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WiFi-based Indoor Line-Of-Sight Identification
Zimu Zhou, Student Member, IEEE, Zheng Yang, Member, IEEE, Chenshu Wu, Student Member, IEEE,

Longfei Shangguan, Student Member, IEEE, Haibin Cai, Yunhao Liu, Fellow, IEEE
and Lionel M. Ni, Fellow, IEEE

Abstract—Wireless LANs, especially WiFi, have been perva-
sively deployed and have fostered myriad wireless communication
services and ubiquitous computing applications. A primary
concern in designing these applications is to combat harsh in-
door propagation environments, particularly Non-Line-Of-Sight
(NLOS) propagation. The ability to identify the existence of the
Line-Of-Sight (LOS) path acts as a key enabler for adaptive
communication, cognitive radios, robust localization. Enabling
such capability on commodity WiFi infrastructure, however, is
prohibitive due to the coarse multipath resolution with MAC
layer Received Signal Strength (RSS). In this work, we propose
two PHY layer channel statistics based features from both the
time and frequency domains. To further break away from the
intrinsic bandwidth limit of WiFi, we extend to the spatial domain
and harness natural mobility to magnify the randomness of
NLOS paths while retaining the deterministic nature of the LOS
component. We propose LiFi, a statistical LOS identification
scheme with commodity WiFi infrastructure and evaluate it
in typical indoor environments covering an area of 1500m2.
Experimental results demonstrate that LiFi achieves an overall
LOS detection rate of 90.42% with a false alarm rate of 9.34%
for the temporal feature, and an overall LOS detection rate of
93.09% with a false alarm rate of 7.29% for the spectral feature.

I. INTRODUCTION

W IFI networks are ubiquitously deployed indoors and
act as more than a vehicle for communication. Fast

emerging applications, e.g., indoor localization [1], seeing
through-walls [2], gesture recognition [3], are continuously
revolutionizing the horizon [4]. For innovative designs to
excel in multipath-dense indoor scenarios, Non-Line-Of-Sight
(NLOS) propagation is a major concern. The severe and fickle
attenuation of NLOS propagation deteriorates communication
link quality and degrades theoretical propagation models. The
past decade has witnessed extensive research to combat such
phenomenon [5] [6] [7] [8] [9], where the ability to identify
the existence of the Line-Of-Sight (LOS) path serves as a
fundamental primitive.

According to NLOS or LOS propagation conditions, PHY
layer settings can be tuned for high throughput and reliable
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communication. For instance, in case of LOS dominant prop-
agation, transmitters can switch to denser modulation and thus
higher data rates [10]. Under severe NLOS conditions, on the
other hand, particular receiver parameters (e.g. finger number
of Raker receiver [11]) can be configured to remain effective
with slightly higher complexity.

Besides adaptive wireless communication, numerous re-
search domains also rely heavily on or even build upon the
presence of the LOS path. For instance, NLOS propagation
induces positive bias in time and power based ranging [12] [8],
and generates spurious angular peaks for angle estimation [13]
[14] [15]. Even for fingerprinting-based localization, the fierce
signal strength fluctuations due to multipath superposition pose
substantial challenges in producing recurring radio fingerprints
[16] [17]. The availability of a clear and short-range LOS
path also benefits other applications such as wireless energy
harvesting by ensuring tight electromagnetic coupling and thus
high charging efficiency [18]. The awareness of LOS and
NLOS conditions, and further disentangling the LOS com-
ponent, paves the way for and enhances all these frameworks.

Achieving LOS/NLOS identification capability with com-
modity WiFi infrastructure, however, entails a range of chal-
lenges. Although vast theoretical channel models have been
proposed for LOS and NLOS propagation [19], a practical
LOS identification scheme either requires precise channel pro-
files, which involves dedicated channel sounders, or assumes
abundant randomness to bring the statistical models in effect.
Towards more pervasive solutions, most existing approaches
either employ extremely wideband signals like Ultra Wide-
Band (UWB) [20] [21], or resort to relatively long-range
communications like cellular networks [22], and often halt
at simulation [23]. Unfortunately, current WiFi operates with
a bandwidth of only 20MHz, thus unable to resolve paths
with distance difference shorter than 15m, yet often targets
at inbuilding services of meter-level accuracy. Such scale mis-
match of operating bandwidth and geographic space hampers
direct adoption of either category of existing approaches to
WiFi due to the coarse-grained channel measurements and
short-range indoor propagation environments. Pioneer works
[13] [14] extend to the spatial dimension leveraging Multiple-
Input-Multiple-Output (MIMO) techniques, but still require
hardware modification, impeding immediate viability.

In this work, we aim to design a pervasive primitive to
identify the availability of the LOS path under multipath
propagation with only commodity WiFi devices for typical
indoor environments. Since the presence and obstruction of the
LOS path are mutually exclusive, we harness the hypothesis
test framework for statistical LOS identification [22]. To
capture the distinctions between LOS and NLOS conditions
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with merely off-the-shelf WiFi infrastructure, we exploit t-
wo key observations. (1) The recently exposed PHY layer
information on commercial WiFi devices reveals multipath
channel characteristics at the granularity of OFDM subcarriers
[24], which is much finer-grained than the traditional MAC
layer RSS. (2) The spatial disturbance induced by natural
mobility tends to magnify the randomness of NLOS paths,
while retaining the deterministic nature of the LOS path, thus
facilitating LOS identification via the statistical characteristics
of the received signals.

