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ICT: In-field Calibration Transfer for AirQuality Sensor Deployments
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XIAOXI HE, ETH Zurich, Switzerland
ZIMU ZHOU, ETH Zurich, Switzerland
LOTHAR THIELE, ETH Zurich, Switzerland

Recent years have witnessed a growing interest in urban air pollution monitoring, where hundreds of low-cost air quality
sensors are deployed city-wide. To guarantee data accuracy and consistency, these sensors need periodic calibration after
deployment. Since access to ground truth references is often limited in large-scale deployments, it is difficult to conduct
city-wide post-deployment sensor calibration. In this work we propose In-field Calibration Transfer (ICT), a calibration
scheme that transfers the calibration parameters of source sensors (with access to references) to target sensors (without access
to references). On observing that (i) the distributions of ground truth in both source and target locations are similar and (ii)
the transformation is approximately linear, ICT derives the transformation based on the similarity of distributions with a
novel optimization formulation. The performance of ICT is further improved by exploiting spatial prediction of air quality
levels and multi-source fusion. Experiments show that ICT is able to calibrate the target sensors as if they had direct access to
the references.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; • Hardware →
Sensor applications and deployments.

Additional Key Words and Phrases: Air Pollution; Sensor Calibration Transfer
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1 INTRODUCTION

Motivation. Urban air pollution is a serious problem for public health. For example, high concentration of
particulate matter (PM) with diameters less than 2.5 micron, or PM2.5, can cause respiratory or cardiovascular
diseases [3]. According to theWorld Health Organization (WHO), air pollution accounts for 4.2 million premature
deaths per year. 91% of the world’s population lives in areas where air quality levels exceed WHO limits [25].

To raise awareness and for quantitative studies, many large-scale air pollution monitoring systems have been
deployed, where tens to hundreds of low-cost air quality sensors are installed across the city to measure air
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Fig. 1. An illustration of sensors deployed in Beijing, China for PM2.5 monitoring. Among the 1000 sensors deployed, only a
few are installed close to the public environment monitoring stations, which are used as reference stations.

pollution concentrations in real time [4, 6, 21, 27].However, the raw measurements of these deployments often
lack sufficient accuracy due to sensor noise, inter-device differences or environmental interference [10, 15].
An effective approach to improve the data quality of air quality sensors is calibration [12, 15, 21, 26]. To

calibrate a low-cost sensor, its measurements are transformed in a way that the calibrated measurements agree
with the measurements of a highly accurate reference. While air quality sensors are usually calibrated before
deployment (pre-deployment calibration), the calibration parameters still need to be frequently adjusted in the
field after deployment (post-deployment calibration) [15]. It is reported that the calibration parameters may drift
within one month after sensor deployment without re-calibration [16].
Challenges. Post-deployment calibration is challenging particularly for large-scale static air pollution monitoring
deployments. This is because once deployed, these sensors tend to have irregular or even no access to references.
Fig. 1 shows a real sensor deployment for PM2.5 monitoring in Beijing, China. Among the 1, 000 PM2.5 sensors
deployed, only 7 are installed next to highly accurate reference stations. Most existing post-deployment calibration
schemes focus on mobile deployments, where virtual references are created when sensors meet in space and time,
i.e., sensor rendezvous [14, 21, 26, 27]. However, since the sensors do not physically meet in a static deployment,
rendezvous-based calibration does not apply. A few pioneer proposals [16, 23] leverage special situations when
pollution concentrations are expected to be uniform in certain regions to calibrate sensors in a static deployment.
This approach offers calibration opportunities of near-zero concentrations and is only useful for simple offset
and gain calibration [15]. Yet the calibration model for PM2.5 can be complex [4, 12] and needs to be derived with
measurements covering a wide concentration range. It remains open how to calibrate a PM2.5 sensor without
access to a reference, a common problem faced in urban-scale static deployments.
Our Approach. To conduct post-deployment calibration for static sensor deployments, we take an approach
inspired by calibration transfer [29, 31] in pre-deployment calibration. Calibration transfer is a calibration paradigm
for sensors without access to references (target sensors) leveraging those with access to references (source sensors).
It calibrates a target sensor by transferring the calibration parameters of a source sensor to a target sensor. The
method has been adopted to reduce the pre-deployment calibration overhead in mass sensor production [28, 29, 31].
A pre-requisite of conventional calibration transfer is that measurements of the source and target sensors should
be synchronized, i.e., the two sets of measurements from both sensors can be organized into pairs, in which
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both measurements are made upon the same ground truth. Synchronized measurements are guaranteed in pre-
deployment calibration by putting both the source and the target sensors in the same testing environment.
However, for post-deployment calibration, there is often limited, if any, prior knowledge on which pair of
measurements from the source and the target sensors are made upon the same ground truth. That is, the
measurements are largely unsynchronized. Hence conventional calibration transfer for pre-deployment calibration
cannot be directly applied to post-deployment calibration.

In this paper, we ask the question: can we transfer the calibration parameters of source sensors to a target sensor,
when no synchronized measurements are available? We formulate the question as an unsynchronized calibration
transfer problem, which aims to learn a transformation of the calibration parameters of the source sensors, and
applies the transferred calibration on the target sensor to achieve high accuracy, even if the measurements of the
source and the target sensors are unsynchronized. Note that unsynchronized measurements are not comparable,
and it can be erroneous to directly learn a transformation using unsynchronized measurements. Although it
is difficult to solve the generic unsynchronized calibration transfer problem, we make a key observation that
helps to solve the unsynchronized calibration transfer problem for urban air pollution monitoring deployments.
Specifically, we observe that the PM2.5 concentrations at two separate yet sufficiently close locations during the
same period of time exhibit similar distributions (see Sec. 4.1.2). It implies that for a source sensor and a target
sensor deployed at different locations, the ground truth concentrations of their measurements during the same
period of time conform to similar distributions. Using this similarity between distributions of ground truth as a
common reference, we develop a solution called statistical calibration transfer to this special unsynchronized
calibration transfer problem.

On this basis, we propose In-field Calibration Transfer (ICT), an optimization based solution to the unsynchro-
nized calibration transfer problem for static air quality sensor deployments. ICT has three technical novelties.

• We introduce statistical calibration transfer, which makes use of the similarity in distributions of the
ground truth at different locations as common references rather than rely on synchronized measurements.
Statistical calibration transfer learns the transformation from the estimated distribution of measurements
using a novel optimization objective, which can be solved via Bayesian optimization.

