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Abstract
We study to incorporate multiple views of data in a
perceptive transfer learning framework and propose
a Multi-view Discriminant Transfer (MDT) learn-
ing approach for domain adaptation. The main idea
is to find the optimal discriminant weight vectors
for each view such that the correlation between the
two-view projected data is maximized, while both
the domain discrepancy and the view disagreement
are minimized simultaneously. Furthermore, we
analyze MDT theoretically from discriminant anal-
ysis perspective to explain the condition and rea-
son, under which the proposed method is not appli-
cable. The analytical results allow us to investigate
whether there exist within-view and/or between-
view conflicts, and thus provides a deep insight into
whether the transfer learning algorithm work prop-
erly or not in the view-based problems and the com-
bined learning problem. Experiments show that
MDT significantly outperforms the state-of-the-art
baselines including some typical multi-view learn-
ing approaches in single- or cross-domain.

1 Introduction
Transfer learning allows the domains, distributions, and fea-
ture spaces used in training being different from those in test-
ing [Pan and Yang, 2010]. It utilizes labeled data available
from some related (or source) domain in order to achieve
effective knowledge transformation from it to the target do-
main. It is of great importance in many data mining appli-
cations, such as document classification [Sarinnapakorn and
Kubat, 2007], sentiment classification [Blitzer et al., 2011],
collaborative filtering [Pan et al., 2010], and Web search
ranking [Gao et al., 2010].

Many types of data are described with multiple views or
perspectives. Multi-view learning aims to improve classifiers
by leveraging the redundancy and consistency among distinct
views [Blum and Mitchell, 1998; Rüping and Scheffer, 2005;
Abney, 2002]. Most existing multi-view algorithms were de-
signed for single domain, assuming that either view alone is
sufficient for the prediction of target class. However, this
view-consistency assumption is largely violated in the setting
of transfer learning where training and test data are drawn

from different distributions and/or even from distinct feature
space. Little research has been done on multi-view transfer
learning in the literature.

A fundamental problem in machine learning is to deter-
mine when and why a given technique is applicable [Martı́nez
and Zhu, 2005]. However, for most existing transfer learning
methods, the conditions regarding when the algorithms work
properly are yet unclear. This paper is motivated to incor-
porate the multiple views of data across different domains in
a perceptive transfer learning framework. Here “perceptive”
means it is known when the proposed method works properly
prior to its deployment. We proposed the Multi-view Dis-
criminant Transfer (MDT) learning approach. Its objective
is to find the optimal discriminant weight vectors for each
view such that the correlation between the two-view projected
data is maximized, while both the domain discrepancy and
the view disagreement are minimized simultaneously. MDT
incorporates the domain discrepancy and the view disagree-
ment by taking a discriminant analysis approach, which can
be transformed into a generalized eigenvalue problem. Then,
we investigate theoretical conditions regarding when the pro-
posed multi-view transfer method works properly from dis-
criminant analysis perspective. The theoretical results al-
low us to measure the balance between the view-based dis-
criminant power, and investigate whether there exist within-
view and/or between-view conflicts. Under such conflicts, the
learning algorithm may not work properly. Obviously, know-
ing when the proposed multi-view transfer learning work be-
forehand is crucial to many real-world applications especially
when either domains or views are too “dissimilar”.

The major contributions of this paper can be highlighted
as follows: (1) We propose a novel MDT approach to incor-
porate the multi-view information across different domains
for transfer learning. It incorporates the domain discrepancy
and the view disagreement by taking a discriminant analy-
sis approach, which leads to a compact and efficient solution.
It addresses the questions of what and how to transfer. (2)
We present a theoretical study on the MDT model to illus-
trate when and why the proposed method is not applicable,
which answers the the question of when to transfer. To the
best of our knowledge, there is no existing work focusing
on the theory regarding when a multi-view transfer learning
method works properly. (3) Experiments show that MDT sig-
nificantly outperforms the state-of-the-art baselines.

