) was first used to train a
ranking model on the related domain. The tree structure was then
adjusted with the labeled data in target domain. TransRank [8] pro-
posed to extract k-best adaptive queries in related domain used for
training with the help of labeled data in target domain. Based on the
same assumption of available target-domain labels, [7] presented
methods for feature-level as well as instance-level adaptation. [17]
treated the model parameters learned from related domain as prior
knowledge, and the similarity of parameters between two domains
is considered when training on target domain. [16] used model
interpolation and error-driven approaches for ranking adaptation,
where ranking model was trained on target domain and then com-

bined with a background model learned on the related domain. [34]
studied ranking adaptation in heterogeneous domains. [9, 17] pro-
posed ranking adaptability and domain similarity measures. Dif-
ferent from these methods, no labeled data is assumed available in
the target domain for our study.

Ranking model training with test data can be thought of as a
semi-supervised learning that treats separate domains like the same
domain [14, 22]. In these methods, training must be done online
once new test data come in, and this is inefficient for web search
ranking. In contrast, our training is off-line since test data are not
seen at training time.

3. RANKING MODEL REVIEW
Typical training data for learning a ranking model is a set of

input-output pairs (�x, y), where �x is a feature vector containing
relevance scores of a query-document pair, and y is the rank la-
bel for the document (e.g., relevance or irrelevant). The features
commonly include query-dependent relevance measures such as
term frequency and BM25, and query-independent measures such
as PageRank. The objective is to optimize a scoring function f(�x)
that maps �x to a real value that indicates the ranking score of the
document given the query. If f(�xi) > f( �xj) for documents di and
dj , then di should be ranked higher than dj , denoted as di � dj .
Our method is based on pairwise approach, although it can be eas-
ily generalized to other approaches.

Pairwise algorithms, such as RankSVM [18] and RankNet [5],
aim to minimize a loss based on the preference order of each pair of
documents. RankSVM minimizes the number of discordant pairs
and maximizes the margin of pair, which is equal to minimize the
L2 norm of the model f ’s hyperplane parameter and a Hinge Loss
on pairs:

min
f∗ λ||f ||2 +

�∑
i,j=1

(
1 − zij ∗ f(�xi − �yj)

)+
(1)

where zij =

{
+1, if di � dj ;
−1, if dj � di

is the binary preference de-

pending on the ground truth of two documents, (.)+ is the pairwise
hinge loss function, λ is the coefficient of trade-off between model
complexity and loss term, and � is the number of documents of the
query.

At high level, RankNet differs from RankSVM in that it mini-
mizes a loss function based on cross entropy that models the poste-
rior probabilities of rank order [5], which has the following form:

min
f∗

λ||f ||2 +

�∑
i,j=1

L(Pij , P̄ij) (2)

L(Pij , P̄ij) ≡ −P̄ij log Pij − (1 − P̄ij) log(1− Pij) is the cross
entropy loss of a pair (di, dj), where Pij is the posterior P (di �
dj), and P̄ij is the desired target values for the posteriors and takes
one of three values {0, 0.5, 1} depending on the ground truth which
includes the ties (documents with the same labels). Pij is mapped
from outputs of f using a logistic function: Pij ≡ e

oij

1+e
oij , where

oij = f(�xi) − f( �xj).
As compared to RankSVM, RankNet usually does not consider

kernel and its loss function is pairwise differentiable. Thus, gradient-
based optimizer can be used. Also, RankNet is modeled as a two-
layer neural network, where input and hidden nodes correspond
to features and their combinations. In theory, it can capture any
nonlinear correlations among features. RankBoost [15] is another
typical pairwise algorithm, for which we do not give the details, as
it is similar for our method to apply (see Section 5).
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(a) Named page finding
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Figure 1: Ranking directions of RankSVM on name page (NP)
and topic distillation (TD) queries in TREC-2003.
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Figure 2: Ranking errors are made for TD query #18 when
applying NP model to TD task.

