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Design and Implementation of an RFID-based
Customer Shopping Behavior Mining System

Zimu Zhou*, Student Member, IEEE, Longfei Shangguan*, Student Member, IEEE, Xiaolong Zheng, Student
Member, IEEE, Lei Yang, Member, IEEE, and Yunhao Liu, Fellow, IEEE

Abstract—Shopping behavior data is of great importance in
understanding the effectiveness of marketing and merchandising
campaigns. Online clothing stores are capable of capturing
customer shopping behavior by analyzing the click streams and
customer shopping carts. Retailers with physical clothing stores,
however, still lack effective methods to comprehensively identify
shopping behaviors. In this paper, we show that backscatter
signals of passive RFID tags can be exploited to detect and
record how customers browse stores, which garments they pay
attention to, and which garments they usually pair up. The
intuition is that the phase readings of tags attached to items will
demonstrate distinct yet stable patterns in a time-series when
customers look at, pick out or turn over desired items. We
design ShopMiner, a framework which harnesses these unique
spatial-temporal correlations of time-series phase readings to
detect comprehensive shopping behaviors. We have implemented
a prototype of ShopMiner with a COTS RFID reader and
four antennas, and tested its effectiveness in two typical indoor
environments. Empirical studies from two-week shopping-like
data show that ShopMiner is able to identify customer shopping
behaviors with high accuracy, low overhead, and is robust to
interference.

Index Terms—Shopping behavior, RFID, Backscatter commu-
nication

I. INTRODUCTION

SHOPPING behavior analysis is of great importance in

understanding the effectiveness of marketing and mer-

chandising campaigns [2]. Deep shopping behavior data can

help retailers capture customers’ preferences, test new arrivals,

and adjust marketing strategies. Mining customer shopping

behavior in online stores is achievable by analyzing click

streams and shopping carts [3], [4]. However, physical store

retailers lack effective methods to identify customer behaviors.

The only available information is the sales history, which fails

to reflect customer behaviors before they check out, e.g. how

customers browse the store, which products they show an
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interest in, and what products they match up. Therefore, it is

essential to explore new ways of capturing customer behaviors

in physical stores.

Previous efforts have exploited cameras to monitor customer

shopping behaviors in clothing stores [5], [6]. However, such

methods involve sophisticated computer vision techniques to

recognize and analyze arm motions. Alternative methods track

customer routes in stores to mine hot zones and popular

products [7], [8]. For example, the more customers traverse

a route, the higher attention the items along this route gain.

However, these approaches still fail to provide high-fidelity

shopping behaviour information such as product browsing,

pick-up actions and trying on clothes.

RFIDs are emerging as an essential component of Cyber

Physical Systems. Many well-known garment manufacturers

(e.g., Abercrombie & Fitch, Calvin Klein, Decathlon) adopt

passive RFIDs for sales tracking and anti-counterfeiting [9].

We envision the adoption of RFIDs will sweep the clothing

market in the near future, and in this paper, we explore the

feasibility of mining customer behavior in physical clothing

stores with RFID devices. Through analyzing the shopping

processes in clothing stores, we abstract three behavior mining

functionalities essential to retailers: discovering popular cate-

gories, identifying hot items and excavating correlated items.

• Popular category represents the clothes that customers

frequently stop by. Popular category indicates the items

that attracts customers at first glance, and provides in-

formation e.g. trends in consumer preferences, to attract

more customers into the shops.

• Hot items are the clothes frequently picked out or turned
around by customers. They indicate customers’ deeper

interests after the first glance. This information can help

retailers develop strategies to transfer the hot items into

the final purchase.

• Correlated items are the clothes that are frequently

paired with or tried on together, which facilitates retailers

to infer customer shopping habits and adopt bundle-

selling strategies to boost profits.

These shopping data reflect which items the customers browse
through, they show an interest in, and they match up. Through

jointly analyzing these three kinds of shopping data with a

sales history, retailers can acquire a much deeper business

value. For example, items which are seldom tried-on may

indicate the designs of these items are not run of the mill,

while a hot item with unsatisfactory sales volume may suggest

an unacceptable price, which indicates the need for a sales
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(a) (b) (c) (d)

Fig. 1. (a): browsing and then stopping in front of the item of interest; (b),
(c): inspecting the item more closely; (d): matching up and trying items on
in a fitting room.

promotion or discount.