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

1848



2 Related Work
Transfer learning models data that are from related but not
identically distributed sources. As pointed out by [Pan and
Yang, 2010], there are three fundamental issues in transfer
learning, i.e., what to transfer, how to transfer, and when to
transfer. Despite the importance of avoiding negative transfer,
little research has been done for “when to transfer” [Cao et
al., 2010; Yao and Doretto, 2010].

How to measure domain distance is also important to trans-
fer learning. Pan et al. [2011] proposed transfer component
analysis (TCA) for reducing distance between domains in
a latent space for domain adaptation. Huang et al. [2006]
proposed Kernel Mean Matching (KMM) approach to re-
weight the instances in source domain so as to minimize the
marginal probability difference between two domains. Quanz
and Huan [2009] defined the projected maximum mean dis-
crepancy (MMD) to estimate the distribution distance under
a given projection. We use the projected MMD to estimate
the domain distance in both views because it is very effective
and easy to be incorporated into our framework.

Multi-view learning has been studied extensively un-
der single-domain setting, such as Co-Training [Blum and
Mitchell, 1998] and its extensions [Collins and Singer, 1999;
Dasgupta et al., 2001]. Abney [2002] relaxed the view in-
dependence assumption and suggested that the disagreement
rate of two independent hypotheses upper bounds the error
rate of either hypothesis. Nevertheless, multi-view learning
is not effective for transfer since they treat distinct domains
indiscriminately.

Little was done for multi-view transfer. Chen et al. [2011]
proposed CODA for adaptation based on Co-Training [Blum
and Mitchell, 1998], which is however a pseudo multi-view
algorithm where original data has only one view and may
not be effective for the true multi-view case. Zhang et
al. [2011] presented an instance-level multi-view transfer al-
gorithm (MVTL-LM) that integrates classification loss and
view consistency terms in a large-margin framework. Unlike
MVTL-LM, MDT is of feature level which mines the correla-
tions between views together with the domain distance mea-
sure to improve the transfer, and a theoretical analysis shows
that the model is perceptive.

Linear discriminant analysis (LDA), which is also called
Fisher discriminant analysis (FDA) [Fisher, 1938], searches
for those vectors in the underlying feature space that can best
discriminate classes. Its goal is to maximize the between-
class distance while minimizing the within-class distance.
LDA has played a major role in the areas of machine learning
and pattern recognition, such as feature extraction, classifi-
cation and clustering [Belhumeur et al., 1997]. The idea of
Kernel Fisher Discriminant (KFD) [Mika et al., 2001] is to
solve the problem of FDA in a kernel feature space, thereby
yielding a nonlinear discriminant given the input space.

FDA2 [Diethe et al., 2008], a two-view extension of FDA,
was proposed to incorporate multi-view data with labels into
the Canonical Correlation Analysis (CCA) [Melzer et al.,
2003] framework. Our proposed mothed extends FDA2 by
taking into account the domain discrepancy and enhancing
view consistency, thus leads to better adaptation performance.

Martı́nez and Zhu [2005] reported on a theoretical study
demonstrating the condition the LDA-based methods do not
work. They showed that the discriminant power is related to
the eigensystems of the matrices that define the measure to be
maximized and minimized. We further extend [Martı́nez and
Zhu, 2005] to the multi-view scenario which could provide
a deep insight into when the algorithm work properly on the
view-based problems and the combined problem.

3 Multi-view Discriminant Transfer Model
3.1 Problem Statement
Suppose we are given a set of labeled source-domain data
Ds = {(xi, zi, yi)}ni=1 and unlabeled target-domain data
Dt = {(xi, zi, ?)}n+m

i=n+1 consisting of two views, where xi
and zi are column vectors of the ith instance from the first
and second views respectively, and yi ∈ {−1, 1} is its class
label. The source and target domain data follow different dis-
tributions. Our goal is to assign the appropriate class label to
the instance in the target domain.

