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ABSTRACT
In recent years, an unhealthy phenomenon characterized as the
massive spread of fake news or unverified information (i.e., rumors)
has become increasingly a daunting issue in human society. The
rumors commonly originate from social media outlets, primarily
microblogging platforms, being viral afterwards by the wild, willful
propagation via a large number of participants. It is observed that
rumorous posts often trigger versatile, mostly controversial stances
among participating users. Thus, determining the stances on the
posts in question can be pertinent to the successful detection of
rumors, and vice versa. Existing studies, however, mainly regard
rumor detection and stance classification as separate tasks. In this
paper, we argue that they should be treated as a joint, collaborative
effort, considering the strong connections between the veracity of
claim and the stances expressed in responsive posts.

Enlightened by the multi-task learning scheme, we propose a
joint framework that unifies the two highly pertinent tasks, i.e.,
rumor detection and stance classification. Based on deep neural
networks, we train both tasks jointly usingweight sharing to extract
the common and task-invariant features while each task can still
learn its task-specific features. Extensive experiments on real-world
datasets gathered from Twitter and news portals demonstrate that
our proposed framework improves both rumor detection and stance
classification tasks consistently with the help of the strong inter-
task connections, achieving much better performance than state-
of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Natu-
ral language processing;Multi-task learning; •Applied com-
puting → Document analysis;

KEYWORDS
Rumor detection; Stance classification; Multi-task learning; Weight
sharing; Social media; Microblog

ACM Reference Format:
Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Detect Rumor and Stance
Jointly by Neural Multi-task Learning. InWWW ’18 Companion: The 2018
Web Conference Companion, April 23–27, 2018, Lyon, France.ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3184558.3188729

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3188729

1 INTRODUCTION
The popularity of microblogging websites makes them important
for information dissemination and sharing. Hundreds of millions of
users could spontaneously post messages on microblogs to release
latest news or share their opinions about various information ev-
eryday. Without accurate systematic effort to moderate the posts,
large volumes of fake or unverified information can emerge and
spread for various motivations, like conducting social advertising,
political astroturfing, etc. For instance, during the 2016 US election,
massive fake news spread on social media such as Facebook and
Twitter, which has led to real-world political repercussions1.

The massive spread of rumors could seriously hurt the user ex-
perience and hinder the healthy development of microblogging
systems. It is observed however that skeptical and opposing voices
against rumors always arise along with their propagation, serving
as helpful indicators that signal the truthfulness of information.
Thus, identifying rumors as well as analyzing various stances on
the concerned information are meaningful and beneficial for giving
early precautions on rumor’s diffusion in order to minimize its
negative influence. Nevertheless, both rumor detection and stance
classification are challenging tasks due to the ever-increasing vol-
umes of microblog data and the complex nature of controversies.

Rumor detection aims to determine the veracity of a given claim
about some subject matter. Traditional approaches either used su-
pervised machine learning algorithms that incorporate a wide vari-
ety of featuresmanually crafted from post content, user profiles, and
diffusion patterns of the posts [6, 24, 28, 33, 45], or exploited rules or
regular expressions to discover unusual patterns from tweets [47].
To alleviate the heavy manual effort in these methods, models
without feature engineering were proposed more recently and had
achieved promising results for the task, e.g., purely data-driven
models using recurrent neural networks [32, 40] and a tree-kernel-
based model capturing high-order propagation structures [34].

Stance detection aims to determine the different attitudes ex-
pressed in a text towards a specific target. Several supervised mod-
els were developed for the task based on feature engineering ap-
proach [1, 38, 41, 46]. Lukasik et al. [29, 30] dealt with rumor stance
classification by considering both temporal and textual signals via
continuous time sequence classification using Hawkes processes.
More recently, Zubiaga et al. [48] exploited the conversational struc-
ture among microblog texts for classifying tweet stance. Another
line of work mainly focus on using deep learning models, such
as recurrent or convolutional neural networks [3, 43] for stance
feature learning and classification.

Previous analyses also indicate that false rumors tend to pro-
voke tremendous controversies than normal news report [35, 49], in
which denying and questioning stances were found playing crucial

1http://money.cnn.com/2016/11/17/technology/facebook-election-influence/
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(a) In 50 false rumors (b) In 50 true rumors

Figure 1: The proportions of different stances regarding ru-
morous claims change over time (in # of hours since initial
tweets), which demonstrates the variation of stance distribu-
tions in rumors that are later proven to be false or true.

role in signaling claims as being rumors. It is noticed that several
studies on rumor detection have taken into account such kind of
stance-bearing signals in their models [28, 38, 47]. In this paper, we
argue that such approach exploiting stance information for aiding
rumor detection is narrow and suboptimal, which can be radically
revolutionized into a joint reinforcement approach for boosting
the performance of both rumor detection and stance classification
tasks in one shot. Our idea is motivated by the observation that
people’s stances are closely correlated with the veracity of con-
cerned information. We assume that there can be some positive
mutual feedback established between the two tasks: the indicative
stances towards a claim can be helpful for debunking the rumor
while validating the veracity of the claim is in turn conducive to
infer the stances of involved posts. Figure 1 illustrates the intuition
using statistics based on a set of 100 real-world rumorous events
randomly sampled from our datasets (see Section 6.1). It can be
seen that users tend to express denying stance more often than
supporting stance in false rumors than in true rumors, which can
be used to indicate rumor types for rumor detection; on the other
hand, given the type of rumor, the tweets about false rumors are
more likely to hold denying than supporting stance, and conversely
in the tweets about true rumors, suggesting that the stances in
relevant tweets may be inferred based on rumor types.