4. PROBLEM ANALYSIS
Document distributions, i.e., the joint distribution of features and

relevance of documents, are commonly different between domains.
This is caused by many reasons such as different languages, coun-
tries and topics [10]. Therefore, ranking model directly trained on
one domain may not perform well on the other. Figure 1 and 2 il-
lustrate this predicament of cross-domain ranking using RankSVM
on two of TREC’s 2003 Web track tasks, namely named page find-
ing (NP) and topic distillation (TD) [11] (Section 6 gives details of
the tasks). To plot the figures, we conducted principle component
analysis (PCA) on this TREC collection that was released through
LETOR3.0 [27] for learning to rank study2. Widely used in multi-
variate analysis, PCA computes a linear combination of features to
extract patterns and reduce the dimensionality of data. The goal is
to find the direction, known as the principal axis, along which the
most variance of the patterns in the data set is captured. The pro-
jection of a data point on the principal axis is called the principal
component.

Let the horizontal axis and vertical axis represent the first and
second principle axes, respectively, and let the blue circles (and red
stars) denote relevant documents and the gray squares denote irrel-

2http://research.microsoft.com/en-us/um/
beijing/projects/letor/

evant ones. The arrowed line in each figure is the ranking direction
of RankSVM learned for the corresponding task. As shown in Fig-
ure 1(a) and 1(b), documents for NP and TD queries follow differ-
ent distributions in this two-dimensional PCA space even though
they share the same original feature space. Their ranking direc-
tions are clearly divergent, which means that when a model trained
on one domain is blindly applied to the other domain (moving the
two arrowed lines into the same space), projecting documents onto
the ranking directions may result in very different orders as com-
pared to the ground truth. This problem is revealed more clearly by
Figure 2, where the four documents of TD query #18 are ranked as
d4 � d2 � d1 � d3 using the TD model (which is correct as the
relevant document d4 should be placed ahead of others), whereas
NP model gives the incorrect order d1 � d2 � d3 � d4. There-
fore, the learned NP model can hardly be applied to TD domain
directly, and vice versa.

5. RANKING ADAPTATION BY WEIGHT-
ING IMPORTANCE OF DOCUMENTS

An intuition of ranking adaptation is to tune the ranking direc-
tion of related domain to that of target domain as closely as possi-
ble. In practice, however, since the data of target domain are not
labeled, the target ranking direction cannot be obtained. Our idea
is to make use of unlabeled data of target domain for weighting
training instances in the related domain so that the knowledge of
relevance judgement can be strengthened on those documents that
are similar to the target domain. As a result, the learning can be
focused on giving better ranking for these important documents. It
can be expected that the model trained in this way will work well on
ranking actual target-domain documents. To this end, it is critical
to measure the extent to which the instances are similar across two
domains. The similarity indicates the importance of an instance
that can be related to the target domain.

5.1 Cross-Domain Adaptive Ranking Model
Suppose the importance of instances is appropriately weighted in

the related domain, we can extend the ranking algorithms described
in Section 3 by incorporating the weights into their loss functions.
The rationale is that the loss on important instances should be pe-
nalized more heavily once ranking errors are made on these docu-
ments. Weighting can be developed corresponding to the levels of
instance. Pairwise models take document pairs as instances. Thus,
the weighting should be made compatible with the pairwise loss.

Let IW (xi, xj) be pairwise importance weight for (di, dj), the
objective function can be extended for adaptation as follows:

min
f∗

λ||f ||2 +
�∑

i,j=1

IW (xi, xj) ∗ Lij(.) (3)

where Lij(.) is the loss function on pairs that takes the forms like
Equations 1 and 2. Note that this scheme can be similarly ap-
plied to other pairwise models such as RankBoost. Overall, adapta-
tion training consists of two key steps: (1) instance weighting; (2)
weight-based model training.