• We reduce the search space in statistical calibration transfer by assuming a linear transformation between
the calibration parameters between the source and target sensors. This assumption has been tested in
labs [28, 29, 31] and we extend it into in-field scenarios.

• We further improve the accuracy of statistical calibration transfer by using an extra air pollution inference
engine to generate PM2.5 concentration level estimates for the target location. We augment the original
optimization objective of statistical calibration transfer with an additional term. We empirically show that
even coarse-grained PM2.5 concentration levels suffice to improve the calibration accuracy.

Contributions and Roadmap. The main contributions of this work are summarized as follows. (i) To the best
of our knowledge, ICT is the first solution to the unsynchronized calibration transfer problem for low-cost air
quality sensors. It offers a practical solution to conduct post-deployment calibration for large-scale static urban
air pollution monitoring deployments. (ii) We evaluate the performance of ICT on real deployment data and
experimental results show that ICT is able to provide approximately equally good calibration performance as if
the target sensors have direct access to references, which could potentially increase the usability of large-scale
air pollution monitoring sensor deployments.

In the rest of the paper, we first review relevant literature (Sec. 2) and present the background and the problem
(Sec. 3). Then we elaborate on the ICT (Sec. 4) and its evaluation (Sec. 5). Finally we conclude this work (Sec. 6).
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2 RELATED WORK
Our work is a post-deployment sensor calibration scheme for static air pollution monitoring deployments. It is
inspired by applications of transfer learning in sensor calibration. We review the closely related literature below.

2.1 Post-deployment Calibration for Air Quality Sensors
Although low-cost air quality sensors are usually calibrated before installation, periodic post-deployment cali-
bration is still necessary to ensure long-term data accuracy of urban air pollution monitoring systems. Unlike
pre-deployment calibration, where every sensor has a reference e.g., in labs, a unique challenge in post-deployment
calibration is the lack of references. Virtual references can be created if the sensors are mobile and meet in space
and time, i.e., sensor rendezvous [26]. Sensors in a rendezvous are supposed to sense the same phenomenon
and can be utilized as references for calibration [14, 21]. However, rendezvous-based calibration only applies to
mobile sensors and a sensor with no rendezvous cannot be calibrated [6].
For static sensors, post-deployment calibration is viable by exploiting situations where all sensors measure

the same pollution concentrations so that they can share the same reference for calibration. Tsujita et al. [23]
the NO2 concentrations are almost uniform within the city if the concentrations are low. Thus they propose to
calibrate the offset of NO2 sensors deployed in the city to four references once a NO2 concentration below 10 ppb
is reported. Mueller et al. [16] assume that O3 and NO2 concentrations are uniform during night at inner city
locations and during the afternoon at outer city locations. Correspondingly, the sensors in the inner/outer city
can be calibrated to a remote reference in the inner/outer city during night/afternoon.
Our work is also a post-deployment calibration scheme for static sensors, but differs from existing efforts in

two-fold. (i) Previous studies on gas sensors [16, 23] are built upon linear calibration models. As we will show in
Sec. 3.2.1, linear models are insufficient for dust sensors e.g., PM2.5 in our case. (ii) The calibration opportunities
in [16, 23] only provide near-zero concentrations, which will yield large calibration errors if they are used in
complex non-linear calibration models (see the NZ-ICT baseline in Sec. 5). Therefore these two prior studies are
not directly applicable to in-field PM2.5 calibration transfer. In contrast, our work applies to both simple and
complex calibration models.

2.2 Transfer Learning in Sensor Calibration
Transfer learning is a machine learning paradigm aims to improve the learning of the target predictive function
in the target domain using the knowledge in a source domain and a source learning task [20]. It has broad
applications in text mining [19], computer vision [18], urban computing [8, 24], etc.

In the sensor and measurement research, the concept of transfer learning has been mainly applied in calibrating
electronic noses (e-noses). E-noses are sensor arrays for hazardous odor detection. Due to their significant
inter-device differences, per-instrument calibration is necessary, and transfer learning is utilized to reduce the
calibration overhead in mass production [5, 28, 29, 31]. Assume a source e-nose and a target e-nose. The raw
measurements of the target are first standardized to those of the source e-nose. Then the source e-nose is calibrated
to a reference and finally the calibratiozn parameters can be directly adopted on the target e-nose.
Our work is inspired by the concept of calibration transfer in e-noses. However, most e-nose calibration

transfer studies are performed in labs for pre-deployment calibration while we focus on in-field calibration transfer
for post-deployment calibration. The former assumes the source and the target sensors are measuring the same
phenomenon in the same lab setting, i.e., synchronized. Yet the latter is more challenging because the source and
the target sensors are installed at different locations and their measurements are largely unsynchronized.
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3 BACKGROUND AND PROBLEM
In this section, we first introduce the basics of sensor calibration (Sec. 3.1) and then conduct a measurement study
on a PM2.5 monitoring deployment to motivate the need for calibration transfer (Sec. 3.2). Finally we formally
define the unsynchronized calibration transfer problem (Sec. 3.3).

3.1 Primer on Air Pollution Sensor Calibration
Calibration is an efficient approach to improve the data quality of low-cost sensors. It finds a calibration model
that maps the measurements of a low-cost sensor to those of an accurate reference sensor [15]. Given a set of
measurements X = {x1, x2, . . . , xN } of a low-cost sensor and a set of measurements Y = {y1,y2, . . . ,yN } of a
reference sensor, a calibration model C establishes a relationship between X and Y such that certain error metric
between the calibrated measurements C(X ) and the reference measurements Y is minimized. There has been
extensive research on how to derive calibration models suited for different air pollution sensors and error sources.
We refer interested readers to [15] for a comprehensive review.

For air pollution sensors, it is crucial to conduct both pre-deployment and post-deployment calibration. Pre-
deployment calibration identifies the proper calibration model, while periodic post-deployment calibration is
important to maintain the data quality of long-term deployment. One major challenge in post-deployment
calibration is the lack of reference sensors to re-calibrate the low-cost sensors. This is particularly the case for
large-scale static air pollution sensor deployments, which our work focuses on.

