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Abstract. Adaptation techniques based on importance weighting were
shown effective for RankSVM and RankNet, viz., each training instance
is assigned a target weight denoting its importance to the target domain
and incorporated into loss functions. In this work, we extend RankBoost
using importance weighting framework for ranking adaptation. We find
it non-trivial to incorporate the target weight into the boosting-based
ranking algorithms because it plays a contradictory role against the in-
nate weight of boosting, namely source weight that focuses on adjust-
ing source-domain ranking accuracy. Our experiments show that among
three variants, the additive weight-based RankBoost, which dynamically
balances the two types of weights, significantly and consistently outper-
forms the baseline trained directly on the source domain.

1 Introduction

Learning to rank [4] is to derive effective relevance ranking functions based on
a large set of human-labeled data. Boosting has been extensively studied for
learning to rank [1,2,8,9]. However, existing ranking algorithms, including the
boosting-based ones, are only proven effective for data from the same domain.
In real applications, it is prohibitive to annotate training data for every search
domain. Ranking performance may suffer when the training and test have to
take place on different domains.

A promising direction is to learn a cross-domain adaptation model for ranking.
Two key problems should be resolved: (1) how to measure the relatedness of two
domains appropriately; (2) how to utilize this information in ranking algorithms
for adaption. [3] adopted a classification hyperplane to derive the importance
weight of documents in the source domain that reflects their similarity to the
target domain and is then incorporated into the rank loss function.

When applying this method, we find it non-trivial to integrate importance
weight into boosting-based algorithms such as RankBoost [2]. The reason is
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that these algorithms bear an inherently weight-based exponential loss and this
innate weight in the loss function (source weight) plays a contradictory role with
the importance weight introduced for adaptation purpose (target weight). An
appropriate balance must be made between these two types of weight; otherwise
adaptation may fail since the model can easily overfit source data due to the
great impact of source weight on weak rankers selection.

In this work, we develop three Weight-based RankBoost (WRB) algorithms
to balance the source and target weights, namely expWRB, linWRB and ad-
ditive WRB (addWRB). The first two methods incorporate the target weight
in straightforward and static ways, and the third combines the weights from a
global perspective based on a forward stage-wise additive approach [6] to achieve
a dynamic tradeoff. Our results demonstrate that addWRB consistently and sig-
nificantly outperforms the baseline trained directly on the source domain.

2 Target Weight and Source Weight

2.1 Source Weight

RankBoost [2] aims to find a ranking function F' to minimize the number of
misordered document pairs. Given document pairs {(z;,z;)}, the ranking loss
is defined as rLoss(F') = >, Wi, z;)I(F(z;) > F(x;)), where W(x;, z;) is
the source weight distribution, I(.) is an binary indicator function, and F'(x;) >
F(x;) suggests that the ranking function assigns a higher score to z; than to
x; while the ground truth is 2; has a lower rating than x;. At each round of
training, W (.) is updated for the next round to focus on those misordered pairs.
The update formula in round ¢ is given as follows:

5, Wilasa)) explan (i) = fi(;)) 0

where fi(x) is the 0-1 valued weak ranker derived from a ranking feature z, ay
is the coefficient of f; so that ' =, a; f;(x), and Z; is normalization factor.
Inherently, source weight is designed to control the selection of weak rankers to
minimize ranking errors in source domain.

Wt+1 =

2.2 Target Weight

In ranking adaptation, the knowledge of relevance judgement should be strength-
ened on those documents that are similar to the target domain so that the learn-
ing can be focused on correctly ranking these important documents. [3] used the
cross-domain similarity to transfer ranking knowledge. The distance of a source-
domain document to the classification hyperplane was calculated as target weight
to measure the importance of the document. Then the pointwise weight was con-
verted to pairwise for compatible with the popular pairwise approach (see [3] for
details). The general loss term was extended as follows:

Zw(xi,zj) « 1 Loss;;(.) (2)
i,J
where rLoss;;(.) is the pairwise loss and w(x;, ;) is the target weight.
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Algorithm 1. expWRB-Weighted RankBoost with target weight inside the exponent

Input: Query-document set of source domain; Target weights of M document pairs {w(z;, .LJ)}iW
based on the ground truth.

