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Abstract Sentiment classification has become a ubiquitous enabling technol-
ogy in the Twittersphere, since classifying tweets according to the sentiment
they convey towards a given entity (be it a product, a person, a political
party, or a policy) has many applications in political science, social science,
market research, and many others. In this paper we contend that most pre-
vious studies dealing with tweet sentiment classification (TSC) use a sub-
optimal approach. The reason is that the final goal of most such studies is
not estimating the class label (e.g., Positive, Negative, or Neutral) of individ-
ual tweets, but estimating the relative frequency (a.k.a. “prevalence”) of the
different classes in the dataset. The latter task is called quantification, and re-
cent research has convincingly shown that it should be tackled as a task of its
own, using learning algorithms and evaluation measures different from those
used for classification. In this paper we show (by carrying out experiments
using two learners, seven quantification-specific algorithms, and eleven TSC
datasets) that using quantification-specific algorithms produces substantially
better class frequency estimates than a state-of-the-art classification-oriented
algorithm routinely used in TSC. We thus argue that researchers interested in
tweet sentiment prevalence should switch to quantification-specific (instead of
classification-specific) learning algorithms and evaluation measures.

This is an extended version of a paper with the title “Tweet Sentiment: From Classification
to Quantification” which appears in the Proceedings of the 6th ACM/IEEE International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2015).

Both authors are at Qatar Computing Research Institute, Hamad bin Khalifa University,
Doha, Qatar; E-mail: {wgao,fsebastiani}@qf.org.qa. Fabrizio Sebastiani is on leave from
Consiglio Nazionale delle Ricerche, Italy.
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1 Introduction

Sentiment classification is the task of detecting, given an opinion-laden tex-
tual item (e.g., a product review, a blog post, an editorial, etc.), whether it
expresses a positive or a negative opinion about a given entity (e.g., a product,
a person, a political party, or a policy). The above scenario is a simple instance
of binary classification, with Positive and Negative as the classes. Slightly more
complex scenarios result when the Neutral class is added to the picture, which
makes the task an instance of single-label multi-class (SLMC) classification, or
when sentiment strength needs to be assessed on an ordered scale consisting of
VeryPositive, Positive, Fair, Negative, VeryNegative, which makes the task one
of ordinal classification.

In any of the above incarnations, sentiment classification has become a
ubiquitous enabling technology in the Twittersphere, since classifying tweets
according to the sentiment they convey towards a given entity has many ap-
plications in political science, social science, market research, and many others
[41,42]. The tweet sentiment classification (TSC) shared task which has taken
place in the context of the last three SemEval evaluation campaigns (where
it is called “Sentiment Analysis in Twitter” – see [47,53,54]) has been, in all
three editions, the SemEval task with the highest number of participants.

In this paper we contend that most previous studies dealing with TSC use
a suboptimal approach. The rest of this section is devoted to arguing why this
is so.

Usually, the final goal of most such studies is not estimating the label of
an individual tweet, but studying the distribution of a set of tweets across the
classes of interest; in other words, the interest in such studies is not at the in-
dividual level, but at the aggregate level. For instance, when Borge-Holthoefer
and colleagues [10] use Twitter to study the polarization of sentiments dur-
ing the 2013 Egyptian coup, they are not interested in the sentiments of the
specific individual behind a specific Twitter account, but are interested in
the aggregate data (possibly broken down according to various criteria) that
can be extracted from the entire dataset under study: What is the fraction of
tweeters who supported military intervention? What is the fraction of tweeters
who supported Islamist groups? And how did these percentages evolve during
the days of the coup? Similarly, when Dodds and colleagues [20] use Twitter in
order to study the spatio-temporal patterns of happiness throughout the US
population, they are not interested in how and when a specific person is happy,
but are interested in the conclusions that the aggregate data allow them to
draw. These examples are not isolated, and it is fair to say that most (if not
all) TSC studies conducted, e.g., within political science [10,34,40], economics
[9,49], social science [20], and market research [11,52], use Twitter with an
interest in aggregate data and not in individual data.

Without loss of generality, we may say that TSC studies that focus on
the aggregate level are concerned with estimating the prevalence (or “relative
frequency”) of each class of interest in the unlabelled dataset, i.e., with esti-
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mating the distribution of the unlabelled data across the classes of interest.
This task is known as quantification [4,7,24,27,43].

The obvious method for dealing with it is “classify and count”, i.e., clas-
sifying each unlabelled object via a standard classifier and estimating class
prevalence by counting the objects that have been labelled with the class.
However, this strategy is suboptimal, since a good classifier is not necessarily
a good “quantifier” (i.e., prevalence estimator). To see this consider that a
binary classifier h1 for which FP = 20 and FN = 20 (FP and FN standing
for the “false positives” and “false negatives”, respectively, it has generated on
a given dataset) is worse than a classifier h2 for which, on the same test set,
FP = 18 and FN = 20. However, h1 is intuitively a better binary quantifier
than h2; indeed, h1 is a perfect quantifier, since FP and FN are equal and
thus, when it comes to class frequency estimation, compensate each other, so
that the distribution of the test items across the class and its complement is
estimated perfectly. In other words, a good quantifier needs to have small bias
(i.e., needs to distribute its errors as evenly as possible across FP and FN).

Recent research (e.g., [4,7,24,27]) has convincingly shown that, since clas-
sification and quantification pursue different goals, quantification should be
tackled as a task of its own, using different evaluation measures and, as a re-
sult, different learning algorithms. One reason why it seems sensible to pursue
quantification directly, instead of tackling it via classification, is that classifi-
cation is a more general task than quantification: after all, a perfect classifier
is also a perfect quantifier, while the opposite is not true. A training set might
thus contain information sufficient to generate a good quantifier but not a good
classifier, which means that performing quantification via “classify and count”
might be a suboptimal way of performing quantification. In other words, per-
forming quantification via “classify and count” looks like a violation of “Vap-
nik’s principle” [61], which asserts that “If you possess a restricted amount of
information for solving some problem, try to solve the problem directly and
never solve a more general problem as an intermediate step. It is possible that
the available information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem.”.

In this paper we show, using 2 learners, 7 quantification-specific algorithms
and 11 different TSC datasets, that quantification-specific algorithms indeed
outperform, at prevalence estimation, state-of-the-art classification-oriented
learning algorithms. We thus argue that researchers interested in tweet sen-
timent prevalence should switch to using quantification-specific (instead of
classification-specific) learning algorithms and evaluation measures.

This paper is an extension of [28], where only experiments on one learner
(instead of two), one quantification-specific algorithm (instead of seven), and
eight TSC datasets (instead of eleven) were carried out; the conclusions that
this much larger experimentation allow us to draw are thus more solidly
grounded (and somehow surprising).

The paper is organized as follows. In Section 2 we discuss previous work
in tweet sentiment classification and previous work in quantification, arguing
that these two research streams have never crossed paths. In order to introduce
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tweet sentiment quantification, in Section 3 we first look at the evaluation mea-
sures that are used in the quantification literature. In Section 4 we describe the
tweet sentiment quantification systems we compare in this work; one system
is based on “traditional” classification technology and other seven systems are
based on quantification-specific learning algorithms. Section 5 describes the
results of our experiments, while Section 6 concludes.

2 Related work

Quantification methods. Quantification goes under different names in dif-
ferent fields and different papers. It is variously called prevalence estimation
[5], counting [38], class probability re-estimation [1], class prior estimation [12,
65], and class distribution estimation [29,39,64].

Different quantification methods have been proposed over the years, the
two main classes being the aggregative and the non-aggregative methods. While
the former require the classification of each individual item as an intermediate
step, the latter do not, and estimate class prevalences holistically. Most meth-
ods (e.g., the ones described in [4,7,24,27,43]) fall in the former class (all the
ones we use in this paper belong to this category), while the latter has few
representatives (e.g., [29,35]).

Within the class of aggregative methods, a further distinction can be made
between methods that use general-purpose learning algorithms (e.g., [7,27]),
sometimes tweaking them or post-processing their prevalence estimates to ac-
count for their estimated bias, and methods that instead make use of learn-
ing algorithms explicitly devised for quantification (e.g., [4,24,43]). Aggrega-
tive quantification methods have a classifier under the hood; the underlying
learning algorithms that have been used for learning such classifiers belong to
the classes of kernel machines [3,4,24,27], decision trees [7,43], memory-based
learning algorithms [7], logistic regression [3,7,37], and neural networks [6,
29]; most learning algorithms that have been used are of the cost-insensitive
type, but cost-sensitive algorithms have been employed too [64]. Quantifica-
tion has mostly been addressed at the binary level, although methods for
single-label multi-class quantification [7,31,55] and ordinal quantification [17,
21] have been proposed.

A further distinction is that between batch learning methods, which re-
quire all the training examples to be loaded in memory at the same time, and
incremental “online” methods, which relax this requirement and thus start
learning after the first training examples are loaded in memory; practically
all quantification methods studied up to now are batch methods, the only
exception being the method discussed in [48].

Applications of quantification. Quantification has been applied to fields
as diverse as epidemiology [35], remote sensing [37], marine ecology [6], re-
source allocation [27], word sense disambiguation [12], political science [31],
and veterinary [29,57]. King and Lu [35] apply quantification to the estimation
of cause-of-death prevalences from “verbal autopsies”, i.e., verbal descriptions
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of the symptoms suffered from deceased persons before dying. Latinne et al.
[37] use a quantification approach in order to interpret automatically the land
cover in images from remote sensing; similarly, Beijbom et al. [6] apply quanti-
fication to the task of surveying underwater surfaces that are covered by coral
reef. Chan and Ng [12] use quantification in order to estimate word sense priors
from a text dataset to disambiguate, so as to tune a word sense disambiguator
to the estimated sense priors; their work can be seen as an instance of transfer
learning (see e.g., [51]), since the goal is to adapt a word sense disambigua-
tion algorithm to a domain different from the one the algorithm was trained
upon. Hopkins and King [31] estimate the prevalence of support for different
political candidates from blog posts, using the method pioneered in [35]. For-
man [27] uses quantification for estimating the prevalence of different issues
from logs of calls to customer support; these estimates allow a company to
allocate more human resources to the issues which have elicited more calls. In
[29] and [57] quantification is used for establishing the prevalence of damaged
sperm cells in a given sample for veterinary applications. Saerens et al. [55]
(followed in this by other authors [1,64,65]) instead apply quantification to
customizing a trained classifier to the class prevalences of the test set, with
the goal of improving classification accuracy on unlabelled data exhibiting a
class distribution different from that of the training set. Balikas et al. [3] use
quantification for model selection in supervised learning, i.e., they tune hyper-
parameters by choosing for them the values that yield the best quantification
accuracy on the test data; this allows hyperparameter tuning to be performed
without incurring the costs inherent in k-fold cross-validation.

