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Dynamic Joint Sentiment-Topic Model

YULAN HE, Aston University
CHENGHUA LIN, The Open University
WEI GAO, Qatar Foundation
KAM-FAI WONG, The Chinese University of Hong Kong

Social media data are produced continuously by a large and uncontrolled number of users. The dynamic na-
ture of such data requires the sentiment and topic analysis model to be also dynamically updated, capturing
the most recent language use of sentiments and topics in text. We propose a dynamic Joint Sentiment-Topic
model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts
in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current
sentiment-topic-specific word distributions are generated according to the word distributions at previous
epochs. We study three different ways of accounting for such dependency information: (1) sliding window
where the current sentiment-topic word distributions are dependent on the previous sentiment-topic-specific
word distributions in the last S epochs; (2) skip model where history sentiment topic word distributions are
considered by skipping some epochs in between; and (3) multiscale model where previous long- and short-
timescale distributions are taken into consideration. We derive efficient online inference procedures to se-
quentially update the model with newly arrived data and show the effectiveness of our proposed model on
the Mozilla add-on reviews crawled between 2007 and 2011.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Processing—Text
analysis

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Dynamic joint sentiment-topic model, sentiment analysis, opinion
mining, topic model
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1. INTRODUCTION

The explosive diffusion of the Internet has facilitated the rapid development of a new
social phenomenon, that of online communities, which exist in almost all areas of so-
ciety, including social, business, scientific, and public service domains. People share
their thoughts, express opinions, and seek for support in online communities. Sen-
timent dynamics from online contents has been shown to have a strong correlation
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6:2 Y. He et al.

with fluctuations in macroscopic social and economic indicators in the same time pe-
riod [Bollen et al. 2010b]. Sentiment time series extracted from Twitter messages has
also been shown to strongly correlate with polling data on consumer confidence and
political opinion [O’Connor et al. 2010]. Nevertheless, most existing work detects sen-
timent in isolation of topic detection and simply records sentiments in different time
granularity to form sentiment time series.

In this article, we propose a dynamic Joint Sentiment-Topic model (dJST) [He and
Lin 2012] which allows the detection and tracking of views of current and recurrent
interests and shifts in topic and sentiment. The dJST model extends from the previously
proposed Joint Sentiment-Topic (JST) model which is able to extract coherent and
informative topics grouped under different sentiment [Lin and He 2009; Lin et al.
2012]. The only supervision required by JST learning is domain-independent polarity
word prior information.

The proposal of the dJST model is motivated by two observations. First, the pre-
viously proposed JST model assumes that words in text have a static co-occurrence
pattern, which may not be suitable for the task of capturing topic and sentiment shifts
in a time-variant data corpus. Second, when fitting large-scale data, the standard Gibbs
sampling algorithm used in JST can be computationally difficult because it has to re-
peatedly sample from the posterior the sentiment-topic pair assignment for each word
token through the entire corpus at each iteration. The time and memory costs of the
batch Gibbs sampling procedure therefore scale linearly with the number of documents
analysed.

As an online counterpart of JST, the proposed dJST model addresses the aforesaid
issues and permits discovering and tracking the intimate interplay between sentiment
and topic over time from data. To efficiently fit the model to a large corpus, we de-
rive online inference procedures based on a stochastic Expectation Maximization (EM)
algorithm, from which the dJST model can be updated sequentially using the newly
arrived data and the parameters of the previously estimated model. Furthermore, to
minimize the information loss during the online inference, we assume that the genera-
tion of documents in the current epoch is influenced by historical dependencies from the
past documents. This is achieved by assuming that the current sentiment-topic-specific
word distributions are generated from the Dirichlet distribution parameterized by the
word distributions at previous epochs.

While the historical dependencies of past documents can be modeled in many possible
ways, we have explored three different time-slice settings, namely, the sliding window,
the skip model, and the multiscale model. As the influential power of the historical
dependencies may vary over time, we have also investigated two strategies for setting
the weights for the historical context at different time slices. These are: to use the
exponential decay function and to estimate weights from data directly by EM using the
fixed-point iteration method.

The major contribution of this work is fourfold.

—We proposed a dJST model where the generation of documents at the current epoch
are influenced by documents at historical epochs in three possible ways: (1) sliding
window where the current sentiment-topic word distributions are dependent on the
previous sentiment-topic-specific word distributions in the last S epochs; (2) skip
model where history sentiment-topic word distributions are considered by skipping
some epochs in between; and (3) multiscale model where previous long- and short-
timescale distributions are taken into consideration.

—We proposed two different weighting strategies to combine documents at historical
epochs. One is using an exponential decay function wherein more recent documents
would have a relatively stronger influence on the model parameters in the current
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epoch compared to earlier documents. Another is to estimate weights from data di-
rectly by EM using the fixed-point iteration method [Minka 2003]. Our experimental
results on the Mozilla add-on reviews show that using EM for weights estimation
attains better performance than using the exponential decay function.

—We compared the performance of dJST with the two nondynamic versions of JST,
JST-one which only uses the data in the last epoch for training, and JST-all which
uses all past data for model learning. The experimental results show that the dJST
models outperform JST-one in both perplexity and sentiment classification accuracy
which indicates the effectiveness of modeling dynamics. On the other hand, the dJST
models have much lower perplexities than JST-all. Although they achieve similar
sentiment classification accuracies as JST-all, they avoid taking all the historical
context into account and hence are computationally more efficient.

—We explored the impact of different input features on the dJST performance. In
particular, we performed Part-Of-Speech (POS) tagging and syntactic parsing and
then removed less informative words based on their POS tags and augmented the
bag-of-words features with nominal phrases. Our experimental results show that
using the new input features improves the sentiment classification accuracy and the
topics extracted are generally more meaningful than those from the bag-of-words
representations.

We proceed with a review of related work on sentiment and topic dynamics tracking.
We then propose the dynamic JST model and describe its online inference procedures
as well as the estimation of evolutionary parameters and the setting of hyperparam-
eters. We demonstrate the effectiveness of our proposed approach by analyzing both
sentiment and topic dynamics from review documents crawled from a Mozilla review
site. Finally, we conclude our work and outline future directions.