Inspired by the success of multi-task learning [5, 26], we attempt
to reinforce rumor detection and stance classification together via
mutual feedback in a unified architecture. Different from exist-
ing models that regard the two tasks independent, in this paper
we propose unified multi-task models that learn a set of common,
bilaterally friendly features relevant to both of the tasks to facili-
tate their interaction while each task can also learn to strengthen
their task-specific features via a mutual learning process. This is
achieved by using multi-layer recurrent neural networks (RNN),
where we employ a shared layer and a task-specific layer to ac-
commodate different types of representations of the tasks and their
corresponding parameters. Benefited from not only having more
data (i.e., additionally from a relevant task) for training, the use
of multi-task learning also reduces overfitting to each individual
task. Thus, the learned representation can result in more compact
models than those built from surface-form features on a single
task. Experimental results show that the joint learning on the two

rumor-related tasks together can improve the performance of each
task significantly relative to learning them in separate.

Our contributions are of three folds:
• To the best of our knowledge, this is the first work that aims
to tackle rumor detection and stance classification together in a
unified approach based onmulti-task learning, which successfully
learns to represent and classify data for two core tasks jointly.
• We propose two multi-task architectures based on RNNs for
capturing shared common features from the two tasks, and also
show that our model is not only compact but also enables agile
development to new information source platform such as news
reports apart from microblogs.
• We empirically evaluate our proposed method via extensive ex-
periments on real-world datasets from Twitter and news reports,
demonstrating that our multi-task approach significantly im-
prove the performances on both tasks simultaneously.

2 RELATEDWORK
In this section, we provide a brief review of the research related
to ours in three main areas: rumor detection, stance classification,
and multi-task learning.

2.1 Rumor Detection
Detecting rumors is an important research topic and has been
studied in various disciplines [12, 37, 42]. Social psychology litera-
ture generally defined a rumor as “unverified and instrumentally
relevant information statements in circulation” [14]. This unver-
ified information may eventually turn out to be true, partly or
entirely false, or remain unresolved [49]. Supervised classification
was widely used to identify rumors in social media posts. The main
concern of this approach is to define effective features for train-
ing rumor classifiers. Castillo et al. [6] provided a wide range of
features crafted from the post contents, user profiles and propaga-
tion patterns. Subsequently, further studies [17, 19, 24, 33, 44] were
conducted to detect rumors with several new temporal features for
representing rumor diffusion.

Instead of defining complex feature sets, Zhao et al. [47] focused
on early rumor detection by using regular expressions (such as “not
true”, “unconfirmed” or “really?”, etc.) for finding questioning and
denying tweets as the key for debunking rumors. More recently,
Ma et al. [32] and Rath et al. [40] used RNN to learn automati-
cally the representations of rumors and rumor spreaders from post
content and user interactions at different times, respectively. Ma
et al. [34] also proposed a tree-kernel-based method which captures
high-order propagation patterns for differentiating various types of
rumors on Twitter. In this work, we will learn better representations
of rumors by leveraging feature learning capacity from two related
tasks, which can be considered a two-task extension of the prior
RNN-based rumor detection method [32].

2.2 Stance Detection
Stance detection has gained increasing popularity in different re-
search areas [9, 39]. One of the pioneering studies was reported
by Mendoza et al. [35], which aims to understand the stances with
respect to different type of rumors via non-automated manual anal-
ysis. They found that the vast majority of tweets related to true
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rumors hold supporting stance, whereas half of the tweets on false
rumors are denied or questioned.

In automated methods, existing studies can be divided into two
categories: The first category is to extract indicative features and
then apply supervised learning techniques to classify the stances.
Following Qazvinian et al. [38] who aimed to classify rumor-related
tweets into supportive or not, a wide range of features were pro-
posed in follow-up studies to improve the performance of stance
classification [28, 46]. But these stance classifiers ignored the rumor
identities and temporal dependencies. More recently, Lukasik et al.
[29, 30] exploited the temporal sequence to classify tweet stances in
a sequence regarding a rumor using Gaussian Process and Hawkes
Process. Zubiaga et al. [48] built a tree-CRF classifier that learns
the dynamics of stance in tree-structured conversations such as
Twitter replies, instead of classifying tweets in isolation. Unlike the
traditional binary classification (i.e., support or denial), these recent
research performed a finer-grained classification to encompass all
different kinds of reactions to rumors which include supporting,
denying, questioning and commenting (SDQC).

