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Sherlock: Micro-environment Sensing for
Smartphones

Zheng Yang, Member, IEEE, Longfei Shangguan, Student Member, IEEE,
Weixi Gu, Student Member, IEEE, Zimu Zhou, Student Member, IEEE,

Chenshu Wu, Student Member, IEEE, and Yunhao Liu, Senior Member, IEEE

Abstract—Context-awareness is getting increasingly important for a range of mobile and pervasive applications on nowadays
smartphones. Whereas human-centric contexts (e.g., indoor/ outdoor, at home/in office, driving/walking) have been extensively
researched, few attempts have studied from phones’ perspective (e.g., on table/sofa, in pocket/bag/hand). We refer to such immediate
surroundings as micro-environment, usually several to a dozen of centimeters, around a phone. In this study, we design and implement
Sherlock, a micro-environment sensing platform that automatically records sensor hints and characterizes the micro-environment of
smartphones. The platform runs as a daemon process on a smartphone and provides finer-grained environment information to upper
layer applications via programming interfaces. Sherlock is a unified framework covering the major cases of phone usage, placement,
attitude, and interaction in practical uses with complicated user habits. As a long-term running middleware, Sherlock considers both
energy consumption and user friendship. We prototype Sherlock on Android OS and systematically evaluate its performance with data
collected on fifteen scenarios during three weeks. The preliminary results show that Sherlock achieves low energy cost, rapid system
deployment, and competitive sensing accuracy.

�

1 INTRODUCTION

IN mobile systems, context-awareness is a computing
technology that incorporates information about the

current environment of a mobile user to provide more
relevant services to the user. It is a key component of
ubiquitous or pervasive computing and has attracted
many research efforts in the past decade.

Most context-aware applications (via mobile phone
sensing) are human-centric, recognizing contexts from
users’ perspective (e.g., indoor/outdoor [9], at home/in
office, driving/walking [2]). Such information supports
services according to users’ situation. For example, when
a mobile phone detects that its user is driving, it auto-
matically blocks phone calls if its user is holding it in
hand for safety [1]. When a user enters a building, it
is unnecessary to keep his phone’s GPS working to save
energy. Similarly, WiFi is usually unavailable in the open
countryside and should be turned off there [9].

While human-centric contexts have been extensively
utilized, few works study from phones’ perspective. We
refer the immediate surroundings (i.e., several to a dozen
of centimeters around a phone) as micro-environment.
Similar to human-centric environments, being aware
of micro-environments is directly beneficial to a broad
range of phone applications. For example, if a mobile
phone is in a bag or pocket, it is useless to light up
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the screen when a phone call is coming. In addition, if
a phone is placed on a sofa rather than on a desk, it
is better to turn up ring volume to avoid missing calls.
Given accurate micro-environment information, a phone
can adapt its behaviour automatically and properly.

In this paper, we design Sherlock, a micro-environment
sensing platform that automatically records sensor hints
and characterizes the immediate surroundings of smart-
phones. It runs as a daemon process on a smartphone
and provides finer-grained environment information to
upper layer applications running on the smartphone.

To implement such a platform, difficulties are triple.
First, previous context-aware solutions (especially the
algorithms and metrics) are assisted by human intu-
ition; however, the micro-environments are less sensi-
ble for people. Second, the usage, placement, attitude,
and interaction of smartphones vary across time and
users, thus complicating timely and accurate micro-
environment detection. Third, distinguishing similar
micro-environments relies on systematic collaboration
among multi-modal sensors.

We build the framework of Sherlock upon an inves-
tigation of phone usage and user habits. The frame-
work covers the majority of phones’ states, and consists
of 3 core modules: phone placement detection, phone
interaction detection, and backing material detection.
Phone placement refers to the location of a smartphone
along with its user, and we consider the situations of
in bag, in chest pocket, in pants, and in hand. Whether
a user is concentrating on his smartphone is another
key judgement for micro-environment sensing. At last,
backing material detection analyzes the hardness of the
stuff that touches (or holds) the phone.

We implement Sherlock on 3 types of Android smart-
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phones and run it as a background service. Other Apps
can obtain the current micro-environment information
from the platform via programming interfaces and use it
accordingly. We evaluate the platform with 8 volunteers
in 15 scenarios during 3 weeks, mainly in campus areas
during the normal period 7:00 to 23:00. Preliminary
results demonstrate that Sherlock achieves average de-
tection error of below 17%, with 11.4% additional energy
cost.

In summary, the key contributions of this paper are:
First, Sherlock is a unified micro-environment sensing
framework. Although some previous works have imple-
mented part of similar functionality for simple environ-
ments, they cannot be directly combined to an applicable
level for practical use with complicated phone situations
and user habits. Second, as a middleware run on s-
martphones, Sherlock is both energy optimized and user
friendly. We design a hierarchical architecture and a set
of efficient algorithms for multi-stage micro-environment
detection to reduce working time and the types of
sensors. In addition, sensors, especially actuators1, are
carefully selected for the purpose of effectiveness and
non-intrusiveness. For example, Sherlock won’t trigger
vibrator or speaker when a smartphone is carried by its
user.

The rest of the paper is organized as follows. We
provide the motivation and architecture overview in
Section 2. System design and implementation details are
interpreted in Section 3. We present evaluation results in
Section 4. Section 5 reviews related work and Section 6
concludes this paper.

2 MOTIVATION AND OVERVIEW

2.1 Target Applications
The aim of micro-environment sensing on smartphones
is to provide a more general primitive for novel human-
centric applications, especially in healthcare and behav-
ior monitoring. For example, it is important to ensure
that the healthcare monitors are attached to the target
user during his daily life, and emerging trends arise to
perform such tasks via smartphones [13], [14]. A micro-
environment perceivable smartphone, therefore, would
remind its user if it is not carried by its user via, e.g. its
built-in speaker, and further informs him of its location.