2. RELATED WORK

There has been little work on the automatic detection of sentiment dynamics. Mao
and Lebanon [2007, 2009] formulated the sentiment flow detection problem as the
prediction of an ordinal sequence based on a sequence of word sets using a variant
of conditional random fields based on isotonic regression. Their proposed method has
mainly been tested for sentence-level sentiment flow prediction within a document.
Mei et al. [2007] employed a similar method as in Mei and Zhai [2005] where a Hidden
Markov Model (HMM) is used to tag every word in the collection with a topic and
sentiment polarity. The topic lifecycles and sentiment dynamics can then be computed
by counting the number of words labeled with the corresponding state over time. Their
method requires topic and sentiment of each word to be detected beforehand by a
topic-sentiment mixture model.

In a recent study, Bollen et al. [2010b, 2010a] showed that public mood patterns
from a sentiment analysis of Twitter posts do relate to fluctuations in macroscopic
social and economic indicators in the same time period. However, they mapped each
tweet to a six-dimensional mood vector (Tension, Depression, Anger, Vigour, Fatigue,
and Confusion) as defined in the Profile Of Mood States (POMS) [McNair et al. 1992]
by simply matching the terms extracted from each tweet to the set of POMS mood
adjectives without considering the individual topic each tweet is about.

O’Connor et al. [2010] extracted tweets messages relevant to some specific topics
and then derived day-to-day sentiment scores by counting positive and negative mes-
sages which contain positive or negative words matched against the MPQA subjectivity
lexicon1. Sentiment time series was generated by smoothing the daily positive versus

1http://www.cs.pitt.edu/mpqa/.
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negative ratio with a moving average over a window of the past k days. They showed
that the smoothed sentiment time series strongly correlated with polling data on con-
sumer confidence and political opinion.

In recent years, there has been a surge of interest in developing topic models to
explore topic evolutions over time. The Dynamic Topic Model (DTM) [Blei and Lafferty
2006] uses a state space model, in particular, the Kalman filter, to capture alignment
among topics across different time steps. The continuous-time Dynamic Topic Model
(cDTM) [Wang et al. 2008] replaces the discrete state space model of the DTM with
its continuous generalization, Brownian motion. While these models employ a Markov
assumption over time that the distributions at the current epoch only depend on the
previous epoch distributions, the Topic Over Time (TOT) model [Wang and McCallum
2006] does not make such an assumption, instead, it treats time as an observed contin-
uous variable and for each document, the mixture distribution over topics is influenced
by both word co-occurrences and the document’s timestamp.

None of the aforementioned models takes into account multiscale dynamics.
Nallapati et al. [2007] proposed the Multiscale Topic Tomography Model (MTTM) that
employs nonhomogeneous Poisson processes to model generation of word counts and
models the evolution of topics at various timescales of resolutions using Haar wavelets.
More recently, Iwata et al. [2010] proposed Online Multiscale Dynamic Topic models
(OMDT) which also models the topic evolution with multiple timescales but within the
Dirichlet-multinomial framework by assuming current topic-specific distributions over
words are generated based on the multiscale word distributions of the previous epoch.

Our work was partly inspired by the previously proposed multiscale topic mod-
els [Nallapati et al. 2007; Iwata et al. 2010]. Nevertheless, we have successfully adapted
the idea of multiscale modelling for use in the JST model. We have also additionally
proposed another two variants of the dJST model, sliding window and skip model.
Moreover, we have investigated two different ways of setting the weights of evolution-
ary matrices by either using an exponential decay function or direct estimation from
data. As will be discussed in Section 5, setting the weights using the latter method
gives superior performance. In addition, both skip model and multiscale model achieve
higher sentiment classification accuracies than sliding window although they have
similar perplexity results.

Aside from extension of topic models, there have also been increasing interests in
incorporating time dependencies into a Hierarchical Dirichlet Process (HDP) [Teh et al.
2006] for revealing topic dynamics from timestamped documents. One advantage over
topic-model-based approaches is that HDP allows the automatic discovery of topic num-
bers. Ren et al. [2008] proposed the dynamic Hierarchical Dirichlet Process (dHDP)
model which imposes a dynamic time dependence so that the initial mixture model and
the subsequent time-dependent mixtures share the same set of components. Pruteanu-
Malinici et al. [2009] developed a simplified form of dHDP that assumes documents at
a given time have topics drawn from a mixture model and the mixture weights over
topics evolve with time. Zhang et al. [2010] proposed using a series of HDPs with time
dependencies to the adjacent epochs being added to discover cluster evolution patterns
from multiple correlated time-varying text corpora. This falls into evolutionary clus-
tering [Chakrabarti et al. 2006; Chi et al. 2007, 2009; Ahmed and Xing 2008; Xu et al.
2008b, 2008a] which aims to generate clusters that fit the data at each epoch as much
as possible and at the same time preserves the smoothness of clustering results over
time.

3. DYNAMIC JST (DJST) MODEL

In a timestamped document collection, we assume documents are sorted in ascending
order of their timestamps. At each epoch t where the time period for an epoch can be set

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.
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Table I. Notations Used in the Article

Symbol Description
Dt number of documents in epoch t
Nt

d number of words in document d at epoch t
L number of sentiment labels
T number of topics
V number of unique words in the current epoch
S number of time slices
γ symmetric prior for sentiment labels
αt matrix of L × T dimension, row l represents the priors of the mixing proportion of topics in

sentiment label l
βt matrix of L×T ×V dimension, priors for the word distribution conditioned on sentiment labels

and topics
π t

d parameter notation for the sentiment label mixture proportion for document dt. π t = {π t
d}Dt

d=1
(Dt × L matrix)

θ t
d,l multinomial distribution over topics for the lth sentiment label for document dt, θ t =

{{θ t
d,l}L

l=1}Dt

d=1 (Dt × L × T matrix)
ϕt

l,z multinomial distribution over words for the lth sentiment label and zth topic at epoch t.
ϕt = {{ϕl,z}T

z=1}L
l=1 (L × T × V matrix)

λ matrix of L × V dimension which encodes the word prior sentiment polarity information
Et

l,z Evolutionary matrix of sentiment label l and topic z at epoch t, column size is determined by
the total number of time slices taken into account when estimating the prior for the sentiment-
topic-word distribution of current epoch

μt
l,z weight vector, μt

l,z = [μt
l,z,1, . . . , μt

l,z,S], each of which determines the contribution of time slice
s in computing the priors of ϕt

l,z
σ t

l,z,s multinomial word distribution of sentiment label l and topic z with time slice s at epoch t,
σ t

l,z,s = {σ t
l,z,s,w}V

w=1

arbitrarily at, for example, an hour, a day, or a year, a stream of documents {dt
1, . . . , dt

M}
of variable size M are received with their order of publication timestamps preserved. A
document d at epoch t is represented as a vector of word tokens wt

d = (wt
d1

, wt
d2

, . . . , wt
dNd

)
where the bold-font variables denote the vectors. Our notations are summarized in
Table I.