Let φ(·) be the kernel function of mapping the instances
from the original feature space to a reproducing kernel Hilbert
space (RKHS). Let wx and wz be the weights vectors in the
mapped feature space for the first and the second views, re-
spectively. Define the data matrix for the first view, X =

(XT
s , X

T
t )

T where Xs = (φ(x1), · · · , φ(xn))T and Xt =

(φ(xn+1), · · · , φ(xn+m))
T . Define Z, Zs, and Zt for the

second view respectively. The class label vector of the source
data is denoted by y = (y1, · · · , yn)T . Let n+ and n− be
the number of positive and negative instances in the source
domain.

3.2 Two-view Fisher Discriminant Analysis
Diethe et al. [2008] extended Fisher Discriminant Analysis
(FDA) into FDA2 by incorporating the labeled two-view data
into the Canonical Correlation Analysis (CCA) [Melzer et al.,
2003] framework as follows:

max
(wx,wz)

wT
xMwwz√

wT
xMxwx ·

√
wT
zMzwz

(1)

where

Mw = XT
s yy

TZs

Mx =
1

n

n∑
i=1

(φ(xi)− µx)(φ(xi)− µx)T

Mz =
1

n

n∑
i=1

(φ(zi)− µz)(φ(zi)− µz)T

where µx and µz are the means of the source data from the
two views such as µx = 1

n

∑n
i=1 φ(xi), respectively. The

numerator in Eq.(1) reflects the between-class distance which
needs to be maximized, while the denominator reflects the
within-class distance which should be minimized. The above
optimization problem is equivalent to selecting those vectors
which maximize the Rayleigh quotient [Melzer et al., 2003]

r =
ξTQwξ

ξTPξ
(2)
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where

Qw =

(
0 Mw

MT
w 0

)
, P =

(
Mx 0
0 Mz

)
, ξ =

(
wx

wz

)
(3)

Note that Qw encodes the between-class distance, while P
encodes the compound information about the view-based
within-class distances. ξ is the eigenvector. Such an opti-
mization is different from [Diethe et al., 2008] and facilitates
the extension of FDA2 to cross-domain scenario, which will
be presented in following sub-section.

For an unlabeled instance, (xi, zi, ?) ∈ Dt, the classifica-
tion decision function is given as follows:

f(xi, zi) =
[
wT
x φ(xi) + wT

z φ(zi)− b
]

(4)
where the threshold b = bx+bz , bx and bz are chosen to bisect
the two centers of mass of the source data from each view
such as wTx µ

+
x − bx = bx −wTx µ−x where µ+

x and µ−x are the
means of source positive and negative instances, respectively.

3.3 The Proposed MDT Model
Our goal is to incorporate FDA2, domain distance and view
consistency into a unified discriminant analysis framework.
The main idea is to find the optimal discriminant weight vec-
tors for each view such that the correlation between the pro-
jections of the two-view data onto these weight vectors is
maximized, while both the domain discrepancy and view dis-
agreement are minimized simultaneously.

Domain Distance
Quanz and Huan [Quanz and Huan, 2009] defined the pro-
jected maximum mean discrepancy (MMD) to estimate the
distribution distance under a given projection. Here we adopt
projected MMD [Quanz and Huan, 2009] to estimate the do-
main distance for each view such as:

|| 1
n

n∑
i=1

wTx φ(xi)−
1

m

n+m∑
i=n+1

wTx φ(xi)||2 = wTxX
TLXwx

where

L =

( 1n×n

n2 −1n×m

nm

−1m×n

nm
1m×m

m2

)
The domain distance for both views can be summed up as
follows:

wTxX
TLXwx + wTz Z

TLZwz = ξTQdξ (5)
where

Qd =

(
XTLX 0

0 ZTLZ

)
View Consistency
Maximizing view consistency is equivalent to minimizing the
disagreement of view-specific classifiers. We use both la-
beled source data and unlabeled target data to estimate the
difference of predictions resulting from distinct views as fol-
lows:

n+m∑
i=1

||wTx φ(xi)− wTz φ(zi)||2 = ξTQc ξ (6)

where

Qc =

(
XTX −XTZ
−ZTX ZTZ

)

