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a b s t r a c t

Transfer learning utilizes labeled data available from some related domain (source domain)
for achieving effective knowledge transformation to the target domain. However, most
state-of-the-art cross-domain classification methods treat documents as plain text and
ignore the hyperlink (or citation) relationship existing among the documents. In this paper,
we propose a novel cross-domain document classification approach called Link-Bridged
Topic model (LBT). LBT consists of two key steps. Firstly, LBT utilizes an auxiliary link net-
work to discover the direct or indirect co-citation relationship among documents by
embedding the background knowledge into a graph kernel. The mined co-citation relation-
ship is leveraged to bridge the gap across different domains. Secondly, LBT simultaneously
combines the content information and link structures into a unified latent topic model. The
model is based on an assumption that the documents of source and target domains share
some common topics from the point of view of both content information and link struc-
ture. By mapping both domains data into the latent topic spaces, LBT encodes the knowl-
edge about domain commonality and difference as the shared topics with associated
differential probabilities. The learned latent topics must be consistent with the source
and target data, as well as content and link statistics. Then the shared topics act as the
bridge to facilitate knowledge transfer from the source to the target domains. Experiments
on different types of datasets show that our algorithm significantly improves the general-
ization performance of cross-domain document classification.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional machine learning approaches make a basic assumption that the training and test data should be drawn from
the same feature space and follow the same distribution. In many real-world applications, however, this independent and
identically distributed (i.i.d.) assumption does not hold. It has been extensively demonstrated in the literatures that tradi-
tional leaning models perform drastically worse when the i.i.d. assumption no longer holds (Dai, Yang, Xue, & Yu, 2007;
Pan & Yang, 2010). In contrast, transfer learning allows the domains, distributions, and feature spaces used in training being
different from those in testing. It utilizes labeled data available from some related (or source) domain in order to achieve
effective knowledge transformation from it to the target domain, which plays an important role in the areas of machine
learning and data mining. If done successfully, knowledge transfer would greatly improve the performance of learning by
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avoiding tremendously expensive data annotation effort. Many examples in knowledge engineering justified that transfer
learning can be generally beneficial for different applications, such as document classification (Sarinnapakorn & Kubat,
2007), sentiment classification (Blitzer, Dredze, & Pereira, 2007; Blitzer & Kakade, 2011), collaborative filtering (Pan, Xiang,
& Liu Nathan, 2010), and Web search ranking (Gao, Cai, Wong, & Zhou, 2010).

With the prosperity of the Internet, more and more text document collections become available which contain rich tex-
tual contents that are interconnected via complex hyperlinks or citations, such as encyclopedia websites (e.g., Wikipedia),
research paper archives (e.g., CiteSeer), and user-generated media (e.g., blogs and microblogs). Such kind of data is charac-
terized as analogous structures where each article describes a topic (or concept), which contains a title, abstract, content and
some references. A typical example is the Wikipedia page on Support Vector Machine.1 Compared to the documents in tra-
ditional information management, these types of data contain links in addition to content. The hyperlinks (or citations) among
articles capture their semantic relations and provide additional insights about their relationships.

Most state-of-the-art transfer learning algorithms for document classification treat documents as plain text and ignore
the structure of links (or citations). However, link structures provide important information regarding the properties of doc-
uments and their relationships. Since the links imply the inter-dependence among the documents, the usual i.i.d. (i.e., inde-
pendent and identically distributed) assumption of documents does not hold any more (Zhu, Yu, Chi, & Gong, 2007). From
this point of view, the existing cross-domain document classification methods that ignore the link structure may fail to cap-
ture the dependency and would be unable to fully mine the common knowledge between different domains. It turns out that
the transfer of cross-domain information could be seriously hindered due to the incompleteness of the mined common
knowledge.

In this paper, we propose a novel approach to combine content and link information simultaneously for cross-domain
document classification. The basic idea is that documents in different domains may share some common topics from the
point of view of both content information and link structure, which could be used to mutually reinforce the identification
of common topics, thus to enhance the classification knowledge across related but distinct domains. However, there are
two essential problems that challenge the procedure of integrating link structures with the shared topics. First, the link data
are usually very sparse and the common parts indirectly connected between domains cannot be fully discovered and uti-
lized. For this reason, we utilize an auxiliary link network to strengthen the co-citation relationship among documents by
embedding the background knowledge into a graph kernel. Our method cannot only enrich the document representation
by reducing the data sparseness, but also enlarge the dimensional feature space by introducing new features shared by
the documents, which would help fill the gap across domains. Secondly, it is difficult to come up with a unified model that
combines the two types of information simultaneously because the learned decompositions of topics must be consistent
with content and link statistics as well as the training and test data from different domains, following the basic principle
of multi-view transfer learning regarding how to model the domain commonality and difference from the perspective of
multiple views. To deal with this problem, we propose a probabilistic Link-Bridged Topic model (LBT) based on Probabilistic
Latent Semantic Analysis (PLSA) (Hofmann, 1999) for cross-domain knowledge transfer using a multi-view approach. LBT
correlates the domain-specific features and encodes the domain commonality and distinction, as well as view consistency
and difference, into the shared topics. Then the shared topics act as a bridge which helps knowledge transfer from the source
to target domain. We derive the log-likelihood objective function for LBT and use EM algorithm for its optimization. Exper-
imental results based on two types of datasets demonstrate that our method outperforms state-of-the-art baselines includ-
ing the semi-supervised learning algorithm Transductive SVM (Joachims, 1999), the traditional multi-view algorithm Co-
Training (Blum & Mitchell, 1998), the large-margin-based multi-view transfer learner MVTL-LM (Zhang, He, Liu, Si, & Law-
rence, 2011) and the content-based transfer learning algorithm TPLSA (Xue, Dai, Yang, & Yu, 2008).

The rest of the paper is organized as follows: Section 2 reviews the related work; Section 3 presents the proposed LBT
model for cross-domain document classification; Section 4 discusses the experiments and analyzes the results; finally, we
conclude in Section 5 with discussions on future work.