Shared tasks involving quantification. Tweet quantification is one of
the subjects of the recent SemEval Task 4 “Sentiment Analysis in Twitter”
shared task [46], where tweets are labelled according to the sentiment they
convey towards a certain topic. Subtask D consists of a binary quantification
task, and Subtask E consists of an ordinal quantification task (with tweets
labelled according to a five-point scale).

3 Evaluation measures for quantification

Let us look at the measures which are currently being used in the literature for
evaluating quantification error; in Section 5 we will use the very same measures
in evaluating the results of our experiments.

The task we tackle in this paper requires estimating the distribution of a set
S of unlabelled tweets across a set C of available classes; we will typically deal
with the case in which |C| = 3, where the classes are Positive, Negative, and
Neutral. Ours is thus a single-label multi-class (SLMC) quantification task,
and we will thus concentrate on the measures that have been proposed for
evaluating it. Note that a measure for SLMC quantification is also a measure
for binary quantification, since the latter task is a special case of the former;
this would be relevant for datasets in which the Neutral class is absent. Note
also that a measure for binary quantification is also a measure for “multi-label
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multi-class” quantification, since the latter task can be solved by separately
solving |C| instances of the former task, one for each c ∈ C.

Notation-wise, by Λ(p, p̂, S, C) we will indicate a quantification loss, i.e.,
a measure Λ of the error made in estimating a distribution p defined on set
S and classes C by another distribution p̂; we will often simply write Λ(p, p̂)
when S and C are clear from the context1.

The simplest measure for SLMC quantification is absolute error (AE),
which corresponds to the average (across the classes in C) absolute difference
between the predicted class prevalence and the true class prevalence; i.e.,

AE(p, p̂) =
1

|C|
∑
c∈C
|p̂(c)− p(c)| (1)

It is easy to show that AE ranges between 0 (best) and

2(1−min
c∈C

p(c))

|C|

(worst); a normalized version of AE that always ranges between 0 (best) and
1 (worst) can thus be obtained as

NAE(p, p̂) =

∑
c∈C |p̂(c)− p(c)|

2(1−min
c∈C

p(c))
(2)

The main advantage of AE and NAE is that they are intuitive, and easy to
understand to non-initiates too.

However, AE and NAE do not address the fact that the same absolute
difference between predicted class prevalence and true class prevalence should
count as a more serious mistake when the true class prevalence is small. For
instance, predicting p̂(c) = 0.10 when p(c) = 0.01 and predicting p̂(c) = 0.50
when p(c) = 0.41 are equivalent errors according to AE, but the former is
intuitively a more serious error than the latter. Relative absolute error (RAE)
addresses this problem by relativising the value |p̂(c)− p(c)| in Equation 1 to
the true class prevalence, i.e.,

RAE(p, p̂) =
1

|C|
∑
c∈C

|p̂(c)− p(c)|
p(c)

(3)

RAE may be undefined in some cases, due to the presence of zero denomina-
tors. To solve this problem, in computing RAE we can smooth both p(c) and
p̂(c) via additive smoothing, i.e.,

ps(c) =
ε+ p(c)

ε|C|+
∑
c∈C

p(c)
(4)

1 Consistently with most mathematical literature we use the caret symbol (ˆ) to indicate
estimation.
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where ps(c) denotes the smoothed version of p(c) and the denominator is just
a normalizing factor (same for the p̂s(c)’s); the quantity ε = 1

2|S| is often used

as a smoothing factor. The smoothed versions of p(c) and p̂(c) are then used
in place of their original versions in Equation 3; as a result, RAE is always
defined and still returns a value of 0 when p and p̂ coincide. It is easy to show
that RAE ranges between 0 (best) and

|C| − 1 +
1−min

c∈C
p(c)

min
c∈C

p(c)

|C|

(worst); a normalized version of RAE that always ranges between 0 (best) and
1 (worst) can thus be obtained as

NRAE(p, p̂) =

∑
c∈C

|p̂(c)− p(c)|
p(c)

|C| − 1 +
1−min

c∈C
p(c)

min
c∈C

p(c)

(5)

A third measure, and the one that has become somehow standard in the eval-
uation of SLMC quantification, is normalized cross-entropy, better known as
Kullback-Leibler Divergence (KLD – see e.g., [15]). KLD was proposed as a
SLMC quantification measure in [26], and is defined as

KLD(p, p̂) =
∑
c∈C

p(c) loge
p(c)

p̂(c)
(6)

KLD was originally devised as a measure of the inefficiency incurred when
estimating a true distribution p over a set C of classes by means of a predicted
distribution p̂. KLD is thus suitable for evaluating quantification, since quan-
tifying exactly means predicting how the items in set S are distributed across
the classes in C.

KLD ranges between 0 (best) and +∞ (worst). Note that, unlike AE and
RAE, the upper bound of KLD is not finite since Equation 6 has predicted
probabilities, and not true probabilities, at the denominator: that is, by making
a predicted probability p̂(c) infinitely small we can make KLD be infinitely
large. A normalized version of KLD yielding values between 0 (best) and 1
(worst) may be defined by applying a logistic function2, e.g.,

NKLD(p, p̂) = 2
eKLD(p,p̂)

eKLD(p,p̂) + 1
− 1 (7)

2 Since the standard logistic function ex

ex+1
ranges (for the domain [0,+∞) we are inter-

ested in) on [ 1
2

,1], we multiply by 2 in order for it to range on [1,2], and subtract 1 in order
for it to range on [0,1], as desired.
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Also KLD (and, as a consequence, NKLD) may be undefined in some cases.
While the case in which p(c) = 0 is not problematic (since continuity argu-
ments indicate that 0 log 0

a should be taken to be 0 for any a ≥ 0), the case in
which p̂(c) = 0 and p(c) > 0 is indeed problematic, since a log a

0 is undefined
for a > 0. To solve this problem, also in computing KLD and NKLD we use
the smoothed probabilities of Equation 4; as a result, KLD and NKLD are
always defined and still return a value of zero when p and p̂ coincide.

While KLD is less easy to understand to non-initiates than AE or RAE,
its advantage is that it is a very well-known measure, having been the subject
of intense study within information theory [16] and, although from a more
applicative angle, within the language modelling approach to information re-
trieval and to speech processing. As a consequence, it has emerged as the de
facto standard in the SLMC quantification literature. We will thus pick it as
the measure to optimize; however, in the experimental section we will report
the results of all our experiments in terms of all six measures discussed above.

4 Tweet sentiment quantifiers

In this section we will describe the quantification systems we will use in our
experiments. Like a classification system, a system for performing quantifi-
cation consists of two main components: (i) an algorithm for converting the
objects of interest (tweets, in our case) into vectorial representations that can
be interpreted both by the learning algorithm and, once it has been trained,
by the quantifier itself, and (ii) an algorithm for training quantifiers from vec-
torial representations of training objects. Section 4.1 describes component (i)
while in Section 4.2 we describe the various choices for component (ii) that we
have compared experimentally.

4.1 Features for detecting tweet sentiment

For building vectorial representations of tweets we have followed the approach
discussed in [36, Section 5.2.1], since the representations presented therein are
those used in the systems that performed best at both the SemEval 2013 [44]
and SemEval 2014 [66] TSC shared tasks.

The text is preprocessed by normalizing URLs and mentions of users to the
constants http://someurl and @someuser, resp., after which tokenisation and
POS tagging is performed. The binary features used (i.e., features denoting
presence or absence in the tweet) include word n-grams, for n ∈ {1, 2, 3, 4},
and character n-grams, for n ∈ {3, 4, 5}, whether the last token contains an
exclamation and/or a question mark, whether the last token is a positive or
a negative emoticon and, for each of the 1000 word clusters produced with
the CMU Twitter NLP tool3, whether any token from the cluster is present.
Integer-valued features include the number of all-caps tokens, the number of

3 http://www.ark.cs.cmu.edu/TweetNLP/

http://www.ark.cs.cmu.edu/TweetNLP/
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tokens for each POS tag, the number of hashtags, the number of negated
contexts, the number of sequences of exclamation and/or question marks, and
the number of elongated words (e.g., cooooool).

A key addition to the above is represented by features derived from both
automatically generated and manually generated sentiment lexicons; for these
features, we use the same sentiment lexicons as used in [36], which are all
publicly available. We omit further details concerning our vectorial represen-
tations (and, in particular, how the sentiment lexicons contribute to them),
both for brevity reasons and because these vectorial representations are not
the central focus of this paper; the interested reader is invited to consult [36,
Section 5.2.1] for details.

Finally, we should mention the fact that we did not perform any feature se-
lection, since our learners could handle the resulting (huge) number of features
fairly well from the standpoint of efficiency.

4.2 Learning to quantify

In order to test our conjecture that using quantification-specific algorithms,
rather than standard classification-oriented ones, delivers superior quantifi-
cation accuracy, in the experiments described in Section 5 we test seven
quantification-specific algorithms against a state-of-the-art classification-orien-
ted one. This section is devoted to describing each of them in detail.