Algorithm 1 Co-Train based MDT Algorithm
Input:

The source dataset Ds = {(xi, zi, yi)}ni=1

The target dataset Dt = {(xi, zi, ?)}n+m
i=n+1

Output:
Class label assigned to each instance in Dt;

1: repeat
2: Solve the generalized eigenvalue problem defined in Eq.(8),

and then obtain the eigenvector ξ with the largest eigenvalue;
3: Use Eq.(4) to predict the target instance (xi, zi) ∈ Dt, which

is labeled as sign[f(xi, zi)];
4: Move κ most confident positive and negative instances with

top absolute predicted scores |f(xi, zi)| from Dt to Ds sep-
arately;

5: until Convergence is reached;

Overall Objective
In summary, Eq.(5) is to minimize domain distance ξTQdξ,
and Eq.(6) is to minimize view disagreement ξTQcξ. The
particular forms of both domain distance and view disagree-
ment make them easier to be incorporated into the FDA2
framework. We define Q = Qw − c1Qd − c2Qc where c1, c2
are trade-off coefficients. By integrating the domain distance
and view disagreement into Eq.(2), the overall objective of
MDT is to maximize

r =
ξTQξ

ξTPξ
(7)

which is equivalent to solving the following generalized
eigenvalue problem [Duda et al., 2001]:

Qξ = λPξ (8)

where λ is the eigenvalue, and ξ is the eigenvector.
The eigenvectors corresponding to the largest eigenval-

ues represent the maximally correlated directions in feature
space. It is straightforward to resolve this eigenvalue prob-
lem and obtain wx and wz .

Our Co-Train [Blum and Mitchell, 1998] based algorithm
is given in Algorithm 1. In each iteration, it moves the most
confident target instances to the source training set so that the
performance can be gradually boosted. For the free parameter
κ, we empirically set κ = 5%.

4 Theoretical Analysis
We present the theoretical analysis on the proposed model to
illustrate when the approach would not work properly.

Many machine learning problems can be formulated as
an eigenvalue decomposition problem [Martı́nez and Zhu,
2005]. It is of great importance to analyse whether these
algorithms work or not. Martı́nez and Zhu [2005] showed
that when such approaches work properly is related to the
eigensystems between Q and P . Specifically, the discrim-
inant power tr(P−1Q) is related to the ratios between the
eigenvalues of Q and P , as well as the angles between the
their corresponding eigenvectors. The algorithm would be-
come unstable if we cannot maximize ξTQξ and minimize
ξTPξ simultaneously, which is referred to as the conflict be-
tween the eigensystems of Q and P .
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However, under the multi-view situation, these results can
not be directly used to analyse the view-based discriminant
power. It is blind to whether there exist between-view and/or
within-view conflicts. Therefore, we further extend these re-
sults to a multi-view setting which is given in Lemma 1.

Lemma 1. Suppose rq , rx, and rz are the ranks of Q, Mx,
and Mz , respectively. The discriminant power tr(P−1Q) is
calculated as:

tr(P−1Q) =

rq∑
i=1

rx∑
j=1

λqi
λxj

[(
ξxj

0

)T

ξqi

]2

+

rq∑
i=1

rz∑
j=1

λqi
λzj

[(
0
ξzj

)T

ξqi

]2

(9)

where λqi(1 ≤ i ≤ rq) and ξqi are the i-th largest eigenvalue
and the corresponding eigenvector of Qξ = λξ, λxj (1 ≤
j ≤ rx) and ξxj are the j-th largest eigenvalue and the cor-
responding eigenvector of Mxξ = λξ, and λzj (1 ≤ j ≤ rz)
and ξzj are the j-th largest eigenvalue and the corresponding
eigenvector of Mzξ = λξ.