Identifying the phone’s micro-environment also opens
new possibilities to perform fine-grained context-aware
energy saving strategies, which is essential for battery-
powered smartphones. On detecting being placed in the
drawer, for instance, it is reasonable for the phone to
infer that it will not be used in the near future, and
can switch to certain power saving mode and turn off
unnecessary sensors and software.

In addition, Sherlock enables more accurate inertial
based localization and navigation. In most of these

1. An actuator here stands for a type of motor that converts the en-
ergy, typically electric current, into motion or mechanical operation. In
mobile phone, the actuator includes vibrator, camera and microphone.

<Accelerometer>
(1)

<Vibrator>
(2)

<Microphone>
(3)

<CPU>
(4)

<Touch Screen>
(5)

<Camera>
(6)

<Gyroscope>
(7)

<Proximity>
(8)

Hardware Layer

Walking Detection
(1)

Moving Detection
(1)

Phone Placement 
Detection

(1) (6) (7) (8)

Phone Interaction 
Detection

(4) (5)

Backing-material 
Detection
(1) (2) (3)

Middleware Layer

Chest pocket/Pants/
Bag/Hand

Interacting
/Non-interacting

Wooden desk/Stone 
Stool/Leather Chair

Core module

Cell phone Habit 
Analysis.app

User Behavior 
Detector.app

Volume 
Adjuster.app

Battery 
Manager.app

Application Layer

Micro-environment

Fig. 1. System architecture of Sherlock.

schemes, a key parameter is the count of the user’s
footsteps, which is then multiplied by the average length
of one footstep to estimate trace distance. Empirical
studies [10] have shown that the accuracy of step counter
is sensitive to phone placement. For instance, the counter
usually generates accurate step count (i.e. consistent with
the ground truth) when the phone is held in hand, while
often doubles the output count when the phone is placed
in chest pocket. Hence knowing the phone’s placement
assists the step counter to eliminate erroneous output.

Like GPS which helps to estimate user’s coarse-
grained macro-environment, Sherlock deduces phone’s
fine-grained micro-environment. It serves as a light-
weighted middleware for upper layer applications.

2.2 System Overview

As Figure 1 shows, Sherlock runs as a daemon process in
the middleware layer. It employs sensors in the physical
layer to record nature events and provides fine-grained
environment information to upper layer applications.
As a long-term middleware on smartphones, Sherlock
optimizes energy consumption via a hierarchical, multi-
stage architecture. Sensors, especially actuators, are care-
fully selected and logically triggered. Accelerometer, for
example, is solely awaken to detect simple environment
semantics, after which more sensors are triggered for
complex environment classification. In what follows, we
describe each architectural module in turn, specifying a
high-level view of how the system works.

Moving & Walking Detection. As a first step, Sherlock
looks into the acceleration trace and identifies specific
features in time domain. These features are then utilized
to determine whether the phone is in motion. There are
plenty of moving detection schemes that can successfully
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Fig. 2. An illustration of repetitive pattern of walking.

detect human motions (whether the user is moving and
further if he is walking) and we use one from [8]. This
scheme first detects whether the user is in motion by
looking into acceleration variance. if yes, it then takes
advantage of the repetitive nature of walking (Figure 2)
and applies an auto-correlation based detection method
to successfully mine the walking pattern of the user.

The above components characterize the coarse-grained
environment around smartphones and benefit further
sensing processes. If a user is detected walking, for
example, then determining phone’s placement (e.g., in
chest pocket or bag) is more important than knowing
its backing material. If the phone is detected stationary,
it is more likely that it is out of its user’s perception
(e.g., fell onto a wooden desk or a leather chair). In this
scenario, detecting the backing material of smartphone,
and further alerting the phone user are more preferable.
In what follows, we detail 3 key modules of our micro-
environment sensing platform.

Local Placement Recognition. This module deter-
mines daily on-body phone placements such as in-hand,
in-packet, in-bag, etc. Sherlock provides a simple yet
effective classification scheme with light and inertial
sensors. Specifically, the system first detects whether
the phone is in hand by referring ambient illuminative
conditions around the phone. If not, then, Sherlock
characterizes the unique moving patterns of phones in
different local placements with in-built accelerometer, by
exploiting a Dynamic Time Warping (DTW) based time
series matching scheme to recognize the specific local
placement. i.e., in pants, in chest pockets or in bag.

Phone Interaction Detection. This module identifies
whether the user is actually using the phone, like brows-
ing. Although such interaction often occurs when the
phone is in-hand, the phone interaction detection module
emphasizes more on the semantic perspective. Sherlock
exploits common screen-lock on smartphones and pro-
cess transition on OS to identify whether the user is
actually interacting with his phone.

Backing Material Detection. This module differenti-
ates hard/soft material via smartphone-generated vibra-
tion patterns. Sherlock focuses on two aspects of the

<Proximity>
<Camera>

 [ In chest pocket ]
 [ In pants ]
 [ In bag ]

[ On hand ]

<Gyroscope>
<Accelerometer>

Open/Semi-closed 
environment

Closed
 Environment

Local Placement 
Detection

Fig. 3. Workflow of Local Placement Recognition.

vibration patterns: 1) the phone’s mechanical motion
and 2) the acoustical features, which can be captured by
embedded accelerometer and microphone, respectively.
To this end, Sherlock extracts a series of lightweight
features from acceleration/acounstic traces in both time
and frequency domain, and classifies backing materials
like leather chair, wood desk or glass table.

