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ABSTRACT
Learning to adapt in a new setting is a common challenge to
our knowledge and capability. New life would be easier if we
actively pursued supervision from the right mentor chosen
with our relevant but limited prior knowledge. This variant
principle of active learning seems intuitively useful to many
domain adaptation problems. In this paper, we substanti-
ate its power for advancing automatic ranking adaptation,
which is important in web search since it’s prohibitive to
gather enough labeled data for every search domain for fully
training domain-specific rankers. For the cost-effectiveness,
it is expected that only those most informative instances
in target domain are collected to annotate while we can
still utilize the abundant ranking knowledge in source do-
main. We propose a unified ranking framework to mutually
reinforce the active selection of informative target-domain
queries and the appropriate weighting of source training data
as related prior knowledge. We select to annotate those tar-
get queries whose documents’ order most disagrees among
the members of a committee built on the mixture of source
training data and the already selected target data. Then
the replenished labeled set is used to adjust the importance
of source queries for enhancing their rank transfer. This
procedure iterates until labeling budget exhausts. Based
on LETOR3.0 and Yahoo! Learning to Rank Challenge
data sets, our approach significantly outperforms the ran-
dom query annotation commonly used in ranking adaptation
and the active rank learner on target-domain data only.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
In recent years, a lot of learning to rank (or rank learning)

algorithms have been proposed for information retrieval (IR)
as an effective relevance ranking approach to ordering search
results [27]. Other than document ranking, learning to rank
was also widely applied to many real-world domains of ap-
plication such as online computational advertisement [26],
recommendation [41], key phrase extraction [23] and ques-
tion and answering [37].

General rank learning algorithms follow the supervised
learning paradigm which requires large amount of training
data that are usually expensive and time-consuming to ob-
tain. This limit is striking in particular for ranking because
relevance judgment is query dependent in terms of multiple
ratings, requiring annotators to carefully assess not only the
similarity between each retrieved document and the query
but also the preference order among different documents.
Giving a new ranking field, therefore, it is often desperately
desired that somehow we can keep the work of annotation
minimum while maximizing the effectiveness of learning at
same time. Such kind of effort is especially beneficial to
the quick deployment of ranking model into different search
domains for applications such as vertical search and cross-
language search towards different markets.

Domain adaptation and active learning are two general
learning paradigms that are proposed to save labeling costs
from fundamentally different perspectives. Each of them has
been successfully applied in rank learning. Ranking adap-
tation [8, 9, 10, 11, 17, 18, 19, 40] focuses on the explo-
ration of cross-domain relatedness of ranking knowledge by
reusing the training data in large amount from another do-
main (i.e. source domain) to help the rank learning in the
designated domain (i.e. target domain) where no or just a
few labeled data is available. Active rank learning [2, 15,
16, 28, 45] is motivated to proactively select and annotate
those most informative set of examples, which are expected
that, if labeled, they can maximize the information value to
the ranking function.

Despite of their different motivations and mechanisms, the
two approaches seem to be inherently complementary in a
sense that the deficiency of one method can be naturally
remedied by the strengths of another. Active rank learn-
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ing is characterized as the proactive seeking for feedback
from domain expert (e.g. an oracle), and it prevents from
using prior knowledge that sometimes is abundantly in exis-
tence elsewhere. In contrast, ranking adaptation advocates
the cross-domain transfer of prior ranking knowledge from
a related domain, which is controlled by resorting to merely
a small random set of labeled examples in target domain,
not allowing for any feedback for receiving more informa-
tive supervision. Therefore, we may take advantage of both
approaches for the cost-effective rank learning.

There is little research on combining the two paradigms
even in the general machine learning study. For this pur-
pose, we need to conquer two obvious challenges: (1) how to
effectively bridge the shift of data across domains in terms
of different joint distributions of rank features and rank la-
bels; (2) how to select the minimum set of target-domain
examples to label that can well represent the ranking in-
formation of the target domain. In this work, we propose
to combine the utilization of relevant knowledge in source-
domain training data and the active selection of informative
queries from target domain, where the performance of these
two components can be mutually reinforced within a uni-
fied iterative framework. Specifically, we first select those
target-domain queries whose document order most disagree
among the members of a committee, which is built on the
mixture of source-domain training data and the already se-
lected target data. Then the replenished labeled set is used
to adjust the importance weights of source-domain queries
for boosting the transfer of prior ranking knowledge. The
two components proceed alternately until the labeling bud-
get exhausts. With the experiments on LETOR3.0 and Ya-
hoo! Learning to Rank Challenge data sets, the results show
that our method outperforms two strong baselines: one is
based on the random query annotation commonly used in
ranking adaptation and the other is the active rank learn-
ing on target-domain data only. Note that our method, al-
though discussed in particular for ranking problem herein,
can be generalized to other learning scenarios.