We propose a LOS identification system with commodity
WiFi infrastructure called LiFi. Leveraging the PHY lay-
er channel state information reported by commercial WiFi-
compatible Network Interface Card (NIC), we (1) eliminate
irrelevant noise and NLOS paths with large delays in the
time domain, and (2) exploit frequency diversity to reveal
the spatial disturbances of NLOS propagation. On observing
that mobility magnifies the discrepancies between LOS and
NLOS paths (i.e., the LOS path remains almost the same with
the receiver moves locally within a small range, while the
NLOS paths may change dramatically), we involve natural
receiver movement (e.g., walking with an ultrabook at hand)
to enhance LOS identification. Combined with mobility, we
extract representative features from both the time domain and
the frequency domain to quantify the distinctions under LOS
and NLOS conditions. Through extensive evaluation, LiFi
achieves an overall LOS detection rate of 90.42% with a
false alarm rate of 9.34% for the temporal feature, and an
overall LOS detection rate of 93.09% with a false alarm rate
of 7.29% for the spectral feature. The combination of the two
features achieves LOS and NLOS identification rates around
95%. Extensive evaluation also demonstrates the LiFi scheme
is robust to different propagation distances, channel attenuation
and blockage diversity.

The main contributions of this work are as follows:

• We exploit PHY layer channel state information to iden-
tify the availability of the LOS component in multipath-
dense indoor scenarios. As far as we are aware of,
this is the first LOS identification scheme built upon
merely commodity WiFi infrastructure without hardware
modification leveraging PHY layer information, which
allows pervasive adoption.

• We harness natural mobility to magnify the distinctions
between LOS and NLOS conditions, and put LOS identi-
fication into mobile context, indicating viability with truly
mobile devices.

• We prototype LiFi, a pervasive LOS identification scheme
and validate its performance in various indoor office envi-
ronments covering a total area of 1500m2. Experimental
results demonstrate that LiFi outperforms RSS based
approaches, achieving both LOS and NLOS detection
rates of 90%-95%.

In summary, the existence of the LOS path can be regarded
as a primary characteristic of wireless channels. We envision
the primitive to identify LOS and NLOS dominant conditions
as an enhancement for current 802.11 standards and future
communication protocols, and a synergy for myriad appli-

Transmitter Receiver
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Path2

Path3

Transmitter Receiver

LOS Path Blocked
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Case 1: With LOS Path Case 2: Without LOS Path

Fig. 1. Multipath propagation and LOS/NLOS conditions.

cations including AP association, network routing, topology
maintenance, human-computer interaction.

A preliminary conference version of this work can be found
in [25]. We omit the comprehensive evaluation of Rician-K
factor feature, and propose a new feature leveraging frequency
diversity. We validate its effectiveness and evaluate its perfor-
mance in typical indoor environments. We also demonstrate
that the combination of the temporal feature in the previous
work and the spectral feature in this work improves both LOS
and NLOS identification rates to around 95%.

In the rest of this paper, we first present the LOS identifica-
tion problem and review existing approaches in Section II. We
then introduce feature extraction in Section III, followed by the
detailed design in Section IV and the performance evaluation
in Section V. We discuss the limitations in Section VI and
conclude in Section VII.

II. THE LOS IDENTIFICATION PROBLEM

A. Problem Definition

In indoor environments, wireless signals often propagate via
multiple paths.. Fig. 1 illustrates two common cases.

• The LOS path is mixed with multiple time-delayed NLOS
paths.

• The LOS path is too harshly attenuated to be perceivable
against the noise floor.

The LOS identification problem is to discern the availability
of the LOS path in multipath propagation for each receiver
location. It can be formulated as a binary hypothesis test with
H0 (LOS) and H1 (NLOS) [26]. Given a generic feature ξ,
the conditional Probability Density Function (PDF) under the
two hypotheses p(ξ|LOS) and p(ξ|NLOS) are applied to the
classical decision theory with a likelihood ratio test:

p(ξ|LOS)

p(ξ|NLOS)

H0

≷
H1

P (NLOS)

P (LOS)
(1)

where P (LOS) and P (NLOS) denote the prior probabilities
of LOS and NLOS propagation. Note that LOS identification
techniques can also be applied to detect NLOS conditions,
yet the former emphasizes more on the accuracy of LOS
identification. The selected features might slightly differ when
focusing on LOS or NLOS identification. Some work also
targets at finer-grained propagation condition identification,
e.g., LOS, near-LOS, NLOS conditions [27].
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TABLE I
A BRIEF COMPARISON OF SINGLE-LINK LOS IDENTIFICATION.

Category Feature Domain Example Complexity Performance

Range Measurements Based Spatial/Temporal
Range Variance [22]
Range Distribution [28]

Low-Medium Fair

Channel Characteristics Based Temporal
Power Envelop Distribution [29]
Mean Excess Delay [30]

Low-Medium Varying

Antenna Array Based Spatial
Angel-of-Arrival [13]
Variance of Phase Difference [31]

Medium-High Good

B. Existing Approaches

A distinctive feature ξ lies in the core of effective LOS
identification schemes. Existing approaches can be either
cooperative (multiple transceivers) or non-cooperative (one
transceiver), and extract features in the time domain or the
space domain. Cooperative NLOS identification schemes ex-
amine the consistency of multiple estimates (often location
estimates) from geographically distributed transceivers [32]
[33] [34]. They can achieve high accuracies given sufficient
links, and are favorable in scenarios e.g. cooperative or ad
hoc localization. Our focus, however, is single-link (non-
cooperative) LOS identification, where a WiFi client infers
NLOS/LOS conditions by analyzing received signals from
one Access Point (AP). Single-link LOS/NLOS identification
schemes roughly fall into three categories, i.e., range mea-
surement based, channel characteristics based, and antenna
array based. Table I provides a brief comparison of single-link
LOS identification schemes and we refer interested readers
to [35] for a comprehensive survey. As pointed out in [35],
channel characteristics based single-link LOS schemes exhibit
reasonable trade-off between identification performance and
system requirements. Hence we restrict our scope to channel
characteristics based approaches.