3 SYSTEM DESIGN

3.1 Local Placement Recognition
We develop a simple yet effective local placement classi-
fication scheme with light and inertial sensors. The key
insights are twofold.

• When carried by a user, the phone is mostly placed
in either semi-closed/open environments like in-hand,
or closed environments such as in-pocket and in-bag.
The extent of covering leads to different illuminative
conditions for the phone, which can be captured by
its built-in camera.

• Different local surroundings offer distinctive spatial
degree of freedom, which is magnified when the
user is moving. For instance, a phone is likely to
experience fiercer movements when put in pants
than inside a handbag. These unique movement
patterns can be perceived by the accelerometer.

As illustrated in Figure 3, the local placement recogni-
tion module is triggered once the ’Walking’ state is de-
termined, and it works as follows: 1) the front-mounted
proximity sensor and the back-mounted camera coop-
erate to identify semi-closed/open surroundings, i.e., the
’in-hand’ state. 2) For closed environments, accelerometer
is employed to automatically deliver sensory data for
fine-grained placement identification. e.g., in pants, chest
pockets or bags. We detail the processes as follows.

3.1.1 Phone-in-hand Identification
Intuitively, the ’in-hand’ state differs from on-body
placements in that the phone is not completely covered
by surrounding objects. Although the front-mounted
proximity sensor can perceive sheltering in front, the
phone is unaware of that backwards. Thus with prox-
imity sensor alone, it is likely to miss some ’in-hand’
cases, e.g., when the user is making a phone call with
his ear covers the front end of the phone. Therefore
we also employ the back-mounted camera for proximity
perception backwards. The rationale is that the global
contrast of a photo taken in a closed environment (e.g.
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Fig. 4. Gray-scale histogram of closed/open environments.
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in-pocket) is usually low, which is reflected in the gray-
scale histogram of the photo.

As a motivating experiment, we collect photos taken
by a background photographing application for vari-
ous phone placements in diverse scenarios, including
chest pocket, pants, bags and hands in supermarkets,
cafes and streets. Figure 4 demonstrates the gray-scale
histogram distribution of photos in 6 different condi-
tions. The upper 3 correspond to closed environments
including in bags, chest pockets and pants, while the
lower 3 are in-hand situations. In general, the histogram
distributes more spread-out when the phone is held
in hand than placed in closed environments, indicating
higher global contrast due to better lighting conditions.
To quantitatively measure the extent of dispersion of the
gray-scale histogram, we calculate the average slope of
gray-scale pixels between two quantiles q1 and q2 in its
CDF. Figure 5 plots the CDF for the 6 situations. As is
shown, the histogram CDFs w.r.t. closed environments
climb steeply up to 85% within a short range of gray-
scales, while those w.r.t. ’in-hand’ states experience a
sluggish growth spanning a large portion of the gray-
scale range. Putting it all together, we develop the fol-
lowing Image-based Phone-in-hand Detection Scheme.

Case 1 Case 2 Case 3 Case 4

On hand (Semi-closed/Open Environment) Closed environment

Fig. 6. In-hand states vs. Closed environments.

Image-based Phone-in-hand Detection Scheme
(IPDS). Firstly, the proximity sensor identifies the
sheltering condition in front, and returns either blocked
or unblocked. Meanwhile, the camera is triggered to
take a photo. After calculating the CDF of its gray-
scale histogram, we record the portion of pixels (e)
within 2 empirically optimized quartiles of q1 = 0.2 and
q2 = 0.85. If e > h̄, where h̄ is a predefined threshold, the
global contrast tends to be high and the camera is not
blocked by other objects. We test a range of thresholds
and find 50 optimal for IPDS. By jointly considering the
front-end blocking and backward lighting conditions,
four distinct cases follow:

• Case 1: [e > h̄ ∧ blocked]: only front is blocked;
• Case 2: [e ≤ h̄ ∧ unblocked]: only back is blocked;
• Case 3: [e > h̄ ∧ unblocked]: neither front nor back

is blocked;
• Case 4: [e ≤ h̄ ∧ blocked]: both front and back are

blocked;
These four cases are illustrated in Figure 6, with Cases

1-3 corresponding to different in-hand states, while Case
4 indicates a closed environment.

3.1.2 On-body Placement Recognition
On-body placement recognition classifies closed environ-
ments into finer-grained on-body placements such as in
chest pocket, pants, bags, etc. As previously discussed,
the module takes advantage of human mobility induced
inertial patterns, which potentially limits its usage to
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Fig. 7. Stability of acceleration trace over time.

truly ’mobile’ phones. To compensate for this weakness,
we propose a backing material recognition scheme (Sec-
tion 3.3) based on phone induced vibrations specially
designed for ’immobile’ phones when the phone-holder
stays still, or even when the phone is placed off-body
(e.g. left on a sofa). The two modules are complementary
and can cooperate to further enhance the recognition
performance. For ’mobile’ cases, though, the on-body
placement recognition module proves to be sufficient for
normal phone placement identification.

As human induced mobility is mainly perceived by
inertial sensors, we take a careful scrutiny on accelera-
tion traces with different phone placements. Revisiting
the acceleration traces with different phone placements
in Figure 2, it is obvious that acceleration samples
within a single footstep demonstrate unique pattern
across different phone placements, while walking leads
to a regenerative process of these acceleration patterns,
indicating viability to take the acceleration traces as
fingerprints for different phone placements. However,
it remains unsettled whether the patterns of the same
phone placement stay similar when taking device and
user diversity into consideration.