The rest of the paper is organized as follows: We re-
view the related work in Section 2; Section 3 introduces the
concept of informative knowledge for adaptation; Section
4 describes active rank learning algorithm using query-by-
committee; Section 5 presents the unified learning frame-
work of active query selection for ranking adaptation; Sec-
tion 6 discusses experiments and results; Finally, we con-
clude in Section 7.

2. RELATED WORK
In this section, we outline the literature related to rank-

ing adaptation and active rank learning. The fundamentals
of learning to rank can be found in the comprehensive sur-
vey [27], which are not reviewed here due to space limit.

2.1 Ranking Adaptation
In essence, domain adaptation deals with the learning set-

ting where the training and test examples are drawn from
different distributions, which is referred to as dataset shift
problem [31]. It is hypothesized that common information
between two domains can be found and used to bridge the
shift across domains in learning. Most domain adaptation
studies are focused on classifier adaptation [3, 13, 14, 22,
46]. The main concentration of rank learning is the prefer-
ence order or the full order of multiple documents instead of

absolute class label. It is thus not straightforward to directly
apply classifier adaptation for ranking. Therefore, ranking
adaptation was received more and more attention.

Usually we have large amount of source-domain training
examples, but have only a small set of training examples
in target domain. Various ranking adaptation algorithms
have been proposed under this setting [8, 9, 10, 11, 17,
18, 19, 40]. In [11, 19], the parameters of ranking model
trained on source-domain data was adjusted with the target-
domain labeled data. [9, 10] presented instance-based and
feature-based adaptation approaches with the help of a few
target-domain training data. [40] focused on ranking adap-
tation among heterogeneous domains. [17] learned ranking
models on two domains separately and then constructed a
stronger model by interpolating them. [18] proposed a rank-
ing adaptation framework based on instance weighting in a
more relaxed setting where target-domain data need not be
labeled. [8] modeled a multi-task learning algorithm based
on boosted decision trees, where the commonalities among
different ranking tasks were leveraged to enhance those spe-
cific tasks with only few training examples.

Existing methods assume that the small set of target-
domain training examples carry domain-specific informa-
tion that can be used to guide the identification of rele-
vant examples in source domain and the transfer of their
ranking knowledge to target domain. However, this is of-
ten invalid since the target training set is commonly very
small and is predetermined randomly rather than purpose-
fully. Therefore, it can hardly well characterize the target
domain. In this work, we intend to find those most specific
target-domain examples to annotate for ranking adaptation.

2.2 Active Rank Learning
The motivation of active learning is to put limited human

resource on annotating most informative examples. Many
strategies were proposed to measure the informativeness of
unlabeled examples. The simplest one is uncertainty sam-
pling [24], where the examples whose predicted label is the
most uncertain are deemed informative. Another typical
strategy is the query-by-committee (QBC) algorithm [34],
where a committee is formed by a set of diverse hypotheses
trained on currently labeled data. The informative exam-
ples are the ones whose labels most disagree among commit-
tee members. Expected model change is yet another active
learning framework where an example is labeled if knowing
its label tends to incur some significant change on the cur-
rent model. Similarly, expected error reduction assesses the
expected generalization error reduced if the label is obtained
for an example. The comprehensive survey of active learning
is given in [33].

Active learning has been actively extended to rank learn-
ing [2, 15, 16, 28, 45]. Based on uncertainty sampling, [45]
selected the most ambiguous document pairs, in which two
documents received close scores predicted by the current
model, as informative examples. [15] chose those document
pairs, which if labeled could change the current model pa-
rameters significantly. [16] addressed active rank learning
based on expected hinge rank loss minimization criterion.
Inspired by expected loss reduction strategy, [28] recently in-
troduced an expected loss optimization framework for rank-
ing, where the selection of query and documents were inte-
grated in a principled manner.

A closely related problem to active rank learning is the
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active feedback for ad-hoc information retrieval [35, 42].
[35] presented a general framework for active feedback based
on diversity-based selection algorithm, which outperformed
traditional relevance feedback that simply selects the top
K documents. [42] described a Bayesian logistic regression
model for active feedback using the variance reduction ap-
proach to capture relevance, diversity and uncertainty of the
unlabeled documents.

2.3 The Hybrid Approach
The combination of domain adaptation and active learn-

ing is potentially more powerful and cost-effective, but so
far has not been well studied. In natural language process-
ing, [6] used naive Bayes classifier with active leaning based
on uncertainty sampling for word sense disambiguation in a
domain adaptation setting. The selection was made in the
entire set of target-domain instances. For sentiment clas-
sification, [32] leveraged the source-domain information to
learn a best initial hypothesis for active selection and ruled
out target instances on the source side using the domain sep-
arator hypothesis. [36] presented an active transfer learner,
where a few labeled examples must be provided initially for
training a target-domain classifier which is the basis of active
knowledge transfer. In cross-domain video concept detec-
tion, [25] proposed a hybrid selection strategy by combining
discriminative strategy that selected target instances near
the decision boundary and generative strategy that chose
target samples unlikely generated by the source distribu-
tion. The intent of the two strategies was to deal with the
different extent of distribution divergence between the do-
mains. To our best knowledge, there is no hybrid approach
studied for rank learning.