We assume that documents at the current epoch are influenced by documents in
the past. Thus, the current sentiment-topic-specific word distributions ϕt

l,z at epoch t
are generated according to the word distributions at previous epochs. In particular, we
define an evolutionary matrix of topic z and sentiment label l, Et

l,z where each column
is the word distribution of topic z and sentiment label l, σ t

l,z,s, generated for document
streams received within the time slice specified by s which can be set in many different
ways. Some of the possible settings are listed next.

—Sliding window. If s ∈ {t−S, t−S+1, . . . , t−1}, then this is equivalent to the Marko-
vian assumption that the current sentiment-topic word distributions are dependent
on the previous sentiment-topic-specific word distributions in the last S epochs.

—Skip model. If s ∈ {t − 2S−1, t − 2S−2 . . . , t − 1}, then we are taking history sentiment-
topic word distributions into account by skipping some epochs in between. For exam-
ple, if S = 3, we only consider previous sentiment-topic word distributions at epoch
t − 4, t − 2, and t − 1.

—Multiscale model. We could also account for the influence of the past at different
timescales to the current epoch [Nallapati et al. 2007; Iwata et al. 2010]. For exam-
ple, we could set time slice s equivalent to 2s−1 epochs. Hence, if S = 3, we would
consider three previous sentiment-topic word distributions where the first distribu-
tion is between epoch t − 4 and t − 1, the second distribution is between epoch t − 2

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.



6:6 Y. He et al.

Fig. 1. The three dJST variants for S = 3. The evolutionary matrix Et
l,z = [σ t

l,z,0, σ t
l,z,1, σ t

l,z,2, σ t
l,z,3]. The

weight matrix μt
l,z = [μt

l,z,0, μt
l,z,1, μt

l,z,2, μt
l,z,3]T .

and t − 1, and the third one is at epoch t − 1. This would allow taking into considera-
tion of previous long- and short-timescale distributions. This model, however, would
take more time and memory spaces and hence effective approximation needs to be
performed in order to reduce time/memory complexity.

Figure 1 illustrates the three dJST variants proposed here when the number of his-
torical time slices accounted for is set to 3. Here, σ t

l,z,s, s ∈ {1..3} is the historical word
distribution of topic z and sentiment label l within the time slice specified by s.

We then attach a vector of S + 1 weights μt
l,z = {μt

l,z,s}S
s=0 (μt

l,z,s > 0,
∑S

s=0 μt
l,z,s = 1)

with its components representing the weights that each time slice s contribute to
calculating the priors of ϕt

l,z. Particularly, we set {σ t−1
l,z,0,w

}V
w=1 = 1/V for the timescale

s = 0 as a form of smoothing to avoid the zero probability problem for unseen words,
where V is the number of unique words in the documents.

The Dirichlet prior for sentiment-topic word distributions at epoch t is

βt
l,z = μt

l,z Et
l,z. (1)

The current sentiment-topic word distributions ϕt
l,z at epoch t are generated from

the Dirichlet distribution parameterized by βt
l,z, ϕt

l,z ∼ Dir(βt
l,z). With this formulation,

we can ensure that the mean of the Dirichlet parameter for the current epoch becomes
proportional to the weighted sum of the word distributions at previous epochs.

Assuming we have already calculated the evolutionary parameters {Et
l,z,μ

t
l,z} for the

current epoch t, the generative dJST model as shown in Figure 2 at epoch t is given as
follows.

—For each sentiment label l = 1, . . . , L
—For each topic z = 1, . . . , T

—Compute βt
l,z = μt

l,z Et
l,z

—Draw ϕt
l,z ∼ Dir(βt

l,z)
—For each document d = 1, . . . , Dt

—Choose a distribution π t
d ∼ Dir(γ )

—For each sentiment label l under document d, choose a distribution θ t
d,l ∼ Dir(αt)

—For each word n = 1, . . . , Nd in document d
—Choose a sentiment label ln ∼ Mult(π t

d)
—Choose a topic zn ∼ Mult(θ t

d,ln)
—Choose a word wn ∼ Mult(ϕt

ln,zn
).

3.1. Online Inference

We present a stochastic EM algorithm to sequentially update model parameters at each
epoch using the newly obtained document set and the derived evolutionary parameters.
At each EM iteration, we infer latent sentiment labels and topics using the collapsed
Gibbs sampling and estimate the hyperparameters using maximum likelihood.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.
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Fig. 2. Dynamic JST model.

The total probability of the model for the document set W t at epoch t given the
evolutionary parameters Et,μt and the previous model parameter is

P(W t, Lt, Zt|γ t,αt, Et,μt) = P(Lt|γ t)P(Zt|Lt,αt)P(W t|Lt, Zt, Et,μt). (2)

For the first term on the right-hand side of Eq. (2), by integrating out π , we obtain

P(Lt|γ t) =
∏

d

�(Lγ t)

�
(
γ t
)L

∏
l �(Nt

d,l + γ t)

�
(
Nt

d + Lγ t
) , (3)

where D is the total number of documents in epoch t, Nt
d,l is the number of times

sentiment label l being assigned to some word tokens in document d at epoch t, Nt
d =∑

l Nt
d,l, and � is the gamma function.