3.2 Measurement Study
This subsection presents a measurement study on a real-world PM2.5 sensor deployment to motivate the need for
calibration transfer. Specifically, the measurement study aims to answer three questions: (i) Is a linear calibration
model sufficient for PM2.5 sensor calibration? (ii) Is it necessary to periodically re-calibrate PM2.5 sensors? (iii) Is
it feasible to directly apply calibration parameters of one sensor to sensors at other locations?
Sensor Deployment and Dataset. We collect measurements from a large-scale PM2.5 monitoring system
deployed in Beijing, China. It consists of 1, 000 low-cost sensors measuring PM2.5, temperature and humidity
(see Fig. 1). In addition to PM2.5 concentration, the PM sensor [30] in each sensor box (see Fig. 2-(b)) also reports
12 low-level features. Each sensor uploads its readings to a back end server every minute. Among the 1, 000
low-cost sensors, only 7 (denoted as S1 to S7 in Fig. 2-(a)) are installed next to highly accurate air pollution
monitoring stations as references (see Fig. 2-(c)). The remaining sensors have no access to the reference stations.
The low-cost PM2.5 sensors are based on light scattering principles [30], while the reference stations are based
on beta-attenuation or tapered element oscillating microbalance method [17].

For the measurement study, we collect readings (PM2.5 concentration and the 12 low-level features) from the
7 sensors as well as the PM2.5 readings from the corresponding 7 reference stations as ground truth [1]. The
dataset collected covers a time period of 10 months from October 1, 2017 to July 31, 2018.

3.2.1 Is a Linear Calibration Model Sufficient for PM2.5 Calibration? While linear calibration models are prevalent
in gas sensor calibration [16, 23], non-linear models are often needed for dust sensor calibration such as PM2.5 [12].
Table 1 shows the mean absolute errors (MAE) of applying the popular linear (multiple linear regression [16, 23])
and non-linear (random forest [12]) models to calibrate the raw measurements of the low-cost PM2.5 sensor with
reference to their co-located highly accurate reference station. MAE is a widely used metric to evaluate the data
accuracy of air pollution sensors [15]. For PM2.5 concentration, a MAE below 10 is considered accurate for data
mining applications [2]. The evaluation is conducted on the sensor node S6 and the MAEs are averaged over
10 months (October 1, 2017 to July 31, 2018). For each month, 70% of the data are used for training and 30% for
testing to calculate the MAEs of different calibration methods. The results show that linear calibration models
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Fig. 2. Illustration of sensor deployment. (a) Locations of sensors (S1 to S7) with access to public reference stations (R1 to R7).
(b) Hardware of sensor. (c) Installation of a sensor next to a reference station.

Table 1. MAEs of different calibration models.

Calibration Model Raw Data Multiple Regression (Linear) Random Forest (Non-linear)

MAE 30 22 9
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Fig. 3. MAEs of directly applying the calibration model learned from measurements of S1 collected in first month to calibrate
(a) measurements of S1 collected from second month to the eighth month and (b) measurements of the other 6 sensors (S2
to S7) collected in the first month.

fail to yield satisfactory accuracy of calibration on PM2.5 sensors. This suggests that previous calibration transfer
studies [16, 23], which are built upon linear calibration models, are not directly applicable. In the rest of this
paper, we take the random forest described in [12] as the calibration model for PM2.5 sensors.

3.2.2 Is Periodic Calibration Necessary? Fig. 3a shows the MAEs of the uncalibrated raw measurements of Sensor
S1, and two different calibration approach applied on it. The first approach is to train the calibration model on
the 70% training set in the first month, and then test it on the 30% testing set in the next 7 months. The second
approach is to directly train the calibration model on the current month’s training set and test on the testing
set. As shown in the figure, the second approach provides lower MAEs. This result indicates that the optimal
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R sA tA

sX tXsY

sC F t sC C F

Fig. 4. An illustration of calibration transfer problem. A source sensor As is co-located with a reference sensor R at the source
location, while a target sensor At has no access to any reference at the target location. Their measurements are Xs , Ys , and
Xt , respectively. A calibration modelCs for As can be learned from Xs and Ys . The calibration transfer problem tries to derive
a function F using Xs and Xt such that the calibration modelCs can be transferred to At , where the calibration model for At
can be calculated as Ct = Cs ◦ F .

calibration parameters for the same sensor do vary over time. It may induce large errors by directly adopting a
previously trained calibration model to calibrate even the same sensor after a long period of time.

3.2.3 Is One Set of Calibration Parameters Applicable to Sensors at Different Locations? Fig. 3b plots the MAEs by
applying the calibration model of S1 to calibrate the PM2.5 measurements of the other 6 sensors collected in the
same month. The results show that the MAEs can be even larger than those of the raw measurements without
calibration, which indicates that the optimal calibration parameters for sensors at different locations can differ
significantly. Therefore, the calibration model learned for one sensor requires to be adapted (transferred) to be
used on other sensors.
Summary. PM2.5 sensor calibration needs non-linear models e.g., random forests (Sec. 3.2.1). It is necessary to
conduct periodic re-calibration for each deployed sensor (Sec. 3.2.2 and Sec. 3.2.3), which can be expensive and
labour-intensive. This is particularly the case when large numbers of sensors are static and have no access to the
references. To reduce the overhead of post-deployment calibration, we explore to transfer the calibration results
from source sensors (with access to references) to target sensors (without access to references).

3.3 Unsynchronized Calibration Transfer Problem
For ease of presentation, we explain our problem by using one source sensor and one target sensor (Fig. 4). We
discuss extensions to multi-source scenarios in Sec. 4.4. The calibration transfer problem is defined as follows.
Denote As as a source sensor, which is co-located with a highly accurate reference station Rs . We use Xs =

{x (i)s }
Ns
i=1 to represent the measurements of As , where x (i)s ∈ Rd is the ith measurement, i.e., a d-dimension feature

vector, and Ns is the number of measurements of As . Similarly, Ys = {y(i)s }
Ns
i=1 represents the measurements

of Rs , where y(i)s ∈ R is the ith measurement, i.e., the ground truth PM2.5 concentration corresponding to the
measurement x (i)s . Then a calibration modelCs : Rd → R can be learned for the source sensor As from Xs and Ys ,
as discussed in Sec. 3.1 by minimizing ∥Ys −Cs (Xs )∥

2
F , where ∥ · ∥F is the Frobenius Norm. Finally, denote At as a

target sensor, and Xt = {x (i)t }
Nt
i=1 as its measurements (x (i)t ∈ Rd , and Nt is the number of measurements of At ).