3. INFORMATIVE KNOWLEDGE TO
SELECT FOR ADAPTATION

Domain adaptation aims to use source-domain training
data as prior knowledge to help construct a model for tar-
get domain tasks by leveraging the common information to
bridge the gap between two domains. Figure 1 conceptually
illustrates the high-level data distribution in two related do-
mains. As we can understand, the instances in between
(in the blue ellipse) may contain some general cross-domain
knowledge and the other two groups of instances fallen apart
(in the green and red ellipses) only encode the specific knowl-
edge of their own domains, thus referred to as cross-domain
instances and domain-specific instances, respectively.

Note that the source-domain instances (red circles and
rectangles) are assumed as all labeled, in which those cross-
domain instances (red rectangles) tend to be more useful
than domain-specific instances (red circles) for the train-
ing of adaptation model. Meanwhile, to annotate those
cross-domain instances in target domain (green rectangles)
is largely not required because such equivalent knowledge
can be obtained from the cross-domain instances in source
domain. As a result, no matter there is labeled instances in
target domain or not, the most critical issue is how to ob-
tain the domain-specific knowledge of target domain (green
circles). If no target-domain instances are labeled, it is rea-
sonable to selectively label some of them for bridging the
distribution gap between two domains. On the other hand,
even if a small set of training data are available in target
domain, it is still unknown whether they can provide im-

Target Domain

target domain−specific instances
cross−domain instances 

source domain−specific instances

Source Domain

Figure 1: A conceptual illustration of data distri-
bution of two domains. The cross-domain instances
from source domain can help in learning the rank-
ing model for target domain. Proactively selecting
to label the target domain-specific instances is im-
portant to the success of adaptation.

portant domain-specific knowledge because they are usually
randomly sampled for annotation. Therefore, it is neces-
sary to purposefully select and annotate those most infor-
mative instances in target domain for providing domain-
specific knowledge which is not contained in the source-
domain training data.

One is likely to argue that with the initial set of labeled
data in target domain people can simply perform in-domain
active learning with no need of adaptation. We emphasize,
however, that since the initial set is usually small and ran-
dom, one must be dedicated to select wide spectrum of in-
stances to strengthen the diversity of the labeled set. With
the out-of-domain training data, it is expected that we need
not label the cross-domain instances in target domain as
the equivalent relevant knowledge can be acquired from the
cross-domain instances in source domain, and thus can only
focus on selecting and labeling those most specific target-
domain instances for acquiring the informative knowledge
useful for adaptation. Therefore, the overall labeling cost
can be saved as compared to in-domain active learning.

4. QBC-BASED ACTIVE RANK LEARNING
Before elaborating our entire active rank learning frame-

work in the next section, we discuss some essential issues on
how pure active learning is applied to ranking. As compared
to active classification, one of the most important differences
is that in active rank learning it can be more flexible to
choose informative examples at various levels such as query
level [43, 44], document level [5, 15, 16, 45] or the combi-
nation of both [28]. Both query-level and document-level
selection strategies have their own drawbacks. Query-level
selection tends to waste labeling effort on non-informative
documents when the number of documents for each query is
large. Document-level selection assumes unrealistically that
the documents or document pairs are independent of queries
and may lead to the missing of informative queries or unde-
sirable labeling results for rank learning [28]. For example,
only one document is selected in a query or all the docu-
ments selected in a query have the same rating. Without
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the loss of generality, we adopt query-level selection because
of three reasons: (1) The generation of preference order pat-
terns are prescribed within the scope of queries. The prefer-
ence order of documents across queries are meaningless for
web search ranking; (2) The informativeness of a selected
query is more straightforward to measure with various rank
evaluation criteria based on the list of its documents; (3) It
is easy to extend query-level selection by further considering
the informative documents associated with the query.

In this section, we present active query selection for rank-
ing based on the typical query-by-committee (QBC) tech-
nique [34]. The QBC-based algorithm is implemented with
two necessary components. The first is to build a committee
of ranking models that are well diversified and compatible
with the currently labeled data. The second is to measure
the informativeness of queries by calculating the disagree-
ment among the committee members on their ranking of
search results, which aims at the selection of optimal queries.
We describe the two components in Section 4.1 and 4.2.

4.1 Construct the Committee
A committee consists of multiple ranking models as com-

mittee members. Previously, different methods for building
the committee have been proposed according to the genre
of committee members. For generative model, the mem-
bers can be obtained by randomly sampling the posterior
distribution of model parameters [29]. For discriminative
model, Abe and Mamitsuka [1] proposed two algorithms
called query-by-boosting and query-by-bagging based on the
ensemble leaning methods boosting and bagging [4]. We use
query-by-bagging considering that most ranking algorithms
are discriminative and bagging is a more general and flex-
ible in this setting. Given the set of currently labeled in-
stances Dl, bagging generates T partitions of sub-samples
by sampling uniformly from Dl with replacement, and then
the committee can be constructed by training each of its
members on one portion of the sub-sample partitions.