2. Related work

2.1. Transfer learning from single view

Semi-supervised learning (Zhu & Goldberg, 2009) addresses the problem that the labeled data may be too few to build a
robust classifier by leveraging a large amount of unlabeled data. Some popular semi-supervised learning models include self-
training (Yarowsky, 1995), EM-based models (Brefeld & Scheffer, 2004), Co-Training and multi-view (Blum & Mitchell, 1998),
graph-based methods (Joachims, 2003), transductive support vector machines (Joachims, 1999), and collective classification
(Bilgic & Getoor, 2008). Nevertheless, most of them assume that the training and test data must be in the same feature space
following the same distribution. In contrast, transfer learning allows the domains, distributions, and feature spaces used in
training and testing to be different (Pan & Yang, 2010). Transfer learning was extensively studied in the machine learning
community over the last decade. Its underlying assumption is that multiple tasks share certain structures, and therefore,
the tasks can mutually benefit from these shared structures.

1 http://en.wikipedia.org/wiki/Support_vector_machine.
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Most existing transfer learning methods can be classified into three categories: instance-transfer, feature-transfer and
parameter-transfer. Instance-level approach (Dai et al., 2007; Xiang, Cao, Hu, & Yang, 2010) assumes that some training
examples in the source domain are similar to the data in target domain which can be used to train the model for the target
domain. Re-weighting and importance sampling are two major techniques in instance-transfer learning. The basic idea of
feature-level transfer learning is to learn a ‘‘good’’ feature representation that is effective in bridging the divergence between
domains. The major techniques in feature-transfer approach (Pan et al., 2010; Raina, Ng, & Koller, 2006; Wang, Domeniconi,
& Hu, 2008; Zhong et al., 2009) are to transform the original feature space into another low or high dimensional feature space
that reduces the domain distance. Parameter-transfer approach assumes that the source and target domains share some
parameters or priors of their models. The objective of parameter-transfer approach (Dayanik, Lewis, Madigan, Menkov, &
Genkin, 2006; Fujino, Ueda, & Nagata, 2010) is to discover the shared hyper-parameters or priors between domains. Our
method is essentially a feature-based transfer approach by transforming the original feature space to a latent space, which
captures the domain commonality as well as discrepancy.

Several approaches to transfer learning such as (Xue et al., 2008; Yang, Chen, Xue, Dai, & Yu, 2009; Zhuang et al., 2010)
make use of PLSA (Hofmann, 1999). PLSA is a widely used probabilistic model, which provides solid statistical foundation.
PLSA could be considered as a probabilistic implementation of latent semantic analysis (LSA) (Deerwester, Dumais, Furnas,
Thomas, & Harshman, 1990). In this model, each document is considered as the convex combination of several topics, where
these topics or latent semantic variables are obtained using the maximum-likelihood principle. An extension to PLSA was
proposed in (Cohn & Hofmann, 2000) for identifying principal topics of document collection as well as authoritative docu-
ments within those topics, which incorporates the hyperlink connectivity in the PLSA model by using a joint probabilistic
model for connectivity and content. The model treats all the documents as being from the same domain and the distribution
difference is not taken into consideration. Likewise, Erosheva, Fienberg, and Lafferty (2004) adopted a mixed membership
model for words and references in journal publications but treated membership scores as random Dirichlet realizations. Un-
like Erosheva et al. (2004) which only uses the references information among the publications themselves, we utilize an aux-
iliary link network to mine the indirect co-citation relationship among the documents, which could help bridge the domains
gap. Yang et al. (2009) present a new learning scenario, heterogeneous transfer learning, which improves learning perfor-
mance when the data can be represented in different feature spaces and where no correspondence between data instances
in these spaces is provided. They extend PLSA to help transfer the knowledge from social Web data, which have mixed fea-
ture representations. Xue et al. (2008) propose TPLSA to incorporate both labeled and unlabeled data. The hidden variables
are used to bridge the documents in training and test domains, and learned under a joint probabilistic model. TPLSA is based
on a simultaneous decomposition of the contingency tables associated with term occurrence knowledge in documents from
both training and test domains, which identifies the principal topics of the training data as well as documents in the test data
that support those topics. Zhuang et al. (2010) propose the Collaborative Dual-PLSA model to simultaneously capture both
the domain distinction and commonality among multiple domains. The proposed model has two latent factors, i.e. word con-
cept and document class.

Our work is closely related to TPLSA (Xue et al., 2008). Unlike TPLSA which only uses content as bridge, in our work, we
focus on combining the content and link information to enhance the view consistency, which is a key issue for the success of
multi-view transfer learning as discussed below. Furthermore, we make use of auxiliary link network to alleviate the data
sparseness and help knowledge transfer across domains. These two key points make our proposed model distinctive from
TPLSA (Xue et al., 2008). To the best of our knowledge, there is no existing study that focused on incorporating auxiliary link
network for cross-domain document classification.

2.2. Transfer learning from multiple views

Our work is also related to multi-view learning, where observations are represented by multiple independent sets of fea-
tures (Ruping & Scheffer, 2005). Blum and Mitchell (1998) introduced Co-Training. The idea is to train one learner on each
view of the labeled examples and then to iteratively have each learner to label the unlabeled examples that receive the high-
est confidence. They proved that two independent yet compatible views can be used to learn a concept in the PAC (Valiant,
1984) framework based on few labeled and many unlabeled examples. Following the idea, many people extended the ori-
ginal Co-Training approach (Brefeld, 2004; Ghani, 2002; Nigam, McCallum, Thrun, & Mitchell, 2000).