However, it is difficult to estimate the importance of pairs in
related domain without labeled data in target domain. This is be-
cause document pairs are constructed from preference orders based
on ground truth. When rank labels are not provided, one has to
enumerate all possible pairs. This may produce tremendous noises
rendering weight estimation unreliable as most of the pairs are not
meaningful for ranking. Weighting individual documents is intu-
itively more straightforward. Then we can try to derive pairwise
weights from document weights.
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Figure 3: A classification hyperplane can be built between Dr

and Dt to measure the extent, to which query-document in-
stance in the related domain is similar to the target domain.

5.2 Importance Weighting Schemes

5.2.1 Weighting Individual Documents
Despite that target-domain data are not labeled, the relevance

features of documents for the ranking purpose are readily available
to us. These features may not only reflect document’s relevancy,
but also encode the correlation or similarity of documents in differ-
ent domains, which conceals some important cross-domain com-
monalities. For example, many query-independent features that
are not focused on query-document relevancy, such as document
length, link structure, anchor text, etc., may express some impor-
tant intrinsic properties of documents. Their discriminative nature
is expected to correlate the similar documents across domains and
differentiate those that are not similar.

We model document weighting as a classification problem based
on the relevance features and the source of domains the document
come from. Figure 3 explains this intuition. Given document sets
Dr and Dt that denote respectively the related and target domain,
we build a classification hyperplane Hrt to separate Dr from Dt.
If a Dr example is similar to a large number of Dt examples, it
should be close to Hrt. Hence, we can measure the importance of
a related-domain document using its distance to the hyperplane. In
practice, the probability that a document in the related domain may
be classified into the target domain is adopted.

Algorithm 1 Weight estimation for training documents in related domain

Input:
Related-domain documents, Dr = {�xir}m

ir=1;
Target-domain documents, Dt = {�xit}n

it=1;
Output:

Importance weights of related-domain documents, IW = {wir}m
ir=1;

1: lr = +1, D′
r = {(�xir , lr)}m

ir=1;
2: lt = −1, D′

t = {(�xit , lt)}n
it=1;

3: Find classification hyperplane Hrt which separates D′
r from D′

t;
4: for i = 1; i ≤ m; i + + do
5: Calculate �(�xir ), the distance of �xir to Hrt;
6: P (�xir ∈ Dt|qr) = 1

1+exp(α�(�xir )+β)
;

7: Add wir|qr
= P (�xir ∈ Dt|qr) to IW ;

8: end for
9: return IW ;

Algorithm 1 estimates the probability that each �xir can be clas-
sified into Dt, denoted as P (�xir ∈ Dt|qr), indicating the impor-
tance of �xir given a related-domain query qr . In step 1-2, the algo-
rithm constructs a training corpus using ±1, the source of domain,
as class label. Then it solves the hyperplane that separates the two

domains. For each related-domain document, its distance to the hy-
perplane is calculated in step 6. A sigmoid function is employed to
transform the distance into a posterior probability [25], for which
free parameters α and β can be determined by cross-validation or
hold-out method. Note that the probability is conditional as each
document is in the search result of the given query.

5.2.2 Weighting Document Pairs
Document weights obtained above can be easily integrated into

pointwise ranking algorithms. But they cannot be used directly in
pairwise algorithms that are generally more effective. Here we ad-
dress how to transform document weighting to pairwise weighting.

The weight of a pair of documents in related domain can be ap-
proximated using the marginal probability of each document in that
pair. For a document pair 〈�xir , �xjr 〉 of a query qr from related do-
main, we can reasonably assume that P (�xir ∈ Dt|qr) is indepen-
dent of P (�xjr ∈ Dt|qr). Thus, the conditional joint probability
P (〈�xir , �xjr 〉 ∈ Dt|qr) can be calculated straightforwardly based
on this independence assumption:

wir,jr |qr = P (〈�xir , �xjr 〉 ∈ Dt|qr) (4)

= P (�xir ∈ Dt|qr) · P (�xjr ∈ Dt|qr)

where wir ,jr |qr denotes the pairwise weight given qr and can be
directly applied to substitute the importance weight in Equation 3.