For the second term, by integrating out θ , we obtain

P(Zt|Lt,αt) =
∏

d

∏
l

�
(∑T

z=1 αt
l,z

)
∏T

z=1 �
(
αt

l,z

)
∏

z �
(
Nt

d,l,z + αt
l,z

)
�
(
Nt

d,l +∑z αt
l,z

) , (4)

where Nt
d,l,z is the number of times a word from document d being associated with topic

z and sentiment label l at epoch t, and Nt
d,l =∑z Nt

d,l,z.
For the last term, by integrating out ϕ, we obtain

P(W t|Lt, Zt) =
∏

l

∏
z

�
(∑

s μt
l,z,s

)∏
w �
(∑

s μt
l,z,sσ

t
l,z,s,w

) ∏w �
(
Nt

l,z,w +∑s μt
l,z,sσ

t
l,z,s,w

)
�
(
Nt

l,z +∑s μt
l,z,s

) , (5)

where Nt
l,z,w is the number of times word w appeared in topic z and with sentiment

label l at epoch t, Nt
l,z =∑w Nt

l,z,w.
Gibbs sampling will sequentially sample each variable of interest, Lt and Zt here,

from the distribution over that variable given the current values of all other variables
and the data. Letting the index x = (d, n, t) and the subscript \x denote a quantity that
excludes counts in word position n of document d in epoch t, the conditional posterior
for zx and lx by marginalising out the random variables ϕ, θ , and π is

P
(
zx = j, lx = k|W t, Zt

\x, Lt
\x, Et,μt) ∝

Nt
k, j,w j\x +∑s μt

k, j,sσ
t
k, j,s,w j

Nt
k, j\x +∑s μt

k, j,s

· Nt
d,k, j\x + αt

k, j

Nt
d,k\x +∑ j αt

k, j
· Nt

d,k\x + γ t

Nt
d\x + Lγ t . (6)

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.
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3.2. Evolutionary Parameters Estimation

There are two sets of evolutionary parameters to be estimated: the weight parameters
μ and the evolutionary matrix E.

3.2.1. Estimating the Weight Vector μt. We have explored two different strategies for set-
ting μt. These are using the exponential decay function and learning the weight directly
from data using the fixed-point iteration method.

Exponential Decay Function. The weight parameters can be set in a way that more
recent documents would have a relatively stronger influence on the model parame-
ters in the current epoch compared to earlier documents. One possible setting is an
exponential decay function

μt = exp(−κt) (7)

which gives the same weight to all the elements in Et. In our experiments, we empiri-
cally set the decay rate κ = 0.5.

Fixed-point Iteration. It is also possible to estimate the weight vector μt directly
from data by maximizing the joint distribution in Eq. (2) using the fixed-point iteration
method [Minka 2003]. The update formula is

(
μt

l,z,s

)new ← μt
l,z,s
∑

w σ t
l,z,s,w A

B
, (8)

where

A = 


(
Nt

l,z,w +
∑

s′
μt

l,z,s′σ
t
l,z,s′,w

)
− 


(∑
s′

μt
l,z,s′σ

t
l,z,s′,w

)
, (9)

B = 


(
Nt

l,z +
∑

s′
μt

l,z,s′

)
− 


(∑
s′

μt
l,z,s′

)
, (10)

and 
(·) is the digamma function defined by 
(x) = ∂ log �(x)
∂x .

The detailed derivation of the update formula for μ is presented in Appendix A.

3.2.2. Estimating the Evolutionary Matrix Et. The evolutionary matrix Et accounts for the
historical word distributions at different time slices. The derivation of Et therefore
requires the estimation of each of its elements, {σ t

l,z,s,w}V
w=1, the word distribution in

topic z, and sentiment label l at time slice s, which can be calculated as follows.

σ t
l,z,s,w = Ct

l,z,s,w∑
w Ct

l,z,s,w
(11)

Here Ct
l,z,s,w is the expected number of times word w is assigned to sentiment label l

and topic z at time slice s. For both the sliding window and skip model, each time slice
s only covers a specific epoch t′. Thus Ct

l,z,s,w can be obtained directly from the count
N̂t′

l,z,w, that is, the expected number of times word w is associated with sentiment label
l and topic z at epoch t′, which can be calculated by

N̂t′
l,z,w = Nt′

l,z,wϕt′
l,z,w, (12)

where Nt′
l,z,w is the observed count for the number of times word w is associated with

sentiment label l and topic z at epoch t′, and ϕt′
l,z,w is a point estimate of the probability

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.
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of word w associating with sentiment label l and topic z at epoch t′ recovered using
Eq. (13).

ϕt
k, j,i = Nt

k, j,i +∑s μt
k, j,sσ

t
k, j,s,i

Nt
k, j +∑s μt

k, j,s
(13)

For the multiscale model, a time slice s might consist of several epochs. Therefore,
Ct

l,z,w,s is calculated by accumulating the count N̂t′
l,z,w over several epochs. The formula

for computing Ct
l,z,w,s is

Ct
l,z,s,w =

⎧⎪⎪⎨
⎪⎪⎩

N̂t′=t−s
l,z,w Sliding window

N̂t′=t−2s−1

l,z,w Skip model∑t−1
t′=t−2s−1 N̂t′

l,z,w Multiscale model

, (14)

where the value of s ranges from 1 to S, the total number of historical time slices to be
accounted.

3.3. Hyperparameter Settings

The dJST models consist of three hyperparameters, αt, βt and γ t. We estimated αt from
data using maximum likelihood as part of the online stochastic EM algorithm and set
both βt and γ t empirically.

Setting αt. A common practice for the implementations of topic models is to use
symmetric Dirichlet hyperparameters. However, it has been found that an asymmetric
Dirichlet prior over the per-document topic proportions has substantial advantages
over a symmetric prior [Wallach et al. 2009]. So when first entering a new epoch, we
initialize the asymmetric αt = (0.05 × avgDocLengtht

/(L × T ), where avgDocLengtht

is the average document length of epoch t and the value of 0.05 on average allocates
5% of probability mass for mixing. Afterwards for every 40 Gibbs sampling iterations,
αt is learned directly from data using maximum-likelihood estimation [Minka 2003].(

αt
l,z

)new ← αt
l,z
∑

d

[


(
Nt

d,l,z + αt
l,z

)− 

(
αt

l,z

)]∑
d

[


(
Nt

d,l +∑z′ α
t
l,z′
)− 


(∑
z′ α

t
l,z′
)] (15)

Setting βt. At epoch 1, the Dirichlet prior β of size L × T × V is first initialized as
symmetric priors of 0.01 [Steyvers and Griffiths 2007], and then modified by a trans-
formation matrix λ of size L× V which encodes the word prior sentiment information.
λ is first initialized with all the elements taking a value of 1. Then for each term
w ∈ {1, . . . , V } in the corpus vocabulary, the element λlw is updated as

λlw =
{

0.9 if f (w) = l
0.05 otherwise

, (16)

where the function f (w) returns the prior sentiment label of w in a sentiment lexicon,
that is, neutral, positive, or negative. For example, the word “excellent” with index n
in the vocabulary has a positive sentiment polarity. The corresponding row vector in λ
is [0.05, 0.9, 0.05] with its elements representing neutral, positive, and negative prior
polarity. For each topic z ∈ {1, . . . , T }, multiplying λlw with βlzw, the value of βlposzw is
much larger than βlneuzw and βlnegzw. Thus, “excellent” has much higher possibility to be
drawn from the positive topic word distributions generated from a Dirichlet distribution
with parameter βlpos .