The second category is the models based on deep neural net-
works. Kochkina et al. [22] employed LSTM for sequential clas-
sification of tweet stances, where a bidirectional LSTM encoding
approach was used to represent tweets relevant to the target [3].
Chen et al. [7] used convolutional neural networks (CNN) for obtain-
ing the representation of each tweet, then assigned probabilities to
different classes that the tweet may belong to by a softmax classifier.
One drawback of the existing methods is that they only consid-
ered that a tweet is conditioned on the target, but ignored that the
stances are also conditioned on the truthfulness of the target. This
observation, as mentioned in [47], could potentially be leveraged
to improve the model for stance classification.

2.3 Multi-task Learning
The general idea of multi-task learning dates back to [5], which
aims to improve the performance of a task using other related
tasks. Most of multi-task learning or joint learning models can
be regarded as parameter sharing approaches, where models are
trained jointly and parameters or features are shared across multiple
tasks [2]. There has been amount of research on multi-task learning
in pipelined Natural Language Processing (NLP) tasks, such as word
segmentation, POS tagging and dependency parsing [4, 20, 25], and
more recently on text classification [26].

In the context of neural models for NLP, multi-task learning
has been proven effective in many related problems. For example,
Collobert and Weston [10] proposed an unified framework which
uses a shared lookup table for input words, and then jointly trained
several NLP tasks using convolutional neural networks such as
part-of-speech tagging, semantic role labeling and named-entity
recognition. Liu et al. [27] developed a multi-task deep neural net-
work for learning shared representations for arbitrary text across
multiple tasks, which combines query classification and ranking for
web search. More recently, neural multi-task learning was applied
to sequence-to-sequence problems with recurrent neural networks.
Several multi-task encoder-decoder networks were proposed for
neural machine translation [13, 16], which allows translating one

source language to many target languages by making use of cross-
lingual information. Luong et al. [31] utilized multi-task sequence-
to-sequence models to study the ensemble of a wide range of tasks,
e.g., syntactic parsing, machine translation, image caption, etc. Liu
et al. [26] introduced three RNN-based architectures to model text
sequence which provided different information sharing mecha-
nisms for multiple text classification tasks. In most of these models,
multi-task architectures basically share some lower layers across all
tasks to determine common features, while the remaining layers are
task specific. Our model is inspired from the general sharing struc-
ture for RNN-based multi-task learning [26]. Our main challenge
lies in designing an effective shared weighting method to obtain
better task-specific representations by enhancing the interaction
between the rumor pertinent tasks.

3 PROBLEM FORMULATION
Our goal is to formulate a multi-task model that jointly learns the
rumor detection and stance classification models, where one task
may or may not use data from the same source as the other. For
instance, we can typically use tweets in rumor detection but use
news reports in stance classification, considering the availability of
training data and specific setting.

Since tweets are short in nature, containing very limited context,
a claim is generally associated with a collection of posts that are
relevant to it. Therefore, we model the Twitter data as a set of claims
{C1,C2, · · · ,C |C |}, where each claim Ci = {(xi j , ti j )} is composed
of a set of relevant tweets, and xi j is a post posted at time ti j .

Rumor detection: We formulate this task as a supervised se-
quence classification problem, which learns a classifier f from la-
beled claims where each claimCi corresponds to an input sequence
of its relevant posts xi1xi2 . . . xiTi , that is, f : xi1xi2 . . . xiTi → Yi ,
where Yi takes one of four possible class labels: Non-rumor, True
rumor, False rumor and Unverified rumor (NTFU). If one is con-
cerned about the truthfulness of individual post, the task can be
turned into sequence-to-sequence problem. But since such setting
is uncommon in rumor detection, we do not consider it here.

Stance Classification: This task refers to determine the type
of orientation that each individual post or a document expresses
towards the veracity of a claim. We formulate it as a sequence la-
beling or sequence classification problem depending on the specific
type of input:
• When the input claim Ci is composed of a sequence of
posts xi1xi2 . . . xiTi , it modeled as sequence labeling, that
is, д : xi1xi2 . . . xiTi → yi1yi2 . . .yiTi , where each yi j is the
label that takes one of supporting, denying, questioning or
commenting (SDQC). In particular, commenting is assigned
to tweets that do not add anything to the veracity of a claim.
• When stance detection is applied to applications such as
fake news detection2, an input claim (or headline) can be
associated with a single news article. Therefore, it is con-
sidered as classifying the news article body into one of the
four categories above. Let xi1xi2 . . . xiTi be the sequence of
sentences of the article corresponding to a claim or head-
line Ci , the problem becomes sequence classification, i.e.,
д′ : xi1xi2 . . . xiTi → yi , where yi takes one of SDQC.