5.2.3 Weighting Queries
Document weighting and pairwise weighting do not explicitly

measure the importance of individual queries. Ranking algorithms
constrain the instances to be learned in the range of queries. It is
thus reasonable to take into account how likely each query is related
to the target domain. If a query is not similar to the type of queries
across domains, its retrieved documents should be weighted with
lower values accordingly. This aims to generate a model that favors
important queries.

We estimate query importance based on the weighting of doc-
ument pairs considering the compatibility with the pairwise loss.
Assuming that the occurrence of document pairs are independent
events given a query, query importance can be estimated as the
mean value of the importance probabilities of all available pairs,
which is formulated as follows:

wqr = P (qr ∈ Dt) =

∑
ir ,jr

P (〈�xir , �xjr 〉 ∈ Dt|qr)

M
(5)

where M denotes the number of document pairs in query qr that
can be derived from the ground truth.

When applied to pairwise ranking algorithms, Equation 5 can
simply substitute the importance weight in Equation 3.

5.2.4 Weight Combination
If we regard ranking across the related and target domains as a

two-step procedure, Equations 4 and 5 can be combined in a prin-
cipled way so that different weighting schemes naturally become
complementary to each other since they reflect the degree of cross-
domain similarity from different perspectives. The first step is to
select an important query that is similar to the target domain, and
with this condition, the second step is to choose a pair of impor-
tant documents from the search result of this query. This process is
modeled as follows by the probability P (〈qr, �xir , �xjr 〉 ∈ Dt):

wqr ,ir ,jr = P (〈qr, �xir , �xjr 〉 ∈ Dt) (6)

= P (qr ∈ Dt) · P (〈�xir , �xjr 〉 ∈ Dt|qr)

The advantage of the combined weighting scheme above lies in
the scaling effect of query weight that influences pairwise weight
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Algorithm 2 Weight-based adaptive ranking model training

Input:
Related-domain documents, Dr = {�xir}m

ir=1;
Target-domain documents, Dt = {�xit}n

it=1;
Weighting scheme K ∈ {pair, query, comb}

Output:
Ranking model f ;

1: D′
r = {(�xir , +1)}m

ir=1;
2: D′

t = {(�xit ,−1)}n
it=1;

3: Find classification hyperplane Hrt which separates D′
r from D′

t;
4: Split Dr into Dr1 and Dr2;
5: Calculate IW K

r1 , IW K
r2 according to K;

6: Training model on Dr1 with weight IW K
r1 ;

7: Select model f which makes minimum weighted loss on Dr2 with
IW K

r2 ;
8: return f ;

in two aspects: (1) if many document pairs of query qr have high
weight values, then P (qr ∈ Dt) should be also high. The scaling
tends to strengthen the importance of 〈�xir , �xjr 〉; (2) if many pairs
are weighted low and only a few pairs high, the scaling can lower
down the importance of these a few pairs that may be outliers.

5.3 The Framework
Algorithm 2 summarizes our overall framework, which contains

two key components, i.e., instance weighting and weight-based
model training.

Instance weighting is done by steps 1-5. Steps 6 and 7 perform
weight-based model training and selection. Note that Dr is split
into two parts in step 4, where Dr1 is used for weight-based train-
ing and Dr2 is for weight-based model selection (validation). With
no labeled data in target domain, models can be validated only us-
ing labeled data in related domain. In step 7, we select the model
f that produces minimum weighted loss on Dr2, where the loss
is weighted with IW K

r2 . Including weights makes model selec-
tion more meaningful because the best performance on Dr2 with-
out considering the weights may not generalize well to the target
domain. Weight-based validation can select the best model biased
towards those highly weighted instances, and thus can adapt better
to the target domain.