Algorithm 1 details our QBC-based active selection algo-
rithm using bagging. Suppose we initially have a small base
set of queries and their labeled documents (labeled queries
for short throughout the rest of paper). Similarly, we sample
with replacement for T times in the set of labeled queries and
train a ranking model on each subset of queries. In step 3,
we set the size of each subset to be m% of |Dl| and m is fixed
so that the size of subsets keeps growing with the increase of
|Dl|. In step 5, the informative query qi is selected for anno-
tation whose document ranking most disagrees among the
T members (see Section 4.2 for the measurement on rank-
ing disagreement). With the required number of informa-
tive queries being selected and annotated, the final ranking
model H is trained on Dl in step 9.

4.2 Measure Ranking Disagreement
Given a query q, the committee members h1, h2, . . . , hT

return T ranked lists. We need to measure the inconsistency
of these different rankings. The query whose documents are
the most inconsistently ranked by the members is consid-
ered as informative query. All the traditional disagreement
measures used by QBC are for classification purpose. Two
well-known measures are vote entropy [12] and average KL-
divergence [29]. For the KL-divergence-based metrics, the
probability distribution of instance labels need be accurately
estimated, and it cannot be directly extended to ranked list

Algorithm 1 Active rank learning based on bagging

Input:
N : The number of queries to be labeled
T : The size of committee
Db: The base set of queries initially labeled, |Db| > 0
Dl: Labeled queries, |Dl| = 0
Du: Unlabeled queries, |Du| > 0

Output:
Ranking model H derived from Dl;

1: Dl ← Db;
2: for i = 1; i ≤ N ; i++ do
3: Sample queries in Dl uniformly with replacement, ob-

tain subsets S1, S2, . . . , ST , each with size |Dl| ×m%;
4: Train on each subset and obtain ranking models

h1, h2, . . . , hT ;
5: Find qi ∈ Du whose ranking list most disagree among

h1, h2, . . . , hT ;
6: Obtain the rank label of each document in qi;
7: Dl ← Dl + qi, Du ← Du − qi;
8: end for
9: Training H on Dl;
10: return H ;

for the popular pairwise or listwise algorithms. Inspired by
vote entropy, we find that the members can vote on each
partial order of any document pair 〈di � dj〉, where di has
a higher ranking score than dj . Given q and its correspond-
ing ranked list Dq , the vote entropy of q can be defined as
follows:

V E(q) = − 1

T

∑
di,dj∈Dq

V (〈di � dj〉) log V (〈di � dj〉)
T

(1)

where V (〈di � dj〉) denotes the number of votes given by
committee members who agree that di is ranked higher than
dj , and T is the size of committee. The query with max-
imum vote entropy will be selected from the unlabeled set
for annotation. That is, q∗ = argmaxq{V E(q)}.

5. ACTIVE RANKING ADAPTATION
Ranking adaptation requires finding the most informative

target-domain knowledge as the right teacher for guiding the
cross-domain transfer of ranking knowledge. As discussed in
Section 3, the cross-domain instances from source domain
shown in Figure 1 carry the common knowledge relevant to
target domain. Such kind of common knowledge from source
domain only need to be identified for reuse but not to be
taught de novo since their rank labels already exist. Once
identified, such kind of information can be used to choose
those most domain-specific instances in target domain for
annotation so that the transfer of ranking knowledge can
take place. Clearly, two important problems need to be
solved: (1) How to identify the cross-domain instances from
source domain? (2) How could the identified cross-domain
knowledge be exploited to choose target domain-specific in-
stances for annotation?

We address the first problem by query weighting scheme
where an appropriate importance or commonality measure is
introduced to evaluate the degree of relevance of each source-
domain query instance relative to the target domain. It
can be expected that the cross-domain queries receive higher
weights than domain-specific queries. Inspired by QBC, we
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approach the second problem by selecting those informative
queries from target domain with the help of cross-domain
queries that are appropriately weighted. In return, with
more target domain-specific queries labeled, it is expected to
benefit the weighting of source queries in the first problem.

In this section, we model these two problems in a unified
framework to mutually reinforce the source query weight-
ing and the active selection of informative target queries by
leveraging their reciprocal nature.