In this paper, we present ShopMiner, a customer shop-

ping behavior sensing system using commercial off-the-shelf

(COTS) RFID devices. The principle is that the phase readings

of RFID tags attached to clothes items demonstrate distinct

yet stable patterns when customers stop beside, pick out, turn

around, or pair up items. Specifically, customers are likely

to stand still for a while in front of attractive items, and

hence block the wireless links between reader antennas and

the items. Thus the phase reading of the popular items show

a distinct pattern from the unpopular ones (i.e., not viewed

by customers). Similarly, the phase reading of hot tags will

change dramatically when customers pick them out or turn

them around to inspect the front design. The correlated items

are brought together by one customer, thus experiencing the

same moving route and showing similar phase changes.

ShopMiner’s design harnesses these spatial-temporal phase

reading correlations. Our key techniques include a fore-

ground/background segmentation scheme for popular category

detection, a statistical model for hot item identification, and

a clustering algorithm for correlated items excavation. We

implement ShopMiner on COTS RFID devices including an

ImpinJ R420 reader, four Yeon antennas model YAP-100CP

and multiple Alien UHF passive tags. Experimental results

show that ShopMiner can detect popular items with a True

Positive Rate (TPR) of 92%, identify hot items with an

accuracy of 94% and 87% for pick-out and turn-around, and

achieve over 85% accuracy for correlate item excavation in

multi-user case.

Contributions. (1) ShopMiner is a unified sensing frame-

work. Despite recent works on RFID-based shopping behavior

sensing [10], [11], none has incorporated the three key factors

that are essential to retailers, i.e., which items the customers

browse through, they show a interest in, and they pair up.

(2) As a long-term running system, ShopMiner optimizes

computation and storage overhead. We design a hierarchical

architecture and a set of algorithms for multistage behavior de-

tection. (3) We implement ShopMiner on COTS RFID devices,

and conduct comprehensive experiments in two shopping-like

scenarios. Empirical studies show that ShopMiner achieves

over 90% TPR for customer behavior detection.

Roadmap. In the rest of paper, we present the scope, design,

implementation and evaluation of ShopMiner in Section II,

Section III, Section IV and Section V. Section VI reviews

related work and Section VII concludes this paper.

II. SCOPE

We envision ShopMiner can be deployed in clothing stores

to monitor customer behaviors without body instruments.

Fig. 1 shows the typical shopping process in clothing sto-

res before a customer checks out. It contains the following

steps: browsing or standing still in front of attractive items;

examining interesting items by picking them out or turning

them around; taking the desired items and trying them on in

a fitting room. Through identifying and counting items that

are most viewed, picked out and turned around by customers,

as well as matched up items, retailers can discover popular

categories, hot items, and correlated pairs for better trading

strategies and tie-in promotions.

III. DESIGN

This section presents the design of ShopMiner. We assume

each garment is attached to an RFID tag. Note that the design

of ShopMiner is catered for clothing stores where garments

are hung on racks. While some techniques are dedicated to

clothing stores, for instance, to differentiate pick-out and turn-

around actions, others can be applied in other shops such as

bookstores (Section V-F).

A. Discovering Popular Category

Popular items are the garments that customers frequently

stop beside and look at. Such information indicates customers’

first impression of products.

1) Exploiting Body Blocking Effect: We exploit the

blocking effect of a human on multiple tag-to-antenna links to

detect customer stopping beside and to infer popular catego-

ries. As Fig. 2(a) shows, when a customer (User 1) stands still

in front of one garment, his/her body tend to block the Line-

Of-Sight (LOS) link between the reader antenna and the item.

On average, the link will experience high shadowing losses.

As an illustration, we deploy an ImpinJ R420l RFID reader

with three directional antennas and 16 RFID tags (T1 to T16)

as Fig. 2(b). The antennas are placed 3m away from the tags

(tag i is attached to garment i) and 0.8m above the floor. One

volunteer was asked to walk along route 01, stand still for

8s in front of garment 04, and walk away. Fig. 3 plots the

phase measurements of tag 04 to tag 07. During the first 4s,

the phase readings of all the four tags stay at a different yet

stable value. From 4s to 12s, the phase of tag 04 changes

to another stable level, manifesting an obstacle between tag

04 and the antenna. During the last 6s, the phases of tag 05,

06 and 07 change sequentially, indicating that the LOS paths

of these tags are blocked sequentially. This experiment shows

the possibility of using the body shadowing effect to detect

customer presence.

2) Modeling Multipath Effect: The multipath effect is com-

mon indoors and can affect phase readings. As shown in

Fig. 2(a), a customer near the rack can create a new path. Such

changes of multipath components can affect the measured

phase of RFID tags.

To model the impact of multipath on the phase readings,

three volunteers walk back and forth along route 01 and 02

for 10min and we collect over 20,000 phase readings from
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48 links. We randomly pick five tags and plot their phases in

Fig. 4. As shown, the multipath-induced phases roughly follow

a Gaussian distribution.