We use the data in target domain, which are unseen during train-
ing, to evaluate this framework. Thus, our method falls into induc-
tive learning [32]. This is an important difference of our method
from transductive and semi-supervised adaptation [1, 14] where
test data can can be seen during training.

6. EXPERIMENTS AND RESULTS

6.1 Dataset and Setup
We evaluated the proposed framework on TREC-2003 and 2004

Web track datasets, which were released through LETOR3.0 bench-
mark collection for learning to rank research [27]. Three query
tasks were defined on the collection, namely topic distillation (TD),
home page finding (HP) and named page finding (NP). TD is to find
a list of entry points for good websites that can guide user to page
collection which cover the topic. HP is to find the home page of
entity such as an person or organization. NP focuses on the page
which directly contains the short description of query but not en-
try point to website [33]. HP and NP tasks are more similar to
each other, and TD is distinct from the other two. Ranking adapta-
tion takes place when a task is performed (tested) using the models
trained on another task.

There are 64 features for describing a query-document instance

Table 1: The number of queries in TREC-2003 and TREC-2004
Web track

Query task 2003 2004
Topic distillation 50 75
Home page finding 150 75
Named page finding 150 75

(see [27]). The number of queries for different tasks are given in
Table 1. Each task has three data sets, i.e., for training, validation
and testing, each of which was partitioned into five folds. Since no
training data in target domain is assumed in our case, we reused the
date sets in the following way while maintaining the fold number
unchanged:

1. All data (training, validation and test sets) in related domain
and partial data (training and validation sets) in target domain
were used to build classification hyperplane for instance weight-
ing;

2. Related-domain data were grouped into two parts, where one
contained only training set for ranking model training, and
the other contained validation and test sets for model selec-
tion. Note that model selection can only use labeled data
from related domain;

3. The test sets in target domains were always kept unseen dur-
ing training and only used for model testing. The training
and validation sets of target domains were not involved.

Ranking model trained on related domain without instance weight-
ing acted as baseline, denoted as no-weight. Three weight-based
models, namely pair-weight, query-weight and comb-weight, cor-
responded to pairwise weighting, query weighting and their combi-
nation, respectively. In addition, we randomized document weights
and used Equation 4 to generate a random weighting method, de-
noted as rand-weight, to testify the solidity of our probabilistic
weighting as compared to the groundless random. Finally, a target-
only model was trained and tested directly on target domain to pro-
vide the corresponding “ideal” performance for reference.

We implemented RankSVM and RankNet using the fast Stochas-
tic Gradient Descent (SGD) optimizer3 [31]. The ranking results
were evaluated by averaging the performance over the five folds
with cross validation.

6.2 Results
We carried out HP to NP and NP to TD ranking adaptation tasks.

Typically, HP and NP are considered similar domains whereas NP
and TD are largely different. Other adaptations such as NP to HP
and HP to TD are duplicates of above two and omitted here. Per-
formance was measured by Mean Average Precision (MAP) [28]
and Normalized Discounted Cumulative Gain (NDCG) [20] at po-
sitions 1,3,5 and 10. Due to space limit, NDCG is only given for
RankSVM and similar trend of NDCG was achieved by RankNet.

6.2.1 HP to NP Adaptation in the Same Years
As shown in Table 2 and Figure 4, all our three weighting meth-

ods outperform the baseline (no-weight) based on MAP and NDCG,
and comb-weight performs best among three weighting methods.
T-test on MAP in Table 2 indicates that all improvements over no-
weight are statistically significant (p < 0.03). This is because the
3Source codes will be provided upon request. Due to SGD, our
RankSVM may be suboptimal and perform a little worse than
SVMLight (http://svmlight.joachims.org).
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Table 2: MAP results of HP to NP adaptation. †, ‡, �
and boldface indicate significantly better than no-weight, pair-
weight and comb-weight and rand-weight, respectively (confi-
dence level=95%).