The proof of the lemma is given in the Appendix. Lemma 1
shows that the total discriminant power tr(P−1Q) can be de-
composed into view-base discriminant powers, i.e., the first
and second items in the right hand side of Eq.(9). It indi-
cates whether our proposed algorithm works properly or not
is pertinent to the relationship among the eigensystems of Q,
Mx, and Mz . Based on Lemma 1, each pair of eigensys-
tems (xj , qi) (or (zj , qi)) will have a discriminant power such

as λqi

λxj

[(
ξxj

0

)T

ξqi

]2

. Those pairs with similar eigenvectors

will have a higher weight v(xj , qi) =

[(
ξxj

0

)T

ξqi

]2

than

those that differ. When the pair (xj , qi) that agree correspond
to a small eigenvalue ratio λqi

λxj
, the results are not guaranteed

to be optimal. In this case, the results will be determined by
the ratios between the eigenvalues of Mx and Q.

The power of Lemma 1 is that the results presented above
allow us to measure the balance between the view-based dis-
criminant power, and investigate whether there exist within-
view and/or between-view conflicts. Specifically, within-
view conflict means Q and Mx (or Mz) favor different so-
lution directions, while between-view conflict means view-
based classifiers favor different solution directions. A sim-
plified illustrative example will be given in the next section.
Therefore, it provides a deep insight into whether the algo-
rithm work properly or not on the view-based problems and
the combined learning problem, as well as their correlation.

Note that Q encodes the compound information about
between-class distance, domain distance and view consis-
tency that defines the measure to be maximized, while Mx

and Mz encodes the information about the within-class dis-
tance that defines the measure to be minimized for the view-
based learning problems, respectively. It is worth noting the
interpretation here is applicable to both multi-view transfer

learning (c1 6= 0) and general multi-view learning (c1 = 0)
since they share the same mathematical form as Eq.(8).

5 Experiments
5.1 Synthetic Dataset
First, we generate the synthetic dataset to provide an intu-
itive geometric interpretation to the theoretical analysis of the
proposed model. Two three-class datasets with two views
are generated. The datasets are detailed in Table 1. For
each class, 100 instances are randomly drawn from a two-
dimensional Gaussian distribution with the specified mean
and covariance. The 2D scatter plots for the two synthetic
datasets are shown in Figure 1 and 2. After the datasets are
generated, we can obtain Q, Mx, and Mz for each dataset.
Then the eigenvalues are given in Table 1, and the eigenvec-
tors are shown as the dashed lines in Figure 1 and 2.

Figure 1 shows an example where the algorithm works well
on the first synthetic dataset. According to Eq.(7), the objec-
tive is to maximize the measure given by Q, i.e., between-
class distance from the two views, while minimizing those of
Mx and Mz , i.e., within-class distance in the first and sec-
ond view, respectively 1. For the first view shown in Fig-
ure 1(a), Q would like to select ξq1 rather than ξq2 to max-
imize the between-class distance since λq1 > λq2 . Like-
wise, Mx prefers to select ξx2 rather than ξx1 to minimize
the within-class distance in view 1 since λx2 < λx1 . Thus,
both Q and Mx agree with each other on the same direction
ξ∗1 = ξq1 = ξx2

. However, for the second view, Q would
like to select ξq1 as a solution, whereas Mz prefers to se-
lect ξz2 . It indicates that there exists a within-view conflict.
Based on Lemma 1, the model weights each pair of eigen-
vectors (ξzj , ξqi) according to their agreement. Here we have
v(q1, z1) = v(q2, z2) = 1 > v(q1, z2) = v(q2, z1) = 0.
In this case, whether the result is optimal or not will be de-
termined by the eigenvalues ratio between Q and Mz . Since
λq1

λz1
= 5.84 >

λq2

λz2
= 5.65, the solution direction for view 2

will be ξ∗2 = ξq1 = ξz1 with the corresponding larger eigen-
value ratio. In summary, since the two views agree on the
same direction, the final solution direction is ξ∗ = ξ∗1 = ξ∗2 ,
which is optimal though there are within-view conflict in the
second view.