5.1 The Framework
Our ranking adaptation framework is built on the mix-

ture of training data consisting of two parts: one is the
source-domain training data appropriately weighted so that
the cross-domain queries can be emphasized; another is the
actively selected queries from target domain which tend to
be those most domain-specific queries with rank labels as-
signed by an oracle (e.g. human annotator). Note that our
method does not distinguish whether some labeled data is
initially available or not in target domain. Let f denote
ranking function, and based on RankSVM [20], the over-
all active ranking adaptation framework incorporating the
mixed training data is formulated as to minimize the L2
norm of hyperplane parameter �w and the Hinge loss on pairs:

argmin
�w

{
1

2
||�w||2

+ λs

∑
qs∈Ds

�qs∑
i=1

W (qs) ∗
[
1− zi ∗ f

(
�w, �x

(1)
i − �x

(2)
i

)]+

+λt

∑
qt∈Dt

�qt∑
j=1

[
1− zj ∗ f

(
�w, �x

(1)
j − �x

(2)
j

)]+⎫⎬
⎭ (2)

where zi =

{
+1, if x

(1)
i � x

(2)
i ;

−1, otherwise
is the binary value de-

pending on the ground-truth order of two documents in the
i-th pair, the Hinge loss terms in [.]+ correspond to the
source-part loss and target-part loss based on source train-
ing queries in Ds and the actively selected target training
queries in Dt (|Ds| � |Dt|), respectively, W (qs) is the im-
portance weight of source query qs, �qs and �qt are respec-
tively the number of document pairs in source query qs and
target query qt, and λs and λt are free coefficients balanc-
ing the volumes of the two sets. Generally, we set λt � λs

because |Dt| is much less than |Ds| and the training should
focus on the ranking accuracy of target domain.

We first describe our query weighting scheme in Section 5.2,
and then present our framework to combine adaptation with
active selection in Section 5.3.

5.2 Query Weighting
Intuitively, if the retrieved documents associated with a

source query qs can be ranked well by the target ranking
model which is learned on target training data only, it im-
plies that the document information in qs is more likely to
be consistent to the target domain, thus should be deemed
as more important. Otherwise qs may be incompatible with
target domain. Based on this intuition, W (qs) can be esti-
mated with the ranking performance on qs produced by the
target ranking model. Since the source data are all labeled,
we can directly use Normalized Discounted Cumulative Gain
(NDCG) [21] as performance measure, which is calculated

Algorithm 2 Ranking adaptation based on query weighting

Input:
Ds: Training data in source domain, |Ds| > 0
Dt: Training data in target domain, |Dt| > 0
λs, λt: The free balance coefficients

Output:
Ranking model H for target domain;

1: Learn ranking model Ht on Dt;
2: for i = 1; i ≤ |Ds|; i++ do
3: Calculate W (qis) by Ht using Equation 3;
4: end for
5: Train H on Ds and Dt with W (.), λs and λt;
6: return H ;

as follows:

W (qs) =
1

Zn

n∑
i=1

2r(i) − 1

log(1 + i)
(3)

where r(i) denotes the rank label of the i-th document in
the ranked list, n is length of the ranked list and Zn is a
normalization constant which is chosen so that the perfect
list gets score of 1. The procedure of ranking adaptation
based on query weighting is given in Algorithm 2.

Note that in query weighting we assume certain labeled
queries in target domain have been available for training the
target ranking model. In practice, however, there can be no
training data in target domain at the beginning, which is
to be selected actively from scratch using the source-domain
data (see the next Section).

5.3 Active Adaptation
Active adaptation algorithm should select the most in-

formative target queries to annotate for obtaining domain-
specific knowledge. Interestingly, we find the selection can
be done with the help of source training queries that are
weighted properly as discussed earlier. The soundness of our
approach is due to the following. Note that the cross-domain
queries in source domain are highlighted by weighting. It can
be expected that the model built on these weighted training
data can rank the cross-domain queries in target domain
much better than the target domain-specific queries. In
other words, the rank of target domain-specific queries (the
queries we attempt to identify) tend to be less predictable,
therefore leading to greater disagreement among the com-
mittee members. Therefore, the committee encourages the
selection of these informative queries with domain-specific
knowledge. The details of the procedure are presented in
Algorithm 3.

For building the committee, which exhibits adequate di-
versity in terms of different generalization power of its mem-
ber models, we need to resample the two sets in step 2 and 3.
And then we train a ranking model on each combined subset
in step 4, which makes the committee covered at utmost by
the training patterns in Ds and Dt. The informative query
qi is selected in step 5. Since Dt is augmented stepwise and
each committee member is built on Ds and the up-to-date
Dt, the information of each new labeled qi does not overlap
with that in Ds and Dt. Finally, the final ranking model
H is trained in step 9. Note that the committee is trained
on the mixture of subsets of two domains, which does not
change its tendency of choosing domain-specific queries from
target domain.
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Algorithm 3 Active query selection for ranking model
adaptation

Input:
Ds: Training data in source domain, |Ds| > 0
Dt: Training data in target domain, |Dt| ≥ 0
Du: Unlabeled queries in target domain
N : The number of queries need to be labeled
T : The size of committee

Output:
Ranking model H for target domain;