Most research on multi-view learning is within a single domain, and multi-view transferring learning is not common. Our
work can be considered as a case of multi-view transfer. Tur (2009) proposed a co-adaptation algorithm, which extends the
Co-Training algorithm with model adaptation techniques. Co-adaptation makes the existing model adaptive using machine-
labeled data with some weight tuned using a held-out set. Co-adaptation is designed for inductive transfer learning which
assumes the target domain has a small amount of labeled data. Zhang et al. (2011) proposed a framework for multi-view
transfer learning with a large margin approach. The labeled data from the source domain are weighted and used to construct
a large margin classifier for target domain, and data from both domains are used to ensure the classification consistency be-
tween different views. The instance-level approach assumes that some similar source training examples can be identified
and reused to train the target model. However, the performance of instance-based approach is generally poor since new tar-
get features lack support from source data (Blitzer et al., 2011). We focus on feature-level multi-view adaptation or transfer,
where knowledge transformation takes place in the multiple transformed feature spaces simultaneously and
complementarily.
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3. Link-bridged topic model

Transfer learning generally aims to identify and exploit the shared common structures and properties among different
domains for knowledge transformation. However, if cross-domain document classification methods only focus on the data
on the source and target domains themselves, they may fail to capture the common parts among the domains that are indi-
rectly connected. We observe that the indirect common co-citation relationship can be enhanced and mined with the help of
an auxiliary link network. Furthermore, we combine the content information and co-citation relations using a unified prob-
abilistic model based on PLSA (Hofmann, 1999) which maps the data from both domains to the latent topic space. Such map-
ping could correlate the domain-specific features via the shared topics. Then the domain commonality and difference are
characterized by the shared but differential topics. In other words, the documents from both domains share some similar
topics, while their associated probability distributions with the shared topics are to some extent discrepant. On the other
hand, since the documents are described with multiple views (i.e., content and links), it can be expected that the general-
ization capacity of the model will be further enhanced by leveraging the complementary interactions between different
views.

3.1. Problem statement

Suppose we are given the document collection in two related but different domains. Let Ds be the labeled documents set
from the source domain, Dt be the unlabeled documents set from the target domain. Define D = Ds [ Dt. The source and target
data are assumed to draw from different feature spaces where the i.i.d. assumption no longer holds. Some features are de-
fined in source or target domain only while some others are defined in both domains. For the easy of cross-domain feature
transformation in the later stage, we technically expand the feature space in pre-processing to include all features from both
domains into a unified space, where the missing features in either domain are replenished as 0.

Most machine learning algorithms use a feature vector as representation of instances. In this work, we will use two forms
of feature-vector to represent the document, i.e. bag-of-words and bag-of-links, in order to incorporate the link structures.
Let W be the vocabulary of the document collection. Each document d is represented by a bag-of-words set
{w|w e d ^ w e W}. Let n(w, d) be the frequency of term w appearing in document d. Let C be the set of all the hyperlinks
(or citations) in the collection. Each document d can be also represented by a bag-of-links set {c|c e d ^ c e C}. Let m(c, d)
be the ‘‘frequency’’ of link c appearing in document d. Let Z be the topic label set. Each source training instance ds e Ds is as-
signed with a unique topic label z e Z. Let f:D ? Z be a function to map the document d e D to a unique topic label z e Z. Our
objective is to assign a label z e Z to the unlabeled target document dt e Dt as accurately as possible using the source training
dataset.

3.2. Bridging domain gaps using auxiliary link network

A common problem for the link data is that they are normally very sparse. Considering the research papers, the average
number of references in a paper is normally just about 20–30. Thus, how to alleviate the sparseness of link data is a key issue
for building a robust cross-domain classifier using link structures among the documents.

On the other hand, there are some indirect correlations among the documents which cannot be directly discovered from
the link information in the concerned document collection itself. We observe that such kind of indirect co-citation relation-
ship can be enhanced and mined with the help of an auxiliary link network. For example, given the research papers in the
areas of classification and clustering, we may turn to ACM paper citation network to find more indirect co-citation relation-
ship among the articles from these two different domains, which would help alleviate the sparseness of link data. In this
regard, the ACM paper network can be regarded as an example of ‘‘bigger world’’ which could provide extra useful back-
ground knowledge. A chain of, ‘‘a friend of a friend’’ statements can be made in an auxiliary network, to connect any two
documents, which can bring two indirectly related documents closer together. The mined common citations can enrich
the original link set and act as a bridge, which can be used to further fill the gap across domains and help the transfer.

We define the document set V0 as the union of D and the external documents linked by documents in D. Given the citation
relationship among the documents in V0, we can construct the graph G0 = (V0, E0) where the vertex set V0 represents docu-
ments and the edge set E0 represents the hyperlinks (or citations) between documents. Note that the training and test data-
set D is a subset of the vertex set V0, i.e., D # V0, and V0 also contains those documents external to D but linked by documents
from D. Let A0 denote the adjacency matrix of G0. To build up the bag-of-links vectors, the traditional way is to estimate the
link frequency by using a fragment of the adjacency matrix A0. As mentioned above, the data may be very sparse.

Next, we will illustrate how to leverage the auxiliary network to alleviate the data sparseness and facilitate cross-domain
knowledge transfer. Suppose graph G = (V, E) is an auxiliary network where the vertex set V represents documents in the
auxiliary network and the edge set E represents the hyperlinks (or citations) between documents, and G0 is a sub-graph
of G. The advantage of incorporating the auxiliary network is that it can introduce more nodes and edges which are not in-
cluded in the graph G0 and provide more background knowledge among the documents. Let A denote the adjacency matrix of
G. Then we define a base similarity matrix as follows:

B ¼ Aþ AT ð1Þ
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where AT is the transpose of A. Note that B is symmetric. We then use an exponential diffusion graph kernel (John & Nello,
2004) to mine the co-citation relationship as follows:

S ¼ eB ¼
X1
k¼0

1
k!

Bk ¼
X1
k¼0

1
k!

Ak þ ðATÞ
k

h i
ð2Þ

where k refers to the setting of the length of the reachable path between two nodes. Note that B reflects the direct citing and
cited relationship between documents and Bk reflects the k-length-path indirect citing and cited relationship. Here we treat
the citing and cited relationship indiscriminately. The exponential matrix eB includes a decay factor 1

k!
that we can use to con-

trol the contribution of longer paths.
The computation of Eq. (2) is intractable due to the infinite progression. In order to simplify the computation of S, we can

rewrite it as another form. Since matrix B is symmetric, there exists an orthogonal matrix U = [n1, . . . , nl], where nið1 6 i 6 lÞ is
the eigenvector of B, to diagonalize B as follows:

B ¼ UDUT ð3Þ

where D ¼ diagðk1; . . . klÞ is a diagonal matrix and kið1 6 i 6 lÞ is the eigenvalue of B. Then we can obtain

S ¼ eB ¼
X1
k¼0

1
k!