2www.fakenewschallenge.org
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4 JOINT RUMOR AND STANCE DETECTION
Compared to standalone learning models, multi-task learning ap-
proach can take advantage of the related tasks to learn complex
signals indicative of fake information. By considering the inter-task
correlations, the representations learned in one task can be shared
and used to reinforce the feature learning of the other task, thus
boosting the overall performance of both tasks via mutual feed-
back within a unified framework. For instance, a strong false rumor
feature is most likely to be projected to the vicinity of a feature
indicating denial or question in the shared representation space,
whereas a feature indicating comment or time would be largely
projected into the specific feature space of their own task.

Inspired by the RNN-based neural multi-task model [26], we
present two deep architectures based on RNN with a shared layer.
The first model contains only a single shared hidden layer and the
second model is enhanced by considering additional task-specific
hidden layers apart from the shared layer. Our model is different
from [26] in that 1) we aim to deal with heterogeneous rumor-
related tasks where input and output structures vary widely among
the tasks while their model is focused on homogeneous, traditional
text classification tasks; 2) our method learns to optimize separate
objectives of different tasks instead of only a same objective; 3) we
use Gated Recurrent Unit (GRU) [8] for representing hidden units
rather than Long-Short Term Memory (LSTM) [21] for efficiency.
The architectures of our models are shown in Figure 2.

4.1 Uniform Shared-Layer Architecture
In this model, the different tasks share a same hidden layer and
each task has its own task-specific input and embeddings, which is
shown as the Uniform Shared-Layer Architecture in Figure 2(a).

For a taskm, given a sequence of posts or sentences {xmt } for an
input claim, a straightforward strategy is to map each input unit
xmt at time step t to a fixed-sized vector using one RNN, for which
we adopt GRU [8] as hidden representation. For each t , the GRU
transition equations are the following:

x̃mt = Emxmt

rmt = σ
(
Ws

r x̃
m
t + U

s
rh

m
t−1

)
zmt = σ

(
Ws

z x̃
m
t + U

s
zh

m
t−1

)
h̃mt = tanh

(
Ws

h x̃
m
t + U

s
h (h

m
t−1 ⊙ rt )

)
hmt = (1 − zmt ) ⊙ hmt−1 + z

m
t ⊙ h̃mt

(1)

where xmt is the t-th post and Em denotes the task-specific em-
bedding matrix, [W s

∗ ,U
s
∗ ] are the weight connections inside GRU

which are shared across different tasks. As defined in standard GRU,
hmt and hmt−1 refer to the current and previous state, respectively;
⊙ denotes element-wise multiplication; a reset gate rmt determines
how to combine the current input xmt with the previous memory,
and an update gate zmt defines how much previous memory from
the previous posts is cascaded into the current time step; and h̃mt
denotes the candidate activation of the hidden state hmt .

For the sequence classification in rumor detection task, the out-
put of the last time step hT can be straightforwardly associated
with the representation of the entire post sequence. For stance
classification task in particular, however, most previous research

did not treat it as a sequence problem, especially for news data.
Instead, it was typically modeled to classify a given headline-article
(or claim-post) pair, which thus ignored the valuable contextual
information among sentences (or posts) [3, 38, 46]. Here we aim to
solve a sequence problem (i.e., either being sequence labeling or
sequence classification depending on the form of input data (see
Section 3)), and input a headline (or claim) at the first time step
plus its corresponding sentences (or posts) sequence for the rest of
the time steps in an RNN, provided that the pairwise similarities
among the neighboring units can be leveraged to improve sequence
labeling or classification performance (see Section 5 for detail).

4.2 Enhanced Shared-Layer Architecture
The Uniform Shared-Layer Architecture fully shares all the GRU
parameters of the hidden features extracted from the two tasks. So,
the two tasks can capture and share the common patterns that are
highly weighted. However, there is a shortcoming as it ignores the
fact that some patterns should be more important in one task than
in the other. For example, since rumor detection task needs to pay
more attention on veracity-related information, patterns conveying
semantics like “true” and “false” would be more important than
patterns representing “believe” and “don’t think” which are sup-
posed more useful for stance classification task. In order to address
the problem, we extend the model by adding an extra task-specific
layer into the architecture for each task.

As shown in Figure 2(b), the Enhanced Shared-Layer Architec-
ture adopts two hidden layers for each task: one is used to extract
the common pattens via the shared parameters, and the other is
used to capture task-specific features via the separate parameter
sets. Accordingly, each task is assigned a shared GRU layer and a
task-specific GRU layer, which hopefully can be used to capture
the shared and local representations for different tasks.