Let us fix some notation. We assume a domainD of objects; a generic object
will be indicated by x. We assume the availability of a set Tr of training objects
(tweets, in our case) and of a set Te of test objects on which the accuracy of
our quantifiers will be evaluated. A classifier (or hypothesis) trained on Tr will
be denoted by h : D → C, where D is our domain of interest (the set of tweets)
and C is the set of classes (Positive, Negative, Neutral, in our case). By ps(c)
we will denote the true prevalence of class c ∈ C in set s, while by p̂Ms (c) we
will denote the prevalence of class c ∈ C in set s as estimated via method M .

Classify and Count (CC). An obvious method for quantification consists
of training a classifier from Tr via a standard learning algorithm, classifying
the objects in Te, and estimating pTe by simply counting the fraction of objects
in Te that are predicted to belong to the class. If by ĉ we denote the event
“class c has been assigned by the classifier”, so that pTe(ĉ) represents the
fraction of test documents that have been assigned c by the classifier, this
corresponds to computing

p̂CCTe (c) = pTe(ĉ)

=
|{x ∈ Te|h(x) = c}|

|Te|
(8)

Forman [27] calls this the classify and count (CC) method. This is the classifica-
tion-oriented method we will use as a baseline in our experiments, and that
will be contrasted with seven quantification-specific methods.
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Probabilistic Classify and Count (PCC). A variant of CC consists in
generating a classifier from Tr, classifying the objects in Te, and computing
pTe(c) as the expected fraction of objects predicted to belong to c. If by p(c|x)
we indicate the posterior probability, i.e., the probability of membership in c
of test object x as estimated by the classifier, and by E[x] we indicate the
expected value of x, this corresponds to computing

p̂PCCTe (c) = E[pTe(ĉ)]

=
1

|Te|
∑
x∈Te

p(c|x)
(9)

The rationale of PCC is that posterior probabilities contain richer information
than binary decisions, which are usually obtained from posterior probabilities
by thresholding.

If the classifier only returns confidence scores that are not probabilities
(as is the case, e.g., when the scores do no range on [0,1]), the former must
be converted into true probabilities. If the score is a monotonically increasing
function of the classifier’s confidence in the fact that the object belongs to
the class, this may be obtained by applying a logistic function. Well-calibrated
probabilities (defined as the probabilities such that the prevalence ps(c) of a
class c in a set s is equal to

∑
x∈s p(c|x)) may be obtained by using a generalized

logistic function; see e.g., [8, Section 4.4] for details.
The PCC method is dismissed as unsuitable in [26,27], on the grounds

that, when the training set distribution pTr and the test set distribution pTe
are different (as they should be assumed to be in any application of quantifi-
cation), probabilities calibrated on Tr (Tr being the only available set where
calibration may be carried out) cannot be, by definition, calibrated for Te
at the same time. Experimental evidence on PCC is not conclusive, since
PCC performed better than CC in the experiments of [7] (where it is called
“Probability Average”) and [59], but underperformed CC in the (much more
extensive) experiments of [24].

Adjusted Classify and Count (ACC). Forman [26,27] uses a further
method which he calls “Adjusted Count”, and which we will call (consistently
with [24]) Adjusted Classify and Count (ACC) so as to make its relation with
CC more explicit.

ACC is based on the observation that, thanks to the law of total probability,
it holds that

pTe(ĉj) =
∑

ci,cj∈C
pTe(ĉj |ci) · pTe(ci) (10)

Here, pTe(ĉj |ci) represents the fraction of test documents belonging to ci that
have been instead assigned c by the classifier. Note that, once the classifier
has been trained and applied to Te, the quantity pTe(ĉj) can be observed, and
the quantity pTe(ĉj |ci) can be estimated from Tr via k-fold cross-validation;
the quantity pTe(ci) is instead unknown, and is indeed the quantity we want
to estimate. Since there are |C| equations of the type described in Equation
10 (one for each possible ĉj), and since there are |C| quantities of type pTe(ci)
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to estimate (one for each choice of ci), we are in the presence of a system of
|C| linear equations in |C| unknowns. This system can be solved via standard
techniques, thus yielding the required p̂Te(ci) estimates.

One problem with ACC is that it is not guaranteed to return a value in
[0,1], due to the fact that the estimates of pTe(ĉj |ci) may be imperfect. This
has lead most authors (see e.g., [27]) to (i) “clip” the p̂Te(ci) estimates (i.e.,
equate to 1 every value higher than 1 and to 0 every value lower than 0), and
(ii) rescale them so that they sum up to 1.

Probabilistic Adjusted Classify and Count (PACC). The PACC
method (proposed in [7], where it is called “Scaled Probability Average”) is a
probabilistic variant of ACC, i.e., it stands to ACC like PCC stands to CC.
Its underlying idea is to replace, in Equation 10, pTe(ĉj) and pTe(ĉj |ci) with
their expected values. Equation 10 is thus transformed into

E[pTe(ĉj)] =
∑

ci,cj∈C
E[pTe(ĉj |ci)] · pTe(ci) (11)

where

E[pTe(ĉj)] =
1

|Te|
∑
x∈Te

p(cj |x)

E[pTe(ĉj |ci)] =
1

|Tei|
∑

x∈Tei

p(cj |x)
(12)

and Tei indicates the set of objects in Te whose true class is ci. Like for ACC,
once the classifier has been trained and applied to Te, the quantity E[pTe(ĉj)]
can be observed, and the quantity E[pTe(ĉj |ci)] can be estimated from Tr via
k-fold cross-validation, which means that we are again in the presence of a
system of |C| linear equations in |C| unknowns, that we can solve by standard
techniques. Like ACC, also PACC can return p̂Te(ci), i.e., estimates of pTe(ci),
that fall off the [0,1] range; again, clipping and rescaling is the only solution
in these cases.

Like PCC, also PACC is dismissed as unsuitable in [26,27], for the same
reasons for which PCC was also dismissed. Unlike in the case of PCC, published
experimental evidence seems instead in favour of PACC, since the experimental
results published in [7,24,59] indicate PACC to outperform all of CC, PCC,
and ACC.

Expectation Maximization for Quantification (EMQ). EMQ, pro-
posed by Saerens et al. [55], is an instance of Expectation Maximization [18],
a well-known iterative algorithm for finding maximum-likelihood estimates of
parameters (in our case: the class prevalences) for models that depend on
unobserved variables (in our case: the class labels). Essentially, EMQ (see Al-
gorithm 1) incrementally updates (Line 10) the posterior probabilities by using
the class prevalences computed in the last step of the iteration, and updates
(Line 14) the class prevalences by using the posterior probabilities computed
in the last step of the iteration, in a mutually recursive fashion.

SVMs optimized for KLD (SVM(KLD)). SVM(KLD), proposed in
[22,24], is an instantiation of Thorsten Joachims’ SVM-perf [32] that uses
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Input : Class prevalences pTr(c) on Tr, for all c ∈ C;
Posterior probabilities p(c|x), for all c ∈ C and for all x ∈ Te;

Output: Estimates p̂Te(c) of class prevalences on Te;

/* Initialization */

1 s← 0;
2 for c ∈ C do

3 p̂
(s)
Te(c)← pTr(c);

4 for x ∈ Te do

5 p(s)(c|x)← p(c|x);
6 end

7 end

/* Main Iteration Cycle */

8 while stopping condition = false do
9 s← s + 1;

10 for c ∈ C do
11 for x ∈ Te do

12 p(s)(c|x)←

p̂
(s)
Te(c)

p̂
(0)
Te (c)

· p(0)(c|x)

∑
c∈C

p̂
(s)
Te(c)

p̂
(0)
Te (c)

· p(0)(c|x)

13 end

14 p̂
(s)
Te(c)←

1

|Te|
∑

x∈Te

p(s−1)(c|x)

15 end

16 end

/* Generate output */

17 for c ∈ C do

18 p̂Te(c)← p̂
(s)
Te(c)

19 end

Algorithm 1: The EMQ algorithm [55].

KLD as the loss to optimize4. SVM-perf is a “structured output prediction”
algorithm in the support vector machines (SVMs) family. Unlike traditional
SVMs, SVM-perf is capable of optimizing any nonlinear, multivariate loss func-
tion that can be computed from a contingency table (as all the measures pre-
sented in Section 3 are). Instead of handling hypotheses h : X → Y that map
an individual item (in our case: a tweet) xi into an individual label yi, SVM-
perf considers hypotheses h̄ : X̄ → Ȳ that map entire tuples of items (in our
case: entire sets of tweets) x̄ = (x1, ...,xn) into tuples of labels ȳ = (y1, ..., yn).
Instead of learning the traditional hypotheses of type

h(x) = sign(w · x + b) (13)

SVM-perf thus learns hypotheses of type

h̄(x̄) = arg max
ȳ∈Ȳ

(w · Ψ(x̄, ȳ)) (14)

4 In [32] SVM-perf is actually called SVM-multi, but the author has released its imple-
mentation under the name SVM-perf; we will thus use this latter name.
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where w is the vector of parameters to be learnt during training and

Ψ(x̄, ȳ) =

n∑
i=1

xiyi (15)

(the joint feature map) is a function that scores the pair of tuples (x̄, ȳ) accord-
ing to how “compatible” x̄ and ȳ are. In other words, while classifiers trained
via traditional SVMs classify individual instances x one at a time, models
trained via SVM-perf classify entire sets x̄ of instances in one shot, and can
thus make the labels assigned to the individual items mutually depend on
each other. This is of fundamental importance in quantification, where, say,
an additional false positive may even be beneficial when the rest of the data
is expected to contain more false negatives than false positives.