Bk ¼
X1
k¼0

1
k!

UDkUT ¼ UeDUT ð4Þ

As a result, the calculation of Eq. (4) becomes much simplified since D is a diagonal matrix.
With the background knowledge introduced by the auxiliary network, the estimation of the link ‘‘frequency’’ m(c, d) will

become more accurate, which can be formulated as the following:

mðc; dÞ ¼ Sijðd ¼ v i ^ c ¼ v jÞ ð5Þ

Intuitively, several reasons may account for why the co-citation mined from the auxiliary network would help to knowledge
transfer between domains. Firstly, the indirectly related documents become correlated when the indirect co-citation rela-
tionships are taken into consideration by the graph kernel, and these common co-citation relationships can be enhanced
and mined with the help of an auxiliary link network. It can be expected that the sparseness of link data can be significantly
alleviated using the common co-citation relationships. Secondly, auxiliary network can introduce a number of new ‘‘com-
mon friends’’ shared by the documents which can be viewed as extra features. Then these extra features can be appended
into the original feature space. Therefore, the gap between domains would be narrowed by mapping the documents from the
original feature space to a higher dimensional feature space.

Fig. 1 shows an illustrated example. All the nodes in the graph refer to documents and the edges refer to the citation rela-
tionship between nodes. In order to clarify the different roles they play in the model, we use rectangle node to denote doc-
ument and round node to link feature which is also a document. Here we have three document sets, i.e., D = {v1, v2} where v1

and v2 are from the source and target domain, respectively, V0 = {v1, v2, v3, v4, v5} and V = {v1, v2, v3, v4, v5, v6, v7}. For simplic-
ity, we use ‘‘small world’’ enclosed with dashed ellipse to represent the document set V0, and ‘‘big world’’ enclosed with solid
ellipse to represent the document set V. Note that D # V0 # V. Let us firstly consider the small world. Given the graph, we
can represent the documents as bag-of-links where the feature values are link frequencies, which are a fragment of adjacent
matrix A0, as shown in Fig. 2a. The two documents may not share any features and the document-link matrix is very sparse.
In other word, there exists a gap between the source and target domains. However, the big world may provide more com-
plete background knowledge that helps to bridge the domain gaps. Here the background knowledge is the direct or indirect
co-citation relationship. Consider the two nodes v1 and v2, where both v1 and v2 cite v7 and v7 cites v4, and likewise, both v1

and v2 are cited by v6. Hence, v6 and v7 can be viewed as the bridge that brings v1 or v2 closer. This indicates that v1 is to some
extent related to v2. It is reasonable to use such kind of direct or indirect co-citation to measure the similarity between nodes.
As a toy example, we compute S using Equation (2) by setting the maximum length of path to be 2. Fig. 2b shows an enriched

Fig. 1. Bridging domains using auxiliary link network.
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and enlarged document vectors which is a fragment of kernel matrix S. The feature value of v4 for either v1 and v2 is 0.5, while
it is 0 in Fig. 2a. v6 and v7 are extra features shared by v1 and v2. Obviously, v1 is much closer to v2 in Fig. 2b than in Fig. 2a.

3.3. The LBT model

The basic idea of our LBT model is to transform the original feature space to a latent space which captures the domain
commonality as well as domain discrepancy. In this regard, LBT is a feature-transfer approach. Our model is based on PLSA
(Hofmann, 1999). Intuitively, we can apply PLSA on the source and target data separately. However, since the source and
target data are from related domains, they would share some similar topics. Therefore, it is advantageous to merge the
two separate models into a joint probabilistic model which allows capturing the domain commonality, i.e., the shared topics
by both domains. Meanwhile, since the domains are differential even though they are related, it is reasonable to associate the
documents from both domains with the differential probabilities to the shared topics rather than with the equivalent prob-
abilities. The rationale is that documents from both domains share some similar topics, while their associated probability
distributions with the shared topics are to some extent discrepant. Such a merge-and-differentiate strategy enables the mod-
el to capture the domain commonality as well as domain difference.

At the meantime, our description of each document can be determined from two distinct views. The first is from the
words occurring in this document, and the second is from the other documents with direct or indirect citation relationship
with this document. The complementary interaction between the two views would help to discover more precise shared top-
ics. Likewise, rather than applying two PLSA model on text and link data separately, it is beneficial to integrate them into a
joint model.

Thus, in order to take into account all these factors mentioned above, we describe our model as a statistical generative
process based on PLSA as follows, where the analogous notations from Hofmann (1999) are used:

� Firstly, select a document ds with probability p(ds), or dt with probability p(dt) from the documents set D.
� Secondly, pick a topic z e Z associated with ds according to distribution p(z|ds), or the same associated with dt according to

distribution p(z|dt).
� Finally, given the topic z, generate a term w with distribution p(w|z) and a link c with distribution p(c|z).

Given the latent variables Z, we can define the following joint models, each consisting of a series of decompositions with
regard to different topics:

pðwjdsÞ ¼
X

z

pðwjzÞpðzjdsÞ ð6Þ

pðwjdtÞ ¼
X

z

pðwjzÞpðzjdtÞ ð7Þ

pðcjdsÞ ¼
X

z

pðcjzÞpðzjdsÞ ð8Þ

pðcjdtÞ ¼
X

z

pðcjzÞpðzjdtÞ ð9Þ

(a) (b)
Fig. 2. Represent document as bag-of-links vector. (a) The original feature vectors for the documents, which are sparse. (b) An enriched feature vectors by
incorporating the background knowledge from an auxiliary link networ006B.

Fig. 3. Graphical model representation of LBT.
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The graphical representation of our Link-Bridge Topic (LBT) model is shown in Fig. 3. Note that in Eqs. (6) and (7) both
decompositions of p(w|ds) and p(w|dt) share the same term-specific mixing component p(w|z), and in Eq. (8) and (9)
both decompositions of p(c|ds) and p(c|dt) share the same link-specific mixing component p(c|z). Similarly, in Eq. (6) and
(8) both decompositions of p(w|ds) and p(c|ds) share the same document-specific mixing component p(z|ds), and in Eq. (7)
and (9) both decompositions of p(w|dt) and p(c|dt) share the same document-specific mixing component p(z|dt).