Figure 7 plots the acceleration traces sampled from 3
types of phones (Samsung Galaxy S2 I9100, Samsung
Nexus3 I9250, Motorola MT788), which are put in
different users’ pants. The 3 traces roughly share
common variation trends, indicating stable patterns
across users, whereas certain lags are also notable. The
second peak in trace A, for example, appears at the
15th sample while it occurs at the 13th sample in trace
B, i.e., 2-unit lags after trace A. These lags are due
to different walking speed. In general, given a fixed
sampling rate, a rush stride tends to shrink the trace
pattern, while a stroll at leisure stretches the pattern and
induces random deformation as well. Therefore, a robust
and speed-independent similarity metric is needed to
compare and classify the measured acceleration traces.

DTW-based Trace Matching (DTM). Dynamic Time
Warping (DTW) [15] is a dynamic programming based
similarity measure for sequences which may vary in time
or speed. In DTW, the two sequences are first recon-
structed by non-linear ”warping” in the time domain to
compare their similarity independent of non-linear tem-
poral variations. Therefore, DTW based trace matching
is able to eliminate the effect of different walking speed.

Cost matrixTesting Trace

Minimum Cost Path

1 2 3 4 N. . . . .

2

3

4

5
.

.

M

Training Trace

Fig. 8. DTW based matching.

Given two acceleration profiles A and B with lengths
of M and N samples, DTW first constructs a distance
matrix d[M×N], where

d(i, j) = (ai − bj)
2 (1)

and ai and bj are the ith and jth elements in A and B,
respectively. Taking d[M×N] as input, DTW returns a
warping path P={p1, p2, p3,. . ., pk}, where pi = (x, y) ∈
[1 : M ]× [1 : N ] for i ∈ [1 : k].

Figure 8 illustrates the matching process. To gener-
ate the warping path, DTW constructs a cost matrix
C[M×N] which stands for the minimum cost to reach
any point (i, j) in the matrix from (1, 1) in a dynamic
programming fashion. For instance, (i, j) can be reached
from (i− 1, j − 1), (i, j − 1) and (i− 1, j). The algorithm
picks the one with minimum cost. Formally:

C(i, j) = d(i, j)+min(C(i−1, j−1), C(i, j−1), C(i−1, j))
(2)

A measured acceleration trace is compared with all
pre-stored traces collected with different phone place-
ments based on DTW and output the corresponding
minimum costs. The phone placement w.r.t. the smallest
cost is then identified as the phone placement for the
measured acceleration trace. For example, if C(M,N) =
25 for pants, C(M,N) = 36 for chest pocket and C(M, N)
= 19 for bag. Then our scheme classifies this acceleration
trace into the category of in-bag.

The on-body phone placement recognition scheme
does not rely on the closed environment, and thus is
orthogonal to the ’in-hand’ detection in Section 3.1.1.
Therefore the on-body placement detection scheme also
serves as a double verification to improve the robustness
of the in-hand detection scheme. This is useful when the
IPDS suffers from low global contrast background like
white walls all around or gloomy lighting conditions.

3.2 Phone Interaction Detection

Phone interaction detection identifies whether the user is
using the phone, e.g. browsing, texting, playing games,
etc. Although such interaction often occurs when the
phone is ’in-hand’, which can be identified as in Sec-
tion 3.1.1, the phone interaction detection scheme in this
section emphasises more on the semantic perspective.
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002    null    com.android.home
073     null    com.youdao.note
056     null    com.sina.mfweibo
094     null    com.uc.browser
065     null    com.android.phone

<                                                                     >

056     null    com.sina.mfweibo
073     null    com.youdao.note
447     null    com.uc.browser
447     null    com.android.home
447     null    com.android.phone

<                                                                     >

094     null    com.uc.browser
073     null    com.youdao.note
447     null    com.uc.browser
447     null    com.android.home
447     null    com.android.phone

<                                                                     >

447 null com.uc.browser
447 null com.android.home
447 null com.android.phone

047     null    com.facebook.katana
073     null    com.youdao.note
094     null    com.uc.browser
065     null    com.android.phone

<                                                                     >

Fig. 9. An illustration of process queues in different
scenarios.
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Fig. 10. The work-flow of phone interaction detection
module.

An intuitive indicator for interaction detection is the
screen-lock on touch screen smartphones. The touch
screen is typically unlocked on an ’interaction active’
phone. Nevertheless, the opposite is not always true. Ac-
cording to a questionnaire we conducted on 500 students
in Tsinghua University, around 420 lock their phones in
’non-interactive’ states, while the other 80, for ease of
operation, would like to keep their phones unlocked all
the time. Therefore, with the screen-lock alone, we would
result in high false-positive for interaction detection.

To obtain a more accurate usage detection scheme,
we utilize the phone’s process queue. The on-executing
process, in general, is on top of the process queue.
Therefore, if the phone is running an application, thus
’interaction active’, a corresponding process ought to
be running and take up the 1th position of process
queue. This leads us to identify the ’interaction active’
state by checking the current on-executing process. Fig-
ure 9 lists the process queues of 4 specific application
scenarios: non-interactive, browsing Weibo2, searching
online, and logging in facebook. As is shown, a pro-
cess com.android.home is running on the foreground
(denoted by < 002 null com.android.home >) in non-
interactive state. In all the other scenarios, the top on-
executing process is always the process corresponding
to the specific application. Therefore, we propose the
following phone interaction detection scheme.