While the optimization problem of classic soft-margin SVMs consists of
finding

arg min
w,ξi≥0

1

2
w ·w + C

|Tr|∑
i=1

ξi

such that y′i[w · x′i + b] ≥ (1− ξi)
for all i ∈ {1, ..., |Tr|}

(16)

(where the (x′i, y
′
i) denote the training examples), the corresponding problem

of SVM-perf consists instead of finding

arg min
w,ξ≥0

1

2
w ·w + Cξ

such that w · [Ψ(x̄′, ȳ′)− Ψ(x̄′, ȳ) + b]
≥ Λ(ȳ′, ȳ)− ξ for all ȳ ∈ Ȳ/ȳ′

(17)

where (x̄′, ȳ′) indicates a sequence of training examples and the corresponding
sequence of their true labels. Here, the relevant fact to observe is that the
multivariate loss Λ explicitly appears in the optimization problem.

We refer the interested reader to [32,33,60] for more details on SVM-perf
(and on SVMs for structured output prediction in general). From the point of
view of the user interested in applying it to a certain task, the implementation
of SVM-perf made available by its author is essentially an off-the-shelf package,
since for customizing it to a specific loss Λ one only needs to write a small
module that describes how to compute Λ from a contingency table.

SVMs optimized for NKLD (SVM(NKLD)). SVM(NKLD), originally
discussed in [23], is just a minor variation of SVM(KLD), the only difference
being that NKLD (as from Equation 7), is the loss function being minimized.

SVMs optimized for Q (SVM(Q)). SVM(Q), originally proposed in
[4], is (like SVM(KLD) and SVM(NKLD)) an instantiation of SVM-perf. The
authors optimize a “multi-objective” measure (which they call Q-measure)
that combines classification accuracy and quantification accuracy; the ratio-
nale is that by maximizing both measures at the same time, one tends to
obtain quantifiers that are not just effective (thanks to the high quantification
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accuracy), but also reliable (thanks to the high classification accuracy). The
authors’ Q-measure is

Qβ(p, p̂) =
(β2 + 1)Γc(p, p̂) · Γq(p, p̂)
β2Γc(p, p̂) + Γq(p, p̂)

(18)

where Γc and Γq are a measure of classification “gain” (the opposite of loss)
and a measure of quantification gain, respectively, and 0 ≤ β ≤ +∞ is a
parameter that controls the relative importance of the two; for β = 0 the Qβ
measure coincides with Γc, while when β tends to +∞, Qβ asymptotically
tends to Γq.

As a measure of classification gain the authors use recall, while as a measure
of quantification gain they use (1−NAE), where NAE is as defined in Equation
2. The authors motivate the (apparently strange) decision to use recall as a
measure of classification gain with the fact that, while recall by itself is not a
suitable measure of classification gain (since it is always possible to arbitrarily
increase recall at the expense of precision or specificity), to include precision or
specificity in Qβ is unnecessary, since the presence of Γq in Qβ has the effect
of ruling out anyway those hypotheses characterised by high recall and low
precision / specificity (since these hypotheses are indeed penalized by Γq)

5.

5 Experiments

5.1 Datasets

We have carried out our experiments on a variety of TSC datasets previously
used in the literature; the main characteristics of these datasets are listed
in Table 1. The SemEval2013, SemEval2014, SemEval2015, and SemEval2016
datasets are described more in detail in [47], [54], [53], and [46], respectively,
while all of the other datasets (Sanders, SST, OMD, HCR, GASP, WA, WB)
are described in detail in [56]. Our choice of datasets has followed two main
guidelines, i.e., (i) selecting publicly available datasets, so as to guarantee a
high level of replicability, and (ii) selecting datasets whose sentiment labels
are the result of manual annotation, so as to guarantee high label quality6.

It is well known that, when Twitter data are concerned, the replicability of
experimental results is limited since, due to terms of use imposed by Twitter,
the datasets made available by researchers cannot contain the tweets them-
selves, but only consists of their id’s; the tweets corresponding to some of the
id’s may become unavailable over time, which means that the datasets we use

5 SVM-perf is available from http://svmlight.joachims.org/svm_struct.html, while
the module that customizes it to KLD is available from http://hlt.isti.cnr.it/

quantification/ . The code for all the other methods discussed in this section is avail-
able from http://alt.qcri.org/~wgao/codes/tweet_sentiment_quantification.zip.

6 This means that we avoid STC datasets in which the labels are automatically derived
from, say, the emoticons present in the tweets.

http://svmlight.joachims.org/svm_struct.html
http://hlt.isti.cnr.it/quantification/
http://hlt.isti.cnr.it/quantification/
http://alt.qcri.org/~wgao/codes/tweet_sentiment_quantification.zip .
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Table 1 Datasets used in this work and their main characteristics. The last column indi-
cates distribution drift measured in terms of KLD(pTe, pTr), i.e., indicates how much the
distribution of the data across the three classes in the test set diverges from that in the
training set, with higher values indicating higher divergence. The datasets are listed in in-
creasing order of their KLD(pTe, pTr) value, and grouped into low-drift (LD), medium-drift
(MD), and high-drift ones (HD); using any of AE, NAE, NKLD in place of KLD would have
generated the same ranking.
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LD

Sanders 229,399 1,847 308 923 3,078 0.000027
WB 404,333 3,650 609 1,823 6,082 0.000035

SemEval2016 889,504 6,000 2,000 2,000 10,000 0.000289
GASP 694,582 7,532 1,256 3,765 12,553 0.000434

MD
OMD 199,151 1,576 263 787 2,626 0.001344

WA 248,563 1,872 312 936 3,120 0.002127
SemEval2013 1,215,742 9,684 1,654 3,813 15,151 0.003827

HD

SST 376,132 2,546 425 1,271 4,242 0.008259
SemEval2015 1,215,742 9,684 1,654 2,390 13,728 0.008566

HCR 222,046 797 797 798 2,392 0.018663
SemEval2014 1,215,742 9,684 1,654 1,853 13,191 0.051052

here are typically subsets of the original datasets. Luckily enough, this prob-
lem affects us only marginally since (i) of the four SemEval datasets we owned
an original copy before starting this research, and (ii) we were able to recover
all of the original tweets in all of the other datasets (except for Sanders).

Most of the above datasets classify tweets across the three classes Positive,
Negative, Neutral; some others (Sanders, OMD, HCR, GASP, WA, WB) also
use additional classes (e.g., Mixed, Irrelevant, Other), and SST uses 10 different
levels of sentiment strength (from VeryPositive to VeryNegative). For reasons
of uniformity, we have removed the tweets belonging to the additional classes
(Sanders, OMD, HCR, GASP, WA, WB), and converted sentiment strengths
into Positive, Negative, Neutral using the same heuristics as described in [56]
(SST); in all of the datasets we use, the task is thus to quantify the Positive,
Negative, Neutral classes, which represent a partition of the dataset.

Because of the reasons above, the numbers reported in Table 1 refer not
to the original datasets but to the versions we have used7.

Table 1 lists our eleven datasets in increasing order of their distribution
drift, i.e., of how differently the training set and the test set are distributed
across the three classes of interest. Distribution drift can be measured by any

7 In order to enhance the reproducibility of our experimental results, we make available (at
http://alt.qcri.org/~wgao/data/SNAM/tweet_sentiment_quantification.zip) the vec-
torial representations we have generated for all the datasets (split into training / validation
/ test sets) used in this paper.

http://alt.qcri.org/~wgao/data/SNAM/tweet_sentiment_quantification.zip
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of the six evaluation measures we have discussed in Section 3. It turns out
that AE, NAE, KLD, NKLD, return exactly the same ranking of our eleven
datasets, while RAE and NRAE each return a slightly different ranking. In
Table 1 we thus use the ranking returned by AE, NAE, KLD (for which we also
report actual values), NKLD, since it is the one most measures agree upon.

For better convenience, we have broken down the eleven datasets into three
groups, based on distribution drift:

1. Sanders, WB, Semeval2016, GASP, are the low-drift (LD) datasets, char-
acterised by values KLD(pTe, pTr) < 0.0005; the results obtained on these
datasets are reported in Table 5;

2. OMD, WA, Semeval2013, are the medium-drift (MD) datasets, charac-
terised by values 0.0005 < KLD(pTe, pTr) < 0.0050; the results obtained
on these datasets are reported in Table 6;

3. SST, Semeval2015, HCR, Semeval2014, are the high-drift (HD) datasets,
characterised by values KLD(pTe, pTr) > 0.0050; the results obtained on
these datasets are reported in Table 7.

In order to allow better insight into the behaviour of our quantification meth-
ods, we will break down the experimental results we obtain according to these
three groups.

5.2 Experiments with SVMs as a base learner

In the experiments we describe in this section, on each dataset we compare the
quantification-specific learning algorithms of Section 4.2 (PCC, ACC, PACC,
EMQ, SVM(KLD), SVM(NKLD), SVM(Q)) against a baseline (CC) consist-
ing of a representative, state-of-the-art, classification-specific learning algo-
rithm. For the CC baseline we use a standard SVM with a linear kernel, in
the implementation made available in the LIBSVM system8 [13]; it is a strong
baseline, and is (among others) the learning algorithm used in the systems
that performed best at both the SemEval 2013 [44] and SemEval 2014 [66]
STC shared tasks. While SVM(KLD), SVM(NKLD), and SVM(Q) explicitly
minimize KLD, NKLD, and Q-measure, resp., the above baseline minimizes
the well-known Hinge Loss.

All 8 quantification methods use the same vectorial representations, as
described in Section 4.1. All the learning algorithms we discuss in this section
are based on SVMs. The rationale of this choice was (i) to obtain high accuracy
throughout the spectrum of the 8 quantification methods tested, given that
SVMs are known to deliver high accuracy across different text mining tasks,
and (ii) to allow a fair comparison between (a) SVM(KLD), SVM(NKLD),
SVM(Q), which are inherently based on SVM technology, and (b) CC, PCC,
ACC, PACC, EMQ, which could in principle have relied on other learning
technologies (e.g., a näıve Bayesian classifier).