Specifically, for a taskm, the output of the shared layer at time
step t is computed as hst = GRU (hst−1,x

m
t ), where the function

GRU (·) is a shorthand of Eq. 1. To enhance the interaction between
the task-specific layers and the shared layer, we redefine Eq. 1 and
let the hidden output at t be dependent on the hidden state from
the shared layer hst , the previous hidden state from the task specific
layer hmt−1, and the current input xmt . Therefore, the hidden state
of the task-specific layer for taskm can be computed as:

x̃mt = Emxmt

rmt = σ
(
Wm

r x̃mt + U
m
r hmt−1 + U

s→m
r hst

)
zmt = σ

(
Wm

z x̃mt + U
m
z h

m
t−1 + U

s→m
z hst

)
h̃mt = tanh

(
Wm

h x̃mt + U
m
h (h

m
t−1 ⊙ r

m
t ) + Us→m

h hst

)
hmt = (1 − zmt ) ⊙ hmt−1 + z

m
t ⊙ h̃mt

(2)

where xmt is the t-th input of taskm, andU s→m
∗ denotes the weight

matrix which connects the shared layer and the task-specific layer.
The other settings are same as standard GRU. We also tried using
a gate to decide how much information from the shared layer hst
should accept, just as the gatingmechanism forhmt−1, but empirically
Eq. 2 gave much better results. The reason might be that gating
mechanism may not be able to well control signals flowing between
different layers.
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(a) Uniform Shared-Layer Architecture

(b) Enhanced Shared-Layer Architecture

Figure 2: The two multi-task architectures. The embedding vector x̃mt is computed from the original input xmt at the t-th
step that is represented as a vector of tf*idf values of vocabulary words (we hide the original input for simplicity, and select
tf*idf based on Occam’s Razor principle), and then mapped into a low dimensional vector using the shared or task-specific
parameters, followed by operations for sequence labeling or sequence classification depending on the specific tasks.

5 THE TRAINING PROCEDURE
For an input sequence of a task, its task-specific representation,
emitted by the enhanced architecture, can be ultimately fed into
different output layers for prediction. For the uniform architecture,
in contrast, the hidden state from the shared layer can be directly
fed into the output layers due to the lack of task-specific layer.

In the rumor detection task, we mark its task indexm = 1 and
represent the whole post sequence of a claim using the hidden
vector at the last time stephm=1T . Accordingly, the final classification
decision for the claim is formulated probabilistically as softmax:

y = So f tmax(Vm=1hm=1T + bm=1) (3)

where y is the vector of predicted probabilities over different rumor
classes, Vm=1 is the weights of the output layer, and bm=1 is the
trainable bias, both of which are task-specific parameters for the
rumor detection task.

In the stance classification task, we mark the indexm = 2 and
let hm=21 and {hm=2t }Tt=2 be the low-dimensional task-specific rep-
resentations of the claim (or headline) which are placed at the first
time step and the sequence of posts (or sentences) at the rest of

time steps to be classified3, respectively. We then feed them into a
fully connected layer with softmax activation functions to generate
the prediction for each post (or an article4):

yt = So f tmax(Vm=2
1 hm=21 +Vm=2hm=2t + bm=2), for t ≥ 2 (4)

where yt is the predicted probabilities over different stance classes
at time t ≥ 2, Vm=1

1 and Vm=1 respectively denote the weights
of the output layer for the claim (or headline) and the tweets (or
sentences), and bm=2 is a bias term. All of them are task-specific
parameters for stance detection.

The parameters of the proposed multi-task model for each task
are trained to minimize the cross-entropy of the predicted and
ground truth distributions:

L = −
∑
t

∑
c
дct logy

c
t + λ | |Θ| |22 (5)

where дct andy
c
t are respectively the ground truth and the predicted

probability corresponding to the c-th class at time step t . Here the
L2 regularizer trades off the error and the scale of the model, Θ is

3For the case that the input is a news article, the output corresponding to the last
sentence is used as the dense vector representation of the article.
4For an article, only the activation function of the last time step is used for prediction.
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Input :A set of claims {C1,C2, · · · ,C |C |}, ϵ

1 Initialize model parameters Θ =
{W s ,U s ,Em ,Wm ,Um ,U s→m ,Vm

1 ,V
m ,bm } randomly;

2 for iteration from 0 to maxIter do
3 1. Pick a taskm randomly;
4 2. Pick random training sample(s) from taskm;
5 3. Compute loss L(Θ) using Eq 5;
6 4. Compute gradient ∇(Θ);
7 5. Update model: Θ← Θ − ϵ∇(Θ);
8 end

Algorithm 1: Training procedure of our multi-task model.
Note that Θ = {W s ,U s ,Em ,Vm

1 ,V
m ,bm } in the Uniform

Shared-Layer Architecture.

all the model parameters, and λ is the trade-off coefficient. Note
that the summation over t has different forms in different cases:
For sequence classification (i.e., rumor detection or article-based
stance classification), t takes the last time step T because there is
output only atT ; For sequence labeling (i.e., tweets stance detection),
2 ≤ t ≤ T as there is an outputs at each step from step 2 up to T .

We train our model using stochastic gradient decent by looping
over the tasks similarly as [10, 27]. The training procedure is shown
in Algorithm 1, where in each iteration, a task is selected randomly,
and the model is updated according to the task-specific objective.
More specifically, 1) model parameters are empirically initialized
with uniform distribution, and updated by employing the derivative
of the loss through back-propagation [11]; 2) we use AdaGrad
algorithm [15] to speed up the convergence. 3) we fix the vocabulary
size as 5,000, the size of embedding and hidden units as 100. 4) we
run Algorithm 1 until the loss value of each task converges or the
maximum epoch number is met.