Integrated Interaction Detection Scheme (IIDS). As
illustrated in Figure 10, IIDS first queries the screen-lock
to check whether the screen is locked. If the screen is

2. Weibo is a Chinese microblogging website. Akin to a hybrid of
Twitter and Facebook.
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Fig. 11. Acceleration samples over time domain.

locked, IIDS confirms a ’non-interactive’ state and sus-
pends; otherwise it further refers to the process queue.
If the on-executing process is com.android.home, and
the execution duration (T ) is shorter than a predefined
threshold δ, IIDS announces a ’non-interactive’ state as
well. For other cases, IIDS returns an ’interaction-active’
state. Here δ is set to be 17 seconds, which is slightly
longer than the normal sleeping interval of touch-screen.

3.3 Backing Material Recognition
This subsection aims at distinguishing hard/soft ma-
terial via smartphone-generated vibration patterns. We
mainly focus on two aspects of the vibration patterns: 1)
the phone’s mechanical motion and 2) the acoustic fea-
tures, which can be captured by embedded accelerome-
ter and microphone, respectively. More concretely, with a
phone placed on a backing surface, the vibration pattern
of the phone-surface system driven by the internal phone
motor varies with the stiffness of the backing material.
The physical underpinning is that the more rigid the
material is, the smaller phone-driven deformation and
shorter recovery time it would experience, and hence
less energy absorption. Consequently, the acceleration
values detected on harder material would demonstrate
larger amplitudes of fluctuations due to more notable
mechanical motions, while the magnitude of dominant
frequency of the vibration sound would be higher as
well. We detail our recognition schemes as follows.

3.3.1 Acceleration-based Recognition
In the normal course, smartphones are placed on fiber,
wood, stone or metal material. As a proof-of-concept
experiment, we select 3 representative material with
different stiffness: leather chair (soft), wooden desk and
stone stool (hard). Our scheme easily extends to other
materials with a bit extra calibration. In each scenario,
the phone motor is triggered to vibrate for 7 seconds,
and the acceleration readings and sounds are recorded.

The acceleration-based recognition is performed first
to roughly distinguish hard and soft material, i.e. the
leather chair or wooden desk/stone stool in our case.
Figure 11 illustrates the acceleration traces of the z axis
sampled at 40Hz on the three surfaces. The amplitudes of
both the envelope and the embedded short pulses tend
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Fig. 12. Acceleration samples over frequency domain.

to be larger on hard material. This distinction is clearer
in the frequency domain. Figure 12 portrays the FFT am-
plitudes of the corresponding temporal traces. As shown
in the two subfigures on the left, two notable peaks
approximate the dominant frequencies of the mechanical
vibrations, while in the rightmost figure (i.e., on the
leather chair), the peaks at the corresponding frequencies
are almost invisible. One counter-intuitive observation,
however, is that the DC component (i.e. the amplitude
at 0Hz) is strongest in the soft material case. Note that
the acceleration readings have included the gravity as
well. Hence, when removing the effect of gravity, the
DC component for soft material cases approaches zero,
which resembles a simple harmonic motion. On hard
material, in contrast, the phone is more likely to leave
and fall back to the surface periodically, which, on av-
erage, induces larger and shorter accelerations upwards,
and thus non-zero DC component. Due to the irregular
inclination angles when leaving the surface, tough, the
acceleration readings of the z axis do not necessarily
correspond to the vertical direction. Therefore it is non-
trivial to extract accurate DC component to distinguish
hard and soft material. We leave careful calibration of
DC component in future work, and for this paper, we
adopt a multi-feature based classifier with less weights
on the DC component related features.

Soft/Hard Backing Material Classifier. We consider
various candidate features, including mean, variance,
Zero Crossing Rate (ZCR) [5] in the time domain, and
number of peaks, sub-band energy, spectral entropy in
the frequency domain. Since the differences of acceler-
ation traces are more notable in the frequency domain,
we manually put larger weights on all candidate spectral
features. In addition, we leave out the DC componen-
t when extracting all the features to alleviate errors
incurred by lack of calibration on gravity. We adopt
Support Vector Machine (SVM) for feature classification
to achieve satisfactory performance while retaining mod-
erate computation cost. The features are scaled according
to their assigned weights before input into the SVM
classifier.

3.3.2 Acoustic-based Recognition
As shown in Figure 12 (a) and Figure 12 (b), the spec-
trum of accelerations between stone and wood resemble
each other. Hence acceleration-based recognition can
only distinguish hard and soft material. We thus further
investigate a broader frequency range to extract unique
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Fig. 13. Acoustic spectrogram of phone vibrations on
hard surfaces.

vibration patterns. Figure 13 compares the spectrogram
of sound captured by the microphone during the phone
vibration on two representative hard surfaces. It is clear
that the dominant vibration frequency peaks at around
200Hz (the same frequency as the phone’s vibration
motor), while the amplitude on the stone is larger than
that on the wood. This accords with the phenomenon
that vibration usually sounds louder when the phone is
placed on a flat stone surface.

Hard Backing Material Classifier. Base on the above
analysis, we employ a simple threshold based classifier
to distinguish different hard material. Concretely, after
performing the acceleration-based recognition scheme,
we further classify hard surfaces based on the acoustic
features of their vibration pattern. In our case, if the
amplitude of the peak frequency (around 200Hz) sur-
passes a pre-defined threshold, it is classified into stone
surface, and wood material otherwise. The scheme easily
extends to more kinds of hard material with multi-level
thresholds and a bit of extra training.

4 EVALUATION

We prototype Sherlock as a daemon process that runs
on Android smartphones. In this section, we detail the
experiment methodology and results.