Yt is used to denote the corresponding ground truth PM2.5 concentration at the target location. The calibration
transfer problem aims to find a transformation function F : Rd → Rd , such that ∥Yt −Cs (F (Xt ))∥

2
F is minimized.

In other words, the calibration model Cs for As is transferred to Ct = Cs ◦ F for At .
There are two types of calibration transfer problems, synchronized calibration transfer problem and

unsynchronized calibration transfer problem. The former assumes that the measurement set Xs and Xt are
synchronized, i.e., Ns = Nt = N and for each i = 1 . . .N , and we have y(i)s = y

(i)
t . This type of calibration transfer

can be solved by direct standardization [5], which assumes the transformation function F to be linear. It has been
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applied to calibrate large numbers of instruments in labs when it is time-consuming to learn a (often complex)
calibration model for each instrument [5, 28, 29, 31]. In our particular interest is the latter, i.e., unsynchronized
calibration transfer problem, where Yt is not known, andXt cannot be synchronized toXs . This is the common
case for static air pollution sensor deployments. In this case, it remains open how to learn F from Xt and Xs ,
which is the focus of this work.

4 IN-FIELD CALIBRATION TRANSFER METHOD
To solve the unsynchronized calibration transfer problem, we propose ICT (in-field calibration transfer). We
elaborate each technique in ICT for single-source calibration transfer, including statistical calibration transfer
(Sec. 4.1), exploiting linearity of the transformation (Sec. 4.2), and exploiting results from spatial predictions
(Sec. 4.3). Then we extend ICT to the multi-source scenario (Sec. 4.4).

4.1 Statistical Calibration Transfer
4.1.1 Main Idea. One fundamental challenge in the unsynchronized calibration transfer problem is that Yt is
unknown, so there is no common reference to synchronize Xt and Xs . The key idea of our solution is based
on the following assumption: for the same period of time, and when the distance between As and At are small
enough, we have p(Ys ) ≈ p(Yt ), where p(·) denotes the probability distribution. Based on this assumption, it is
possible to find the transformation function F by solving the following optimization problem:

argmin
F

dKL[p̂(Ys ), p̂(Cs (F (Xt )))] (1)

where p̂ is a histogram density estimator, and dKL[·, ·] is the Kullback-Leibler (KL) divergence. Instead of syn-
chronizing individual measurements, we learn the transformation F by minimizing the difference between the
estimated distribution of calibrated target measurement and the ground truth at source location.
While conventional calibration transfer requires explicit pre-knowledge of Yt , such that both measurement

sets Xs and Xt can be synchronized accordingly, our statistical calibration transfer loosens this requirement:
when the distributions of ground truth in both location, p(Ys ) and p(Yt ), are known to be similar, it is enough to
transfer the calibration.

4.1.2 Empirical Validation of Key Assumption. The effectiveness of statistical calibration transfer relies on the
key assumption that for the same period of time, and when the distance between As and At are small enough, we
have p(Ys ) ≈ p(Yt ). This assumption is built upon our observation that during the same period of time, when the
source location and target location both locate near to each other (e.g., in the same city), the distributions of the
true PM2.5 concentrations in both location are similar. Below we empirically demonstrate this observation.
While the PM2.5 concentration usually varies in space and time, its distributions over a certain period of

time may be similar at different locations because of e.g., similar land-use and pollution sources. Fig. 5 plots the
ground truth PM2.5 concentrations measured by reference stations R6 and R7, co-located next to the low-cost
sensors S6 and S7 shown in Fig. 2 over two different months. Fig. 5a and Fig. 5b shows the histogram and density
distributions of reference sensor R6 and R7 during May, 2018, which are quite similar to each other. The same
phenomenon can also be observed in Fig. 5c and Fig. 5d. However, on the other hand, the distribution in different
months of the same reference sensors varies greatly (e.g., Fig. 5a vs. Fig. 5c).

To explore whether this observation is an artefact of the Beijing dataset, we collect PM2.5 measurements from
public stations in three other major cities in China, Tianjin, Shanghai and Shenzhen, which are 130, 1200 and
1900 kilometres away from Beijing, respectively. From each of these cities, 9 public stations are selected. KL
divergence is calculated between the monthly PM2.5 concentration distributions of two sensors, and averaged
over the 12 months from October, 2017 to October, 2018. The results are shown in Fig. 6 and Fig. 7.
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Fig. 5. The ground truth distribution of reference sensor R6 and R7, co-located near the low cost sensor S6 and S7, respectively,
as shown in Fig. 2. The distribution of different reference sensors in the same month is similar, while the distribution of even
the same sensor among different months varies a lot.
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Fig. 6. PM2.5 distribution differences (measured by KL divergence) between stations in (a) Beijing; (b) Tianjin; (c) Shanghai
and (d) Shenzhen.

In Fig. 6, we calculate the KL divergence among PM2.5 measurement distributions of different public stations
located within each of the four cities. The overall KL divergence of the other three cities is at the same low level
as Beijing. As shown in Sec. 5, the similarity among the measurement distributions within Beijing suffices for our
ICT to provide a solid calibration performance. Since the same level of similarity is also observed in other cities,
we believe that ICT is generally applicable to intracity post-deployment calibration problems.

To further investigate the similarity of PM2.5 measurement distributions from sensors in different locations, we
compare sensors located in different cities with each other and summarise the results in Fig. 7. As shown in the
figure, the PM2.5 measurement distributions in Beijing & Tianjin have higher similarity than Beijing & Shanghai,
which then have higher similarity than Beijing & Shenzhen. In general, we observed that the similarity of PM2.5
measurement distributions between two cities is negatively correlated to the geological distance between them.

We make the following comments on the usage of the observation.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 1. Publication date: March 2019.



1:10 • Yun Cheng et al.

0 1 2 3 4 5 6 7 8
Tianjin

0
1

2
3

4
5

6
7

8
9

Be
ijin

g

(a) Beijing vs. Tianjin

0 1 2 3 4 5 6 7 8
Shanghai

0
1

2
3

4
5

6
7

8
9

Be
ijin

g

(b) Beijing vs. Shanghai

0 1 2 3 4 5 6 7 8
Shenzhen

0
1

2
3

4
5

6
7

8
9

Be
ijin

g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(c) Beijing vs. Shenzhen

Fig. 7. PM2.5 distribution differences (measured by KL divergence) between stations in (a) Beijing and Tianjin; (b) Beijing
and Shanghai and (c) Beijing and Shenzhen.