Output: Ranking function F(z).
Initialize W1 (x;,x;) = ]éj for all 7, j;
fort=1;t<T;t++ do

Select weak ranker f;(z) using Wy and w;

Set coefficient a; for fi(z);

For each (z;,x;), update source weight using

Wigr = 4, Wi(zi, 2;) exp(arw(@i, ;) (fe(x:) — fe(z;)));
end for
return F(z) =37 aifi(z)

Bdlibad S o

o

3 Weight-Based Boosting Models for Ranking Adaptation

In standard RankBoost, the source weight is updated iteratively so that the
weak rankers can focus on those misordered pairs with large source weight that
commonly reside near the decision boundary deemed more difficult to order.
However, these pairs may be unnecessarily important to the target domain.
Meanwhile, for those misordered pairs with low source weight, even though they
contain some important cross-domain ranking knowledge (i.e., having high target
weight), the algorithm does not prioritize to correct their ranking. The two types
of weight play contradictory roles and must be appropriately balanced.

The objective of our adaptive RankBoost is to minimize the weighted rank-
ing loss wLoss(F) = >, s Wi, ;) I(F(z;) > F(x;))w(x;, z;) following Eq. 2.
There are two straightforward ways to incorporate the target weight into the
source weight’s update formula (Eq. 1):

Wi = , Wilai,ay)explar wiai,ay) (@) = @), ()
Wisi =, Wilainy) wloia;) explan(file) = film). (@)

Thus, we obtain two versions of Weight-based RankBoost (WRB), namely ex-
pWRB corresponding to the target weight inside the exponent (Eq. 3) and lin-
WRB corresponding to the linearly combined target weight (Eq. 4).

3.1 expWRB

The procedure of expWRB is shown as Algorithm 1. Other than the updating
of source weight in step 5, expWRB also differs from standard RankBoost in
step 3 where both source and target weights are used to search for the objective
function F' to minimize the weighted rank loss.

In each round ¢, we can choose an appropriate a; and f;(z) to minimize Z;
in step 3. Z; is minimized by maximizing v = >, ; Wi (2, 2j)w (2, ;) (fi(z;) —
fi(z;)) and set ap = 3 In 117" in step 4 [2].

1—r:
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3.2 linWRB

Replacing the updating rule in step 5 in Algorithm 1 with Eq. 4, we can obtain
linWRB with linearly combined target weight. Similarly, we minimize Z; for min-
imizing the weighted loss in each round following [2]. Given a binary weak ranker
fe(x) € {0, 1} and a € {~1,0,+1}, weset Ro = 3, ; W(xi, xj)w(zs, x) I (fi(zi)—
fi(zj) = a). Then Z; = Ryqexp(oy) + Ro + R_1 exp(—ay). Z; is minimized by
setting a;y = % In g: . The weak ranker f; is selected when Z; is minimal.

3.3 Additive Weight-Based RankBoost

Standard RankBoost updates source weight in the round ¢+ 1 based on the cur-
rent weak ranker f; locally (see Eq. 1). A better way is to calculate Wi globally
using the ensemble function F; that combines all the weak rankers learned up
to the current round like an additive approach [6]. The update rule is given
by Wit1 = th exp(Fy(x;) — Fi(z;)) where Fy(z) = F;—1(x) + oy fe(x), which
eliminates the previous round source weight. Then the target weight can be
incorporated straightforwardly as Wiy = thw(xi, xj)exp(Fy(z;) — Fi(xj)).

However, the model easily overfits the source domain due to the great impact
on the updating of source weight from the exponential term. We introduce a
scaling factor A to adjust the source weight dynamically. The idea is that we
update A considering ranking difficulty measured by the proportion of correctly
ordered pairs in each round:

# of correctly ordered pairs by F;

)\t = )\t,1 * (5)

Total # of pairs to rank
In a difficult task where wrong pairs dominate, A\ decreases quickly and cancel
out the exponential growth of source weight so that target weight can affect
weak ranker selection properly.

Based on this intuition, we propose the Additive Weight-based RankBoost
(addWRB) given as Algorithm 2. A forward stagewise additive approach [6] is
used to search for the strong ranking function F. That is, in each round, a weak
ranker f; is selected and combined with F;_; using coefficient ;. The source
weight is then updated in step 8, where the ensemble function is scaled by A,
inside the exponent that is further combined with the target weight linearly.