Specifically, the advantages of the proposed joint model are threefold:

� In our joint model, the expanded feature space of both domains are mapped into the latent topic space Z, which could
correlate the seemingly unrelated source- and target-specific features by the topics if they have similar conditional prob-
ability p(w|z) (or p(c|z)). Such correlation will then help bridge domain gap via the shared topics.
� On one hand, integrating the two separate PLSA models on source and target data into the joint model allows to capture

the domain commonality, i.e., the shared topics by both domains. On the other hand, associating a topic z e Z with differ-
ent distributions, p(z|ds) and p(z|dt), to the source and target data allows to capture the domain difference, i.e., the asso-
ciated distributions with the topics are differential.
� Likewise, integrating the two separate PLSA models on text and link data into the joint model allows us to capture the

view consistency, as well as their difference.

In summary, the power of our unified model is that it integrates all these kinds of correlations in a principled manner. The
shared topics correlate the domain-specific features and encode the domain commonality and difference, as well as view
consistency and difference. Since the mixing topics are shared, the learned decompositions must be consistent with the
source and target data, as well as content and link statistics. As such, the shared topics act as the bridge to facilitate knowl-
edge transfer from the source to the target domain.

Note that the description of each document can be generalized into multiple distinct views other than simply two. There-
fore, our proposed model is further extensible by integrating multiple views of documents into this unified framework. Gen-
erally, we propose a novel method of combining multiple views of data in a latent topic model in order to transfer labels from
one domain with labeled data to a different but related domain with unlabeled data via the shared latent topics. In this pa-
per, we particularly focus on the case of documents with associated link network, but the proposed model is generally appli-
cable to data with multiple views other than documents and links. In this regard, LBT can be viewed as a way of combining
transfer learning and multi-view learning, which to the best of our knowledge has not received much attention in the
literature.

3.3.1. How to transfer
Based on Fig. 3, we derive the log-likelihood objective function as follows:

L ¼ b
X

w

k
X

ds

nðw;dsÞP0
wnðw0; dsÞ

log pðwjdsÞ þ ð1� kÞ
X

dt

nðw;dtÞP0
wnðw0;dtÞ

log pðwjdtÞ
" #

þ ð1

� bÞ
X

c

k
X

ds

mðc; dsÞP0
cmðc0;dsÞ

log pðcjdsÞ þ ð1� kÞ
X

dt

mðc;dtÞP0
cmðc0; dtÞ

log pðcjdtÞ
" #

ð10Þ

where nðw;dÞP0
w

nðw0 ;dÞ
and mðc;dÞP0

c
mðc0 ;dÞ

are normalization terms ensuring each document is given the same weight in the log-likelihood

regardless of the number of observations associated with it, k ð0 6 k 6 1Þ acts as a tradeoff of weight between the training
and test data, and larger k indicates more reliance on the source training data set, b (0 6 b 6 1) is the tradeoff between con-
tent and link, and larger b indicates content information is weighted more. When b = 1, the objective function ignores all the
biases from link structure, and in this case, LBT model is equivalent to TPLSA (Xue et al., 2008); when b = 0, the objective
function relies on link structure only, which is referred to as Link-bridged PLSA (LPLSA) in the rest of the paper. It is inter-
esting to investigate how LPLSA using link structure only performs compared to TPLSA, which will be done in Section 4.Our
goal is to maximize the log-likelihood L of the LBT model in Equation (10). Expectation–Maximization (EM) algorithm is used
to find a local optimal solution of L.

� E-Step:
Given the term t and documents ds and dt, calculate the posterior probability of each topic z based on the old estimate of

p(w|z), p(z|ds) and p(z|dt):

pðzjw;dsÞ ¼
pðwjzÞpðzjdsÞP0
zpðwjz0Þpðz0jdsÞ

ð11Þ

pðzjw;dtÞ ¼
pðwjzÞpðzjdtÞP0
zpðwjz0Þpðz0jdtÞ

ð12Þ
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Similarly, given the link c and documents ds and dt, calculate the posterior probability of each topic z based on the old
estimate of p(c|z), p(z|ds) and p(z|dt):

pðzjc;dsÞ ¼
pðcjzÞpðzjdsÞP0
zpðcjz0Þpðz0jdsÞ

ð13Þ

pðzjc;dtÞ ¼
pðcjzÞpðzjdtÞP0
zpðcjz0Þpðz0jdtÞ

ð14Þ

� M-step:
Given the posterior probability of each topic z, re-estimate conditional probability p(w|z), p(c|z), p(z|ds) and p(z|dt). Each of

the below conditional probability is a mixture component of posterior probability of latent topics.

pðwjzÞ / k
X

ds

nðw;dsÞP0
wnðw0;dsÞ

pðzjw;dsÞ þ ð1� kÞ
X

dt

nðw;dtÞP0
wnðw0; dtÞ

pðzjw;dtÞ ð15Þ

pðcjzÞ / k
X

ds

mðc;dsÞP0
cmðc0;dsÞ

pðzjc;dsÞ þ ð1� kÞ
X

dt

mðc;dtÞP0
cmðc0;dtÞ

pðzjc;dtÞ ð16Þ

pðzjdsÞ / b
X

w

nðw; dsÞP0
wnðw0;dsÞ

pðzjw;dsÞ þ ð1� bÞ
X

c

mðc;dtÞP0
cmðc0; dtÞ

pðzjc;dtÞ ð17Þ

pðzjdtÞ / b
X

w

nðw; dtÞP0
wnðw0;dtÞ

pðzjw;dtÞ þ ð1� bÞ
X

c

mðc;dtÞP0
cmðc0; dtÞ

pðzjc;dtÞ ð18Þ

3.3.2. Algorithm for LBT
From the above equations, we can derive our LBT algorithm as shown in Algorithm 1. In the initial phase, the conditional

probability p(w|z) and p(c|z) is set to be uniform. In order to utilize the label knowledge in the source training data, we ini-
tialize the conditional probability p(z|ds) for each labeled document ds e Ds as follows:

pðzjdsÞ ¼
gs; if f ðdsÞ ¼ z
1�gs
jZj�1 ; otherwise

(
ð19Þ

where gs is a randomly generated number, which is empirically required to meet the condition 0.5 < gs < 1.0. The idea is that
the conditional probability p(z|ds) will receive a high value when the topic label z is the same with f(ds). For a unlabeled tar-
get document dt e Dt, the conditional probability p(z|dt) is set to be uniform since no prior knowledge is currently available.