8 The SVM-based implementation of CC is called SVM(HL) in [28]. LIBSVM is available
from http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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For PCC, ACC, PACC, EMQ, we use the same output that was generated
by the LIBSVM-based classifier discussed in the previous paragraph, and that
is used for the CC baseline. Note that PCC, PACC, EMQ, do not require as
output the classifier’s binary decisions, but the posterior probabilities gener-
ated by the classifier. Since SVMs do not natively generate posterior proba-
bilities, we use the -b option of LIBSVM, which converts the scores originally
generated by SVMs into posterior probabilities according to the algorithm
described in [63].

For each of the 8 quantification methods we have optimized the C pa-
rameter (which sets the tradeoff between the training error and the mar-
gin – see Equations 16 and 17) via validation on a separate held-out set,
performing a grid search on all values of type 10x with x ∈ {−6, ..., 7}; we
have optimized C individually for each (method, dataset) pair. We have in-
stead left the other parameters at their default value; in particular, we have
used a linear kernel. For the EMQ algorithm, we stop the iteration when∑
c∈C |p̂

(s)
Te(c)− p̂

(s−1)
Te (c)| < 10−10. For the SVM(Q) method we have set the β

parameter (see Equation 18) to 2, as recommended in [4]. Some of the datasets
we use (SemEval2013, SemEval2014, SemEval2015, SemEval2016, and HCR)
already come with a predefined split between training set and held-out set,
with (for the SemEval2013, SemEval2014, SemEval2015 datasets) roughly
six times as many training items as held-out items9; for the datasets where
such split is not predefined, we have randomly selected the held-out exam-
ples from the training examples, using the same ratio as in the SemEval2013,
SemEval2014, SemEval2015 datasets. For all datasets, after the optimal pa-
rameter values have been selected we have retrained the classifier on the union
of the training and the held-out sets.

As noted in Section 3, ours is a single-label multi-class task. This does
not pose any problem to our baseline system, since LIBSVM is equipped with
a built-in SLMC option; this ensures that the baseline is a strong one. It
instead poses a problem to SVM(KLD), SVM(NKLD), SVM(Q), which are
binary learning algorithms. We circumvent this problem by (i) using each
of SVM(KLD), SVM(NKLD), SVM(Q) to train |C| “one-against-all” binary
predictors, (ii) having each binary predictor output a prevalence estimate for
the corresponding class, and (iii) normalizing these prevalence estimates so
that they sum up to 1. For these three methods, the optimization of the C
parameter mentioned in the previous paragraph is carried out individually for
each “one-against-all” binary predictor.

The overall results of our SVM-based experiments are reported in Table 2;
for each quantification method we present (a) the score (averaged across the
eleven datasets) obtained by the method according to each of the six evaluation
measures we consider, and (b) the relative deterioration in accuracy brought
about by each method with respect to the best-performing system.

9 At the time of writing this paper, the test set of the SemEval2016 collection has not
yet been made available. However, the data made available by the organizers was already
pre-split into three subsets, called “train”, “dev”, and “devtest”; we have thus used these
subsets as the training set, held-out set, and test set, respectively.
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Table 2 Quantification accuracy averaged over all eleven STC datasets, obtained with a
classification-oriented learning algorithm (CC) and seven quantification-oriented learning
algorithms (PCC, ACC, PACC, EMQ, SVM(KLD), SVM(NKLD), SVM(Q)), using SVMs
as the base learner. The algorithms are ranked in increasing order of the KLD value they have
obtained. Percentages represent deteriorations with respect to the best-performing system,
indicated in boldface.

System AE +% NAE +% RAE +% NRAE +% KLD +% NKLD +%

PCC 0.0291 0.0528 0.0949 0.0406 0.0068 0.0034
ACC 0.0339 (+16.4%) 0.0611 (+15.7%) 0.1128 (+18.9%) 0.0468 (+15.1%) 0.0126 (+84.0%) 0.0063 (+84.0%)
EMQ 0.0422 (+44.8%) 0.0779 (+47.4%) 0.1449 (+52.7%) 0.0651 (+60.3%) 0.0146 (+113.5%) 0.0073 (+113.5%)

PACC 0.0361 (+23.8%) 0.0653 (+23.5%) 0.1315 (+38.6%) 0.0546 (+34.4%) 0.0156 (+128.4%) 0.0078 (+128.4%)
SVM(KLD) 0.0530 (+81.9%) 0.0979 (+85.3%) 0.1713 (+80.5%) 0.0786 (+93.4%) 0.0216 (+216.4%) 0.0108 (+216.4%)

CC 0.0566 (+94.1%) 0.1027 (+94.4%) 0.1799 (+89.6%) 0.0765 (+88.2%) 0.0244 (+257.1%) 0.0122 (+257.1%)
SVM(NKLD) 0.0700 (+140.3%) 0.1276 (+141.5%) 0.2790 (+193.9%) 0.1167 (+187.3%) 0.0351 (+413.4%) 0.0175 (+413.3%)

SVM(Q) 0.0874 (+199.9%) 0.1591 (+201.1%) 0.3365 (+254.5%) 0.1400 (+244.5%) 0.0474 (+593.3%) 0.0237 (+593.0%)

In Tables 5 to 7 we report the results obtained by our methods on each
individual dataset, where the datasets are clustered into the three groups iden-
tified in Section 5.1. In each such table, aside from the results obtained by each
method for each of the six considered evaluation measures (Columns 6–11),
we report the class distribution computed for each dataset by each method
(Columns 3–5), which can be easily compared with the actual class distribu-
tions in the training set and in the test set.

Let us start from discussing the overall results in Table 2. A first observa-
tion we can make is that the six measures we use are in substantial agreement
over which method is better than which other. In Table 2 the methods are
ranked by their KLD value, but ranking them by any other measure would
not have changed the ranking much. In fact, AE, NAE, RAE, NRAE only
disagree with KLD, NKLD on which between EMQ and PACC is better, and
NRAE disagrees with all others on which between SVM(KLD) and CC is
better; however, all six measures agree everywhere else.

If we want to compare the learning methods with each other, Table 2
clearly says that PCC is the best method, according to all six measures. Since
the key to PCC’s performance is the accuracy of the posterior probabilities it
receives as input, this is an indirect indication that the method of [63], which
is used in LIBSVM to map confidence scores into posterior probabilities, is
an effective one. Note also that EMQ is substantially outperformed by PCC,
which coincides with EMQ when this latter is stopped after one iteration only;
it thus looks like iterations beyond the first, which were carried out in order
to obtain convergence, were actually detrimental, instead of beneficial, to the
accuracy of EMQ.

The success of PCC might come as a surprise in the light of the results of
[24], whose extensive experiments had shown SVM(KLD) to clearly outper-
form PCC (and other methods tested here such as CC, ACC, PACC). However,
a closer look at the results of [24] shows that SVM(KLD) was the best quan-
tifier only on low-prevalence classes (pTe(c) < 0.01) or mid-prevalence classes
(0.01 ≤ pTe(c) < 0.10), but was not on high-prevalence classes (pTe(c) ≥ 0.10),
where it was outperformed (among others) by PACC and ACC; and all 3
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classes in all our 11 datasets (with the only exception of Positive in GASP)
are indeed high-prevalence classes. This is interesting in view of the fact that
the task analysed in [24] (multi-label classification by topic) and the one we
analyse here (sentiment classification) are quite different when it comes to
class distributions. Multi-label classification by topic generally uses a large set
of classes (often in the form of a complex taxonomy), and these large sets usu-
ally exhibit a power-law behaviour, with very few high-prevalence classes and
very many mid- or low-prevalence classes; in these settings, as shown in [24],
SVM(KLD) seems to shine. Instead, sentiment classification generally uses
few classes (usually: two or three), which are usually high-prevalence, and the
present paper seems to suggest that SVM(KLD) is suboptimal in these con-
texts. While this certainly deserves further investigation, we may hypothesise
that, while SVM(KLD) might be the best choice for multi-label classification
by topic, it is instead not in sentiment classification, which is characterised
by radically different class distributions. The present work seems to indicate
that, in these contexts, PCC is the method of choice.

If we look at the results on the individual datasets (see Tables 5 to 7),
the superiority of PCC seems even more blatant. Out of 66 combinations of 11
datasets × 6 evaluation measures, PCC is the best performer in 34, while ACC
is in 18, PACC is in 8, and EMQ is in 6. If we look at the average results on
low-drift and mid-drift datasets, PCC is always the best performer; on high-
drift datasets, PCC is the best according to two measures, ACC is the best
according to three measures, while EMQ prevails according to one measure.

These latter figures highlight the (somehow surprising) absence, from the
lot of the best performers, of the three methods based on structured pre-
diction (SVM(KLD), SVM(NKLD), SVM(Q)), which would seem the better
motivated ones from a theoretical point of view. These three methods are here
the worst among the quantification-specific algorithms, with SVM(NKLD),
SVM(Q) even beaten by standard CC. One possible explanation might be the
fact that, as mentioned in Section 5.2, unlike the other methods these three
methods are binary in nature (since there is no known multi-class equivalent
of the SVM-perf method they are based upon), which means that the ternary
quantification task we tackle in this paper must be accomplished by (a) gener-
ating independent individual estimates of class prevalence for each of the three
classes of interest, by running three independent binary quantifiers, and then
(b) normalizing the resulting estimates so that they sum up to 1. This is quite
different, and somehow suboptimal, from methods that (as evident by looking,
say, at Equations 10 and 11, and at Algorithm 1) are “natively multi-class”.

We also remark that the results reported in Table 2 by and large confirm
the results we had reported in the earlier version of this paper [28], where only
CC and SVM(KLD) had been tested. Like in [28], where we experimented
only on 8 out of the present 11 datasets, SVM(KLD) outperforms CC. Here,
SVM(KLD) outperforms CC according to five out of six measures (NRAE
being the exception), while it was superior according to all six measures in
[28].
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Last but not least, we observe that CC, our classification-specific base-
line, is outperformed by all quantification-specific learning methods (except
SVM(NKLD) and SVM(Q)), and that the difference in performance is very
substantial. In fact, the increase in quantification error brought about by us-
ing CC instead of the best-performing quantification-specific method (PCC)
ranges between +88.2% (when quantification error is measured by NRAE)
and +257.1% (when it is measured by KLD). This confirms the basic claim
of this paper, i.s., that when tweet sentiment classification is carried out with
the only goal of estimating the prevalence of the classes of interest, we should
use a quantification-specific method rather than a generic classifier.