6 EXPERIMENTS AND RESULTS
6.1 Datasets and Evaluation Metrics
For rumor detection task, we made expansion based on a public
Twitter dataset described in Liu et al. [28]. The original dataset were
used for binary classification of claims into rumor and non-rumor
given the relevant tweets of each claim. We finer granularized the
ground-truth label set by using the four NTFU tags according to the
veracity tagging adopted by the popular rumor debunking websites
(e.g., Snopes.com, Emergent.info, etc)5. In addition, the fraction of
different types of rumors are imbalanced in real world. As per our
statistics based on Snopes.com since January 2015, the proportions
of articles under the NTFU categories are as the following: 76.0%
non-rumors, 16.5% false rumors, 3.4% true rumors and 4.1% un-
verified rumors. Accordingly, we enriched the dataset to conform
to such class distribution by implementing the tweets gathering
method described by Liu et al. [28]. Table 1(a) gives the statistics of
this expanded dataset which is named as LIU+.

For stance classification task, we used the PHEME dataset [49]
which contains 297 claims corresponding to eight breaking events,

5The original tweets were gathered following threads in the articles on these websites.
Therefore, the NTFU tags are easily restored.

Table 1: Statistics of the datasets

(a) Rumor detection dataset

LIU+ N T F U
Claim # 2,280 99 498 123
Proportion 76.0% 3.3% 16.6% 4.1%
posts # / Claim 757 1,029 587 686
Users # 61,7374 6,5475 18,2459 5,5298

(b) Stance classification dataset

PHEME Support Deny Question Comment
Tweets # 891 335 353 2,855
Proportion 20.09% 7.56% 7.96% 64.39%
Users # 732 295 318 2,036
FNC Agree Disagree Discuss Unrelated
articles # 5,581 1,537 13,373 54,894
Proportion 7.40% 2.03% 17.74% 72.81%
Sentence # 62,593 18,090 146,872 582,206

Table 2: Results on rumor detection

Method N F T U
MicF1 MacF1 F1 F1 F1 F1

DTR [47] 0.734 0.338 0.856 0.349 0.071 0.076
SVM-RBF [45] 0.760 0.216 0.864 0.000 0.000 0.000
DTC [6] 0.793 0.357 0.883 0.528 0.018 0.000
SVM-TS [33] 0.786 0.361 0.879 0.506 0.037 0.014
RFC [23] 0.799 0.389 0.889 0.541 0.031 0.091
MT-single [32] 0.762 0.426 0.875 0.487 0.05 0.292

LIU+ & PHEME datasets
MT-US 0.761 0.431 0.872 0.513 0.089 0.292
MT-ES 0.783 0.464 0.876 0.534 0.114 0.333

LIU+ & FNC dataset
MT-US 0.752 0.439 0.858 0.545 0.105 0.323
MT-ES 0.778 0.443 0.872 0.503 0.074 0.324

which provide tweet-level stance annotations. We followed the com-
mon practice of prior works [30, 48] that employed this dataset to
convert the original labels into SDQC set based on a set of rules pro-
posed in [30]. In this task, we also examined an additional dataset
based on news articles released by the 2017 Fake News Challenge
(FNC, www.fakenewschallenge.org), which aimed to classify the
text in a news article body with respect to the content in its headline.
There are four categories, into which the stance must be classified:
agrees, disagrees, discusses and unrelated. We summarize the statis-
tics of the two stance datasets in Table 1(b).

Owing to the imbalanced class prevalence, evaluation solely
based on accuracy cannot arguably suffice to capture competitive
performance beyond the majority class [48]. Therefore, we used
both micro-averaged and macro-averaged F1 scores as evaluation
metrics for both tasks. We hold out 10% of the instances in each
dataset for model tuning, and for the rest of the instances, we
perform 5-fold cross-validation throughout all experiments.
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6.2 Rumor Detection
Table 2 compares rumor detection results of the following systems:

DTR: A Decision-Tree-based Ranking method to identify trend-
ing rumors [47] by searching for enquiry phrases.

DTC and SVM-RBF: The Twitter information credibility model
using Decision Tree Classifier [6] and the SVM-based model with
RBF kernel [45], respectively, both using various handcrafted fea-
tures based on the overall statistics of the posts.

RFC: The Random Forest Classifier using three parameters to fit
the temporal properties and a set of handcrafted features on user,
linguistic and structure characteristics [23].

SVM-TS: A linear SVM classification model that uses time-series
to model the variation of a set of handcrafted features [33].

MT-US: Our multi-task model with the Uniform Shared-Layer
Architecture.

MT-ES: Our multi-task model with the Enhanced Shared-Layer
Architecture.

MT-single: Our MT-US model that removes the stance classifi-
cation component. This reduces to an existing single-task rumor
detection model based on RNN proposed in [32].

We implement DTC and RFC using Weka6, SVM-based models
using LibSVM7 and neural-network-based models with Theano8.