Prototype Implementation: We implement Sherlock
on Android 4.0 Ice Cream Sandwich (ICS). The cur-
rent version consists of about 2,150 lines of code and
leverages LibSVM for phone local placement recognition.
Once launched, Sherlock runs as a daemon process, pro-
viding upper layer applications with micro-environment
sensing results. In the current version, we simply trigger
Sherlock every 10 minutes, and we believe such interval
is rigid to examine phone placement transitions.

Experiment Device: We implement Sherlock APK on
3 different types of smartphones (Samsung Galaxy S2
I9100, Samsung Nexus3 I9250, Motorola MT788). All
types of phones are equipped with the necessary sen-
sors. The 3 types of smartphones all have 1GB RAM,
with dual-core 1.2GHz, dual-core 1.5GHz, and single-
core 2.0GHz processors, respectively. Since Sherlock is
independent of platforms, we envision it to be easily
extended to other mobile OS like WP8 and iOS.

Experiment Environment: we experiment with 8 vol-
unteers (4 males and 4 females), collect sensory data
from 15 scenarios, ranging from open football fields and
square, to crowded supermarket and cafeteria, mainly
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states classification.
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Fig. 16. An illustration of interaction
detection accuracy.

TABLE 1
Backing material detection result.

Category Wooden desk Plastic table Leather chair Mattress Stone stool Glass table
Accuracy(Acceleration) 74.1% 70.2% 80.7% 79.4% 73.6% 75.5%

Accuracy(Acoustic) 83.2% 77.4% \ \ 86.2% 81.8%

in campus areas during the normal period from 7:00 to
23:00 in 3 weeks. The volunteers also record the ground
truth using memo widget.

In what follows, we first evaluate the performance
of each functional module, then measure the system
overhead by trace-driven experiments.

4.1 Micro Benchmarks

4.1.1 Performance of Local Placement Detection

To evaluate the local placement detection module, we
collect 8440 labeled data from 8 volunteers over 3 weeks.

Phone Posture Classification: We denote the 4 phone
postures in Figure 6 as Case1, Case2, Case3 and Case4.
Figure 14 details the confusion matrix of the classi-
fication result. In the confusion matrix, each column
represents the instances in a predicted class, while each
row represents the instances in an actual class. It is
clear that the proposed local placement detection module
achieves a remarkable accuracy (above 85%) for each of
the 4 postures. Specifically, the detection accuracy peaks
90% in Case3, slightly higher than in Case4 (86.5%) and
Case3 (85.8%). For the remaining case (Case1), however,
the detection accuracy is not superior. Nevertheless, it
still maintains at a reasonable level (80%+). On the oth-
er hand, Sherlock occasionally mistakes Case1, Case2,
Case3 with each other. This might be because when
holding a phone in hand, the user may unconsciously
block the proximity sensor with his thumb or forefinger.

On-body Placement Classification: We further exam-
ine the performance of on-body placement classification
for closed environments, i.e., in chest pocket, waist pock-
et, pants and bag. The corresponding confusion matrix is
illustrated in Figure 15. On the whole, Sherlock achieves
competitive classification result, with an accuracy of
over 87% on average. More specifically, the classification
accuracy for pants and chest pocket are 90.7% and 88.3%,
respectively, much higher than that for the waist pocket

and bag cases. This stems from the phenomenon that a
person’s arms often swing back and forth rhythmically
while walking. This movement then drives the chest
to shake continuously. The phone in chest pocket, as
a result, will experience a significant repetitive pattern.
In contrast, a phone in bag or waist pocket is ”too”
faraway from arms or legs, resulting in less notable
motion pattern, which exerts an adverse effect on the
classification result.

4.1.2 Performance of Phone Interaction Detection

Figure 16 shows the detection accuracy of user-phone
interaction. The dark blue bars correspond to the naive
screen-lock based scheme. It achieves 82% detection
accuracy on average. As for the hybrid approach where
Sherlock also queries the process queue, the accuracy
for all cases rises marginally, as the red bars indicate.
Even the worst case still outperforms the best case in the
simple screen-lock based detection scheme. Therefore,
it clearly verifies that Sherlock is able to effectively
distinguish interaction and non-interaction states.

4.1.3 Performance of Backing Material Detection

To examine the accuracy of backing material detection,
8 volunteers collect over 2000 acceleration/accoustic
traces for different backing material, with 70% used
for model training and 30% for testing. Table 1 lists
the classification result on different material. In general,
Sherlock successfully distinguishes hard/soft material
with acceleration features alone, whereas it fails to tell
hard material apart in a fine-grained fashion, i.e., with
only 74.1% and 73.6% accuracies in Wooden material
and Stone material detection, respectively. By adding
acoustic features, the detection accuracy boosts to 83.2%
for wooden material, 86.2% for stone material and 81.8%
for glass material. Altogether, the chosen features prove
to be sufficient for classifying different backing materials.
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TABLE 2
Storage used by Sherlock.

# of Volunteers 1# (M) 2# (M) 3# (M) 4# (M) 5# (F) 6# (F) 7# (F) 8# (F)
Sensory data(Day 1)(in KB) 872 1132 695 1326 1554 1296 1441 1375

Environment Semantics(in KB) 1.65 1.92 1.47 1.98 2.01 1.94 2.01 1.95
Total(in KB) 873.65 1133.92 696.47 1327.98 1556.01 1297.94 1443.01 1376.95

Sensory data(Day 2)(in KB) 1032 1319 886 1057 1396 1449 1388 1526
Environment Semantics(in KB) 1.82 1.96 1.69 1.89 2.05 2.07 1.89 2.11

Total(in KB) 1033.82 1320.96 887.69 1058.89 1398.05 1451.07 1389.89 1528.11
Sensory data(Day 6)(in KB) 1120 1413 995 1337 1613 1579 1859 1769

Environment Semantics(in KB) 1.85 2.02 1.78 2.07 2.24 2.17 2.36 2.23
Total(in KB) 1121.85 1415.02 996.78 1339.07 1615.24 1581.17 1861.36 1771.23
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Fig. 17. An illustration of CPU share of Sherlock on
different phones.