Then the algorithm iteratively performs the E-Step and the M-Step in order to seek optimal log-likelihood based on objec-
tive function L in Equation (10). When it is converged, a unique topic label is assigned to the target documents according to
f ðdtÞ ¼ arg max

z
pðzjdtÞ.

Algorithm 1. Link-Bridged Topic Model
Input: Document-term matrices Ds �W and Dt �W, document-link matrices Ds � C and Dt � C. A topic label z e Z is

assigned for each source document ds e Ds.
Output: Topic label z e Z assigned to each unlabeled target document dt e Dt.
1: Initialize conditional probability p(w|z), p(c|z), p(z|ds) and p(z|dt).
2: WHILE the change of L in Equation (10) between two sequential iterations is greater than a pre-defined threshold DO
3: E-Step: Update posterior probability p(z|w, ds), p(z|w, dt), p(z|c, ds) and p(z|c, dt) based on Eqs. (11)–(14)

respectively.
4: M-Step: Re-estimate conditional probability p(w|z), p(c|z), p(z|ds) and p(z|dt) based on Eqs. (15)–(18) respectively.
5: END WHILE
6: FOR each unlabeled target document dt e Dt DO
7: f(dt) = argmaxz p(z|dt)
8: ENG FOR

4. Experiments

In this section, we experimentally evaluate the proposed LBT algorithm for cross-domain document classification in com-
parison with the state-of-the-art algorithms as baselines. Two types of datasets, i.e., scientific research papers dataset and
web pages dataset, are used for the evaluation.
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4.1. Datasets and setup

Cora (McCallum, Nigam, Rennie, & Seymore, 2000) is an online archive of computer science research papers which con-
tains approximately 37,000 papers, and over 1 million links among roughly 200,000 distinct documents. The documents in
the dataset are categorized into a hierarchical structure. We select a subset of Cora papers for our model training and test,
which contained five top-categories and 10 corresponding sub-categories (the numbers are in the parenthesis):

� DA_1=’’/data_structures__algorithms_and_theory/computational_complexity/’’ (711);
� DA_2=’’/data_structures__algorithms_and_theory/computational_geometry/’’ (459);
� EC_1=’’/encryption_and_compression/encryption/’’ (534);
� EC_2=’’/encryption_and_compression/compression/’’ (530);
� NT_1=’’/networking/protocols/’’ (743);
� NT_2=’’/networking/routing/’’ (477);
� OS_1=’’/operating_systems/realtime/’’ (595);
� OS_2=’’/operating_systems/memory_management/’’ (1102);
� ML_1=’’/machine_learning/probabilistic_methods/’’ (687);
� ML_2=’’/machine_learning/genetic_algorithms/’’ (670).

Note that each top-category contains several sub-categories, while we only select two sub-categories from each top-cat-
egory to generate our datasets. Based on this data, we used a way similar to Pan and Yang (2010) to construct our training
and test sets. For each set, we chose two top categories, one as positive class and the other as the negative. Different sub-
categories were regarded as different domains. The task is defined as top category classification. For example, the dataset
denoted as DA-EC consists of source domain: DA_1(+), EC_1(�); and target domain: DA_2(+), EC_2(�). The method ensures
the domains of labeled and unlabeled data are related due to same top categories, but the domain distributions are different
because they are drawn from different sub-categories. Such a preprocessing is a common practice for data preparation for
adaptation purpose. The domain difference can be justified like some previous works (Pan & Yang, 2010) where it was found
that SVM classifier trained on in-domain data performed much worse out of domain, which implies large domain gap.

The second dataset we use is the Industry Sectors dataset2 which is a collection of about ten thousand Web pages belonging
to companies from various economic sectors. The corporate Web pages are classified into a hierarchical structure. We chose a
subset of Web pages from the five top sectors, i.e., energy, financial, healthcare, transportation and consumer and 10 corre-
sponding sub-categories. Based on these five top-categories, we generated 10 datasets in a similar way to what we had done
for the Cora datasets to ensure the domain relatedness as well as difference.

We preprocessed the data for both text and link information. For the texts, we removed stop words and low-frequency
words with count less than 5. For the links, we removed the links with less than three citation counts. Then the standard TF-
IDF (Salton & Buckley, 1988) technique was applied to both the text and link datasets.

4.2. Effectiveness of auxiliary network

Here we examine whether the embedding of the co-citation relationships mined from the auxiliary network into a graph
kernel would lead to a better representation of the documents. For each original link dataset, the co-citation relationships
among the documents from the two corresponding top-categories are used to construct the auxiliary link network. Then
we employed such an auxiliary link network to generate the enriched link dataset (see Section 3.1). Finally, since the aux-
iliary network would introduce noisy link features, here we employ a simple feature selection mechanism which removes
the features whose document frequencies are less than 3 in the dataset. We found this mechanism, though simple, worked
well on the Cora datasets.

Since SVM (Joachims, 1999) has shown state-of-the-art performance compared to most of other supervised machine
learning methods, we fed two kinds of link datasets to the SVM classifier for performance comparison:

� SVM-OL: SVM is applied on the original link dataset.
� SVM-L: SVM is applied on the enriched link dataset.

The classification error rate is used to evaluate the classification performance, which is defined as the number ratio be-
tween the misclassified test instances and the total test instances.