Channel characteristics based approaches differentiate LOS
and NLOS propagation based on channel characteristics in the
time domain. A multipath channel can be modeled as a linear
filter, known as Channel Impulse Response (CIR) h(τ) [19]:

h(τ) =
N∑
i=1

aie
−jθiδ (τ − τi) (2)

where ai, θi and τi are the amplitude, phase and time delay of
the ith path, respectively. N is the total number of paths and
δ(τ) is the Dirac delta function. Intuitively, since the LOS
path, if present, always arrives ahead of NLOS paths, the
delay characteristics of received signals differ under LOS and
NLOS conditions. Hence various features depicting the power-
delay characteristics, i.e., the shapes of CIR, are utilized as
indicators for LOS/NLOS conditions. In practice, precise CIR
is unavailable on most narrowband and wideband wireless
devices, making it infeasible to capture high-resolution CIR
shapes. Researchers thus resort to analyzing the statistics
of multiple received signal measurements to differ LOS and
NLOS conditions. Table II and Table III summarize represen-
tative shape-based and statistics-based features for LOS/NLOS
identification using channel characteristics, respectively. In
general, shape-based features yield good performance with

TABLE II
REPRESENTATIVE FEATURES FOR LOS IDENTIFICATION USING

SHAPE-BASED CHANNEL CHARACTERISTICS.

Feature Example Performance Device

Delay
Mean Excess Delay [30]
Delay Spread [36]

74.3%-100% (Sim)
61.7%-100% (Sim)

UWB
UWB

Power
Skewness of CIR [37]
Kurtosis of CIR [11]

82% (Exp)
66.3%-98.4% (Sim)

UWB
UWB

Sim - Simulation, Exp - Experiment

TABLE III
REPRESENTATIVE FEATURES FOR LOS IDENTIFICATION USING

STATISTICS-BASED CHANNEL CHARACTERISTICS.

Feature Example Performance Device

Model
Rician-K Factor [38]
γ Index [39]

85% (Sim)
N/A

N/W
UWB

Distribution
Variance of RSS [22]
RSS Statistics [40]

N/A
81%-87% (Exp)

N/W
WiFi

Sim - Simulation, Exp - Experiment, N/W - Narrow/Wideband

only one snapshot of the wireless channel, yet require high-
resolution CIR measurements. In contrast, statistics-based fea-
tures are applicable to both narrow and wideband signals at
the cost of multiple channel measurements.

C. Challenges

Despite vast efforts on LOS identification, it remains an
open issue how to design efficient and light-weight LOS iden-
tification schemes with merely commodity WiFi infrastructure.

• Physical Layer Information Unexplored: UWB signals
provide high-resolution CIR measurements, and thus di-
verse features for NLOS/LOS identification. For decades,
commercial narrowband e.g. GSM and wideband e.g.
WiFi devices only report single-valued MAC layer RSS
to upper layers, thus limiting the performance of LOS i-
dentification. It is only recently that finer-grained physical
layer information, i.e., Channel State Information (CSI),
has been exposed on commercial WiFi infrastructure
[41], which brings new opportunities for pervasive LOS
identification with merely WiFi.

• Real-world Evaluation Lacking: Extensive research
has focused on theoretical analysis and simulation of
various UWB-based NLOS/LOS identification schemes.
We argue that real-world evaluation of WiFi-based LOS
identification is crucial because (1) WiFi networks are
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Fig. 2. Sampled version of CIR derived from CSI.

becoming increasingly popular in everyday mobile com-
puting; (2) UWB-based schemes may not be directly
adopted to the bandwidth-limited WiFi.

• Labor-intensive Overhead: Our work is most close to
[40], where the authors explore various features extracted
from MAC layer RSS on WiFi devices and apply regres-
sion to select effective feature sets. Due to the learning-
based feature selection and the coarse-grained MAC layer
RSS, they require scenario-specific training e.g. with and
without interferences of moving people, and the effective
feature set also varies for different scenarios. In contrast,
our work aims at light-weight LOS identification with
PHY layer CSI, and strives to be robust to background
dynamics such as moving people.

III. MEASUREMENTS AND FEATURE EXTRACTION

In this section, we ask the following questions: (1) How
do existing single-link LOS identification schemes perform
on WiFi devices with physical layer information? (2) How
to extract proper channel characteristics based features from
WiFi physical layer information?

A. Channel State Information

Towards practical LOS identification with commodity WiFi
infrastructure, we explore the recently available PHY layer
information. Leveraging the off-the-shelf Intel 5300 NIC and
a modified driver, a sampled version of Channel Frequency
Response (CFR) within WiFi bandwidth is revealed to upper
layers in the format of Channel State Information (CSI) [24].
Each CSI depicts the amplitude and phase of a subcarrier:

H(fk) = ∥H(fk)∥ej∠H(fk) (3)

where H(fk) is the CSI at the subcarrier with central fre-
quency fk, and ∠H(fk) denotes its phase. Since CFR can be
converted into CIR via Inverse Fourier Transform (IFT), an
estimation of CIR with time resolution of 1/20MHz = 50ns
is exposed. Compared with MAC layer RSS, CSI portrays a
finer-grained temporal and spectral structure of wireless links.

B. Measurements with CSI

Since CSI provides a sampled version of CIR, we conduct
a measurement study on LOS identification using both shape-
based and statistics-based channel characteristics with CSI.

1) Shape-based Features with CSI: Shape-based features
exploit the difference in delay and power characteristics be-
tween LOS and NLOS propagation:

• Given a wireless link, signals transmitted via the LOS
path always arrive first.

• If unobstructed, the LOS path has weaker attenuation.
Fig. 2 depicts CIRs derived from CSI. CIR under LOS
propagation exhibits higher signal power with smaller delay.