RankSVM RankNet
model 2003 2004 2003 2004

no-weight 0.417 0.596 0.497 0.610
pair-weight 0.502† 0.647† 0.532† 0.661†

query-weight 0.510† 0.647† 0.534† 0.645
comb-weight 0.542†‡ 0.665† 0.562†‡ 0.679†

rand-weight 0.431 0.618 0.471 0.619
target-only 0.660� 0.681 0.672� 0.669

Table 3: MAP results of NP to TD adaptation. †, ‡, �
and boldface indicate significantly better than no-weight, pair-
weight and comb-weight and rand-weight, respectively (confi-
dence level=95%).

RankSVM RankNet
model 2003 2004 2003 2004

no-weight 0.146 0.176 0.196 0.164
pair-weight 0.194† 0.171 0.233† 0.151
query-weight 0.194† 0.175 0.226† 0.157
comb-weight 0.222†‡ 0.179 0.235† 0.158
rand-weight 0.145 0.163 0.199 0.168
target-only 0.235 0.205 0.266 0.180

data distributions of two domains are similar, and our method can
easily capture cross-domain similarity by weighting the importance
of related-domain documents. Furthermore, comb-weight is signif-
icantly better than both pair-weight and query-weight on the 2003
data. On the 2004 data, although not significantly, comb-weight
still outperforms pair-weight 2.78% by RankSVM and 2.72% by
RankNet. Thus, weight combination is generally better than than
the separate weighting of queries and document pairs.

No obvious difference can be observed between pair-weight and
query-weight. The reason is that only one document is labeled as
relevant for each home page query. Thus all the generated pairs
contain this document, rendering the values of pairwise weight and
query weight close to each other, as the query weight is simply
calculated as the mean weight over all document pairs of the query.

All our probabilistic weighting methods can always outperform
random-weight significantly. This is due to the solid probability
ground of our method. Interestingly, random-weight sometimes
can outperform no-weight. The reason is that no-weight can be
considered as the extreme case where weights are equal to 1, which
assumes no difference across domains and all the related-domain
documents equally important to the target domain. This is however
too strong to be true. Although not stable, random-weight could be
better by randomly taking into account some extent of uncertainty.

6.2.2 NP to TD Adaptation in the Same Years
Topic distillation is fairly different from named page finding not

only on task definition but also on data distribution shown as Fig-
ure 1 (see Section 4). Here we examine whether ranking adaptation
can be done for such two domains that are not similar. NDCG re-
sults of RankSVM are presented in Figure 5. MAP results are given
in Table 3 for both algorithms.

The lower MAP scores in Table 3 implies that NP to TD adap-
tation is generally a harder task as compared to HP to NP. There
may be less similar features, but because of this the found clas-

Table 4: MAP results of 2003 NP to 2004 TD adaptation. †, ‡, �
and boldface indicate significantly better than no-weight, pair-
weight and comb-weight and rand-weight, respectively (confi-
dence level=95%).

model RankSVM RankNet

no-weight 0.145 0.136
pair-weight 0.164† 0.160†

query-weight 0.163† 0.157†

comb-weight 0.166† 0.164†

rand-weight 0.145 0.144
target-only 0.205 0.180

Table 5: For NP to TD adaptation, the number of NP training
documents in different weight ranges.

weight range 04 NP→04 TD 03 NP→04 TD

0.5–1 35,773 47,851 (+33.8%)
0.1–0.5 73,968 237,223 (+220.7%)
0–0.1 111,761 160,897 (+44%)

sification hyperplane tends to be more discriminative between the
two domains. Therefore, we can still expect effective importance
weighting.

On the 2003 data, weighting methods demonstrate consistent ef-
fectiveness as achieved in HP to NP adaptation. T-test on MAP
indicates that pair-weight and query-weight significantly outper-
form no-weight (p < 0.02). Also, comb-weight significantly out-
performs pair-weight as well as query-weight (p < 0.04). This
implies that our adaptation method can work well for these two
domains that are not similar.