Figure 2 shows an example where the algorithm fails on the
second synthetic dataset. Note that the parameters to generate
the two datasets are nearly the same except for the highlighted
means of the third class in the second view, as shown in Ta-
ble 1. The similar analysis shows that there exists a conflict
between the views. The algorithm selects ξ∗ = ξ∗2(⊥ξ∗1) as
the final solution direction, which however is not correct.

5.2 Real Dataset
Data and Setup
Cora [McCallum et al., 2000] is an online archive which con-
tains approximately 37,000 computer science research papers
and over 1 million links among documents. The documents
are categorized into a hierarchical structure. We selected a

1To provide an intuitive interpretation, the example is simplified
by considering within-class and between-class distances only.

1851



Table 1: The description of the synthetic dataset.
Datasets View 1 View 2 Eigenvalues

Covariance Means for three classes Covariance Means for three classes λx1 λx2 λz1 λz2 λq1 λq2
SynSet 1 diag(1,3) [-5,0], [5,0], [0,5] diag(3,1) [-5,0], [5,0], [0,5] 7.19 2.57 8.24 2.65 48.16 14.96
SynSet 2 diag(1,3) [-5,0], [5,0], [0,5] diag(3,1) [-5,0], [5,0], [0,25] 9.15 3.02 8.26 2.77 94.30 46.45

Figure 1: An example illustrating that the algorithm works properly
on SynSet1. (a) In the first view, both Q and Mx agree with each
other on the direction ξ∗1 = ξq1 = ξx2 . (b) In the second view, Q
andMz disagree with each other, and the solution direction for view
2 is ξ∗2 = ξq1 = ξz1 . Since the two views agree with each other, the
final solution direction is ξ∗ = ξ∗1 = ξ∗2 , which is optimal.

Figure 2: An example illustrating that the algorithm fails on
SynSet2. (a) In the first view, Q and Mx disagree with each other,
and the solution direction for view 1 is ξ∗1 = ξq2 = ξx2 . (b) In
the second view, Q and Mz agree with each other on the direction
ξ∗2 = ξq1 = ξz2 . In this case, the two views disagree with each
other. The algorithm selects ξ∗ = ξ∗2(⊥ξ∗1) as the final solution
direction, which however is not correct.

subset of Cora with 5 top categories and 10 sub-categories:
- DA 1: /data structures algorithms and theory/
computational complexity/ (711)
- DA 2: /data structures algorithms and theory/
computational geometry/ (459)
- EC 1: /encryption and compression/encryption/ (534)
- EC 2: /encryption and compression/compression/ (530)
- NT 1: /networking/protocols/ (743)
- NT 2: /networking/routing/ (477)
- OS 1: /operating systems/realtime/ (595)
- OS 2: /operating systems/memory management/ (1102)
- ML 1: /machine learning/probabilistic methods/ (687)
- ML 2: /machine learning/genetic algorithms/ (670)
We used a similar way as [Pan and Yang, 2010] to construct
our training and test sets. For each set, we chose two top cat-

egories, one as positive class and the other as the negative.
Different sub-categories were deemed as different domains.
The task is defined as top category classification. For exam-
ple, the dataset denoted as DA-EC consists of source domain:
DA 1(+), EC 1(-); and target domain: DA 2(+), EC 2(-). The
method ensures the domains of labeled and unlabeled data re-
lated due to the same top categories, but the domains are dif-
ferent because they are drawn from different sub-categories.

We preprocessed the data for both text and link informa-
tion. We removed words or links with frequency less than 5.
Then the standard TF-IDF [Salton and Buckley, 1988] tech-
nique was applied to both the text and link datasets. More-
over, we generated the merged dataset by putting both the
word and link features together. The MDT algorithm used the
RBF kernel to map the data from the original feature space to
the RKHS. The classification error rate on target data is used
as evaluation metric, which is defined as the number ratio be-
tween the misclassified instances and the total instances in the
target domain.