5.3 Experiments with L2-regularized logistic regression as a base learner

While the last three algorithms of Section 4.2 (SVM(KLD), SVM(NKLD),
SVM(Q)) are inherently based on SVMs, the first five (CC, PCC, ACC, PACC,
EMQ) can be used in connection with any learner. (Technically, PCC, PACC,
EMQ require the learner to return a posterior probability, but this can be ob-
tained from any learner that, for an unlabelled document, outputs a numerical
confidence score instead of just a binary decision; see the discussion of PCC
in Section 4.2.)

As a result, we have performed further experiments in which we test CC,
PCC, ACC, PACC, EMQ also in connection with a learner different from
SVMs. As the learner, we have chosen L2-regularized logistic regression (L2-
LR), as available in the LIBLINEAR package10[25]. The reasons why we have
chosen L2-LR are that (a) it has consistently delivered state-of-the-art perfor-
mance in several applications [14,67], and is thus a strong contender, and (b)
logistic regression, unlike SVMs, natively outputs posterior probabilities (see
e.g., [45, Section 1.4.6]), which is helpful.

For the benefit of PCC, PACC, EMQ, which require the base classifier to
generate posterior probabilities, we use the -b option of LIBLINEAR, which
converts the scores originally generated by L2-LR into posterior probabilities.
L2-LR has only one parameter, the C parameter which sets the amount of
regularization to be applied; we have optimized this parameter in the same way
as we did for SVMs’ C parameter (see Section 5.2). For the EMQ algorithm,
we stop the iteration in the way described in Section 5.2.

The overall results of these further experiments are reported in Table 3,
which reports for L2-LR the same data that Table 2 had reported for SVMs. A
comparison between Table 2 and Table 3 shows that the L2-LR experiments
substantially confirm the conclusions we had drawn from the SVM experi-
ments. The PCC method is still the best of the lot, with a very substantial
margin over the second best method, which is again ACC. Both the SVM and
the L2-LR experiments, and all of the six tested evaluation measures, indicate
that PCC > ACC > PACC > CC (where “>” stands for “is a better method

10 http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table 3 As Table 2, but with L2-LR as the base learner in place of SVMs. The algorithms
are ranked in increasing order of the KLD value they have obtained. Percentages represent
deteriorations with respect to the best-performing system, indicated in boldface.

System AE +% NAE +% RAE +% NRAE +% KLD +% NKLD +%

PCC 0.0298 0.0536 0.1213 0.0485 0.0099 0.0049
ACC 0.0463 (+55.3%) 0.0844 (+57.5%) 0.1617 (+33.3%) 0.0693 (+43.0%) 0.0161 (+63.1%) 0.00.81 (+63.1%)

PACC 0.0484 (+162.4%) 0.0878 (+163.8%) 0.1687 (+139.2%) 0.0712 (+146.9%) 0.0212 (+113.7%) 0.0106 (+113.7%)
CC 0.0586 (+196.7%) 0.1063 (+198.3%) 0.1926 (+158.9%) 0.0813 (+167.7%) 0.0240 (+142.3%) 0.0120 (+142.3%)

EMQ 0.0667 (+224.0%) 0.1216 (+226.8%) 0.2276 (+187.7%) 0.0964 (+198.8%) 0.0355 (+258.3%) 0.0177 (+258.3%)

than”). The only discrepancy between the two batches of experiments is given
by the EMQ method, which was the 3rd best in the SVM experiments while
it is the worst in the L2-LR experiments; the observation made in Section 5.2
concerning the relationship between PCC and EMQ is thus pertinent here too.
As a side observation, we note that in terms of absolute performance the SVM
learner delivers better performance than the L2-LR learner; the difference is
fairly small for all methods in {PCC, ACC, PACC, CC}, while it is very large
for EMQ.

Tables 8 to 10 report the results of the L2-LR-based quantification meth-
ods on each individual dataset. If we look at these results, the superiority of
PCC is even more marked than it was with the SVM-based learners: out of
66 combinations of 11 datasets × 6 evaluation measures, PCC is the best per-
former in 48 (2 of them tied with CC), while ACC is in 4, PACC is in 14,
and CC is in 2 (tied with PCC). If we look at the average results on low-drift,
mid-drift and high-drift datasets, PCC is always the best performer.

5.4 Statistical significance tests

In order to check whether the differences in performance among the eight
quantification methods we test are statistically significant, we have performed
the pairwise two-tailed Wilcoxon signed-ranks test [19,62])on the 11 datasets,
based on the KLD results. As a non-parametric alternative to the paired t-test,
the Wilcoxon test ranks the absolute differences in the performance measure
(KLD, in our case) of two algorithms for each dataset, and compares the ranks
for the positive and the negative differences [19]. When the computed p-value
is lower than the significance level α = 0.05, we reject the null hypothesis and
claim that the difference of the two algorithms is statistically significant.

The results of our Wilcoxon test are displayed in Table 4. It can be observed
that the reported differences between the algorithms essentially confirm, from
a statistical point of view, the results in Tables 2 and 3. The superiority of
PCC over most other algorithms is statistically significant, except for ACC
and PACC. ACC is obtained from CC by correcting for CC’s bias, i.e., for
its tendency to overpredict some of the classes and underpredict the others.
Such correction is very effective for CC, whose performance is rather low; this
can be seen from Table 4, where ACC significantly outperforms CC. However,
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Table 4 Results of Wilcoxon tests for our 8 quantification methods, as deriving from the
KLD results across the 11 datasets. Symbol “>” indicates that the method on the row is
better, in a statistically significant way, than the method on the column; symbol “<” means
the opposite; symbol “≈” means that there is no statistically significant difference among
the two; symbol “−” indicates that the comparison was not performed (because one of the
two methods, or both, cannot be L2-LR-based). In each cell, the leftmost symbol indicates a
comparison between the two SVM-based instantiations of the method, while the rightmost
symbol indicates a comparison between the L2-LR-based instantiations.
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CC << <≈ ≈≈ <> ≈ − > − > −
PCC >> ≈≈ ≈≈ >> > − > − > −
ACC >≈ ≈≈ ≈≈ ≈≈ > − > − > −

PACC ≈≈ ≈≈ ≈≈ ≈≈ ≈ − > − > −
EMQ >< << ≈≈ ≈≈ ≈ − > − > −

SVM(KLD) ≈ − < − < − ≈ − ≈ − > − > −
SVM(NKLD) < − < − < − < − < − < − ≈ −

SVM(Q) < − < − < − < − < − < − ≈ −

from the same Table we can see that PACC is not significantly better than
PCC. Similarly to ACC, PACC is obtained from PCC by correcting for PCC’s
bias, and the results in Table 4 indicate that PACC does not benefit from the
very same correction for bias that ACC benefits from.

Anyway, the most important takeaway message to be obtained from Table
4 is that CC, the naive classification-based method that “anybody would use”
when trying to estimate class prevalences, is inferior, in a statistically signif-
icant sense, to a method (PCC) explicitly designed for quantification. PCC
estimates prevalences directly, without using the classification of individual
items as an intermediate step (only posterior probabilities are estimated by
the classifiers, and no thresholding is applied on these probabilities to ob-
tain class assignments). This is yet another confirmation of Vapnik’s principle
(mentioned in Section 1), and a confirmation of the basic thesis of this pa-
per, i.e., that when prevalence estimation is the real goal of a tweet sentiment
analysis task, algorithms optimized for prevalence estimation, rather than for
classification, should be employed.

6 Conclusion

In this paper we have argued that the real goal of most research efforts dealing
with the sentiment conveyed by tweets, is not classification but quantification
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(i.e., prevalence estimation). As a result, those who pursue this goal by us-
ing the learning algorithms and evaluation measures that are standard in the
classification arena may obtain inaccurate prevalence estimates. We have ex-
perimentally shown, on a multiplicity of tweet sentiment classification (TSC)
datasets, that more accurate prevalence estimates may be obtained by con-
sidering quantification as a task in its own right, i.e., by using quantification-
specific learning algorithms which directly attempt to solve the prevalence
estimation problem, rather than viewing quantification as a byproduct of clas-
sification.. Adopting a quantification-specific approach in gauging tweet sen-
timent may benefit many applications, especially in fields (such as political
science, social science, and market research) that are usually less interested in
finding the needle in the haystack than in characterising the haystack itself.

Finally, we want to note that, while this paper has addressed sentiment
classification, the same arguments we have made apply to many studies where
tweets are classified along dimensions other than sentiment. For instance, ag-
gregate (rather than individual) results from tweet classification are the real
goal in [2], which analyses Twitter data in order to predict box office revenues
for movies; in [50], whose authors try to determine the percentage of tweets
that are about infrastructure damage vs. those which are about donations,
in order to do rapid damage assessment during humanitarian crises; in [58],
where hay fever maps are generated from geo-located tweets of fever-stricken
people; in [30], where the authors generate a heat map of a natural disaster
from geo-located tweets that report on it; and in many others.