1: for i = 1; i ≤ N ; i++ do
2: Sample Ds uniformly with replacement, obtain sub-

sets Ss1 , Ss2 , . . . , SsT ;
3: Sample Dt uniformly with replacement, obtain sub-

sets St1 , St2 , . . . , StT ;
4: Train on each Ssi +Sti using Algorithm 2 and obtain

committee members h1, h2, . . . , hT ;
5: Find qi ∈ Du whose ranking most disagree among

h1, h2, . . . , hT ;
6: Obtain the rank label of each document in qi;
7: Dt ← Dt + qi, Du ← Du − qi.
8: end for
9: Train H on Ds and Dt using Algorithm 2;
10: return H ;

Table 1: The statistics of the two data sets used for
adaptation experiments according to different do-
mains

Data set Domains # queries # docs/query

LETOR3.0

HP03 150 1000
NP03 150 1000
NP04 75 1000
TD04 75 1000

Yahoo!
Y!Large 29,921 22.7
Y!Small 6,330 26.3

The main differences between the in-domain active rank
learning (see Algorithm 1) and the active ranking adapta-
tion (see Algorithm 3) are twofold. First, the former needs
a set of initially labeled target queries to start the active
learning process, and this is not necessary for the latter. Sec-
ond, in contrast to the in-domain active rank learning, active
ranking adaptation can make full use of the prior knowledge
from source training data. At a high level, the relationship
between ranking adaptation based on query weighting (see
Algorithm 2) and active ranking adaptation resembles the
connection between general supervised learning and active
learning in that the former randomly selects instances to
label and the latter only selects the informative ones.

6. EXPERIMENTS AND RESULTS

6.1 Data Sets
We used two data sets for our experiments: LETOR3.01

and Yahoo! Learning to Ranking Challenge2 data sets. The
statistics of two data sets are summarized in Table 1.

1http://research.microsoft.com/en-us/um/beijing/
projects/letor/
2http://learningtorankchallenge.yahoo.com/
datasets.php

LETOR3.0 was constructed from the raw document col-
lections of TREC 2003 and 2004 Web track. The raw data
were preprocessed into the standard format for learning to
rank [30]. In LETOR3.0, each query-document pair is rep-
resented by 64 features, including both low-level features
such as term frequency, inverse document frequency and
document length, and high-level features such as BM25,
language-modeling, PageRank and HITS. The relevance judg-
ments take binary values, i.e., 1 (relevant) and 0 (irrele-
vant). In TREC’s Web track, three ranking tasks were de-
fined, namely Home Page Finding (HP), Named Page Find-
ing (NP) and Topic Distillation (TD) [38, 39]. HP aims to
return the homepage of the specific organization or person.
NP is required to return the page whose name is exactly the
query. TD is to return a list of entry points of good websites
that contain the contents relevant to the topic. We regard
each query task as a different but related domain.

Yahoo! Learning to Ranking Challenge held a track for
transfer ranking. This track provided two sets of rank train-
ing data of search engines, each from a different country.
The larger set (denoted as Y!Large) serves as source domain,
and the smaller one (denoted as Y!Small) as target domain.
There are total 700 features provided, but the feature def-
inition is not disclosed to public. Some of the features are
defined for source or target domain only while some oth-
ers are defined for both. The relevance judgment of each
query-document pair takes 5 levels from 0 (irrelevant) to 4
(perfectly relevant).

6.2 Setup
With LETOR data, since HP and NP are similar tasks but

TD is rather different, we conducted experiments on HP03-
to-NP04 and NP03-to-TD04 adaptation, where the former
setting is for adapting to a similar domain and the latter for
adapting to a distinct one. The aim is not only to compare
the effectiveness of different algorithms, but also to examine
whether the adaptation can be done between domains with
various degree of divergence. With Yahoo! data, we simply
follow the original setting of the Challenge, i.e. Yahoo!Large
as source and Yahoo!Small as target.

We partitioned each set of the data in target domain into
two parts, one part as the unlabeled pool for active query se-
lection and the other used for evaluation only. In each round
of active selection, we set the sample size as the number of
currently labeled queries, i.e. m% = 100%. For efficiency,
we constructed only 2 members in a committee. The free
parameters λs and λt were set such that λs

λt
is inversely pro-

portional to |Ds|
|Dt| .

Three baselines were studied comparatively. The first
is the most fundamental one that randomly selects target
queries for annotation, denoted as Random-T. This is the
classical passive rank learning setting. The second is the
pure active rank learning in a single domain, which actively
selects target queries based on QBC using Algorithm 1, de-
noted as Active-T. Note that the first two baselines did
not exploit source-domain prior knowledge. The third one
is a typical ranking adaptation approach that is trained
on source training data and the randomly sampled target
training queries for adaptation based on the proposed query
weighting scheme using Algorithm 2, denoted as RandomAda-
S-T. Our proposed active ranking adaptation in Algorithm 3
is also trained and denoted by ActiveAda-S-T. Addition-
ally, the super-naive adaptation method is performed for
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reference where the model trained on source data is directly
used for target domain.