We highlight that some baseline models above have exploited
stance as features for rumor detection: DTR relies on the questioning
or denying stances to debunk rumors; others like RFC and SVM-TS
craft some features relative to individual opinions. So, they are
reasonably compared with our proposed method here.

The benefit of using multi-task learning is obvious among all
the baselines due to the improvement of Macro-F1 and F1 scores
over most classes. Further, we have the following observations:

In the first glance, it appears that our method does not have
advantage due to the lower Micro-F1 scores than many baselines.
But when we look at specific classes, it is found that the baselines
performing better in Micro-F1 (e.g., DTC, SVM-TS, RFC) are only
better off on the majority class (i.e., non-rumors), but much worse
off on all minority classes. This is also why our method achieves
clearly higher Macro-F1 performance than all the baselines. This
verifies that the proposed method is overall advantageous, espe-
cially on the three minority rumor types which are more difficult to
classify, and can better deal with the imbalanced class prevalence
in rumor detection.

SVM-TS and RFC appear to be better than other feature-based
baselines because both of them utilize an extensive set of features
especially focusing on temporal traits. But they are much worse
than all the RNN-based models, which can learn advanced repre-
sentations of responsive tweets by capturing the hidden non-linear
correlations. This indicates the effectiveness of complex signals
indicative of rumors beyond surface signals or shallow patterns
typically exploited in the baseline models.

MT-US outperforms all the baselines including the models that
have incorporated stance information as features. This is because
the proposed multi-task framework cannot only learn the represen-
tation of rumor detection task itself effectively via a neural model,

6http://www.cs.waikato.ac.nz/ml/weka/
7https://www.csie.ntu.edu.tw/~cjlin/libsvm/
8http://deeplearning.net/software/theano/

Table 3: Comparison with baselines for stance detection

(a) PHEME dataset (S: Support; D: Deny; Q: Question; C: Comment)

Method S D Q C
MicF1 MacF1 F1 F1 F1 F1

Majority Vote 0.641 0.195 0.000 0.000 0.000 0.781
NB [38] 0.277 0.244 0.395 0.038 0.182 0.362
DT [18] 0.552 0.374 0.421 0.112 0.278 0.688
BOW [36] 0.652 0.344 0.273 0.108 0.206 0.790
HP[30] 0.650 0.390 0.519 0.079 0.394 0.771
CNN [7] 0.642 0.324 0.301 0.08 0.178 0.739
BiGRU [3] 0.605 0.373 0.299 0.158 0.286 0.751
MT-single 0.583 0.344 0.212 0.154 0.272 0.737
MT-US 0.635 0.400 0.355 0.116 0.337 0.776
MT-ES 0.622 0.430 0.314 0.158 0.531 0.739

(b) FNC dataset (A: Agree; N: Disagree; D: Discuss; U: Unrelated)

Method A N D U
MicF1 MacF1 F1 F1 F1 F1

Majority Vote 0.722 0.209 0.000 0.000 0.000 0.839
NB [38] 0.676 0.214 0.000 0.003 0.043 0.810
DT [18] 0.615 0.240 0.054 0.013 0.127 0.767
BOW [36] 0.724 0.214 0.010 0.000 0.000 0.847
HP[30] − − − − − −
CNN [7] 0.691 0.277 0.054 0.000 0.242 0.817
BiGRU [3] 0.571 0.305 0.178 0.025 0.297 0.718
MT-single 0.584 0.291 0.163 0.026 0.243 0.731
MT-US 0.604 0.310 0.094 0.103 0.298 0.741
MT-ES 0.609 0.328 0.219 0.096 0.251 0.744

but also can strengthen the learned features by transferring some
helpful representation from the task of stance detection. We can
also see that MT-ES, as an extension of MT-US, yields the highest
Macro-F1 score on both datasets, suggesting that the learned repre-
sentation is more effective due to the introduction of task-specific
representation layers in addition to the shared layer. Furthermore,
the performance of our models on LIU+ & PHEME data is generally
better than that on LIU+ & FNC. This is because PHEME data are
also based on tweets and may share more common features with
LIU+ dataset, such as specific symbols or writing styles.

6.3 Stance Classification
Table 3 shows the results on stance classification by comparing the
following systems:

Majority Vote: This method simply takes the class of majority
in the training data to predict the stance in test data.

NB: A Naive Bayes classifier [38] that utilizes a set of hand-
crafted features.

DT: A J48 decision tree classifier [18], which adopts an enriched
set of features such as temporal information.

BOW: A SVM classifier using bag-of-words and N-grams (e.g.,
1-gram, bi-gram and tri-gram) features as reported in [36].

HP: The state-of-the-art approach proposed by [30] that classi-
fies stance by using Hawkes process and exploits both temporal
and textual information.
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CNN: A convolutional neural model proposed in [7] for obtain-
ing the representation of each tweet and classifying tweet stances
with a softmax layer.

BiGRU: A bidirectional RNN-based tweet stancemodel [3]which
considered the bidirectional contexts between target and tweet. We
replaced the original LSTM units with GRU for fair comparison.