On the 2004 data, however, weighting is not consistently better
than no-weight and sometimes performs even worse. T-test does
not indicate any statistical significance either. We analyzed the rea-
son: Compared to TREC-2003 where 150 named page queries are
provided, the number of named page queries in TREC-2004 is only
75 (see Table 1), rendering less amount of training data. It turns
out that important documents become even less. Hence the model
overfits to this small number of important instances, thus cannot
adapt (generalize) well. We believe it can be improved with more
named page queries provided, which is proved in the next section.

6.2.3 NP 2003 to TD 2004 Adaptation
Here we examine the effectiveness across both different tasks

and years. Table 4 shows that weight-based models trained with
2003 NP data significantly outperform no-weight when tested on
2004 TD task. This is because a larger number of important doc-
uments can be found in NP 2003 which provides 150 name page
queries. Table 5 shows statistics on the number of training doc-
uments in different ranges of weights we obtained. For example,
there are 33.8% more NP 2003 documents than NP 2004 for the im-
portance weight range greater than 0.5 (highly important to target
domain). This implies that our weight-based methods favor a fair
amount of training data in the related domain for finding enough
important documents to avoid overfitting.

We also studied the influence of weight-based model selection
(see Algorithm 2) as compared to the selection without weights.
As shown in Table 6, for no-weight selection, weight-based model
training can still outperform the baseline, but is consistently worse
than using the weight-based selection. This proves that weight-
based selection is helpful for adaptation.

We note that RankSVM performs better than RankNet on NP to
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(a) HP to NP on TREC-2003
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(b) HP to NP on TREC-2004

Figure 4: NDCG of adaptation from home page (HP) finding to named page (NP) finding by RankSVM.
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(a) NP to TD on TREC-2003
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(b) NP to TD on TREC-2004

Figure 5: NDCG of adaptation from named page (NP) to topic distillation (TD) by RankSVM.

Table 6: Comparison of using and not using weight-based
model selection (w. vs n./w.) in 2003 NP to 2004 TD adapta-
tion.

RankSVM RankNet
model w. n./w. w. n./w.

pair-weight 0.164 0.160 0.160 0.157
query-weight 0.163 0.161 0.157 0.150
comb-weight 0.166 0.164 0.164 0.161
rand-weight 0.145 0.128 0.144 0.130

TD within 2004 and 2003 NP to 2004 TD, but relatively worse on
other tasks. This seems to be related to the hyperplane generated by
margin-based domain classifier. In easier adaptation, the weights
may be less accurate since cross-domain data are more similar and
may be not linearly separable. Nonlinear RankNet may generalize
better in this case. In difficult adaptation where data are more sepa-
rable, the weights may be more accurate for RankSVM to take the
advantage of maximum margin. We will leave the influences of dif-
ferent weight generation methods on different ranking algorithms
for future study.

7. CONCLUSION AND FUTURE WORK
We introduced a simple yet effective instance-weighting frame-

work for ranking adaptation in IR by only using training data from
related domain. The basic idea is that the related-domain train-

ing instances can be weighted appropriately according to their im-
portance (or similarity) to the target domain. We first estimated
the probability of each related-domain document that can be classi-
fied into the target domain. Then three instance-weighting methods
were proposed based on the document importance. After that, the
ranking model was learned in such a way to minimize the weighted
loss of ranking instances, so that the ranking function is biased to-
wards those important document and thus can be adaptable to the
target domain. Our approach was evaluated on LETOR3.0 dataset
for ranking adaptation between different tasks, and we found that
it significantly outperformed the baseline without weighting, and
most of time was not significantly worse than the model directly
trained on the target domain.

Although based on pairwise approach, our method can be gener-
alized easily and combined with other learning to rank approaches.
In the future, we will improve the framework from two directions:
one is to investigate how different importance estimation methods
can influence ranking algorithms; the other is to apply our weight-
ing schemes to various ranking algorithms for ranking adaptation.
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