For subsequent epochs, if there are any new words encountered, the word prior
polarity information will be incorporated in a similar way. But for existing words, their
Dirichlet priors for sentiment-topic word distributions are obtained using Eq. (1).
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In our work here, we incorporated word polarity prior information into model learn-
ing where polarity words were extracted from the two sentiment lexicons, the MPQA
subjectivity lexicon and the appraisal lexicon2. These two lexicons contain lexical words
whose polarity orientations have been fully specified. We extracted the words with
strong positive and negative orientation and performed stemming. Duplicate words
and words with contradictory polarities after stemming were removed automatically.
The final sentiment lexicon consists of 1,511 positive and 2,542 negative words.

Setting γ t. We empirically set the symmetric prior γ t = (0.05 × avgDocLengtht)/L,
where the value of 0.05 on average allocates 5% of probability mass for mixing.

The complete procedures for the online stochastic EM algorithm for the dJST model
are given in Algorithm 1.

ALGORITHM 1: Gibbs sampling procedure for dJST.
Input: Number of topics T , number of sentiment labels L, number of time slices S, Dirichlet

prior for document level sentiment distribution γ , word prior polarity transformation
matrix λ, epoch t ∈ {1, . . . , maxEpochs}, a stream of documents Dt = {dt

1, . . . , dt
M}

Output: Dynamic JST model
Sort documents according to their time stamps;
for t = 1 to maxEpochs do

if t == 1 then
Set βt = λ × 0.01;

end
else

Set Et
l,z = Et−1

l,z ;
Set μt

l,z = 1/S;
Set βt

l,z = μt
l,z Et

l,z;
end
Set αt = (0.05 × Average document length)/(L × T );
Initialize π t, θ t, ϕt, and all count variables;
Initialize sentiment label and topic assignment randomly for all word tokens in Dt;
for i = 1 to max Gibbs Sampling Iterations do

[π t, θ t, ϕt, Lt, Zt] = GibbsSampling(Dt, αt, β t, γ t);
for every 40 Gibbs sampling iterations do

Update αt using Equation (15);
Update μt

l,z using Equation (7) or (8);
Set β t

l,z = μt
l,z Et

l,z;
end
for every 200 Gibbs sampling iterations do

Update 
t,�t, �t with the new sampling results;
end

end
Update Et

l,z using Equation (11);
end

4. EXPERIMENTAL SETUP

4.1. Dataset

We crawled review documents between March 2007 and January 2011 from the Mozilla
add-ons Web site3. These reviews are about six different add-ons, namely Adblock Plus,
Video DownloadHelper, Firefox Sync, Echofon for Twitter, Fast Dial, and Personas Plus.

2http://lingcog.iit.edu/arc/appraisal lexicon 2007b.tar.gz.
3https://addons.mozilla.org/.
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Fig. 3. Document statistics and average user ratings of reviews for different add-ons.

All text were downcased and non-English characters were removed. We further prepro-
cessed the documents by stop-words removal based on a stop-words list4 and stemming.
The final dataset contains 9,114 documents, 11,652 unique words, and 158,562 word
tokens in total.

The unit epoch was set to quarterly and there were a total of 16 epochs. We plot the
total number of reviews for each add-on versus epoch number as shown in Figure 3(a).
It can be observed that at the beginning, there were only reviews on Adblock Plus
and Video DownloadHelper. Reviews for Fast Dial and Echofon for Twitter started to
appear at Epoch 3 and 4 respectively. And reviews on Firefox Sync and Personas Plus
only started to appear at Epoch 8. We also notice that there were a significantly high
volume of reviews about Fast Dial at Epoch 8. As for the other add-ons, reviews on
Adblock Plus and Video DownloadHelper peaked at Epoch 6 while reviews on Firefox
Sync peaked at Epoch 15.

Each review is also accompanied with a user rating in the scale of 1 to 5. Figure 3(b)
shows the average user rating for each add-on at each epoch. The average user rating
across all the epochs for Adblock Plus, Video DownloadHelper, and Firefox Sync are
5-star, 4-star, and 2-star respectively. The reviews of the other three add-ons have an
average user rating of 3-star.

4.2. Evaluation Metrics

We evaluate the dJST model performance in terms of predictive perplexity and
document-level sentiment classification accuracy, which are defined as follows.

Predictive Perplexity. Originally used in language modelling, perplexity measures
a model’s prediction ability on unseen data. It is defined as the reciprocal geometric
mean of the likelihood of a test corpus given a trained model’s Markov chain state M.
Lower perplexity implies better predictiveness, and hence a better model. In the dJST
experiments, we computed the per-word predictive perplexity of the unseen test set
D̃t = {w̃t

d}Dt

d=1 at epoch t based on the previously trained model M = {w, z, l} as

Perplexity = P(D̃t|M) = exp

{
−
∑Dt

d=1 log p
(
w̃t

d|M
)

∑Dt

d=1 Ñt
d

}
, (17)

4http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words/.
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where

P
(
w̃t

d|M
) =

Ñt
d∏

n=1

L∏
l=1

T∏
z=1

P(w̃d,n|l, z)P(z|l)P(l), (18)

and w̃t
d represents the word vector of the dth document in the test set, and Ñt

d is the total
number of words in w̃t

d. Directly expressing the likelihood of the test corpus P(w̃t
d|M)

as a function of the multinomial parameters {
,�,�} of model M yields

P
(
w̃t

d|M
) =

V∏
i=1

(
l∑

l=1

T∑
z=1

ϕl,z,i · θd,l,z · πd,l

)Ñt
d,i

, (19)

where Ñt
d,i is the number of times term i has appeared in the dth document of the test

set. Using Eqs. (17) and (19), the perplexity of unseen documents can then be calculated
given a trained dJST model.

Sentiment Classification. The document-level sentiment classification is based on
the probability of sentiment label given a document P(l|d). For the data used here,
since each review document is accompanied with a user rating, documents rated as
4-or-5 stars are considered as true positive and other ratings as true negative. This
is in contrast to most existing sentiment classification work where reviews rated as
3-stars are removed since they are likely to confuse classifiers. Also, as opposed to most
existing approaches, we did not purposely make our dataset balanced (i.e., with the
same number of positive and negative documents) for training.

5. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the dJST model on the Mozilla
add-on review dataset.

5.1. Number of Time Slices

dJST accounts for the historical context at previous epochs specified by a total number
of S time slices. A larger number of time slices indicates a longer history period modeled
by dJST. In order to investigate the influence of the historical time slice on the model
performance, we vary S ∈ {1..5} and evaluate the model performance in perplexity. In
our experiments, a model trained on the data at epoch t − 1 is tested on the data of the
next epoch t.

We compare the performance of dJST with different ways of incorporating historical
context into model learning: sliding window, skip model, and multiscale model. For all
these models, the weights of the evolutionary matrices are set either based on a decay
function (-decay) or estimated directly from data using Eq. (8) and denoted as -EM.
We set the number of topics to 15 under each of the three sentiment labels, which is
equivalent to a total of 45 sentiment-topic clusters.

Figure 4 shows the average perplexity over epochs with different number of time
slices. It can be observed that increasing the number of time slices results in the
decrease of perplexity values, although the decrease in perplexities becomes negligible
when the number of time slices is beyond 4. Also, apart from time slice 1, models
with their weights of the evolutionary matrices estimated from data using EM give
lower perplexities than the models with weights set using the decay function. In all the
subsequent experiments, we estimated the weight vector of the evolutionary matrix
from data using EM unless otherwise specified.
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Fig. 4. Perplexity vs number of time slices.

Fig. 5. Perplexity vs number of epochs.

5.2. Comparison with Other Models

In order to evaluate the effectiveness of dJST in modelling dynamics, we compare the
performance of the dJST models in terms of perplexity and sentiment classification
accuracy with the nondynamic version of LDA and JST, namely, LDA-one, JST-one,
and JST-all. LDA-one and JST-one only use the data in the previous epoch for training
and hence they do not model dynamics, whereas JST-all uses all the past data for
model learning.

5.2.1. Perplexity for Each Epoch. The average perplexity for each epoch with the number
of time slices set to 4 and the number of topics set to 15 for the dJST-related models is
shown in Figure 5. In addition, we also plot the perplexity results of LDA-one, JST-one,
and JST-all. LDA-one and JST-one only use the data in the previous epoch for training
and hence they do not model dynamics. JST-all uses all past data for model learning. We
set the number of topics to 15 for both JST-one and JST-all. For LDA-one, the number
of topics was set to 3 corresponding to positive, negative, and neutral sentiment labels.
Word-polarity prior information was incorporated into LDA-one in a similar way as the
dJST or JST models5.

5One may argue that the number of topics in LDA should be set to 45, which is equivalent to 15 topics under
each of the 3 sentiment labels in JST or dJST models. However, as our task is for both sentiment and topic
detection, setting the topic number to 45 makes it difficult to incorporate word-polarity prior information
into LDA and it is thus not possible to use LDA for document-level sentiment classification.
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Fig. 6. Perplexity and sentiment classification accuracy versus number of topics.

Figure 5 shows that LDA-one has the highest perplexity values followed by JST-
all and JST-one. The perplexity gap between JST-all and the dJST models increases
with the increasing number of epochs. This suggests that the dependence of historical
reviews varies over time with older reviews having less influence. The variants of dJST
models have quite similar perplexities and they all outperform JST-one.

5.2.2. Performance vs. Different Number of Topics. In another set of experiments we studied
the influence of the topic number settings on the dJST model performance. With the
number of time slices fixed at S = 4, we vary the topic number T ∈ {1, 5, 10, 15, 20, 25}.
Figure 6(a) shows the average per-word perplexity over epochs with different number of
topics. JST-all has higher perplexities than all the other models and the perplexity gap
with the dJST models increases with the increased number of topics. All the variants of
the dJST model have fairly similar perplexity values and they outperform both JST-all
and JST-one.

Figure 6(b) shows the average document-level sentiment classification accuracy over
epochs with different number of topics. dJSTs outperform, JST-one with skip-EM and
multiscale-EM having similar sentiment classification accuracies as JST-all beyond
topic number 1. Also, setting the number of topics to 1 achieves the best classification
accuracy for all the models. Increasing the number of topics leads to a slight drop in
accuracy though it stabilises at the topic number 10 and beyond for all the models.
Nevertheless, the drop in sentiment classification accuracy by modelling more topics is
only marginal (about 1% drop) for sliding-EM and skip-EM.

5.2.3. Computational Time. Figure 7 shows the average training time per epoch with
the number of topics set to 15 using a computer with a duo core CPU 2.8 GHz and 2G
memory. Sliding, skip, and multiscale decay models have similar average training time
across the number of time slices. For the dJST EM models, estimating the weights of
evolutionary matrices takes up more time, with its training time increasing linearly
against the number of time slices. JST-one has less training time than the dJST models.
LDA-one uses least training time since it only models 3 sentiment topics while others
all model a total of 45 sentiment topics. JST-all takes much more time than all the
other models as it needs to use all the previous data for training.

In conclusion, both skip model and multiscale model achieve similar sentiment clas-
sification accuracies as JST-all, but they avoid taking all the historical context into
account and hence are computationally more efficient. On the other hand, dJST mod-
els outperform JST-one in terms of both perplexity values and sentiment classification
accuracies which indicates the effectiveness of modelling dynamics.
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Fig. 7. Average training time per epoch with different number of time slices.

Fig. 8. Performance vs. different input features. Top panel: perplexity; bottom panel: sentiment classification
accuracy.

5.3. Exploring Different Input Features

In the previous experiments, we preprocessed documents by removing stop-words from
a stop-word list and used unigrams as input features to model learning. We further
conducted another set of experiments by first performing Part-Of-Speech (POS) tag-
ging and syntactic parsing, and then removing words based on their POS tags and
augmenting the bag-of-word features with nominal phrases. We manually constructed
a set of 19 POS tags to be ignored, such as PREP (preposition), DET (determiner),
PUNC (punctuation), etc. Words with the POS tags falling into such a list were re-
moved. We compare the performance of the dJST models using the original feature
representation (filtered by stopword list), by removing words based on POS tags (fil-
tered by POS), and augmenting the bag-of-words feature space with nominal phrases
(unigrams+phrases). In the results presented in Figure 8, we set the number of time
slices to 4 and topics ∈ {1, 5, 10, 15, 20, 25}.