4.2 System Overhead
4.2.1 CPU share of Sherlock
We categorize the usage of phone into 4 groups, name-
ly, communications, entertainments, working/study and
Sherlock, and measure the CPU share of Sherlock on
different phones. Figure 17 illustrates the CPU share
of these four groups for 4 volunteers over a one-day
study. According to the pie chart, the CPU share for
communications, entertainments, working/study varies
significantly from person to person, as the usage style
of smartphones is highly related to the user’s habits.
For example, some people prefer truly a ’digital every-
where’ lifestyle and are addicted to their phones for
reading, shopping, gaming and enjoying music, while
others would rather regard phones as a communication
tool only. As a result, the CPU share of entertainments
would take up the leading portion for the former groups
whereas communication usages would contribute most
to the CPU share for the latter. Despite such differences,
the CPU share of Sherlock stays at stable share of around
6% for all the 4 volunteers. This indicates that our system
incurs negligible CPU share to daily smartphone usage.

4.2.2 Battery Consumption Overhead
We also systematically measure the energy consumption
of Sherlock. Figure 18 illustrates the lifetime of a battery
with capacity of 1500mAh on a Samgsung Nexus 3
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Fig. 18. An illustration of fine-grained battery usage.

phone. We implement a battery tracing application to
log the residual battery once a hour for a whole day.
To fairly measure the energy consumption of Sherlock,
we ask a volunteer to carry two Samgsung Nexus 3
phones. One is launching the Sherlock system and the
other not. Then he is required to perform the same tasks
on both phones for a whole day. The dark-blue bars
illustrate the residual battery with Sherlock open, while
the jacinth bars represent the energy savings without
launching Sherlock. According to the bar chart, Sherlock
consumes negligible energy of below 5% on average
for most sampling periods. With time passing by, the
cumulative energy consumption increases gradually, and
finally ends up with 11.2%. We also notice two energy
consumption fastigium during this 24 hour study, name-
ly, 08:00∼09:00, 18:00∼19:00. Interestingly, these two pe-
riods accord with commuter time. Therefore it is reason-
able to conclude that frequent human locomotion during
commuter time triggers Sherlock to sense continuously,
thus resulting in higher energy consumption. The energy
cost, though, remains low as a whole, making Sherlock
affordable for smartphone users, even with occasionally
continuous detection.

4.2.3 Storage Overhead
We measured the storage overhead (sensory data and
micro-environment semantics) by running Sherlock on
a phone for 24 hours. Sherlock’s overhead varies with
the phone habits of different people, and thus we ran
experiments with 8 volunteers (4 men and 4 women)
for 1 week. Table 2 details the storage overhead for 3
randomly chosen days. As is shown, Sherlock consumes
at most 1.8MB storage per day and 1.3MB on average.
Recall that nowadays smartphones typically possess gi-
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gabyte of storage capacity, thus such megabyte storage
overhead exerts little impact on smartphones. Further,
the storage overhead is even smaller in reality, because
Sherlock could delete the sensory data once the Micro-
environment semantics have been deduced.

5 RELATED WORK

Our concept of micro-environment sensing is built on
both context sensing and context-awareness applications,
yet differs in its emphasis on perceiving immediate
surroundings from the smartphone’s perspective. In
this section, we broadly review the state-of-art in both
threads of research.

Context Sensing: Recent advances in lightweight sen-
sors on smartphones have spurred enormous efforts on
context sensing in a round-the-clock fashion. Sound-
Sense [5] models sound events on mobile phones to
achieve context recognition. IODetector [9] provides an
indoor/outdoor detection service via collaboration of
phone sensors. Jigsaw [6] constructs a general-purposed
pipeline-based engine for continuous sensing applica-
tions on mobile phones. By dynamically learning the
relations among context attributes, ACE [2] reports users’
current states to applications in an energy efficient way.
Our work falls in this category yet differs in two aspects.
On one hand, previous efforts are mainly human-centric,
and support targeted computing services w.r.t users’
situation. Conversely, Sherlock conducts environmen-
t sensing from the phone’s perspective, automatically
records sensor hints and characterize the surroundings
of smartphones. On the other hand, all these works per-
form coarse-grained environment sensing (e.g., driving,
walking, riding a bus etc.), while Sherlock aims to detect
immediate surroundings, usually several to a dozen of
centimeters, around a phone.

Context-aware Application: Vast works also study
the usage of context-aware sensing results. FALCON [3]
exploits temporal and spacial characters of user behav-
iors to pre-load apps to speedup launch time. TagSense
[4] takes advantage of sensor hints to piece together
environment information about photos. Nericell [11]
leverages phone sensors to monitor road and traffic con-
ditions in developing cities. Vtrack [12] constructs an ac-
curate, energy-aware road traffic delay estimation using
smartphones. Many research efforts have also utilized
context sensing result for localization. SurroundSense [7]
exploits phone-equipped sensors to characterize ambient
environment features for logical localization. Zee [8]
uses inertial sensors to track phone users indoors. These
works, in general, can provide partial indication on
immediate surroundings of smartphones. However, all
of them are application-oriented, thus only suitable for
specific scenarios. e.g., monitoring road conditions, local-
izing phone users indoors. However, Sherlock provides a
multi-dimensional, phone-oriented environment sensing
service for upper layer applications, and is orthogonal
to the efforts aforementioned.