We select one delay-based feature (mean excess delay [30])
and one power-based feature (kurtosis of CIR [11]) listed in
Table II. Mean excess delay τm is defined as:

τm =

∫
τ |h (τ) |2dτ∫
|h (τ) |2dτ

(4)

where h(τ) is the CIR. Kurtosis of CIR κ is calculated as:

κ =
E
{
|h (τ) | − µ|h|

}4

σ4
|h|

(5)

where E{·} represents the sampling expectation over delay.
µ|h| and σ|h| denote the mean and standard deviation of the
CIR amplitude |h(τ)|, respectively. τm and κ approximate the
weighted average and peakedness of the received signal power
delay profile, and in general, LOS dominant conditions have
a shorter τm (i.e., shorter average delay) and a larger κ (i.e.,
a more sharply distributed power delay profile).

We extracted CSIs from 5000 packets measured under
typical LOS and NLOS conditions, and calculated the cor-
responding CIRs via IFT. Fig. 3a and Fig. 3b illustrate the
CDFs of the mean excess delay and kurtosis of CIR. While
CIRs derived from CSI do have shorter mean excess delay and
larger kurtosis, a threshold to discriminate LOS and NLOS
conditions may lead to high false identification rate. This is
because given an operating bandwidth of 20MHz, commodity
WiFi yields a time resolution of 50ns. Thus paths with length
difference smaller than 15m might be mixed in one CIR
sample. Moreover, as shown in Fig. 2, there is an uncertain
time lag at the start of measured CIR samples. In case of
low time resolution and lack of synchronization, it is rather
error-prone to align the CIR samples with respect to the first
arriving path.

2) Statistics-based Features with CSI: Statistics-based fea-
tures exploit the difference of LOS and NLOS propagation
in the spatial domain. Signals travelling along NLOS paths
tend to behave more randomly compared with those along a
clear LOS path. We select one model-based feature (Rician-K
factor [38]) as listed in Table III. The received signal envelope
distribution is often modeled as Rayleigh/Rician fading for
NLOS/LOS dominant conditions [19]. Rician-K factor [10] is
defined as the ratio of the power in the LOS component to the
power in the scattered NLOS paths. A large K indicates strong
LOS power and thus, a high probability of LOS propagation.
While Rician-K factor is based on Rician distribution, it can
be estimated as follows [10]:

K̂ =
−2µ̂2

2 + µ̂4 − µ̂2

√
2µ̂2

2 − µ̂4

µ̂2
2 − µ̂4

(6)
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Fig. 4. An illustration of the received envelope distributions and the distributions of Rician-K factor with CSI.

where µ̂2 and µ̂4 are the empirical second and fourth order
moments of the measured data.

Fig. 4a plots the distributions of received envelopes as
well as the Rician/Rayleigh fittings with filtered CSI (detailed
in Section III-C). Although the empirical distributions are
well fitted by Rician fading, Rayleigh fitting may fail for
NLOS conditions. This is because Rayleigh fading assumes
a large number of multipath components with roughly equal
power and uniformly distributed azimuths. Yet many NLOS
scenarios, such as illustrated in Fig. 1, do not match these
assumptions. Fig. 4b plots the distributions of Rician-K factor
with CSI under LOS and NLOS conditions. As is shown,
while Rician-K factors under LOS propagation are smaller,
significant identification errors still occur. This is because
(1) Rician-K factor is derived from theoretical propagation
models primarily catered for long-range and scattered propa-
gations e.g. a base station and a mobile client at the center
of the densely-built Manhattan [42]; and (2) Low Rician-
K factors might occur in LOS scenarios with significant
multipath energy e.g. a dominant NLOS path mixed with other
diffusely scattered NLOS paths. Therefore, it is still infeasible
to directly employ Rician-K factor for LOS identification.

C. Channel Statistics with Mobility

As shown in Section III-B1, shape-based features are in-
feasible due to insufficient bandwidth of current WiFi stan-
dards. To enable practical LOS identification with commercial
WiFi, statistics-based features compensate for the crude CIR
measurements by integrating multiple observations. However,
as discussed in Section III-B2, model-based metrics such as

TX

RX1 RX1'

RX2

RX2'

Fig. 5. Impact of mobility on LOS/NLOS propagation.

Rician-K factor still yield large errors. The main hurdle is that
constrained by particular indoor floor plans and the relatively
short transmission distances, the NLOS paths may not be
adequately random, which potentially degrades the viability
of theoretical models.

A key insight to induce more randomness on NLOS paths
is to involve mobility. As illustrated in Fig. 5, when Receiver1
moves from RX1 to RX ′

1, the LOS path experiences slight
variation, while NLOS paths suffer notable changes in trans-
mission distances, arriving angles, and channel attenuation. On
the other hand, in case of undeceivable LOS path, almost all
paths would fluctuate considerably during Receiver2’s move-
ment from RX2 to RX ′

2, thus creating abundant randomness.
Leveraging the above observation, we propose two candidate
distribution-based channel statistics features from both the
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time domain and the frequency domain1.
1) Skewness of Dominant Path Power: Although mobility

amplifies the spatial fluctuation of NLOS paths, two challenges
still remain:

• MAC layer RSS can be noisy [8], thus inducing irrelevant
variations to the LOS path.

• In mobile indoor environments, the selected features need
to be lightweight and independent on distribution model-
ing in case of location changes and model degradation.

To wipe out unwanted interference when identifying the
LOS path, we exploit CSI to disentangle the dominant paths
to mitigate the impact of NLOS paths with long delays as
well as irrelevant noise. Concretely, we filter the CIR samples
obtained from CSI as follows:

• We only keep the first 10 out of the 30 CIR samples
as candidate samples. This is because given a typical
indoor maximum excess delay of 500ns [43] and a time
resolution of 50ns, at most 10 samples are relevant to
multipath propagation.