The upper panel of Figure 8 shows the average per-word perplexity over epochs with
different number of topics. It is observed that in general, increasing topic numbers
results in lower perplexity values. dJSTs trained with features filtered by POS or
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Fig. 9. Example topics evolved over time. Topic labels were derived from colour words and the number de-
notes epoch ID. Topics in upper and lower panels are the positive and negative sentiment topics respectively.

augmented with nominal phrases (unigrams+phrases) give lower perplexities than
the original feature representation (filtered by stop-word list).

We also plot the average document-level sentiment classification accuracy over
epochs with different number of topics as shown in the lower panel of Figure 8. It can
be observed that models trained with features filtered by POS outperform filtered by
stop-word list under most topic settings. Augmenting the original bag-of-words feature
space with nominal phrases (unigrams+phrases) further improves the classification
accuracy for both the skip model and multiscale model.

5.4. Example Topics

We list in Figure 9 the evolution of one positive sentiment topic and one negative
sentiment topic extracted by dJST-multiscale with the number of topics set to 10 and
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Fig. 10. Occurrence probability of topics with time. Positive and negative sentiment topics correspond to
the topics listed in the upper and lower panel of Figure 9 respectively.

the number of time slices set to 4. In Figure 10, we plotted the occurrence probability
of these two topics with time, where the probability of a topic z occurring under a
sentiment label l, over the document set Dt in each epoch t is calculated as P(z, l) =

1
|Dt|
∑

d∈Dt
P(z|l, d)P(l|d).

It was found in Figure 9 that the topics extracted from the input features com-
prising both unigrams and phrases are generally more meaningful than those
from the bag-of-words representations, as phases such as “good web experience” and
“annoi ad” can deliver richer information. We also notice that the negative phrase
“seriou pop-up problem” appears in the positive topic at Epoch 2. A manual examina-
tion on the original review text reveals that it actually appeared in a positive review
about Adblock Plus with a user rating of 5-stars, “. . . It’s amazing! It even protected me
on a graphics site that had got a serious pop-up problem. It’s a must have. . . . ”.

Figure 9 shows that the positive sentiment topics are mainly dominated by topics
about Adblock Plus and Video DownloadHelper, with only the topics from the last three
epochs mentioning Persona Plus. This observation is inline with the dataset statistics
shown in Figure 3 that only reviews on Adblock Plus and Video DownloadHelper
receive an average user rating of over 4.5-stars over the entire epoch history. Figure 10
also shows the prominence of positive sentiment topics about Adblock Plus in the first
five epochs.

On the other hand, more topic transitions are observed for the negative sentiment
topics, that is, beginning with complaints about Web adverts, and then transitions to
negative comments about Fast Dial. At Epoch 8, there were a significantly high volume
of reviews about Fast Dial and the average rating is about 2-stars. Hence, the nega-
tive sentiment topics about Fast Dial centered around Epoch 8. Negative topic transits
to Echofon for Twitter at Epoch 11 and to Firefox Sync at Epoch 14. Such a phe-
nomenon can also be observed in Figure 10 in that after Epoch 13, negative sentiment
topics become more prominent than positive sentiment topics. This is consistent with
what we have observed in Figure 3 that there were an increasing number of reviews
about Firefox Sync after Epoch 13 and the average user rating of Firefox Sync is only
2-stars.

6. CONCLUSIONS

In this article, we have proposed the dynamic Joint Sentiment-Topic (dJST) model
which models dynamics of both sentiment and topics over time by assuming that
the current sentiment-topic-specific word distributions are generated according to the
word distributions at previous epochs. We studied three different ways of accounting
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for such dependency information: sliding window, skip model, and multiscale model,
and demonstrated the effectiveness of dJST on a real-world dataset in terms of predic-
tive likelihood and sentiment classification accuracy. Our experimental results show
that while these three models give similar perplexity values, both the skip model and
multiscale model generate slightly better sentiment classification results than sliding
window. In future work, we plan to evaluate the model in other social media domains
such as Twitter and further investigate the model for large-scale data processing.

APPENDIX

This appendix shows the derivation of the estimation of the weight vector μt of the
dJST model.

A. ESTIMATING THE WEIGHT VECTOR μT OF THE DJST MODEL

The weight vector μt is estimated by maximizing the joint distribution of dJST using the
fixed-point iteration method described in Minka [2003]. We only need to focus the third
term on the right-hand side of the joint distribution (Eq. (2)) as it is the only term that
contains μt.

P(W t|Lt, zt, Et−1,μt) =
L∏

l=1

T∏
z=1

�
(∑

s μt
l,z,s

)
∏V

w=1 �
(∑

s μt
l,z,sσ

t−1
l,z,s,w

)
∏V

w=1 �
(
Nt

l,z,w +∑s μt
l,z,sσ

t−1
l,z,s,w

)
�
(
Nt

l,z +∑s μt
l,z,s

)
(20)

Taking the log-likelihood gives

log P(W t|Lt, zt, Et−1,μt) =
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(21)

Terms T1 and T2 in Eq. (21) can be bounded using the following bounds [Wallach
2008].

log �(z) − log �(z + n) ≥ log �(ẑ) − log �(ẑ + n) + [
(ẑ + n) − 
(ẑ)](ẑ − z), (22)
log �(z + n) − log �(z) ≥ log �(ẑ + n) − log �(ẑ) + ẑ[
(ẑ + n) − 
(ẑ)](log z − log ẑ) (23)

Applying bounds (22) and (23) to Eq. (21) yields

log P(W t|Lt, zt, Et−1,μt) ≥
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where term T3 in Eq. (24) can be further bounded using the following bound

log(a + b) ≥ log a + log b, (25)

giving
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Differentiating Eq. (24) with respect to μl,z,s gives
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)
︸ ︷︷ ︸

Bt
l,z

⎤
⎥⎥⎥⎥⎥⎦

+
V∑

w=1

S∑
s′=1

μt
l,z,s′σ

t−1
l,z,s′,w

⎡
⎢⎢⎢⎢⎢⎣


(
Nt

l,z,w +
S∑

s′=1

μt
l,z,s′σ

t−1
l,z,s′,w

)
− 


(
S∑

s′=1

μt
l,z,s′σ

t−1
l,z,s′,w

)
︸ ︷︷ ︸

At
l,z,w

⎤
⎥⎥⎥⎥⎥⎦

1
μl,z,s

.

(27)

Setting the differentiation to 0 gives.