• We only consider mapping the measurements between the source and the target collected during the same
period of time in statistical calibration transfer. We do not consider transferring measurements of different
months because their distributions are likely to differ due to seasonal changes.

• We limit the spatial range between the source and the target within a city for statistical calibration transfer.
It is also possible that the observation may not hold at certain locations within the city. Nevertheless, as we
will introduce in Sec. 4.4, our method still works because it can regard these locations as negative transfer
samples with the help of multi-source calibration transfer.

4.2 Exploiting Linearity of Transformation Function F

As discussed earlier, direct standardization [5] learns F directly from Xs and Xt . Previous studies [5, 28, 29, 31]
have assumed that the transformation function F to be linear and have shown that this assumption works well
for gas sensors in labs. We extend this assumption to in-field scenario, i.e., we assume transformation function F
is also a linear function in in-field situation.
The experiment results Sec. 5 shows that this assumption allows ICT to provide decent calibration accuracy,

while notably reducing the searching space of F and increases the efficiency of the algorithm.

4.3 Exploiting Spatial Prediction Results
In practice, sometimes there are inferences of the ground truth at the target area provided by other methods, e.g.,
air quality map. The performance of ICT can be further improved by making use of these inferred target ground
truth, denoted as Y ′

t . Specifically, a new term can be added to Eq. (1):

argmin
F

dKL[p̂(Ys ), p̂(Cs (F (Xt )))] + λ · dc [Y
′

t ,Cs (F (X
′

t ))] (2)

where dc [·, ·] is a measure of distance between two sample sets and λ is a parameter used to adjust the influence
of the inferred target ground truth.
In this work, we take PM2.5 concentration levels inferred by an air quality map as Y ′

t at the location of the
target sensor. Instead of accurate PM2.5 concentration, Y

′

t consists of integer value ranging from 1 to 6, which
represent different PM2.5 concentration levels. Hence dc [·, ·] in Eq. (3) is defined as the classification error rate.
As we will show in Sec. 5.3.4, a small fraction of inferences with high confidence suffices to provide considerable
improvement in calibration transfer.
In ICT, we apply Gaussian process regression [4] for inferred ground truth generation. While other models

for air quality inference also apply, we choose Gaussian process regression for its simplicity and efficiency. We
take sensor readings from high quality public stations, GPS location information, eight categories of POI data
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Algorithm 1: In-field calibration transfer
Input: m source measurement and ground truth pairs (Xsj , Ysj ), target measurements Xt , certainty threshold τ , readings from

other high quality public stations, GPS location information, POI data, and meteorological data
Output: Ensembled calibrated measurements of target sensor Y e

t
1 Conduct spatial prediction and forms the data tuple (X τ

t , Y
τ
t )

2 for each source sensor j ∈ 1...m do
3 Get calibration model Csj of source sensor Asj using the data pairs (Xsj , Ysj )
4 Using the Bayesian optimization to solve the objective function and get transformation matrix Fj
5 Calculate the similarity weight Ψ

(
sj
)

6 Y e
t =

∑m
j=1 Ψ

(
sj
)
(Csj (Fj (Xt )))

7 return Y e
t

(culture & education, parks, sports, hotels, shopping malls & supermarkets, entertainment, decoration & furniture
markets, and vehicle services) and meteorological data (temperature, humidity, wind speed, wind direction) as
the input of the spatial predictor and the output is y′

t
(i) with an according variance σ (i)

t , which indicates the
confidence of the prediction. We only use the prediction data y′

t
(i) with σ (i)

t smaller than some threshold τ . We
form a prediction set Y τ

t = {y
′

t
(i)
|σ (i)
t < τ } and its corresponding measurement set from target sensor X τ

t , and
Eq. (2) then becomes

argmin
F

dKL[p̂(Ys ), p̂(Cs (F (Xt )))] + λ · dc [Y
τ
t ,Cs (F (X

τ
t ))] (3)

4.4 Extension to Multi-source Calibration Transfer
This subsection extends ICT to support calibration transfer from multiple source sensors. The main challenge is
to select the most promising sources to avoid negative transfer [7].

To support multi-source selection and transfer, we first need to quantify the differences between the environ-
ment of the source sensors and that of the target sensor. We use a classifier induced divergence measure calledH
distance [11] which measures the divergence that only affects the classification accuracy. We use Ds to represent
the source domains, which has reference sensors and calibration models, while Dt is used to represent the target
domain. We want to transfer the models learned in Ds to the target domain Dt . Then, we use d

y
H
(Ds ,Dt ) to

represent the distance between the source environment and the target environment. The smaller the distance,
the more similar the two environments are. We define the similarity between a source and the target as below.

Φy (s, t) = 1 − d
y
H
(Ds ,Dt ) (4)

Then we select the most promising sources according to their relative similarity weight, which is defined as:

Ψ
(
sj
)
=

Φ
(
Dsj ,Dt

)∑m
s=1 Φ (Ds ,Dt )

(5)

where sj is the jth source domain amongm source domains, and Ψ
(
sj
)
is the weight used for ensemble. We can

use these similarity weights to calculate the ensemble calibration transfer result. The similarity between feature
values of the source and target domains reflects the similarity of domains. If a pair of domains are more similar,
we can rely more on the calibration transfer result between them and put more weight on it.

Algorithm 1 shows the entire process of ICT for multi-source in-field calibration transfer.
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5 EVALUATION
This section presents the evaluations of ICT. We introduce the experiment setups (Sec. 5.1), present the overall
performance (Sec. 5.2), and then conduct micro-benchmark evaluations to understand the performance of each
module in ICT (Sec. 5.3). Finally we conduct a case study on pollution source localization as an application of
calibration transfer (Sec. 5.4).

5.1 Experiment Setup

Datasets.We mainly evaluate the performance of ICT using measurements from the 7 low-cost sensors, denoted
as S1 . . . S7, which are installed next to public stations (Fig. 1). These public stations are also called reference
stations, denoted as R1 . . .R7. For each sensor, we collect the 12 low-level features as well as its PM2.5 readings,
which is called a measurement. The PM2.5 concentration recorded by each reference station is collected as ground
truth. Each measurement and ground truth at the same time are formed as a tuple. We collect one tuple per
hour for 10 months (from October 1, 2017 to July 31, 2018), which covers various weather conditions and PM2.5
concentration range. In total, there are more than 50,210 tuples. In our experiments, 70% of the collected data are
used as training set, and 30% as test set.