• We take the CIR sample with the maximum slope in
the received CIR sequence (i.e., the maximum difference
between two successive CIR samples) as the start of
the dominant paths. The reason is that the slope based
detection better captures the energy switch from noise to
signals, even if the signal power is not strong enough.

• We summate over the CIR sample with the maximum
slope with the next CIR sample as the power of the
dominant paths. This is to account for the alignment
errors due to uncertain time lag, where the CIR sample
next to the first detected path may contain the LOS path
as well. If the next CIR sample exceeds the indices, we
discard this CIR sequence since the uncertain time lag
might be too large.

Fig. 6a plot the envelope distributions of filtered CSI from
1000 packets for a mobile link. As is shown, with natural
mobility, the received envelope under LOS condition dis-
tributes almost symmetrically, while the distribution exhibits
a notable skew under NLOS conditions. We thus employ
skewness to quantify the skewed characteristics. Skewness is a
general metric depicting the the skewed shape of a distribution.
Mathematically, skewness s is defined as:

s =
E{x− µ}3

σ3
(7)

where x, µ and σ denote the measurement, mean, and standard
deviation, respectively. A positive/negative skewness indicates
that the measured data spread out more to the right/left of
the sample mean. Fig. 6b plots the distributions of skewness
for the power of dominant paths under both LOS and NLOS
propagations. (200 measurements each for LOS and NLOS
propagations. 1000 packets for each measurement.) In general,
the skewness feature under NLOS conditions exhibits larger
positive trend and a threshold to distinguish LOS and NLOS
conditions with high accuracy exists.

1We refer interested readers to the conference version [25] for evaluations
of distribution-based features as [40].

The skewed characteristics of received envelope under N-
LOS propagation has also been observed and modeled as a
skewed Laplace distribution, but it involves prior knowledge
of the propagation distance along a static link [44]. Conversely,
we calculate the skewness feature from filtered CSI for mobile
links, which is computation-effective, distribution-agnostic,
and irrespective of propagation distances.

2) Kurtosis of Frequency Diversity Variation: The rationale
to leverage frequency diversity for LOS and NLOS identifi-
cation on mobile links is as follows. Assuming a constant-
gain antenna, which is common for commodity WiFi hardware
using e.g. monopole antennas, received power falls off as
λ2/dn, where λ = c/f is the signal wavelength with speed
c and frequency f , d is the transmitted distance and n is
the environmental attenuation factor [19]. In LOS dominant
scenarios, the channel fading is relatively flat since the LOS
path dominates. Therefore, the CSIs collected from one packet
are similar if normalized to the same frequency, since they
transverse the same distance. Conversely, in NLOS dominant
scenarios, the richer multipath superposition leads to more
notable frequency-selective fading. Consequently, the CSIs
measured from one packet may vary even if normalized to
the same frequency. That is, we normalize the CSI amplitudes
of one received packet to the central frequency f0:

Hnorm(fk) =
fk
f0

·H(fk) (8)

where H(fk) and Hnorm(fk) are the original and normalized
(w.r.t. f0) amplitudes of the kth subcarrier. fk is the frequency
of the kth subcarrier2. We expect smaller variance of the
normalized CSIs {Hnorm(fk)}28k=−28 under LOS propagation
because the signals transverse the same distance and experi-
ence similar attenuation.

However, we find it insufficient to utilize CSI measurement
of one packet to accurate LOS identification. Significant
attenuation changes by only fractions for signals even over
GHz bandwidth of spectrum [45]. Thus the variation induced
by frequency-selective fading may not be large enough in
NLOS propagation scenarios. To further increase the variation
of the normalized CSI amplitudes in NLOS conditions, we
again resort to receiver mobility. In case of LOS propagation,
the LOS path still travels almost the same distance with slight
receiver mobility. In case of NLOS propagation, however,
the NLOS paths are likely to vary dramatically, leading to
diverse propagation distances for different receiver locations,
even if the locations only change slightly. After involving
receiver mobility, we expect the variation of normalized CSI
amplitudes from multiple packets remain similar under LOS
propagation yet fluctuate under NLOS propagation.

Fig. 7a plots the Standard Deviation (STD) distributions of
the normalized CSI amplitudes from 500 packets. As is shown,
STDs under LOS propagation distribute more peaked (with
a long tail somehow) while those under NLOS propagation
demonstrate a more flat distribution.

2In our implementation, the central frequency f0 is 2.462GHz on channel
11. According to [41], the subcarrier indices {k} measured in the CSI tool
are -28, -26, -24, -22, -20, -18, -16, -14, -12, -10, -8, -6, -4, -2, -1, 1, 3, 5,
7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, respectively.
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Fig. 6. An illustration of received envelope distributions and the distributions of skewness for dominant paths with mobility.
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Fig. 7. STD distribution of CFR amplitudes which are converted w.r.t. the central frequency, and the distribution of kurtosis of the STD distributions.

To quantify the peaked and flat STD distributions, we adopt
kurtosis as a candidate feature. Kurtosis is a metric depicting
the the peakedness of a distribution. Kurtosis κ is defined as:

κ =
E{x− µ}4

σ4
(9)

where x, µ and σ denote the measurement, mean, and standard
deviation, respectively. A large kurtosis indicates that the
measured data is more peaked (and heavy tailed) than the
normal distribution. Fig. 7b plots the distributions of the
proposed kurtosis feature for frequency diversity variation
under both LOS and NLOS propagations. (200 measurements
each for LOS and NLOS propagations. 1000 packets for each
measurement.) In general, the kurtosis feature under LOS
conditions is larger than that under NLOS conditions and a
threshold to distinguish LOS and NLOS conditions with high
accuracy also exists.