The ranking performance was measured by NDCG@10
(see Equation 3) and Expected Reciprocal Rank (ERR) [7].
ERR is computed as follows:

ERR =

n∑
i=1

1

i
R(ri)

i−1∏
j=1

(1−R(rj)) (4)

where ri is the relevance level of document ranked at the i-
th position, R(r) = 2r−1

2rmax is a mapping from relevance level
to probability of relevance (rmax is the maximum relevance
level), and n is the length of document list.

6.3 Results and Discussions
In this section, we present and discuss the experimen-

tal results on the three ranking adaptation settings. The
learning curves of different algorithms on HP03-to-NP04,
NP03-to-TD04 and Y!Large-to-Y!Small ranking adaptation
are shown in Figure 2, 3 and 4, respectively. As we can see,
there are some general observations based on all three sets
of results shown in the figures.

1. Including more training data from target domain is
clearly more helpful to all the algorithms except for
the super-naive adaptation (the straight lines in each
figure) which does not use any target data. However,
with more and more training data selected from tar-
get domain, different selection strategies tend to con-
verge to some similar effectiveness. We are particu-
larly concerned with their performance gap when not
many queries are selected, which manifests the advan-
tage of active selection that focuses on obtaining min-
imum number of examples.

2. Active-T consistently outperforms Random-T. T-test
demonstrates that the improvement is statistically sig-
nificant at most of the check points (p-value less than
0.03). This indicates that our query selection strat-
egy based on query-by-bagging using vote entropy as
ranking disagreement measure can choose informative
queries much more effectively than the random selec-
tion. Note that Active-T must start from some initial
set of labeled queries, for which we randomly choose 5
labeled queries.

3. RandomAda-S-T and ActiveAda-S-T respectively out-
perform Random-T and Active-T. T-test indicates that
both of the improvements are significant most of the
times with p < 0.03 and p < 0.05, respectively. This
implies that the relevant ranking knowledge from the
related domain is helpful to improve the ranking tasks
in target domain, which can be successfully achieved
by using our proposed source query weighting mea-
sure based on NDCG that reflects how well the source
queries can be ranked by the target model.

4. RandomAda-S-T and Active-T are basically compara-
ble. Either one is not consistently better or worse than
the other. This implies that the contribution of ran-
dom in-domain ranking knowledge plus out-of-domain
knowledge, which are largely imprecise but abundant,
tends to be equivalent to that of using a small amount
of accurate in-domain knowledge.

5. Most importantly, ActiveAda-S-T outperforms all other
algorithms and the trend is evident especially when
not so many target queries are selected. T-tests shows
that it significantly outperforms Random-T (p < 0.01),
Active-T (p < 0.03) and RandomAda-S-T (p < 0.05)
most of the times. This implies the cost-effectiveness
of our active ranking adaptation approach using out-
of-domain relevant knowledge to help the selection of
target domain-specific queries. That is, with limited
amount of budget for annotating the selected queries,
our method performs the most effectively.

Our underlying assumption is that the prior training data
is freely available from source domain. This follows the gen-
eral presupposition of domain adaptation that ignores the
original expense on collecting source data. However, from
the perspective of active learning practitioners, the cost of
out-of-domain training data seems not completely negligi-
ble as they might be purchased or built-in-house with initial
expenses. How to take into account such cost is an open
question. We believe that the initial cost is dissolved grad-
ually as the data are reused repeatedly. Therefore, it’s fair
for us to ignore it here and leave the issue for future study.

6.3.1 HP03-to-NP04 Adaptation
The learning curves of the algorithms under HP03-to-

NP04 setting are shown in Figure 2(a) and Figure 2(b) based
on NDCG@10 and ERR, respectively. Several particular ob-
servations in this setting are noteworthy.

Indeed the two domains are similar evidenced as the gen-
erally large NDCG@10 and ERR scores even with the super-
naive adaptation method. This suggests that the model
trained only using HP03 performs not so bad for ranking
on NP04 as compared to ranking model trained directly on
NP04 using limited number (say around 15) of randomly
sampled queries. Furthermore, because of the close simi-
larity between the two domains, randomly introducing new
queries from target domain does not significantly disturb the
original data distribution of source domain. As we can ob-
serve, therefore, the increasing trend of the performance of
RandomAda-S-T keeps relatively smooth and is almost always
superior than Active-T because the purposeful selection is
not an advantage under this situation.

6.3.2 NP03-to-TD04 Adaptation
The learning curves of the algorithms under NP03-to-

TD04 setting are shown in Figure 3(a) and Figure 3(b) based
on NDCG@10 and ERR, respectively.