The present paper thus urges researchers involved in tweet mining to take
the distinction between classification and prevalence estimation at heart, and
optimize their systems accordingly.
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Table 5 Quantification accuracy (last six columns) obtained with a classification-oriented
learning algorithm (CC) and seven quantification-oriented learning algorithms (PCC, ACC,
PACC, EMQ, SVM(KLD), SVM(NKLD), SVM(Q)), all with SVMs as a base learner, on
four low-drift STC datasets; the two bottom rows indicate the average performance of each
learner across all the datasets. The Pos, Neg, Neu columns indicate (true or predicted)
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Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

Sanders

[Training] 0.148 0.691 0.161 — — — — — —
[Test] 0.148 0.688 0.164 — — — — — —

CC 0.080 0.784 0.137 0.0642 0.1131 0.2568 0.0998 0.0326 0.0163
PCC 0.148 0.678 0.174 0.0068 0.0120 0.0270 0.0105 0.0004 0.0002
ACC 0.135 0.677 0.189 0.0165 0.0291 0.0871 0.0338 0.0025 0.0012

PACC 0.144 0.661 0.195 0.0209 0.0369 0.0874 0.0340 0.0033 0.0016
EMQ 0.204 0.638 0.158 0.0369 0.0650 0.1602 0.0622 0.0103 0.0051

SVM(KLD) 0.142 0.674 0.184 0.0134 0.0236 0.0630 0.0245 0.0014 0.0007
SVM(NKLD) 0.127 0.566 0.306 0.0950 0.1674 0.3965 0.1540 0.0538 0.0269

SVM(Q) 0.251 0.523 0.227 0.1098 0.1935 0.4360 0.1693 0.0575 0.0287

WB

[Training] 0.341 0.389 0.270 — — — — — —
[Test] 0.337 0.392 0.271 — — — — — —

CC 0.348 0.399 0.253 0.0135 0.0279 0.0439 0.0283 0.0011 0.0006
PCC 0.335 0.405 0.260 0.0091 0.0188 0.0283 0.0182 0.0006 0.0003
ACC 0.326 0.430 0.245 0.0254 0.0525 0.0768 0.0495 0.0035 0.0018

PACC 0.347 0.436 0.217 0.0380 0.0784 0.1197 0.0772 0.0095 0.0047
EMQ 0.335 0.417 0.248 0.0175 0.0361 0.0543 0.0350 0.0022 0.0011

SVM(KLD) 0.385 0.300 0.316 0.0613 0.1266 0.1791 0.1155 0.0192 0.0096
SVM(NKLD) 0.415 0.387 0.198 0.0534 0.1103 0.1756 0.1132 0.0211 0.0106

SVM(Q) 0.334 0.355 0.311 0.0249 0.0515 0.0774 0.0499 0.0042 0.0021

SemEval2016

[Training] 0.492 0.351 0.157 — — — — — —
[Test] 0.497 0.341 0.163 — — — — — —

CC 0.542 0.351 0.107 0.0373 0.0668 0.1555 0.0652 0.0147 0.0074
PCC 0.469 0.360 0.171 0.0186 0.0333 0.0548 0.0230 0.0016 0.0008
ACC 0.480 0.361 0.159 0.0136 0.0243 0.0381 0.0160 0.0009 0.0005

PACC 0.501 0.288 0.211 0.0351 0.0628 0.1539 0.0646 0.0106 0.0053
EMQ 0.452 0.355 0.193 0.0299 0.0535 0.1064 0.0446 0.0050 0.0025

SVM(KLD) 0.439 0.346 0.215 0.0385 0.0689 0.1512 0.0635 0.0106 0.0053
SVM(NKLD) 0.372 0.353 0.274 0.0830 0.1487 0.3249 0.1364 0.0457 0.0228

SVM(Q) 0.400 0.257 0.343 0.1201 0.2151 0.5156 0.2164 0.0819 0.0409

GASP

[Training] 0.082 0.496 0.422 — — — — — —
[Test] 0.086 0.507 0.407 — — — — — —

CC 0.066 0.519 0.415 0.0138 0.0227 0.0948 0.0226 0.0032 0.0032
PCC 0.087 0.501 0.412 0.0033 0.0055 0.0092 0.0022 0.0001 0.0000
ACC 0.088 0.494 0.418 0.0081 0.0133 0.0226 0.0054 0.0003 0.0001

PACC 0.082 0.508 0.410 0.0029 0.0048 0.0202 0.0048 0.0001 0.0001
EMQ 0.090 0.510 0.400 0.0050 0.0082 0.0239 0.0057 0.0002 0.0001

SVM(KLD) 0.091 0.481 0.428 0.0171 0.0281 0.0529 0.0126 0.0013 0.0007
SVM(NKLD) 0.162 0.438 0.400 0.0503 0.0825 0.3416 0.0815 0.0264 0.0132

SVM(Q) 0.182 0.452 0.365 0.0640 0.1051 0.4402 0.1050 0.0369 0.0184

Average LD

CC — — — 0.0322 0.0576 0.1377 0.0540 0.0129 0.0065
PCC — — — 0.0095 0.0174 0.0298 0.0135 0.0006 0.0003
ACC — — — 0.0159 0.0298 0.0561 0.0262 0.0018 0.0009

PACC — — — 0.0242 0.0457 0.0953 0.0451 0.0059 0.0029
EMQ — — — 0.0223 0.0407 0.0862 0.0369 0.0044 0.0022

SVM(KLD) — — — 0.0326 0.0618 0.1116 0.0540 0.0081 0.0041
SVM(NKLD) — — — 0.0704 0.1272 0.3096 0.1213 0.0368 0.0184

SVM(Q) — — — 0.0797 0.1413 0.3673 0.1352 0.0451 0.0226
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Table 6 Same as Table 5, but obtained on three medium-drift datasets.

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

OMD

[Training] 0.266 0.271 0.463 — — — — — —
[Test] 0.280 0.283 0.437 — — — — — —

CC 0.238 0.225 0.537 0.0668 0.1391 0.1949 0.1278 0.0205 0.0102
PCC 0.265 0.282 0.453 0.0107 0.0222 0.0312 0.0205 0.0007 0.0003
ACC 0.268 0.311 0.420 0.0184 0.0384 0.0585 0.0383 0.0018 0.0009

PACC 0.286 0.262 0.452 0.0142 0.0295 0.0440 0.0288 0.0012 0.0006
EMQ 0.243 0.381 0.376 0.0649 0.1352 0.2047 0.1342 0.0210 0.0105

SVM(KLD) 0.306 0.238 0.456 0.0305 0.0635 0.0999 0.0655 0.0057 0.0029
SVM(NKLD) 0.331 0.298 0.371 0.0437 0.0910 0.1279 0.0839 0.0100 0.0050

SVM(Q) 0.356 0.301 0.343 0.0624 0.1299 0.1826 0.1197 0.0211 0.0105

WA

[Training] 0.281 0.414 0.305 — — — — — —
[Test] 0.272 0.446 0.282 — — — — — —

CC 0.284 0.423 0.293 0.0149 0.0308 0.0437 0.0281 0.0010 0.0005
PCC 0.290 0.405 0.305 0.0267 0.0551 0.0781 0.0502 0.0033 0.0017
ACC 0.276 0.448 0.276 0.0039 0.0081 0.0129 0.0083 0.0001 0.0000

PACC 0.280 0.446 0.273 0.0059 0.0121 0.0206 0.0132 0.0002 0.0001
EMQ 0.297 0.397 0.306 0.0324 0.0669 0.0949 0.0610 0.0049 0.0024

SVM(KLD) 0.175 0.533 0.292 0.0647 0.1335 0.1957 0.1258 0.0307 0.0153
SVM(NKLD) 0.226 0.433 0.341 0.0393 0.0811 0.1357 0.0872 0.0100 0.0050

SVM(Q) 0.327 0.326 0.348 0.0798 0.1645 0.2332 0.1498 0.0311 0.0155

SemEval2013

[Training] 0.371 0.470 0.159 — — — — — —
[Test] 0.412 0.430 0.158 — — — — — —

CC 0.318 0.575 0.107 0.0965 0.1718 0.2952 0.1206 0.0431 0.0216
PCC 0.360 0.480 0.160 0.0349 0.0621 0.0861 0.0352 0.0063 0.0032
ACC 0.338 0.556 0.107 0.0839 0.1493 0.2660 0.1087 0.0338 0.0169

PACC 0.348 0.544 0.108 0.0759 0.1351 0.2451 0.1001 0.0284 0.0142
EMQ 0.339 0.543 0.119 0.0750 0.1335 0.2287 0.0935 0.0258 0.0129

SVM(KLD) 0.304 0.538 0.158 0.0722 0.1286 0.1720 0.0703 0.0290 0.0145
SVM(NKLD) 0.305 0.458 0.237 0.0714 0.1271 0.2756 0.1126 0.0328 0.0164

SVM(Q) 0.295 0.479 0.226 0.0782 0.1393 0.2775 0.1134 0.0349 0.0175

Average MD

CC — — — 0.0594 0.1139 0.1780 0.0922 0.0215 0.0108
PCC — — — 0.0241 0.0465 0.0651 0.0353 0.0034 0.0017
ACC — — — 0.0354 0.0653 0.1125 0.0518 0.0119 0.0060

PACC — — — 0.0320 0.0589 0.1032 0.0474 0.0099 0.0050
EMQ — — — 0.0574 0.1118 0.1761 0.0962 0.0172 0.0086

SVM(KLD) — — — 0.0558 0.1085 0.1559 0.0872 0.0218 0.0109
SVM(NKLD) — — — 0.0515 0.0997 0.1797 0.0946 0.0176 0.0088

SVM(Q) — — — 0.0735 0.1445 0.2311 0.1276 0.0290 0.0145
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Table 7 Same as Table 5, but obtained on four high-drift datasets.