IV. LOS IDENTIFICATION

In this section, we present our LiFi LOS identification
scheme. The CSI samples reported from the receiver are first
preprocessed to mitigate random phase noise and are nor-
malized to eliminate the impact of transmitting and receiving
power. The reassembled CFRs are then used to extract the
two candidate features from N packets. The identification
procedure is formulated as a statistical hypothesis test with
a pre-calibrated threshold for each of the feature metrics. The
following subsections elaborate on the detailed operations for
each processing stage.

A. Preprocessing

The lack of time and frequency synchronization induces
phase noise when measuring the complex channel response
[46] [47]. Given the carrier frequency f , initial phase of ϕt(f)
and propagation time t, the ideal received phase ϕr(f) is equal
to ϕt+2πft. However, the clock offset ∆t and frequency dif-
ference ∆f result in unknown phase shifts 2πf∆t and 2π∆ft,
respectively [46]. Since phase shifts in the frequency domain
is equivalent to delays in the time domain, the phase noise
leads to unknown time lags when calculating CIR samples
from raw CSI samples as in Fig. 2. We hence utilize the linear
revision as in [47] to mitigate the CIR aligning errors incurred
by phase noise, where the revised phase ϕ′

r(f) is equal to
ϕr(f) − αf − β and α and β denote the slope of the phase
change and average phase change over all the subcarriers,
respectively. The revised phase is then reassembled with the
amplitude as the complex CFR. The CIR samples are obtained
via a 32-point IFFT on the CFR samples, and the skewness
feature is thereafter extracted from the dominant paths detected
by the maximum slope scheme as discussed in Section III-C1.
Since the kurtosis feature is derived from the amplitude of CSI,
it does not involve the above phase calibration process. The
amplitudes are converted to the central frequency as discussed
in Section III-C2 for further processing.

B. Normalization

To make the LOS identification scheme independent of the
power attenuation, we normalize the CIR samples and the CSI
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Fig. 9. Receiver setup: (a) a laptop equipped with internal Intel 5300 NIC; (b) a mini PC with external Intel 5300 NIC.

amplitudes measured at one time by dividing them by the
average amplitude, i.e., setting the mean amplitude to 1, before
extracting the proposed features.

C. Identification

Given a set of normalized CIR samples and CSI amplitudes
from N packets, the skewness feature s and the kurtosis
feature κ are calculated as introduced in Section III-C1 and
Section III-C2, respectively. Then LOS identification is formu-
lated as a classical binary hypothesis test with LOS condition
H0 and NLOS condition H1.

For the skewness feature, the hypothesis test is:{
H0 : s < sth
H1 : s > sth

(10)

For the kurtosis feature, the hypothesis test is:{
H0 : κ > κth

H1 : κ < κth
(11)

where sth and κth represent the corresponding identification
threshold for the skewness and kutosis features, respectively.
The thresholds are pre-calibrated and according to our mea-
surements, a unified threshold for each feature metric would
fit various scenarios including different propagation distances,
channel attenuation, and blockage diversity.

V. PERFORMANCE

In this section, we first interpret the experiment setup and
the methodology, followed by detailed performance evaluation
of LiFi in various indoor scenarios.

A. MethodologyTesting Environments: We conduct the measurement cam-
paign over one week in typical office environments includ-
ing corridors and rooms, covering an area of approximately
1500m2. The corridors are enclosed with concrete bearing
walls and hollow non-bearing walls. The rooms are furnished

with cubicle desks partitioned by glass and metal boards, com-
puters, and other plastic, wooden and metallic furniture. The
doors are kept open during the measurements and occasionally
there are people passing by. The floor plan of the testing
building is illustrated in Fig. 8a. For the corridors, we collect
CSIs for LOS, through-wall and around-corner propagation
with a maximum transmitter-receiver distance of 30m. For the
rooms, we select a grid of 23 testing locations separated by
2m and 2 AP locations (Fig. 8b). The direct link between
one transmitter and one receiver could be a clear LOS path,
partially blocked by furniture and humans, or through-wall
propagation, as shown in Fig. 8b. Different AP heights are
also tested including 0m, 0.8m and 2m above the floor.

Data Collection: During the measurements, a TP-LINK
TLWR741N wireless router is employed as the transmitter
operating in IEEE 802.11n AP mode at 2.4GHz. Since cur-
rently CSI measurements are available on limited number of
NICs, e.g., Intel 5300 NIC, we use two receiver setups: a
LENOVO laptop equipped with Intel 5300 NIC, and a mini
PC with external Intel 5300 NIC to take device diversity into
consideration (Fig. 9). The firmware is modified as in [41]
and the receiver pings packets from the AP to collect CSI
measurements. A group of 30 CSIs are extracted from each
packet and processed as in Section IV-A.

To simulate natural human mobility, the receiver (i.e., the
laptop and the mini PC in our case) is placed on a wheeled
desk of 0.8m in height, and is pushed by 2 different volun-
teers3. For each measurement, the receiver moves randomly
within the range of 1m at a speed from 0.5m/s to 2m/s. A
smartphone is attached on the receiver to record acceleration
traces to measure the average speeds of movements. We collect

3We placed the receiver on a wheeled desk instead of directly let the
volunteers carry the receiver because 1) it is difficult for a single person to
carry the mini PC, the monitor, and the attached wires, and 2) we expect fixed
heights of the receiver during the measurements. We envision similar firmware
modification would be available on mobile phones to simulate practical human
mobility on truly mobile devices.
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Fig. 10. Overall LOS identification performance of the skewness and kurtosis features and their combination.

2000 packets for each measurement, and in total we conduct
1000 measurements. For fair comparison, we also collect
1000 measurements for static links, with each measurement
collected roughly along the user moving traces. Each category
of measurements include 500 LOS and 500 NLOS dominant
conditions. The ground truth is manually determined for each
test location4 based on whether a direct straight line exists
between the transmitter and the receiver.