MT-single: Our MT-US model that removes the rumor detection
component, as a strong baseline for comparison between single-task
model and multi-task model.

MT-US and MT-ES: Our multi-task models with the Uniform
Shared-Layer and Enhanced Shared-Layer Architecture.

The superiority of the multi-task proposals is clear as MT-US
and MT-ES yield much better results than all baselines in terms of
Macro-F1 scores and F1 scores of most classes.

It is observed that the Micro-F1 for Majority Vote is very high.
This is unsurprising due to the very imbalanced class prevalences:
the majority of the instances fall into “comment” (or “unrelated”)
class. It has been similarly demonstrated by the lower Micro-F1
score of our models on rumor detection task (see Section 6.2).

For Macro-F1 scores, those feature-based methods like NB, DT
and BOW perform obviously poorly because the feature engineer-
ing is generally biased and less effective, which is hard to generalize.
HP outperforms other baselines because of its wider spectrum of
information incorporated including post contents and temporal
properties. But it is still clearly worse than our proposed method
since similar as other baselines HP just utilized surface-form fea-
tures like N-grams to represent content while our method can
learn the hidden pattens for better representation. Note that HP
is specifically designed for dealing with tweet-like dataset in time
sequence labeling task that is dependent on the detailed post time,
and therefore, it is not applicable on the FNC dataset.

All the neural-network-based baselines (i.e., MT-single, BiGRU,
CNN) perform worse than our two multi-task models because they
are all single-task models regardless of their strong feature cap-
turing power. In our multi-task models, MT-ES performs better
than MT-US, suggesting the improved effectiveness by adding the
task-specific layers to each task upon the shared layer.

Interestingly, all the models perform worse on FNC than PHEME
dataset. This is because most of existing stance classification meth-
ods are designed for dealing with social media data. However, the
large improvements made by our multi-task models, especially on
FNC dataset, indicate that the pattens learned from different data
platforms can be complementary to each other. This suggests that
our proposed method can be more effectively deployed to news
domain other than social media platform.

Furthermore, when drilling down to the performance of MT-
US and MT-ES on specific classes, we find that there are distinct
observations of model performance between the PHEME and FNC
datasets. For example, on PHEME, MT-ES performs better for the
“Deny” class than MT-US does, but on FNC, the trend is reversed for
the “Disagree” class. This can be explained by the influence resulting
from the class prevalence that varies across different datasets and
may sometimes affect the model’s performance (e.g., the prevalence
of “Deny” is much lower than “Disagree”).

With these comprehensive experiments on both tasks, we con-
firm the advantages of our multi-task approach over a few strong
state-of-the-art baselines.

Table 4: Typical patterns captured by shared layer and task-
specific layer ofMT-ES comparedwith the single taskmodel
MT-single on the two tasks.

Model Shared Layer Rumor-specific Stance-specific

MT-ES

really?, what? what?, really? why?, what is
not like, great, omg is real/fact what happened
disgusting, scary totally false no doubt, may
I guess, probably seriously wrong not sure, really?

MT-single
what is, what? no doubt
seriously wrong may be, not

− totally false what happened
is real, wtf? what is, why

6.4 Case Study
To get an intuitive understanding of what is happeningwhenwe use
the multi-task model, we design an experiment to try to disclose the
behaviors of neurons in task-specific and shared layer. Specifically,
from the hidden vector of each post at the shared and task-specific
layer, we look for those elements with the largest feature values,
and map them into the corresponding elements in the input layer
so that we can find out those important patterns.

We sample a detected (true) rumor claim about “Saudi Arabia
confers citizenship on a robot named Sophia” from several recent
news and list some typical patterns captured by MT-single and our
Enhanced Shared-Layer Architecture on LIU+ and PHEME datasets.
In Table 4, we can see that: 1) Some patterns captured by MT-single
can be also captured by the task-specific layer of MT-ES, which
indicates that the task-specific layer captures as much information
as MT-single does. 2) The shared layer of MT-ES captures some
inclusive patterns such as “not like”, “I guess”, “great”, etc., which
may appear not as frequent as task-specific patterns, but they can
work together with the task-specific ones to boost the performance.
3)We also find the pattens captured by the shared layer and the task-
specific layer of MT-ES have a small amount of overlap, which again
implies that the two kinds of layers can work complementarily.

7 CONCLUSIONS AND FUTUREWORK
Existing research works tackle rumor detection and stance classifi-
cation separately. In this paper, we attempt to jointly optimize the
two tasks based on a unified neural multi-task learning framework.
Specifically, we adopt two multi-task architectures based on RNNs
to model information sharing and representation reinforcement be-
tween the tasks that use different datasets. The experimental results
based on real-world tweets and news reports demonstrate that the
multi-task approach consistently outperforms many strong base-
lines for both tasks, indicating that training these rumor-related
tasks jointly with multi-task architecture seems a better strategy.

Beyond rumor detection and stance classification tasks, we be-
lieve that there are other related tasks that can be incorporated into
such unified framework, such as evaluating users trustworthiness
together with existing tasks.
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