Note that ICT also needs data to infer ground truth via spatial prediction (see Sec. 4.3). To built up the spatial
prediction model, we collect PM2.5 concentration data from all the 35 public stations in Beijing [1] (including
R1 . . .R7), meteorological data [22] (including temperature, humidity, wind speed, wind direction), GPS location
information, as well as POI data [9] (see Sec. 4.3 for details) for the same time period.
Metrics. Mean absolute error (MAE) after calibration is the main metric used to assess the performance of ICT.
To make the results more semantically useful for end users, we also calculate the classification accuracy on the
officially defined 6 discrete PM2.5 levels [4], which is indicated as L1 . . . L6.
Baselines. We compare the performance of ICT with the following baselines.

• Direct Transfer: It directly use the calibration parameters of a source sensor to a target sensor without
any transformation.

• TCA: It is a popular transfer learning method in computer vision. Some research [15] suggests it is also
a potential solution to calibration transfer. TCA [19] calculates a common transfer Φ which applies on
both Xs and Xt . The source calibration model Cs is learned by minimizing ∥Ys − Cs (Φ(Xs ))∥

2
F , rather

than ∥Ys −Cs (Xs )∥
2
F . This source calibration is then applied on the transformed target measurement, i.e.,

CS (Φ(Xt )), which is evaluated with the ground truth Yt . We use TCA with a polynomial kernel to reduce
the feature space to 10 dimensions, i.e., Φ(x (i)s ) ∈ R10.

• NZ-ICT: It represents ICT using only near-zero measurements as references. Some studies on gas sen-
sors [16, 23] use near-zero measurements for calibration transfer. We consider PM2.5 concentrations under
35, i.e., level 1 as near zero data, and feed them into the standard ICT for calibration transfer.

When comparing the performance of the above baselines in multi-source calibration transfer scenario, we use
the corresponding ensemble solution of these methods.
Implementation. All our experiments are conducted in a PC with Intel(R) Core(TM) i7-7600U CPU. All the code
is implemented in python and the source code will be published online soon.

5.2 Overall Performance
Table 2, Table 3, Table 4 and Table 5 show the results of single-source calibration transfer using different methods
for all of the seven sensor pairs. The MAEs greater than 20 are marked in red. As is shown, direct transfer has
the worst MAEs. TCA and NZ-ICT yields smaller MAEs but there are still some large MAEs marked in red. In
contrast, all the MAEs of ICT are below 18. Worth mentioning is that the emboldened diagonal elements of these
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Table 2. Direct transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur
ce

se
ns
or

S1 10 14 15 21 36 28 17
S2 13 12 12 12 31 22 15
S3 18 18 9 9 28 17 12
S4 25 21 13 7 25 14 14
S5 53 49 42 34 11 26 43
S6 39 36 24 15 22 10 24
S7 19 19 12 15 30 18 9

Table 3. TCA transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur
ce

se
ns
or

S1 10 19 24 23 19 28 15
S2 19 12 18 13 22 27 18
S3 21 15 9 12 18 17 21
S4 30 19 10 7 12 18 19
S5 18 18 29 12 11 17 18
S6 21 32 15 25 22 10 31
S7 29 15 14 15 18 22 9

Table 4. NZ-ICT transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur
ce

se
ns
or

S1 10 17 18 22 24 23 16
S2 17 12 19 15 26 31 20
S3 17 16 9 15 22 19 18
S4 36 22 13 7 13 21 17
S5 31 29 22 24 11 19 25
S6 31 22 17 21 17 10 26
S7 22 17 12 18 23 17 9

Table 5. ICT transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur
ce

se
ns
or

S1 10 15 12 13 14 13 13
S2 12 12 12 9 14 10 13
S3 13 14 9 10 15 10 12
S4 13 13 11 7 15 9 11
S5 13 15 12 11 11 14 16
S6 13 13 11 7 14 10 11
S7 13 16 11 11 17 10 9

Table 6. Cross-validation results using multi-source calibration transfer

S1 S2 S3 S4 S5 S6 S7

Ensemble Direct Transfer 23 20 19 16 24 28 17
Ensemble TCA 18 17 18 15 14 14 15
Ensemble NZ-ICT 16 18 17 14 18 21 14
Ensemble ICT 11 12 10 8 11 8 11
Direct Calibration 10 12 9 7 11 10 9

three tables represent the calibration transfer of the 7 sensors with themselves. In other words, they are directly
calibrated with their co-located reference stations R1 . . .R7. As we can see from Table 5, the performance of ICT
(non-diagonal elements) is already close to that of direct calibration (diagonal elements). This can be seen as a
proof of the effectiveness of ICT.

Table 6 shows the cross-validation results using multi-source calibration transfer. Each sensor is set as target
sensor and we transfer the calibration model from all other sensors. Again, direct calibration represents the
performance of the calibration model learned directly using target sensor data and the the ground truths, which
can be seen as the best possible performance for any calibration transfer method. The result shows that ICT in
the multi-source scenario achieves the best performance among all the methods, and it provides an almost equal
performance as the direct calibration.
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5.3 Micro-benchmarks
In this series of experiments, we set S6 as the target sensor and the other six sensors (S1 . . . S5, S7) as the source
sensors, and evaluate the impact of different techniques in ICT on the overall performance.