Table 1 shows the error rate on the Cora and the Sectors datasets. The bold items in Table 1 indicate the best results
achieved by the algorithms for each dataset. For the Cora datasets, SVM-L significantly outperformed SVM-OL on most data-
sets. On average, the error rate of SVM-L is 23.0% lower than that of SVM-OL. It verifies that the auxiliary network can provide
more complete background knowledge about the correlation among the documents which would help to reduce the domain
gap. For the Sectors datasets, the performance superiority of SVM-L over SVM-OL is not significant. In comparison with the

2 http://people.cs.umass.edu/~mccallum/data.html.
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research papers, the Web pages would contain much more noisy links. In this case, the import of auxiliary network not only
provides background knowledge, but also brings with more noisy data, such as advertisement links. Next we will explore a
more effective feature selection mechanism to filter out the noisy data in the Web pages.

4.3. Algorithms comparison and analysis

We compared our model with state-of-the-art algorithms including the semi-supervised learning method Transductive
SVM (Joachims, 1999), the traditional multi-view algorithm Co-Training (Blum & Mitchell, 1998), the large-margin-based
multi-view transfer learner MVTL-LM (Zhang et al., 2011) and the content-based transfer learning algorithm TPLSA (Xue
et al., 2008). We also compared our LPLSA (see Section 3.2) with TPLSA. Note that LPLSA is a special case of our proposed
model.

For simplicity, we used the postfix -C, -L and -CL to denote that the classifier was fed with the text, link and merged data-
set, respectively. All the link-based datasets used in the following experiments refer to the enriched link datasets. Both the
text and link datasets were fed to the multi-view classifiers Co-Training, MVTL-LM and LBT. TPLSA relies on text information
only, thus we applied TPLSA on content-based datasets. LPLSA is fed with the link-based datasets. The comparison results are
shown in Tables 2 and 3, where the bold items indicate the best results achieved by the algorithms for each dataset.

Table 2 shows the error rate on the Cora datasets. TSVM performed poorly for adaptation when using either content or
link features. Simply merging the two sets of features make some improvements, implying that text and link can be com-
plementary, but it may degrade the confidence of classifier on some instances whose features become conflict because of
merge. Co-Training can avoid this problem by boosting the confidence of classifiers built on the distinct views in a comple-
mentary way, thus performing better than TSVMs. Since both TSVM and Co-Training don’t consider the distribution gap, they
performed clearly worse than the transfer learning based approaches including MVTL-LM, TPLSA, LPLSA, and LBT.

Among the twenty datasets, although generally a little worse, LPLSA achieves comparable performance on most data sets
compared to TPLSA. This demonstrates that link structure reflecting the inter-dependence relationship among the docu-
ments is of great value for cross-domain document classification. However, we find that TPLSA significantly outperforms
LPLSA on the dataset EC-ML. One possible reason for this is that the papers under the three sub-categories, i.e., EC_1 (/
encryption_and_compression/encryption/), EC_2 (encryption_and_compression/compression/) and ML_1 (machine_learn-
ing/probabilistic_methods/), may share co-citation relationship with those papers of some common topics, such as informa-
tion theory, rendering it difficult for LPLSA to distinguish ML_1 from EC_1 and EC_2.

As shown in Table 2, LBT outperforms TPLSA significantly on all data sets. Two reasons may account for the advantage of
LBT over TPLSA and LPLSA. Firstly, LBT employs the auxiliary link network to discover more shared co-citation between do-
mains which helps alleviate the data sparseness and leads to a better representation of documents. Link structure provides
importance information about the relationship among documents. Secondly, LBT exploits both the content information and

Table 1
Error rate for original and enriched datasets.

Cora datasets SVM-OL SVM-L Sectors datasets SVM-OL SVM-L

DA-EC 0.5006 0.4305 Energy-Financial 0.485 0.460
DA-NT 0.2577 0.1188 Energy-Healthcare 0.475 0.465
DA-OS 0.5342 0.0552 Energy-Transportation 0.498 0.517
DA-ML 0.3588 0.2245 Energy-Consumer 0.495 0.453
EC-NT 0.5098 0.3045 Financial-Healthcare 0.490 0.440
EC-OS 0.3126 0.2670 Financial-Transportation 0.482 0.492
EC-ML 0.4402 0.6086 Financial-Consumer 0.480 0.455
NT-OS 0.3920 0.4781 Healthcare-Transportation 0.503 0.442
NT-ML 0.3265 0.3255 Healthcare-Consumer 0.490 0.521
OS-ML 0.2348 0.1639 Transportation-Consumer 0.492 0.473
Average 0.3867 0.2977 Average 0.489 0.472

Table 2
Error rates for the Cora datasets.

Cora datasets TSVM-C TSVM-L TSVM-CL Co-Training MVTL-LM TPLSA LPLSA LBT

DA-EC 0.286 0.168 0.130 0.145 0.176 0.155 0.084 0.064
DA-NT 0.179 0.119 0.076 0.099 0.097 0.091 0.122 0.062
DA-OS 0.271 0.257 0.243 0.106 0.064 0.048 0.036 0.011
DA-ML 0.205 0.109 0.104 0.125 0.159 0.087 0.045 0.020
EC-NT 0.301 0.135 0.155 0.224 0.213 0.189 0.188 0.157
EC-OS 0.360 0.790 0.201 0.091 0.161 0.106 0.051 0.044
EC-ML 0.338 0.216 0.175 0.219 0.132 0.188 0.790 0.157
NT-OS 0.372 0.552 0.471 0.460 0.275 0.102 0.129 0.045
NT-ML 0.223 0.107 0.102 0.138 0.067 0.051 0.061 0.022
OS-ML 0.211 0.335 0.159 0.037 0.119 0.053 0.015 0.006
Average 0.275 0.279 0.182 0.164 0.146 0.107 0.152 0.059
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link structure that are incorporated into a unified link-bridged topic model. The shared topics play a key role in the knowl-
edge transfer from source domain to target domain. Moreover, the LBT classifier can be regarded as a tradeoff between the
content-based classifier and the link-based classifier. The complementary cooperation between two types of classifiers
would help discover more precise shared topics and thus commonly yield better prediction performance.