Compared to HP03-to-NP04 adaptation above, the two
domains here have large data distribution gap. Therefore,
it is more difficult for adaptation algorithms to achieve high
NDCG@10 and ERR scores. Meanwhile, due to the large
distribution gap, randomly introducing new queries from
TD04 tends to disturb the distribution of NP03 rendering
its predictive power unstable. This is clearly visible when
not many random TD04 queries are used. In Figure 3(a)
and Figure 3(b), the performance of RandomAda-S-T demon-
strates some large variations when less than 15 TD04 queries
are selected. Since this small number of instances are ran-
domly chosen which may not be the domain-specific ones,
they may not be able to help positively the weighting of
source queries, which further harms the adaptation. As
a consequence, RandomAda-S-T occasionally performs even
worse than Random-T.
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Figure 2: The performance comparison of different algorithms for HP03-to-NP04 ranking adaptation using
LETOR3.0 dataset. The source domain is Home Page finding task in TREC-2003 (HP03) and the target
domain is Named Page finding task in TREC-2004 (NP04). Random-T: Random query selection in target
domain only; Active-T: Active query selection in target domain only; RandomAda-S-T: Random selection of
target queries for ranking adaptation; Active-S-T: Active selection of target queries for ranking adaptation.
The horizontal straight line is the performance of super-naive adaptation method which is trained only with
source-domain training data.
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Figure 3: The performance comparison of different algorithms for NP03-to-TD04 ranking adaptation using
LETOR3.0 dataset. The source domain is Named Page Finding task in TREC-2003 (NP03) and the target
domain is Topic Distillation task in TREC-2004 (TD04).

However, with more and more queries in target domain
used, the target ranking model for query weighting can be
radically enhanced, which then boosts the power of adap-
tation with the relevant prior ranking knowledge. With
more than 30 target queries selected, RandomAda-S-T can
outperform Active-T since Active-T cannot take advantage
of source queries.
ActiveAda-S-T does not suffer from this random factor

since the target queries are selected purposefully to provide
the domain-specific knowledge, which aims to reinforce the
weighting of source queries so as to boost up adaptation
performance very quickly with minimum cost.

6.3.3 Y!Large-to-Y!Small Adaptation
This set of experiments examine the ranking performance

in the Y!Large-to-Y!Small adaptation setting. Note that

the feature space of the two domains are different. We did
not particularly deal with the feature difference since our
method is instance-based adaptation focusing on the selec-
tion of instances. We just naively expanded the feature space
to include all features of both domains where the missing
features were given as 0. We leave the feature-based study
for future work. The learning curves of the algorithms are
shown in Figure 3(a) and Figure 3(b) based on NDCG@10
and ERR, respectively. Here we discuss some particular ob-
servations with this setting.

On Yahoo! data set, we find that RandomAda-S-T outper-
forms Active-T most of the times. This data set is charac-
terized as the large scale source training data whose size is
approximately 5 times of the target data. The results indi-
cate that the large source data is very useful for the ranking
adaptation as well as query selection in the target domain.
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Figure 4: The performance comparison of different algorithms for Y!Large-to-Y!Small ranking adaptation
using Yahoo! Learning to Rank Challenge dataset. The source domain is the large set (Y!Large) and the
target domain is the small set (Y!Small).

The explanation is that with lots of labeled data, more cross-
domain knowledge can be encoded in the source domain. It
is more likely that these cross-domain relevant knowledge in
source domain are even more helpful than those most infor-
mative target queries identified by Active-T.

Furthermore, unlike on LETOR where the performance
of ActiveAda-S-T converges more quickly than others, we
do not observe any trend of convergence up to the point
with 2000 selected queries. This is because even the smaller
target domain on Yahoo data (Y!Small) contains a lot more
queries than LETOR does. Therefore, we can deduce that
if with very limited budget, a small unlabeled pool of target
data is a reasonable choice to do active adaptation, but if
with some large budget, we should use a large unlabeled
pool to take the most advantage out of active adaptation.

7. CONCLUSION AND FUTURE WORK
We propose a general rank learning framework by using

the combination of active query selection and ranking model
adaptation that are rooted from inherently complementary
learning paradigms. The idea is that active selection focuses
on providing concise knowledge while adaptation encourages
the transfer of prior relevant knowledge, and the combina-
tion leverages both to improve the overall cost-effectiveness
of rank learning. Specifically, we extend and incorporate the
essential techniques commonly used in active sampling (e.g.
query-by-committee) and domain adaptation (e.g instance
weighting) into our unified iterative framework so that the
two components are mutually reinforced to boost up the
overall ranking performance. Experiment results show that
our active ranking adaptation approach not only saves con-
siderable amount of labeling effort but also significantly im-
proves ranking effectiveness.

Our framework provides a general approach that can be
used to combine various specific active ranking and ranking
adaptation algorithms for cost-effective rank learning. Our
algorithm did not outperform the champion of the Yahoo!
Learning to Rank Challenge because we just applied the es-
sential ranking techniques such as RankSVM rather than the
sophisticated ones such as rank boosting trees used by oth-
ers. However, the sophisticated ranking algorithms can be

tried in a trivial manner. Also, we merely investigated query
selection and weighting in this work, but it is expected that
our method can be extended without difficulty to document
level which will be studied in the future.
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