(
μt

l,z,s

)new = μl,z,s′
∑V

w=1 σ t−1
l,z,s′,w · At

l,z,w

Bt
l,z

. (28)

ACKNOWLEDGMENTS

The authors would like to thank Dong Liu for crawling Mozilla add-ons review data and Stefan Geissler for
providing the part-of-speech tagging and syntactic parsing results.

REFERENCES

AHMED, A. AND XING, E. 2008. Dynamic non-parametric mixture models and the recurrent chinese restaurant
process. In Proceedings of the SIAM International Conference on Data Mining (SDM’08).

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.



6:20 Y. He et al.

BLEI, D. AND LAFFERTY, J. 2006. Dynamic topic models. In Proceedings of the 23rd International Conference on
Machine Learning (ICML’06). 113–120.

BOLLEN, J., MAO, H., AND PEPE, A. 2010a. Determining the public mood state by analysis of microblogging
posts. In Proceedings of the 12th International Conference on the Synthesis and Simulation of Living
Systems (Alife’10).

BOLLEN, J., PEPE, A., AND MAO, H. 2010b. Modeling public mood and emotion: Twitter sentiment and socio-
economic phenomena. In Proceedings of the 5th AAAI International Conference on Weblogs and Social
Media. http://arxiv.org/abs/0911.1583.

CHAKRABARTI, D., KUMAR, R., AND TOMKINS, A. 2006. Evolutionary clustering. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06). 554–560.

CHI, Y., SONG, X., HINO, K., AND TSENG, B. 2007. Evolutionary spectral clustering by incorporating temporal
smoothness. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’07). 153–162.

CHI, Y., SONG, X., ZHOU, D., HINO, K., AND TSENG, B. L. 2009. On evolutionary spectral clustering. ACM Trans.
Knowl. Discov. Data 3, 17:1–17:30.

HE, Y. AND LIN, C. 2012. Online sentiment and topic dynamics tracking over the streaming data. In Proceedings
of the ASE/IEEE International Conference on Social Computing (SocialCom’12).

IWATA, T., YAMADA, T., SAKURAI, Y., AND UEDA, N. 2010. Online multiscale dynamic topic models. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’10).
663–672.

LIN, C. AND HE, Y. 2009. Joint sentiment/topic model for sentiment analysis. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management (CIKM’09). 375–384.

LIN, C., HE, Y., EVERSON, R., AND RUEGER, S. 2012. Weakly-supervised joint sentiment-topic detection from
text. IEEE Trans. Knowl. Data Engin. 24, 6, 1134–1145.

MAO, Y. AND LEBANON, G. 2007. Isotonic conditional random fields and local sentiment flow. In Proceedings of
the 20th Annual Conference on Neural Information Processing Systems (NIPS’07), vol. 19. 961–968.

MAO, Y. AND LEBANON, G. 2009. Generalized isotonic conditional random fields. Mach. Learn. 77, 2, 225–248.
MCNAIR, D., LORR, M., AND DROPPLEMAN, L. 1992. Profile of Mood States: POMS. EdiTS, Educational and

Industrial Testing Service.
MEI, Q., LING, X., WONDRA, M., SU, H., AND ZHAI, C. 2007. Topic sentiment mixture: modeling facets and

opinions in weblogs. In Proceedings of the 16th International Conference on World Wide Web (WWW’07).
171–180.

MEI, Q. AND ZHAI, C. 2005. Discovering evolutionary theme patterns from text: an exploration of temporal
text mining. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’05). 198–207.

MINKA, T. 2003. Estimating a dirichlet distribution. Tech. rep. http://research.microsoft.com/en-us/um/people/
minka/papers/dirichlet/minka-dirichlet.pdf.

NALLAPATI, R., DITMORE, S., LAFFERTY, J., AND UNG, K. 2007. Multiscale topic tomography. In Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07).
520–529.

O’CONNOR, B., BALASUBRAMANYAN, R., ROUTLEDGE, B., AND SMITH, N. 2010. From tweets to polls: Linking text
sentiment to public opinion time series. In Proceedings of the International AAAI Conference on Weblogs
and Social Media. 122–129.

PRUTEANU-MALINICI, I., REN, L., PAISLEY, J., WANG, E., AND CARIN, L. 2009. Hierarchical Bayesian modeling of
topics in time-stamped documents. IEEE Trans. Pattern Anal. Mach. Intell. 32, 6, 996–1011.

REN, L., DUNSON, D., AND CARIN, L. 2008. The dynamic hierarchical dirichlet process. In Proceedings of the
25th International Conference on Machine Learning (ICML’08). 824–831.

STEYVERS, M. AND GRIFFITHS, T. 2007. Probabilistic topic models. In Handbook of Latent Semantic Analysis.
Laurence Erlbaum, 427–446.

TEH, Y., JORDAN, M., BEAL, M., AND BLEI, D. 2006. Hierarchical dirichlet processes. J. Amer. Statist. Assoc. 101,
476, 1566–1581.

WALLACH, H. 2008. Structured topic models for language. Ph.D. thesis, University of Cambridge. http://people.
cs.umass.edu/∼wallach/theses/wallach phd thesis.pdf.

WALLACH, H., MIMNO, D., AND MCCALLUM, A. 2009. Rethinking lda: Why priors matter. Adv. Neural Inf. Process.
Syst. 22, 1973–1981.

WANG, C., BLEI, D., AND HECKERMAN, D. 2008. Continuous time dynamic topic models. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence (UAI’08). http://arxiv.org/ftp/arxiv/papers/
1206/1206.3298.pdf.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.



Dynamic Joint Sentiment-Topic Model 6:21

WANG, X. AND MCCALLUM, A. 2006. Topics over time: A non-markov continuous-time model of topical trends.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’06). 424–433.

XU, T., ZHANG, Z., YU, P., AND LONG, B. 2008a. Dirichlet process based evolutionary clustering. In Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM’08). 648–657.

XU, T., ZHANG, Z., YU, P., AND LONG, B. 2008b. Evolutionary clustering by hierarchical dirichlet process with
hidden markov state. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08).
658–667.

ZHANG, J., SONG, Y., ZHANG, C., AND LIU, S. 2010. Evolutionary hierarchical dirichlet processes for multiple
correlated time-varying corpora. In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’10). 1079–1088.

Received February 2012; revised July 2012; accepted October 2012

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 6, Publication date: December 2013.


	Dynamic joint sentiment-topic mode
	Citation

	TIST0501-06