6 CONCLUSION

In this paper, we present the design, implementation
and evaluation of Sherlock, a simple yet practical plat-
form for micro-environment sensing for smartphones
via collaboration among built-in sensors. The platform
automatically collects sensor hints and characterizes the
immediate surroundings of smartphones at centimeter
level accuracy, providing fine-grained environment in-
formation to upper layer applications. We conduct com-
prehensive experiments to evaluate our system through
a prototype implementation on Android platform. Pre-
liminary experiment results show that Sherlock achieves
low energy cost, rapid system deployment, and compet-
itive sensing accuracy.

7 ACKNOWLEDGE

This work is supported in part by the NSFC Major
Program 61190110, NSFC under grant 61171067 and
61133016, National Basic Research Program of China
(973) under grant No. 2012CB316200, and the NSFC
Distinguished Young Scholars Program under Grant
61125202.

REFERENCES
[1] J. Yang, S. Sdhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan,

Y. Chen, M. Gruteser and R. Martin, Detecting Driver Phone Use
Leveraging Car Speakers. In MOBICOM’11, 2011.

[2] S. Nath. ACE: Exploiting Correlation for Energy-Efficient and
Continuous Context Sensing. In MobiSys’12, 2012.

[3] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app
launching for mobile devices using predictive user context. In
MobiSys’12, 2012.

[4] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi. Tagsense:
a smartphone-based approach to automatic image tagging. In
MobiSys’11, 2011.

[5] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell.
Soundsense: scalable sound sensing for people-centric applications
on mobile phones. In MobiSys’09, 2009.

[6] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell. The jigsaw continuous sensing engine for mobile phone
applications. In SenSys’10, 2010.

[7] M. Azizyan, I. Constandache, and R. Choudhury. SurroundSense:
Mobile phone localization via ambience fingerprinting. In MOBI-
COM’09, 2009.

[8] A. Rai, K. Chintalapudi, V. Padmanabhan, and R. Sen. Zee: Zero-
Effort Crowdsourcing for Indoor Localization. In MOBICOM’12,
2012.

[9] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen. IODetector: A Generic
Service for Indoor Outdoor Detection. In SenSys’12, 2012.

[10] X. Zhu, Q. Li, G. Chen. APT: Accurate Outdoor Pedestrian
Tracking with Smartphones. In INFOCOM’13, 2013.

[11] P. Mohan, V. Padmanabhan, and R. Ramjee. Rich Monitoring of
Roads and Traffic Using Mobile Smartphones. In SenSys’08, 2008.

[12] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H.
Balakrishnan, S. Toledo, and J. Eriksson. Vtrack: accurate, energy-
aware road traffic delay estimation using mobile phones. In Sen-
Sys’09, 2009.

[13] C. Tacconi, S. Mellone, L. Chiari. Smartphone-based applications
for investigating falls and mobility. In PervasiveHealth’11, 2011.

[14] J. Dai, X. Bai, Z. Yang, Z. Shen, D. Xuan. PerFallD: A Pervasive
Fall Detection System Using Mobile Phones. In PervasiveHealth’10,
2010.

[15] S. Salvador, P. Chan, Toward accurate dynamic time warping in
linear time and space, In Journal Intelligent Data Analysis, 2007.



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2013.2297309, IEEE Transactions on Parallel and Distributed Systems

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., 11

PLACE
PHOTO
HERE

Zheng Yang is currently an Assistant Professor
in the School of Software of Tsinghua University.
He received his B.E. degree in the Department
of Computer Science from Tsinghua University,
Beijing, China, and his Ph.D. degree in the De-
partment of Computer Science and Engineering
of Hong Kong University of Science and Technol-
ogy. He is a member of IEEE and ACM. He has
been awarded the 2011 State Natural Science
Award (second class).

PLACE
PHOTO
HERE

Longfei Shangguan is currently a Ph.D can-
didate in the Department of Computer Science
and Engineering, Hong Kong University of Sci-
ence and Technology. He received the B.E. de-
gree in 2011 from Xidian University, and M.Phil
degree in 2013 from Hong Kong University of
Science and Technology. He is a student mem-
ber of IEEE and ACM.

PLACE
PHOTO
HERE

Weixi Gu is currently a master student in the
School of Software, Tsinghua University. He re-
ceived the B.E. degree in 2012 from the De-
partment of Information Security of Shanghai
Jiaotong University. He is a student member of
IEEE and ACM.

PLACE
PHOTO
HERE

Zimu Zhou is currently a Ph.D candidate in
the Department of Computer Science and En-
gineering, Hong Kong University of Science and
Technology. He received his B.E. degree in 2011
from the Department of Electronic Engineering
of Tsinghua University, Beijing, China. He is a
student member of IEEE and ACM.

PLACE
PHOTO
HERE

Chenshu Wu is currently a Ph.D candidate in
the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. He
received his B.E. degree in 2010 from School
of Software, Tsinghua University, Beijing, China.
He is a student member of IEEE and ACM.

PLACE
PHOTO
HERE

Yunhao Liu received the B.E. degree in automa-
tion from Tsinghua University, China, in 1995,
the MS and PhD degrees in computer science
and engineering from Michigan State University,
in 2003 and 2004, respectively. He is now a
professor at TNLIST, School of Software, Ts-
inghua University. His research interests include
wireless sensor network, peer-to-peer comput-
ing, and pervasive computing. He is a senior
member of the IEEE Computer Society and an
ACM Distinguished Speaker.


	Sherlock: Microenvironment sensing for smartphones
	Citation
	Author

	Sherlock.pdf