Table 7. Direct transfer matrix
MAE=36, Acc=0.48

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 444 265 16 2 3 0 0.61

R
ec
al
lL2 26 228 169 15 3 3 0.51

L3 1 4 89 120 75 8 0.30
L4 1 0 4 22 109 17 0.14
L5 0 0 6 5 47 119 0.27
L6 0 0 0 0 0 62 1.00

0.94 0.46 0.31 0.13 0.20 0.30
Precision

Table 8. TCA transfer matrix
MAE=17, Acc=0.68

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 516 211 1 2 1 0 0.71

R
ec
al
lL2 25 391 15 1 2 0 0.90

L3 0 120 137 33 6 1 0.46
L4 1 9 42 81 20 0 0.53
L5 0 8 8 29 119 13 0.67
L6 0 0 0 0 39 23 0.37

0.95 0.53 0.67 0.55 0.64 0.62
Precision

Table 9. NZ-ICT transfer matrix
MAE=24, Acc=0.58

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 685 43 3 0 0 0 0.94

R
ec
al
lL2 147 275 11 0 1 0 0.63

L3 2 208 83 2 2 0 0.28
L4 1 13 130 9 0 0 0.06
L5 0 10 57 86 24 0 0.14
L6 0 0 0 12 48 2 0.03

0.82 0.50 0.29 0.08 0.32 1.0
Precision

Table 10. ICT transfer matrix
MAE=13, Acc=0.78

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 577 146 5 2 1 0 0.79

R
ec
al
lL2 27 351 53 1 2 0 0.81

L3 1 34 239 17 5 1 0.80
L4 1 2 38 99 12 1 0.65
L5 0 1 14 25 135 2 0.76
L6 0 0 0 0 26 36 0.58

0.95 0.66 0.68 0.69 0.75 0.9
Precision

5.3.1 Performance of Single-source Calibration Transfer. Here we show the calibration transfer results from S7 to
S6. Table 7 shows the performance of direct transfer. The MAE is 36 and the classification accuracy of the 6 PM2.5
levels (L1 . . . L6) is only 0.48, which are almost unusable. Table 8 shows the results of TCA. The MAE decreases
to 17 and the overall accuracy improves to 0.68. Table 9 shows the results of NZ-ICT. Using only near-zero
measurements as references, NZ-ICT provides only MAE of 24 and accuracy of 0.58, which is even not as good
as TCA. Finally, Table 10 shows the results of our ICT, with λ in Eq. (3) set to 0.3. The MAE and classification
accuracy is improved to 13 and 0.78, respectively. Moreover, the recall of each level is generally better than the
other three methods.

5.3.2 Performance of Multi-source Calibration Transfer. Table 11 shows the resulting ensemble weights. The
weights of S5 and S7 are relatively large because they are close to S6 and may have a similar environment. Table 12
shows the results using ensemble direct transfer. The MAE decreases from 36 in the single-source scenario to 28
in the multi-source scenario, and the accuracy improves from 0.48 to 0.55. Ensemble TCA also achieves a better
result than the single-source scenario, withMAE = 14 and Acc = 0.76, as shown in Table 13. Ensemble NZ-ICT
acquires only a slightly better transfer result when compared with ensemble direct transfer, withMAE = 21 and
ACC = 0.621, as shown in Table 14. Using the full ensemble ICT approach, however, the final MAE is improved
to 8 and accuracy to 0.86, as shown in Table 15, which is significantly better than the other methods. The results
show that in general, multi-source calibration transfer outperforms the corresponding single-source calibration
transfer, and our ensemble ICT also outperforms the other methods.
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Table 11. Ensemble weights for different source sensors.

Source Sensor S1 S2 S3 S4 S5 S7

Ensemble Weight 0.07 0.16 0.15 0.13 0.22 0.27

Table 12. Ensemble direct transfer
MAE=28, Acc=0.55

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 470 242 15 1 3 0 0.64

R
ec
al
lL2 18 264 136 12 2 2 0.61

L3 1 7 120 119 46 4 0.40
L4 1 0 5 34 109 4 0.22
L5 0 0 7 7 73 90 0.41
L6 0 0 0 0 0 62 1.00

0.96 0.51 0.42 0.20 0.31 0.38
Precision

Table 13. ensemble TCA transfer
MAE=14, Acc=0.76

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 568 153 7 2 1 0 0.78

R
ec
al
lL2 24 337 68 3 2 0 0.78

L3 1 25 231 31 6 3 0.78
L4 1 0 27 93 30 2 0.61
L5 0 2 13 17 133 12 0.75
L6 0 0 0 0 10 52 0.84

0.96 0.65 0.67 0.64 0.73 0.75
Precision

Table 14. ensemble NZ-ICT transfer
MAE=21, Acc=0.61

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 678 49 4 0 0 0 0.93

R
ec
al
lL2 131 289 14 0 0 0 0.67

L3 2 183 106 4 2 0 0.35
L4 1 7 124 20 1 0 0.13
L5 0 9 41 88 39 0 0.22
L6 0 0 0 3 56 3 0.05

0.83 0.54 0.37 0.17 0.39 1.0
Precision

Table 15. ensemble ICT transfer
MAE=8, Acc=0.86

Ground Predictions
Truth L1 L2 L3 L4 L5 L6
L1 666 65 0 0 0 0 0.91

R
ec
al
lL2 33 372 29 0 0 0 0.86

L3 1 33 243 20 0 0 0.82
L4 0 2 18 115 18 0 0.75
L5 0 1 9 17 142 8 0.80
L6 0 0 0 2 5 55 0.89

0.95 0.79 0.81 0.75 0.86 0.87
Precision
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Fig. 8. Transformation matrix derived from direct standardization. Blocks marked with nets are weights greater than 0.5.
The diagonal elements are more dominant than the non-diagonal ones.

5.3.3 Validation of Linear Transformation Function F . To validate the linearity of the transformation function,
we deploy an extra low-cost sensor S6′ near the reference sensor R6. Fig. 8 illustrates the transformation function
F derived from direct standardization [5]. The diagonal elements represent the linear relationship between
the same features of the two sensors, while the non-diagonal elements can be seen as the linear relationship
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Fig. 9. Impact of spatial prediction. (a) Performance of ICT with and without spatial prediction (dc ). (b) Performance using
different size of Y τt . The percentage represents ∥Y

τ
t ∥/∥Y

′

t ∥.

between different features, i.e., cross-features or cross-sensitivity [13]. As is shown, the diagonal elements are
more dominant than the non-diagonal ones, indicating that F can be approximated as a linear function.

5.3.4 Impact of Spatial Prediction. In Eq. (3), we add the second term dc [Y
τ
t ,Cs (F (X

τ
t ))] to the optimization

objective to improve the performance of ICT via spatial prediction. Fig. 9a shows the MAEs of ICT with and
without the help of spatial prediction. For comparison, we also plot the MAEs using direct transfer. ICT without
spatial prediction already decreases the MAEs from 28 to 11 compared with direct transfer. ICT with the help of
spatial prediction can further reduce the MAEs by 12%.