4 Experiments and Results

Evaluation is done on LETOR3.0 benchmark dataset [5] with the Web track
documents of TREC 2003 and 2004. We treat each ranking task, namely Home
Page Finding (HP), Named Page Finding (NP) and Topic Distillation (TD) [7] as
an individual domain. Generally, it is relatively easier to determine a homepage
or named page than an entry point of good websites.

We use the same method as [3] to estimate target weights. Note that rank
labels are not used for weighting. The baseline is a RankBoost directly trained
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Algorithm 2. Additive Weight-based RankBoost (addWRB)
w(zg,@;)
Zi,j w(@g,e

2. Set A\g =1, Fy = 0;

3. fort=1;t<T;t++ do

4. Select weak ranker f:(z) using distribution Wy;

5. Set coefficient a; for f:(z);

6. Fi(z)=F—1(z) + arfe(a);

7. Compute \; using Eq. 5;

8. For each (z;,z;), update source weight using
Wigr = 5, w(zi, z5) exp(Ae (Fe (i) — Fi(x5)));

9. end for

10. return F(z) = Zzzl ag fr(z)

1. Initialize W; = ) for all i, j;

Table 1. MAP results of three adaptation tasks. t, f and § indicate significantly better
than baseline, expWRB and linWRB, respectively (95% confidence level).

HP—NP NP—TD TD—NP
Y2003 Y2004 Y2003 Y2004 Y03-Y04 Y2003 Y2004
baseline 0.5834 0.5455 0.1734  0.1657 0.1062  0.4101 0.3061
expWRB 0.5481 0.5206 0.1352  0.1437 0.14857  0.54937% 0.51597*
linWRB  0.62457F 0.58247% 0.1755% 0.1444 0.14337 0.3344 0.2239
addWRB 0.62807F 0.6025T% 0.21397% 0.1505 0.15417  0.55377% 0.5774#

model

on the source domain without target weight. Always we leveraged on decision
stumps to implement binary weak rankers.

We examined HP to NP, NP to TD and TD to NP adaptations to study if
our algorithms can adapt across similar tasks, from easier to more difficult task
and in the reverse case. The MAP results are reported in Table 1.

HP to NP Adaptation. We observe that addWRB outperforms all other
algorithms. T-tests indicate that both addWRB and linWRB are significantly
better than the baseline and expWRB (p < 0.02). This indicates both algorithms
can effectively balance the two types of weights.

Note that expWRB failed here. We found that lots of pairs were ordered
correctly in HP training, resulting in small source weights. So the target weight
inside the exponent quickly dominated the updating of source weight and the
same weak ranker was chosen repeatedly. The model becomes not generalizable.

NP to TD Adaptation. NP is rather different from TD. On 2003 data, ad-
dWRB works better than other variants, and t-test indicates that the improve-
ments are statistically significant (p < 0.001). On 2004 data, all three variants
underperform the baseline. This is consistent to [3] using other algorithms due
to the shortage of training data from the source domain. Actually, only a half
number queries are available in NP04 than NP03. To avoid under-training, we
turned to examine NP03 to TD04 adaptation where our algorithms significantly
outperformed the baseline (p < 0.001).

TD to NP Adaptation. Here we study how our models can adapt from a
difficult task to a simple one. We observe that expWRB and addWRB are sig-
nificantly better than the baseline (p < 0.0001) whereas linWRB fails. The target
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weight affects linWRB little when source pairs are difficult to rank because of the
exponential source weights. So the performance is mainly determined by source
weight leading to the failing adaptation. In contrast, exp WRB’s target weight
inside the exponent can effectively balance the growth of source weights.

The Scaling Factor A. We also examine the influence of A on 2003 data to
unveil how A reacts to different problem difficulty. We observe that A in TD
to NP is much lower and decreases much faster than NP to TD. Since TD is
more complex where lots of pairs are wrong, \ decreases quickly to balance the
exponential growth of source weights.

5 Conclusions

We proposed three variants of weight-based boosting models for ranking adapta-
tion based on RankBoost algorithm, namely expWRB, linWRB and addWRB.
The challenge is to balance the innate weight distribution of RankBoost and
the target weight introduced for adaptation. expWRB and linWRB incorporate
target weight in straightforward yet static ways. addWRB uses an additive ap-
proach, where the influence of source weight can be scaled dynamically according
to the problem difficulty. Experiments demonstrate that the performance of ex-
pWRB and linWRB varies with the problem difficulty of source domain, and
addWRB consistently and significantly outperforms the baseline.
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