In summary, both body blocking and the multipath effect

can introduce phase dynamics. The phase dynamics exerted by

multipath is small and follows a Gaussian distribution, whereas

the phase changes dramatically when the LOS path is blocked.

3) Popular Category Detection Scheme: To detect the items

in a popular category, we apply a Gaussian model based

change point detection scheme from background detection in

image processing [12]. Specifically, we first detect dramatic

changes in the phase streams of each link, and combines the

results from multiple links of the same tag to infer whether

the item that the tag attached to is in a popular category.

Gaussian model based change point detection: We first

consider the phase stream of the ith link of a tag (t). The phase

stream is split into successive phase segments of length d using

a window of size |w|. We denote ri,j as the phase reading

of the ith link of the tag collected within the jth window

(wj). Since each tag can be interrogated multiple times in one

window, we use the average phase reading within one window

as the phase of this tag in this window. We set |w| = 0.02s and

d = 50, respectively, which empirically balances computatio-

nal efficiency and detection granularity. As shown in Fig. 4,

the phase of each link shows a distinct Gaussian distribution,

we thus create one Gaussian model for each link. ShopMiner

then examines each phase reading ri,j in a phase segment by

comparing it against the corresponding distribution. Given a

phase reading ri,j , and the Gaussian model Ni(μi, σ
2
i ) of link

i, we formulate the following hypothesis test with H0 (change)

and H1 (stable):{
H0 : ri,j /∈ (μi ± σi√

ki
· zα/2)

H1 : ri,j ∈ (μi ± σi√
ki

· zα/2)
(1)

where 0 < α < 1, and ki is the sample size. (μi ± σi√
ki

·
zα/2) stands for the confidence region with the confidence

level (1−α). For example, H1 under α = 0.05 indicates that

the phase reading r(i, j) exhibits notable change (and thus the

corresponding link is blocked) with a probability of 95%.

Since there may be multiple links between a tag t and the

antennas as in Fig. 2, we further conduct a majority voting to

decide whether a tag t is blocked by a customer. In case of a

tie, we count it as ‘blocked’ to avoid missing potential items

in popular categories.

Detecting popular category: If a tag t is determined as

’blocked’ via the above change point detection in a time

window wj , it does not necessarily mean the tag is in a

popular category. Only tags that are blocked after consecutive

time windows are decided as in a popular category, because

they attract the customers to stand in front of them for

a reasonably long time. Thus we formulate the following

hypothesis test with H0 (in popular category) and H1 (not

in popular category): {
H0 : st ≥ θ
H1 : st < θ

(2)

where st is the number of consecutive phase segments that tag

t is blocked and θ is a pre-defined threshold. Note that θ is

mainly determined by body blockage of the LOS path. Thus

it is affected by the length of links and is robust to factors

such as shop size, layout and reader placements. Within the

range of RFID readers (about 6m), a fixed threshold can scale

to other shops without per-shop calibration.

Model training and updating: To precisely detect the

change point, an accurate Gaussian model is required for

each tag. Initially, the parameters of m Gaussian models are

computed when there are no customers in the shop (e.g., before

the opening). Afterwards the phases of the newly detected

change points are input into the model to update the model

parameters to adapt to environmental changes.

B. Identifying Hot Items

ShopMiner identifies hot items by detecting and counting

the following customer actions:

• Turn-around: A customer observes an item by turning it

around from the side-view to the front-view.

• Pick-out: A customer takes a close look at an item by

picking it out from the clothing rack.

The two actions indicate different levels of interest in items.

Customers often turn around an attractive item for its initial
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appearance, and pick it out for a closer and more detailed

inspection when they show greater interest. Hence ShopMiner

detects and identifies these two actions separately.

1) Detecting Pick-out and Turn-around Actions: Both the

turn-around and the pick-out actions will induce motion to

tags, which will exhibit notable phase changes. As shown in

Fig. 5(a), we place five garments on a rack and ask a volunteer

to (1) pick up item 05, closely inspect it, and then put it back;

(2) turn over item 05 to see its front, hold it for a while and

then put it back. The phase readings of the five tags are shown

in Fig. 5(b)-(c).