We are also interested in how many spatial prediction results are necessary to improve the performance of ICT.
We select different fractions of predicted PM2.5 concentration level Y ′

t by changing the threshold τ and forming
Y τ
t . Note that the smaller τ is, the higher average accuracy of Y τ

t is. By setting τ = 100, we select around 25% of
all predicted PM2.5 concentration level in the location where S6 is installed, which yields an overall accuracy of
0.96. Then we select different sizes of Y τ

t and evaluate the MAEs of ICT.
Fig. 9b shows the MAEs to transfer calibration parameters from different sources to S6 using ICT with different

sizes of Y τ
t , ranging from 5% to 25% (the percentage represents ∥Y τ

t ∥/∥Y
′

t ∥). When the size of Y τ
t increases from

5% to 15%, the MAE decreases. However, the decreasing of MAE stops after that. This suggests 15% of the most
accurate predictions from Y

′

t is sufficient.

5.3.5 Visualization of Transferred Measurements. To get a deeper understand of the cause behind the varying
results of four approaches, we use principal component analysis (PCA) to illustrate the difference between the
transformed measurements of source sensor S7 and target sensor S6, i.e., Xs and F (Xt ). In order to enable a
visualization of the results, we choose the two largest components and show them in 2 dimension figures in
Fig. 10. Since we have already empirically proved that the distribution of ground truth in both source and target
locations are similar in Fig. 5, i.e., p(Ys ) ≈ p(Yt ), and the same calibration model is applied on both the transformed
measurements of source and target sensor, we can reasonably assume that the overlapping area of the largest
two components is positively correlated to the calibration transfer accuracy.
In direct transfer, since no transformation are made, i.e., F (Xt ) = Xt , the PCA results directly represents the

original measurements Xs and Xt , as shown in Fig. 10a. There are obvious shift and misalignment shown in the
figure, which could explain the reason why the performance of direct transfer is limited.
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Fig. 10. PCA visualization between the transformed measurements of source sensor S7 and target sensor S6. (a) Blue dots
represent the largest two PCA components of Xt from S6, while red dots represent Xs from S7; (b) TCA transfer method;
(c)NZ-ICT transfer method; (d) ICT transfer method.

Fig. 11. (a) Locations of 30 low-cost sensors within a 5km × 5km area around S6 and heat maps generated with measurements
of the 30 sensors calibrated by using (b) direct transfer, (c) TCA and (d) ICT. The ground truth pollution source locations are
marked by stars.

Fig. 10b shows the PCA components visualization of TCA transfer method. TCA tries to correct the shift and
misalignment between the measurement features by mapping original features into a new reduced feature space.
In the new feature space, the two largest PCA components of Φ(Xs ) and Φ(Xt ) have more overlapping area, which
could explain the reason of accuracy improvement. However, there are still large non-overlapping area.
Fig. 10c and Fig. 10d shows the PCA components visualization of NZ-ICT and ICT, which do not reduce

dimensions and use the original measurement features to find the linear transformation. We can see that in
Fig. 10d, the overlapping area between the components ofXs and F (Xt ) is much larger compared to direct transfer
and TCA method. Notice that if only the near zero data is used (NZ-ICT), the overlapping area is smaller and has
a visible shift compared with the full ICT.

5.4 Case Study: Pollution Source Location Inference
Due to lack of ground truth PM2.5 concentrations from co-located reference stations, it is difficult to evaluate the
performance of ICT on a sensor deployed at an arbitrary location in Beijing. Alternatively, this subsection aims
to indirectly assess the performance of different algorithms via a case study, in which calibration parameters are
transferred from a single source sensor to tens of target sensors in arbitrary locations within a certain range.
Specifically, we apply different calibration transfer methods on the raw sensor readings, and compare their
performance to infer the locations of pollution sources from the calibrated sensor readings. The rationale is
that pollution concentrations should be high at locations close to the pollution sources. Therefore an intuitive
way to locate pollution sources is to firstly generate a heat map of air pollution concentration from the sensor
measurements, then find locations/areas where the concentration peaks as potential pollution source locations.
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The accuracy of pollution source localization is correlated to the accuracy of the calibrated sensor measurements,
thus an indirect assessment of the effectiveness of different sensor calibration algorithms.

We conduct a case study in a 5km × 5km area around S6, where 30 low-cost sensors (including S6) are deployed.
Fig. 11-(a) shows the locations of the 30 low-cost sensors. The squared spot is the location of the high-cost
reference station co-located with S6. We focus on this area because we have access to the ground truth locations
of the pollution sources of PM2.5 within this area, which is generally inaccessible for other areas in Beijing.
We use the pollution source locations as the ground truth for pollution source location inference. We perform
calibration transfer using three methods: (i) direct transfer, (ii) TCA and (iii) ICT. Then we average the calibrated
sensor measurements over one month and use the gaussian process regression model in [4] to generate the heat
map of the area. The locations of the ground truth pollution sources within this area are marked by stars. Ideally,
the peaks (high concentration locations) in the heat map should match with the pollution source locations.

Fig. 11-(b), Fig. 11-(c) and Fig. 11-(d) show the heat maps generated by applying direct transfer, TCA and ICT
for sensor calibration. By comparing the highly polluted locations in the heat maps to the ground truth pollution
source locations, we observe that the heat map generated by sensor measurements calibrated by direct transfer is
able to correctly locates three out of the eight pollution sources, while five are located when applying TCA. With
ICT, however, all eight pollution sources are correctly located. These results indicate that ICT outperforms direct
transfer and TCA in calibration accuracy on these 30 sensors.

6 CONCLUSION
In this work we propose In-field Calibration Transfer (ICT), a calibration scheme that transfers the calibration
parameters of sensors with access to references (source sensors) to those without access to references (target
sensors). It is challenging to derive such a transformation between the source and target sensors installed at
different locations because their measurements are unsynchronized. On observing that (i) the distributions of
ground truth in both source and target locations are similar and (ii) the transformation is approximately linear,
ICT learns the transformation based on the similarity of distributions with a novel optimization formulation. The
performance of ICT is further improved by using spatial prediction of air quality level as an aid for calibration
transfer task, and using ensemble techniques to enable multi-source calibration transfer. Experiments show that
ICT is able to provide approximately equal calibration performance as if the target sensors have direct access to
references. We believe ICT notably increases the usability of large-scale air pollution monitoring deployments.

In the future, we plan to explore the possibility of conduct ICT on larger scale scenarios e.g., inter-city calibration
transfer. We also plan to extend ICT for moving sensors by augmenting the measurements of the moving sensor
collected from multiple locations to perform multi-source multi-target calibration transfer.
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