It is shown that multi-view adaptation using MVTL-LM performed worse than LBT on most datasets. Generally, it suggests
that instance-based approach relying on instance weighting is not effective when the data of different domains are drawn
from different feature spaces. Although MVTL-LM regulates view consistency on both domains’ instances, it cannot identify
the useful association between target-specific and source-specific features, which is the key to the success of adaptation
especially when domain gap is large and less commonality could be found. In contrast, LBT uses a unified probabilistic model
to find such correlations. Such common knowledge smoothly bridges the gap between different domains and enhances the
generalization ability of the cross-domain classifiers.

Table 3 shows the error rate on the Sectors datasets. We can see that TSVM-L and LPLSA performed significantly worse
than TSVM-C and TPLSA, respectively. This is because the link data contain much noise which seriously deteriorates the pre-
diction performance. On average, TSVM-CL performed a little better than TSVM-C. Likewise, LBT outperform TPLSA on most
datasets. It indicated that though the link data is noisy and sparse, the two views are still complementary, which helps im-
prove the prediction performance.

On most datasets, LBT significantly outperformed Co-Training and MVTL-LM. However, the advantage of LBT over TSVM-
CL on the Sectors datasets is not comparable as it is on the Cora datasets. It suggested that our proposed approach is more
effective on the research paper datasets than on the Web page datasets. Intuitively, unlike the scientific papers, the Web
pages contain much noisy data, which likely lead to topic drift. Since our proposed method is based on the probabilistic topic
model, it would suffer from the topic drift problem.

4.4. Parameter sensitivity

Here we aim to study how the parameters, such as k and b, affect the performance of the proposed algorithm. The results
are shown in Figs. 4 and 5. Fig. 4 shows the error rate curves for different b across different Cora data sets. The parameter b
(0 6 b 6 1) acts as a tradeoff of weight between content and link. Note that larger b indicates more reliance on the content
information of documents. In this figure, the X-axis shows the change of parameter b which varies from 0.0 to 1.0. The Y-axis
represents the error rate of classification across different datasets. As shown in Fig. 4, the error rate will first decrease and
then increase when b increases. The algorithm performs worse nearly on all of the data sets when heavily relying on either
the content information (0:9 6 b 6 1:0) or the link structure (0 6 b 6 0:1). It is shown that setting b at the interval from 0.5
to 0.8 will achieve the best performances for LBT across most of the datasets. It suggests that the two views of document are
complementary and beneficial to the classifier.

Fig. 5 shows the error rate curve for different k across different Cora data sets. The parameter k (0 6 k 6 1) acts as a trade-
off of weight between training and test data. Larger k indicates heavier reliance on the source training data. In this figure, the
X-axis shows the change of parameter k which is varied from 0.1 to 1.0. It is shown that setting k at the interval from 0.4 to
0.7 will achieve higher performance for LBT across most of the datasets. But there are some exceptions. For example, the
algorithm performs better on the EC-NT dataset when setting k at the interval from 0.7 to 0.9. In most cases, the algorithm
performs worse when relying only on the source training set (k ¼ 1). It suggests that the distribution between the training
and test data from different domains are different, and the algorithm can perform better by taking such kind of distribution
difference into consideration than by treating them indiscriminately.

As a result, we tuned the parameters b and k, by using cross-validation on the training dataset for all the experiments.

4.5. Convergence

We tested the convergence property of LBT as well. Fig. 6 shows the experimental results. The X-axis represents the num-
ber of iterations. The Y-axis, DL, represents the change of likelihood L in Eq. (7) between two sequential iterations across

Table 3
Error rates for the Sectors datasets.

Sectors datasets TSVM-C TSVM-L TSVM-CL Co-Training MVTL-LM TPLSA LPLSA LBT

Energy-Financial 0.109 0.480 0.119 0.223 0.254 0.287 0.460 0.188
Energy-Healthcare 0.089 0.455 0.050 0.252 0.198 0.158 0.332 0.134
Energy-Transportation 0.343 0.483 0.393 0.408 0.386 0.403 0.423 0.284
Energy-Consumer 0.114 0.448 0.240 0.287 0.327 0.342 0.450 0.292
Financial-Healthcare 0.290 0.435 0.275 0.335 0.314 0.210 0.425 0.120
Financial-Transportation 0.091 0.467 0.010 0.357 0.276 0.176 0.347 0.136
Financial-Consumer 0.480 0.420 0.400 0.385 0.334 0.315 0.395 0.290
Healthcare-Transportation 0.126 0.477 0.040 0.146 0.167 0.111 0.452 0.110
Healthcare-Consumer 0.370 0.510 0.415 0.275 0.251 0.190 0.510 0.195
Transportation-Consumer 0.130 0.467 0.150 0.402 0.267 0.231 0.452 0.216
Average 0.214 0.464 0.209 0.307 0.277 0.242 0.425 0.196
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different datasets. LBT uses EM algorithm to find a local optimal point. The EM algorithm performs the E-step and M-step
iteratively, and the convergence is guaranteed. As shown in Fig. 6, the change of likelihood L decreases very fast during
the first 15 iterations and becomes stable after 30 iterations. Thus, we terminated the algorithm after a maximum of 30
iterations.

Fig. 4. Error rate curve for different b.

Fig. 5. Error rate curve for different k.

Fig. 6. DL for different number of iterations.
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5. Conclusion

We introduce a novel method called Link-Bridged Topic (LBT) model for cross-domain document classification. Firstly, we
employ the auxiliary link network to discover the shared co-citation relationship between documents in different domains.
Then we combine the content information and link structures among documents using a unified probabilistic model to mine
the hidden common topics. Based on the sharing structure, the LBT model achieves effective knowledge transformation be-
tween different domains. The experimental results demonstrate that compared to the state-of-the-art baseline algorithms
our algorithm significantly improves the prediction accuracy of cross-domain document classification.

Embedding the background knowledge mined from the auxiliary link network into a graph kernel can enhance the co-
citation relationships among documents and thus help knowledge transfer between domains. However, auxiliary network
would also introduce the noisy data. Next we will design a more refined feature selection mechanism to filter out noise data.

Also, transfer learning would hurt the performance when the domains or multi-views are too dissimilar. As part of ongo-
ing work we are exploring the boundary between positive transfer and negative transfer and learning how to measure the
extent of relatedness between domains and multi-views.
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