Evaluation Metrics: We mainly focus on the following
metrics. (1) LOS Detection Rate PD: The fraction of cases
where the receiver correctly identifies a LOS condition for
all LOS cases. (2) False Alarm Rate PFA: The fraction of
cases where the receiver mistakes a NLOS condition for LOS
condition for all NLOS cases. (Note that the NLOS detection
rate is 1−PFA.) The LOS detection rate and false alarm rate
for the skewness feature are defined as:

PD,s =

∫ sth

−∞
fs(ξ|H0)dξ

PFA,s =

∫ sth

−∞
fs(ξ|H1)dξ

where sth, fs(ξ|H0) and fs(ξ|H1) represent the identification
threshold and conditional probability densities under the two
hypotheses for the skewness feature, while for the kurtosis
feature:

PD,κ =

∫ +∞

κth

fκ(ξ|H0)dξ

PFA,κ =

∫ +∞

κth

fκ(ξ|H1)dξ

where κth, fκ(ξ|H0) and fκ(ξ|H1) denote the identification
threshold and conditional probability densities under the two
hypotheses for the kurtosis feature.

B. Overall Identification Performance

To quantitatively evaluate the overall LOS identification
performances of the two features, we plot the Receiver Op-
erating Characteristic (ROC) curves of the two features in
Fig. 10a for (1) skewness feature of static links (2) kurtosis
feature of static links (3) skewness feature of mobile links

4Although the receiver is moving, its moving range is constrained within
1m. Thus we can approximately consider the location of the receiver is fixed
and use the location in the middle of the moving trajectory to represent the
location of the receiver.

(4) kurtosis feature of mobile links. ROC curves plot the LOS
detection probability PD against the probability of false alarms
PFA. It is a classical graphical view of the tradeoff between
false positives and false negatives of a detection algorithm by
evaluating a wide range of thresholds. The ROC curve closer
to the upper left corner indicates better performance.

Static Links vs. Mobile Links: As shown in Fig. 10a, the
performance of LOS identification on mobile links notably
outperforms that on static links, indicating mobility increases
the spatial disturbances of NLOS paths. Mobile links are
more robust to accidental disturbance since receiver motion
dominates the changes of propagation paths. In contrast, static
links occasionally suffer from environmental dynamics (e.g.
pedestrians), thus degrading identification performance.

Skewness vs. Kurtosis: Given a constant false alarm rate
of 10%, the LOS detection rates of both the skewness feature
and the kurtosis feature exceed 90%, with the former reaching
90.83% and the latter 95.4%. The more balanced LOS and
NLOS detection rates of the skewness feature are 90.42% and
90.66%, while those for the kurtosis feature are 93.09% and
92.71%, respectively. The kurtosis feature performs slightly
better than the skewness feature. A partial explanation might
be that the skewness feature relies on extracting the dominant
paths, which is error-prone due to lack of synchronization
between the transmitter and the receiver. However, the kurtosis
feature is more sensitive to mobility, as its performance
dramatically deteriorates on static links.

Combining Skewness and Kurtosis: Since LOS propa-
gation tends to have low skewness feature and high kurtosis
feature, we combine the two features and plot a linear separator
using Support Vector Machine (SVM) in Fig. 10b. The com-
bination yields marginal performance gain, with the optimal
LOS and NLOS detection rates reaching 94.36% and 95.98%.

In the following subsections, we evaluate the impact of
distances, number of packets, moving speeds and different
obstacles on the identification performance using the thresh-
olds for the balanced detection rates. That is, we select the
thresholds where the LOS identification rate equals to the
NLOS identification rate in the ROC curves for each feature
(i.e. the thresholds for which the true positive rate equals to
one minus the false positive rate).

C. Impact of Propagation Distance

As LiFi aims to provide a generic LOS identification
scheme, it is envisioned that a single threshold would fit a
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Fig. 11. Impact of propagation distances: Both features perform better for medium propagation ranges.
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Fig. 12. Impact of packet number: The performances of both features remain stable with 3s-4s of measurements, while the kurtosis feature is more sensitive
to the quantity of measurements.

wide range of propagation distances. We collect data in the
corridor with transmitter-receiver distances ranging from 5m
to 30m. The corresponding LOS detection rates and false alarm
rates are shown in Fig. 11. There is no direct correlation
between the LOS identification performance and propagation
distances, indicating a single pre-calibrated threshold tends
to be independent of propagation distances and is applicable
to most of the tested locations. Overall, the kurtosis feature
marginally outperforms the skewness feature. For both fea-
tures, modest performance degradation, is observed for short
distance (5m/10m) and relatively long distance (25m/30m).
The degeneration in short distance cases is partially because
the through-wall path becomes more dominant than the mul-
tipath with relatively short propagation distances. Basically,
the attenuation of the wall is smaller than the that suffered by
NLOS due to both reflection and longer distance travelled.

D. Impact of Packet Quantity

To evaluate the realtime performance of LiFi, we calculate
the LOS and NLOS detection rate with different number
of packets, ranging from 500 packets to 2000 packets per
measurement. Since the receiver is downloading packets from
the AP at the rate of 500 packets per second, this corresponds
to a time range of 1s to 4s. As shown in Fig. 12, the LOS
and NLOS detection rates of both features retain around 90%
with 3 to 4 seconds of measurements. However, the kurtosis
feature is more sensitive to the decrease of packet number.
With 1s of measurements, its LOS detection rate drops to
below 70% while the NLOS detection rate hovers around 90%,
indicating a smaller threshold for more balanced detection
rates. This is partially because the kurtosis feature does not
filter out NLOS paths with long delays from the LOS path.