As Fig. 5(b) shows, initially the phase readings of these five

tags all remain stable. When the volunteer picks out item 05 at

4s, its phase jumps abruptly until the volunteer puts it back at

12s. Similarly, as shown in Fig. 5(c), when the volunteer turns
around item 05 at 4s, its phase also changes significantly. The

phase then keeps stable throughout [4s, 8s], indicating that

the item is held steadily by the volunteer. As the volunteer

puts the item back, another fierce phase change occurs. The

measurement indicates that it is possible to detect pick-out

and turn-around actions by observing the phase changes of

tags. That is, identifying whether a period of phase changing

occurs. Note that the phase readings also experience notable

changes when a person blocks the links, which we exploit for

popular category discovery. However, as shown in Fig. 3, the

phase changes due to blocking effect are usually within 2π,

while those induced by pick-out or turn-around often exceed

2π (Fig. 5). A partial explanation is that the changes of the

LOS path (changes of distance and orientation due to pick-

out/turn-around) may incur significantly more notable phase

variations than the blocking of the LOS path (the LOS path

remains the same but with different attenuation due to body

blocking). Therefore, it is possible to distinguish the phase

trends of popular category and those of hot items.

2) Differentiating Pick-out and Turn-around Actions: In

clothing stores, it is common that clothes are hung compactly

on the rack, with their side-views facing the customers (Fig. 1).

Consequently, when the customer picks out one garment and

closely inspects it, the nearby items will be struck unintentio-

nally, causing them to vibrate. Hence the phase trends of these

items will exhibit a minor yet different variation tendency to

the desired item (tag 01 - 04 in Fig. 5(b)). In contrast, when

the customer turns one item (say item 05) to see its front, the

surrounding items will be forced to turn as well. As a result,

the phase trends of these items will show a similar tendency to

tag 05 (tag 01 - 04 in Fig. 5(c)). Thus it is viable to distinguish

pick-out and turn-around actions by jointly considering the

phase readings of nearby tags, i.e., comparing the similarity

of their phases.

3) Hot Item Identification Scheme: We first design a

segmentation-based pick-out/turn-around detection scheme

and then present a peer-assisted identification scheme to differ

these two actions.

Segmentation-based detection: ShopMiner performs seg-

mentation on the phase readings to detect whether a pick-

out/turn-around action occurs. Denote the phase readings as

S = (si) ∈ R1×N , where N is the number of discrete

time points within a window. We first calculate the discrete

probability distribution function (PDF) of phase values within

each window. Given two consecutive windows wi and wj and

their PDFs P and Q, we then compute the KL-divergence of

the two PDFs:

DKL(P ||Q) =
∑
i

P (i) · lnP (i)

Q(i)
(3)

The KL-divergence quantifies the similarity of phase trends

within two consecutive windows. We denote the period when

there is a pick-out/turn-around action as a motion period
and the remaining as a silent period. Within a silent period,

the phase value will stay at a stable level. Hence the KL-

divergence of two consecutive windows within the silent

period should be small. In contrast, if at least one window

is within the motion period, the PDF of these two windows

should be notably different, thus leading to a large KL-

divergence. ShopMiner checks DKL(P ||Q) to detect whether

the current window is within the silent period. After finding all

windows within the silent periods, we can extract the motion

periods accordingly. We set the window size to 0.5s to cover

the majority duration of one pick-out/turn-around action.

Improving detection accuracy: Since both pick-out and

turn-around actions will introduce phase turbulence to nearby

items, their phase readings will vary as well and cause false

alarms in the segmentation-based scheme. In a measurement

of 200 pick-out and turn-around actions, we observe a false

alarm rate of 40%. To improve the detection accuracy, we

further process the phases in the following two steps.

De-periodicity: The phase value reported by the reader API

is a periodic function ranging from 0 to 2π. So when the phase

decreases to 0, it will jump to 2π (Fig. 5(d)). We term this

abrupt phase change as a phase hop. ShopMiner adopts the
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method in [11] to handle phase hops, which adds or subtracts

2π when a phase hop occurs. The phase trend before/after

de-periodicity is shown in Fig. 5(d).

Variance comparison: Suppose m tags are detected in the

segmentation step. For each tag i, we denote its phase readings

within the motion period as Si = (sj) ∈ R1×Ni . Ni is the

length of the sample group, and may vary from tag to tag due

to multipath [13] and random access principle of ALOHA

protocol. We thus split each sample group into N frames. The

frame length is set to 0.1s. Since multiple samples may locate

within a frame, we computes their mean (denoted as s′j), and

use it as the phase value of this frame. Then we compute the

variance of Si as follows:

V ar(Si) =
1

N

N∑
j=1

(s′j − μ)2 (4)

After computing the variance of each tag, the one with the

highest variance is denoted as the desired tag. The rationale is

as follows. The motion of nearby items is indirectly driven

by human actions. The driven power will be absorbed by

the clothes and diminishes rapidly over time. Hence the

desired item will experience notably higher turbulence than

the undesired ones, and show a larger variance.