Performance Comparison
We compared MDT with a variety of the state-of-the-art algo-
rithms such as Transductive SVM (TSVM) [Joachims, 1999]
which is a semi-supervised classifier, traditional multi-view
algorithm Co-Training [Blum and Mitchell, 1998], large-
margin-based multi-view transfer learner MVTL-LM [Zhang
et al., 2011] and Co-Training based adaptation algorithm
CODA2 [Chen et al., 2011].

For simplicity, we used the postfix -C, -L and -CL to de-
note that the classifier was fed with the text, link and merged
dataset, respectively. Both the text and link datasets were
fed to the multi-view classifiers Co-Training, MVTL-LM and
MDT. Since CODA is a pseudo multi-view adaptation algo-
rithm, to fit our scenario, the CODA was fed with the merged
dataset. For each dataset, we repeated the algorithms five
times and reported the average performance.

Table 2 shows the results. TSVM performed poorly for
adaptation when using either content or link features. Sim-
ply merging the two sets of features make some improve-
ments, implying that text and link can be complementary,
but it may degrade the confidence of the classifier on some
instances whose features become conflict because of merge.
Co-Training can avoid this problem by boosting the confi-
dence of classifiers built on the distinct views in a comple-
mentary way, thus performs a little better than TSVMs. Since
both TSVM and Co-Training don’t consider the distribution
gap, they performed worse than the adaptation algorithms
such as MVTL-LM, CODA and MDT.

Since FDA2 only utilized the labeled information, its gen-
eralization performance is not comparable with the semi-
supervised methods such as TSVM-CL and Co-Training.

2http://www1.cse.wustl.edu/∼mchen/code/coda.tar
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Table 2: Comparision of adaptation error rate on different datasets.
Algorithms DA-EC DA-NT DA-OS DA-ML EC-NT EC-OS EC-ML NT-OS NT-ML OS-ML Average
TSVM-C 0.293 0.175 0.276 0.217 0.305 0.355 0.333 0.364 0.205 0.202 0.272
TSVM-L 0.157 0.137 0.261 0.114 0.220 0.201 0.205 0.501 0.106 0.170 0.207

TSVM-CL 0.214 0.114 0.262 0.107 0.177 0.245 0.168 0.396 0.101 0.179 0.196
Co-Train 0.230 0.163 0.175 0.171 0.296 0.175 0.206 0.220 0.132 0.128 0.190

MVTL-LM 0.192 0.108 0.068 0.183 0.261 0.176 0.264 0.288 0.071 0.126 0.174
CODA 0.234 0.076 0.109 0.150 0.178 0.187 0.322 0.240 0.025 0.087 0.161
FDA2 0.407 0.159 0.267 0.212 0.324 0.154 0.277 0.255 0.088 0.152 0.229
MDT 0.107 0.082 0.102 0.118 0.154 0.167 0.149 0.178 0.072 0.057 0.119

MDT significantly outperformed FDA2 on most of the
datasets. Note that FDA2 is a special case of our approach
(c1 = c2 = 0). MDT outperformed FDA2 by taking the do-
main discrepancy into consideration and enhancing the view
consistency.

It is shown that MDT outperformed MVTL-LM. This is
because MDT fully leverages the correlation between views
by projecting the two-view data onto the discriminant direc-
tions. Since the content and links may share some common
topics, both views are correlated to each other at the semantic
level. MDT utilizes two views of the same underlying seman-
tic content to extract a shared representation, which helps im-
prove the generalization prediction performance. Moreover,
incorporating the projected domain distance measure into the
optimization framework to minimize the domain discrepancy
is another competency of MDT.

CODA outperformed Co-Training and MVTL-LM by
splitting the feature space into multiple pseudo views and it-
eratively adding the shared source and target features based
on their compatibility across domains. However, since its ob-
jective is non-convex, CODA may suffer from sub-optimal
solution on view splitting. Furthermore, CODA cannot fully
utilize both the text and link information since the pseudo
views generated are essentially not as complementary as true
multiple views in our case. It performed worse than MDT, in-
dicating that pseudo views might be detrimental. In contrast,
MDT incorporated view consistency and domain distance by
taking a discriminant analysis approach and performed better.