Consequently, background instability and other NLOS paths
(although LOS path dominates the propagation) may induce
larger variation in case of insufficient packets. In contrast,
the skewness feature achieves reasonable LOS and NLOS
detection rates of 77.65% and 82.5%, respectively, even with
measurements of only about 1s. And the degradation trends
of LOS and NLOS detection rates are more consistent. In
summary, since both features belong to channel statistics based
features, stable estimations rely on adequate received samples,
especially with mobile links, unpredictable human behaviors
and uncertain background dynamics, which potentially make
LOS propagation less deterministic. It suffices to yield satis-
factory performance with about 3s of measurements.

E. Impact of Moving Speed

To evaluate the impact of moving speed, we calculate
the LOS and NLOS detection rate with average speeds of
0.5m/s, 1.0m/s, 1.5m/s and 2.0m/s. As the receiver is moved
by humans, we use a phone accelerometer to track receiver
movements, and the volunteer listens to the beats generated
by a metronome application to move the receiver back and
forth at a certain speed. For each average speed, we collect
200 measurements for LOS and NLOS conditions. As shown
in Fig. 13, the LOS and NLOS detection rates of both features
retain around 82% for all the testing average speeds. We only
notice a slight performance fall at the moving speed of 2.0m/s.
The results indicate that our scheme is robust to Doppler
effects. However, we fail to evaluate faster moving speeds due
to the bulky receiver size. We envision CSI measurements on
truly mobile devices for evaluation of the impact of Doppler
effects within a wider receiver moving speed range.
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Fig. 13. Impact of moving speed: Both features retain detection accuracy of above 82% for moving speeds of 0.5m/s to 2.0m/s.
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Fig. 14. Impact of obstacle diversity: Both features are agnostic to the three testing material.

F. Impact of Obstacle Diversity

To evaluate the robustness of LiFi under different obstruc-
tion scenarios, we investigate the identification performance
with different blockage: (1) through wall (concrete bearing
walls and hollow non-bearing walls), (2) around the corners
(could partially be through wall propagation) and (3) office
(obstructed by metallic and wooden furniture). For each s-
cenario, we test two AP locations as shown in Fig. 8a and
Fig. 8b, and plot the overall detection performances of the
three scenarios as in Fig. 14. As is shown, there is no
clear performance gap among the three scenarios with lowest
LOS/NLOS detection rate of 85.42% for the skewness feature
and 88.28% for the kurtosis feature in the 6 tested cases. The
two wall cases slightly outperform the others partially because
through wall propagation magnifies the difference between
LOS and NLOS conditions. While even concrete bearing walls
might still be insufficient to 100% block the LOS path, we
expect higher NLOS detection rates for NLOS scenarios with
the LOS path being completely blocked. Although furniture
blockage induces weaker attenuation and disturbance on the
LOS component, the relatively open space in offices compared
with narrow corridors allows more freedom of the propagation
paths. Hence the detection performance is comparable with the
other two scenarios even with short propagation distances.

VI. DISCUSSION

This section discusses some limitations and possible aug-
mentations of our LiFi scheme.

Pre-calibration. Although LiFi does not involve sophis-
ticated training, a pre-calibrated optimal is required. We
demonstrate in Section V-C to Section V-F that a unified
threshold fits most scenarios, except when the received packets
are insufficient for stable estimation of the statistics based

features. We envision more robust statistics to further reduce
this overhead.

Static Links. A key insight for our scheme is to exploit nat-
ural mobility (e.g. walking) to magnify the spatial disturbances
of NLOS paths. Thus our current prototype mainly works for
mobile links. We expect finer-grained features would enable
our scheme to smaller-scale motions (e.g. shaking a mobile
phone in hand).

Wider Bandwidth. IEEE 802.11n and the new IEEE
802.11ac tend to be the main candidates for enterprise applica-
tions, with the operating bandwidth doubled. Wider bandwidth
would linearly increase the resolution of CIR measurements,
which potentially improves the performance of LOS identifi-
cation. Nevertheless, even the 160MHz bandwidth might still
be insufficient for precise CIR measurements to adopt shape-
based features as in UWB-based schemes. On the other hand,
it may be promising to employ multiple sub-bands such as
2.4GHz and 5GHz to further distinguish LOS and NLOS in
the frequency domain by leveraging the significant attenuation
changes between GHz bandwidth difference [45].

MIMO Enhancement. MIMO is a key feature in
IEEE 802.11n. Recent research has successfully enabled
fast LOS/NLOS identification measuring angular spectra on
software-defined radios [13], combining with inertial sensors
[9], and on commodity WiFi APs [15]. Our scheme can be
combined with MIMO-based framework to extend LOS/NLOS
identification to the spatial domain. For instance, a MIMO
enabled solution would speed up the calculation of channel
statistics based features and provide richer information due to
spatial diversity [21]. We are also exploring the performance
tradeoff between mobility induced by humans and spatial
diversity brought about by MIMO.



12

VII. CONCLUSION

In this study, we explore PHY layer information to identify
LOS dominant conditions with commodity WiFi infrastruc-
ture. Natural mobility magnifies the randomness of NLOS
paths while retaining the deterministic nature of the LOS
component. Leveraging this observation, we explore channel
statistics based features from both the time domain and the
frequency domain: skewness of dominant path power dis-
tribution and kurtosis of frequency diversity variation dis-
tribution in mobile links. We prototype LiFi, a statistical
LOS identification scheme with off-the-shelf 802.11 NIC.
Extensive experimental evaluation considering various propa-
gation distances, channel attenuation and obstruction diversity
have validated the feasibility of LiFi, with an overall LOS
detection rate of 90.42% (93.09%) and a false alarm rate of
9.34% (7.29%) for the skewness (kurtosis) feature, while the
combination of the two features achieves LOS and NLOS
identification rates around 95%. We envision this work as
an early step towards a generic, pervasive, and fine-grained
channel profiling framework, which paves the way for WLAN
based communication, sensing and control services in complex
indoor environments.
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