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

SST

[Training] 0.288 0.452 0.260 — — — — — —
[Test] 0.312 0.481 0.207 — — — — — —

CC 0.223 0.560 0.217 0.0597 0.1130 0.1671 0.0860 0.0221 0.0111
PCC 0.287 0.465 0.249 0.0277 0.0523 0.1051 0.0541 0.0051 0.0025
ACC 0.306 0.469 0.225 0.0121 0.0228 0.0442 0.0228 0.0010 0.0005

PACC 0.305 0.462 0.232 0.0169 0.0320 0.0611 0.0314 0.0019 0.0009
EMQ 0.278 0.488 0.234 0.0227 0.0430 0.0844 0.0434 0.0036 0.0018

SVM(KLD) 0.304 0.427 0.269 0.0413 0.0780 0.1458 0.0750 0.0110 0.0055
SVM(NKLD) 0.329 0.368 0.303 0.0749 0.1417 0.2497 0.1285 0.0331 0.0165

SVM(Q) 0.306 0.386 0.308 0.0671 0.1269 0.2343 0.1206 0.0293 0.0147

SemEval2015

[Training] 0.371 0.470 0.159 — — — — — —
[Test] 0.434 0.413 0.153 — — — — — —

CC 0.270 0.591 0.139 0.1188 0.2103 0.3006 0.1196 0.0726 0.0363
PCC 0.321 0.468 0.211 0.0754 0.1336 0.2578 0.1025 0.0301 0.0151
ACC 0.263 0.558 0.179 0.1143 0.2024 0.3060 0.1217 0.0694 0.0347

PACC 0.269 0.539 0.192 0.1099 0.1946 0.3136 0.1247 0.0627 0.0314
EMQ 0.264 0.541 0.196 0.1138 0.2015 0.3278 0.1304 0.0677 0.0338

SVM(KLD) 0.256 0.519 0.225 0.1185 0.2099 0.3789 0.1507 0.0755 0.0377
SVM(NKLD) 0.261 0.441 0.298 0.1155 0.2045 0.4720 0.1877 0.0918 0.0458

SVM(Q) 0.245 0.473 0.282 0.1263 0.2236 0.4762 0.1894 0.0991 0.0495

HCR

[Training] 0.243 0.211 0.546 — — — — — —
[Test] 0.193 0.167 0.640 — — — — — —

CC 0.139 0.173 0.687 0.0359 0.0646 0.1300 0.0558 0.0110 0.0055
PCC 0.225 0.205 0.570 0.0467 0.0841 0.1676 0.0719 0.0103 0.0051
ACC 0.180 0.198 0.622 0.0208 0.0375 0.0948 0.0407 0.0033 0.0017

PACC 0.171 0.179 0.650 0.0151 0.0271 0.0684 0.0293 0.0019 0.0010
EMQ 0.163 0.197 0.640 0.0204 0.0368 0.1131 0.0485 0.0051 0.0026

SVM(KLD) 0.131 0.221 0.648 0.0414 0.0745 0.2191 0.0941 0.0201 0.0100
SVM(NKLD) 0.190 0.258 0.553 0.0604 0.1087 0.2324 0.0998 0.0248 0.0124
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[Training] 0.371 0.470 0.159 — — — — — —
[Test] 0.530 0.361 0.109 — — — — — —
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PCC — — — 0.0526 0.0930 0.1823 0.0718 0.0156 0.0078
ACC — — — 0.0508 0.0893 0.1698 0.0636 0.0238 0.0119

PACC — — — 0.0510 0.0896 0.1890 0.0695 0.0296 0.0148
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SVM(Q) — — — 0.1056 0.1877 0.3846 0.1540 0.0634 0.0317
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Table 8 Quantification accuracy (last six columns) obtained with a classification-oriented
learning algorithm (CC) and four quantification-oriented learning algorithms (PCC, ACC,
PACC, EMQ), all with L2-LR as a base learner, on four low-drift STC datasets; the two
bottom rows indicate the average performance of each learner across all the datasets. The
Pos, Neg, Neu columns indicate (true or predicted) prevalences. Boldface indicates the best
system.

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

Sanders

[Training] 0.148 0.691 0.161 — — — — — —
[Test] 0.148 0.688 0.164 — — — — — —

CC 0.077 0.788 0.135 0.0671 0.1182 0.2682 0.1042 0.0355 0.0178
PCC 0.131 0.710 0.159 0.0150 0.0264 0.0602 0.0234 0.0016 0.0008
ACC 0.163 0.637 0.200 0.0338 0.0595 0.1306 0.0507 0.0062 0.0031

PACC 0.167 0.642 0.191 0.0301 0.0530 0.1173 0.0456 0.0046 0.0023
EMQ 0.077 0.795 0.128 0.0715 0.1259 0.2849 0.1106 0.0383 0.0191

WB

[Training] 0.341 0.389 0.270 — — — — — —
[Test] 0.337 0.392 0.271 — — — — — —

CC 0.354 0.381 0.264 0.0132 0.0272 0.0399 0.0257 0.0009 0.0004
PCC 0.341 0.403 0.255 0.0123 0.0254 0.0390 0.0252 0.0009 0.0004
ACC 0.339 0.422 0.239 0.0230 0.0475 0.0719 0.0464 0.0035 0.0018

PACC 0.338 0.413 0.249 0.0165 0.0340 0.0515 0.0332 0.0018 0.0009
EMQ 0.347 0.416 0.237 0.0244 0.0503 0.0773 0.0499 0.0036 0.0018
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[Training] 0.492 0.351 0.157 — — — — — —
[Test] 0.497 0.341 0.163 — — — — — —

CC 0.572 0.316 0.113 0.0500 0.0895 0.1771 0.0743 0.0158 0.0079
PCC 0.441 0.339 0.220 0.0379 0.0680 0.1553 0.0652 0.0115 0.0057
ACC 0.512 0.259 0.228 0.0542 0.0970 0.2246 0.0943 0.0223 0.0112

PACC 0.527 0.211 0.262 0.0864 0.1547 0.3504 0.1470 0.0561 0.0280
EMQ 0.594 0.293 0.113 0.0646 0.1157 0.2126 0.0892 0.0215 0.0107
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[Training] 0.082 0.496 0.422 — — — — — —
[Test] 0.086 0.507 0.407 — — — — — —

CC 0.058 0.526 0.416 0.0189 0.0311 0.1297 0.0310 0.0065 0.0032
PCC 0.072 0.508 0.421 0.0097 0.0160 0.0682 0.0163 0.0016 0.0008
ACC 0.109 0.499 0.392 0.0150 0.0246 0.1038 0.0248 0.0028 0.0014
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ACC — — — 0.0315 0.0572 0.1327 0.0540 0.0087 0.0044

PACC — — — 0.0354 0.0640 0.1447 0.0600 0.0159 0.0080
EMQ — — — 0.0459 0.0824 0.1834 0.0719 0.0184 0.0092
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Table 9 Same as Table 8, but obtained on three medium-drift datasets.

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

OMD

[Training] 0.266 0.271 0.463 — — — — — —
[Test] 0.280 0.283 0.437 — — — — — —

CC 0.262 0.223 0.516 0.0524 0.1092 0.1527 0.1001 0.0146 0.0073
PCC 0.276 0.290 0.434 0.0046 0.0095 0.0095 0.0099 0.0001 0.0001
ACC 0.267 0.319 0.414 0.0239 0.0499 0.0753 0.0494 0.0030 0.0015

PACC 0.293 0.285 0.422 0.0100 0.0208 0.0293 0.0192 0.0006 0.0003
EMQ 0.267 0.199 0.534 0.0648 0.1349 0.1886 0.1237 0.0256 0.0128

WA

[Training] 0.281 0.414 0.305 — — — — — —
[Test] 0.272 0.446 0.282 — — — — — —

CC 0.308 0.380 0.312 0.0434 0.0894 0.1270 0.0816 0.0088 0.0044
PCC 0.298 0.395 0.307 0.0338 0.0697 0.0990 0.0636 0.0053 0.0027
ACC 0.318 0.384 0.298 0.0407 0.0839 0.1197 0.0769 0.0084 0.0042

PACC 0.306 0.404 0.291 0.0277 0.0570 0.0815 0.0523 0.0040 0.0020
EMQ 0.305 0.387 0.309 0.0391 0.0806 0.1145 0.0736 0.0072 0.0036
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[Training] 0.371 0.470 0.159 — — — — — —
[Test] 0.412 0.430 0.158 — — — — — —

CC 0.319 0.579 0.102 0.0996 0.1774 0.3095 0.1265 0.0468 0.0234
PCC 0.371 0.420 0.209 0.0344 0.0613 0.1506 0.0616 0.0093 0.0047
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PACC — — — 0.0396 0.0741 0.1244 0.0596 0.0124 0.0062
EMQ — — — 0.0743 0.1425 0.2318 0.1192 0.0369 0.0184
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Table 10 Same as Table 8, but obtained on four high-drift datasets.

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

SST

[Training] 0.288 0.452 0.260 — — — — — —
[Test] 0.312 0.481 0.207 — — — — — —

CC 0.263 0.490 0.247 0.0330 0.0624 0.1239 0.0638 0.0079 0.0040
PCC 0.270 0.488 0.242 0.0282 0.0534 0.1068 0.0550 0.0059 0.0030
ACC 0.315 0.407 0.279 0.0492 0.0931 0.1689 0.0869 0.0164 0.0082

PACC 0.201 0.607 0.192 0.0841 0.1591 0.2302 0.1185 0.0410 0.0205
EMQ 0.257 0.512 0.231 0.0369 0.0698 0.1190 0.0613 0.0078 0.0039
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[Training] 0.371 0.470 0.159 — — — — — —
[Test] 0.434 0.413 0.153 — — — — — —

CC 0.289 0.578 0.133 0.1101 0.1950 0.2879 0.1145 0.0593 0.0297
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PACC 0.282 0.540 0.177 0.1013 0.1793 0.2729 0.1085 0.0532 0.0266
EMQ 0.261 0.593 0.145 0.1204 0.2131 0.2949 0.1173 0.0787 0.0393

HCR

[Training] 0.243 0.211 0.546 — — — — — —
[Test] 0.193 0.167 0.640 — — — — — —

CC 0.132 0.149 0.719 0.0525 0.0946 0.1817 0.0780 0.0179 0.0090
PCC 0.196 0.173 0.631 0.0055 0.0100 0.0202 0.0087 0.0002 0.0001
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EMQ 0.088 0.138 0.774 0.0895 0.1612 0.3093 0.1328 0.0622 0.0311
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[Training] 0.371 0.470 0.159 — — — — — —
[Test] 0.530 0.361 0.109 — — — — — —
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Average HD
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