Parameter Sensitivity
Here we examine how our algorithm is influenced by the
trade-off coefficients c1 and c2. The search range for c1 and
c2 are {0, 1, 4, 16, 64, 256, 1024, 4076}. The results on DA-
EC are shown in Figure 3. We observe that the best results
can be achieved when c1 = 256 and c2 = 16. The algo-
rithm performed worse when either domain distance (c1 = 0)
or view consistency (c2 = 0) is not taken into consideration.
However, when the magnitude of the value is very large given
c1 = 4096, the domain distance part will dominate the entire
objective which would deteriorate the accuracy. We have the
similar trend of error rate by increasing c2.

As a result, we tune the trade-off parameters c1 and c2 for
each dataset by cross-validation on the source data.

6 Conclusion
We present the MDT approach which incorporates the do-
main distance and view consistency into the FDA2 frame-
work to improve the adaptation performance. Experiments

(a) Error rate varies with c1 (c2=16) (b) Error rate varies with c2 (c1=256)

0.000

0.050

0.100

0.150

0.200

0.250

0 1 4 16 64 256 1024 4096

c1

e
rr

o
rr

a
te

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0 1 4 16 64 256 1024 4096

c2

e
rr

o
rr

a
te

Figure 3: The sensitivity of performance varies with c1 and c2.

show that MDT performed significantly better than the state-
of-the-art baselines. Furthermore, we report on the theoretical
analysis of the proposed approach and discuss the condition
that the given technique is applicable.

Next we will extend our model to the scenario of multiple
(>2) views/domains, which is not straightforward to imple-
ment. Though the conflicts between views/domains are not
observed on the real dataset, it is more likely to occur in the
situations of multiple views/domains and needs further inves-
tigation. Similar to [Martı́nez and Zhu, 2005], we will de-
velop a robust algorithm in attempting to avoid the conflicts.

A Proof of Lemma 1
Proof. Suppose rp, rq , rx, and rz are the ranks of P , Q, Mx, and Mz , respec-
tively. Since P , Mx and Mz are symmetric, there exist respective orthogonal ma-
trices Up, Ux and Uz to diagonalize them. Thus, P , Mx, and Mz can be writ-
ten as the similar form such as P = UpΛpU

T
p =

∑rp
j=1 λpj

ξpj ξ
T
pj

, where

Up = (ξp1 , · · · , ξprp ), Λp = diag{λp1
, · · · , λprp

} and λp1
≥ λp2

≥
· · · ≥ λprp

. On the other hand, P is a block matrix which can also be written as

P =

(
Mx 0
0 Mz

)
=

(
UxΛxU

T
x 0

0 UzΛzU
T
z

)
=

(
Ux 0
0 Uz

)(
Λx 0
0 Λz

)(
UT

x 0

0 UT
z

)
(10)

Then we can connect the eigensystem of P to those ofMx andMz as follows

{λp1 , · · · , λprp
} = {λx1 , · · · , λxrx

} ∪ {λz1 , · · · , λzrz
} (11)

ξpj =


(
ξxj

0

)
, if λpj

∈ {λx1
, · · · , λxrx

}(
0
ξzj

)
, if λpj

∈ {λz1
, · · · , λzrz

}
(12)

where 1 ≤ j ≤ rp = rx +rz . Hence, we could reach the final conclusion as follows

tr(P
−1
Q) =

rq∑
i=1

rp∑
j=1

λqi

λpj

(ξ
T
pj
ξqi )

2

=

rq∑
i=1

rx∑
j=1

λqi

λxj

[(
ξxj

0

)T

ξqi

]2

+

rq∑
i=1

rz∑
j=1

λqi

λzj

[(
0
ξzj

)T

ξqi

]2

where the first term follows from [Martı́nez and Zhu, 2005] and the second follows from
Eq.(11), and Eq.(12).
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