Peer-assisted identification: To distinguish pick-out and

turn-around actions, we jointly consider the desired tag with

the tags nearby. The observation is that the phase readings of

nearby tags demonstrate a similar variation for turn-around,

yet behave differently for pick-out. Specifically, for each of the

m phase trends, we zoom out the local dissimilarity of phase

samples by normalizing this phase trend (Fig. 6(d)). After the

normalization, we splice these m phase trends consequently

into a single phase trend, say S = (sj) ∈ R1×N . Then auto-

correlation is performed on S:

χ(m, τ) =

∑k=τ−1
k=0 [sm+k − μ(m, τ)][sm+k+τ − μ(m+ τ, τ)]

τ · σ(m, τ) · σ(m+ τ, τ)
(5)

where μ(k, τ) and σ(k, τ) are the mean and standard deviation

of the phase samples < sk, sk+1, ..., sk+τ−1 >, respectively.

In our case, τ equals the number of data samples within the

motion period, and is known a prior. Generally, the phase trend

S, if connected by k similar phase trends, should behave like

a periodic signal, hence having a high auto-correlation. Hence

we can ascertain whether the motion period is caused by turn-

around, based on the auto-correlation coefficient:

• if χ(m, τ) ≥ δ, then action = turn-around;

• if χ(m, τ) < δ, then action = pick-out;
We test various thresholds over 1000 measurements, and

find a threshold δ = 0.65 optimal for our case. This thres-

hold is impacted by the layout of shops as well as link

distance. While some efforts have explored modeling the

impact of human presence on wireless links to ease parameter

transferring to a different link [14], it remain open how to

transfer parameters for diverse activities and in multipath-

rich environments as in our scenario. Hence we recommend

re-calibration of this threshold for different shops. Note that

reordering the garments, which occurs frequently in clothing

stores, does not affect the performance, since ShopMiner does

not rely on the sequence or position of garments for pick-

out/turn-around detection.

C. Excavating Correlated Items

Our correlation analysis aims to find the garments that are

usually tried on together, e.g., dress shirt and tie usually tie

in together, while people buying suit pants often consider

dress shoes. Previous efforts [10] proposed an RSS-based

localization technique for correlated item discovery, based on

the intuition that correlated items held by the same customer

should be in close proximity. However, such a method is error-

prone due to the following two reasons. (1) Items around

the customer may also be in close proximity to the items

in hand, and hence will be mistaken as correlated items. (2)

Customers block/generate propagation paths dynamically in

clothing stores, hence dampening the resolution of location-

based schemes.

1) Spatial-Temporal Correlation of Phase Features: Shop-

Miner explores the spatial-temporal correlation of phase re-

adings to discover correlated items. The observation is that

correlated items, either in hand or in a shopping bag, follow

a similar moving pattern with the customer, hence experien-

cing consistent temporal phase patterns. As an illustration,

a volunteer is asked to carry four garments and walk to

the fitting room along a route as Fig. 7(a). Fig. 7(b) plots

the phase readings of the four tags, which exhibit similar

temporal patterns. Specifically, when the volunteer walks from

a to b, because the distance between the tag and antenna

first increases and then decreases, the phase trend shows a

symmetric profile. As the volunteer walks to c, the phase

readings change continuously within [0, 2π) then eventually

remain stable when the customer reaches c and stays there

for a while. On the other hand, comparing Fig. 7(b) with

Fig. 7(c)-(d), the tags within different categories have diverse
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Fig. 7. Illustration of correlated item discovery: (a) routes of a customer; (b) phase trends of correlated items; (c) phase trends of stationary tags nearby; (d)
phase trends of another group of correlated items.
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Fig. 8. Phase clustering for correlated item discovery.

temporal phase profiles, which naturally set them apart. The

measurement validates the feasibility of using phase trend

similarity for correlated item discovery.

2) Clustering Correlated Items: Given a set of phase trends

(x1, x2, ..., xn), we aim to partition the n phase trends into m
(m is unknown a prior and m ≤ n) sets S = {S1, S2, ..., Sm},

such that the within-cluster sum of squares is minimized:

argmin
S

m∑
k=1

∑
i,j∈Sk

T (xi, xj) (6)

where T (xi, xj) is the distance between xi and xj .

We design a heuristic algorithm that iteratively partitions

the phase trends into different categories. Fig. 8 shows an

example of the algorithm with ten tags to be classified. In

the first iteration, the algorithm randomly picks one tag as

the pivot (tag 01 in the example), and computes the distance

between its phase profile with those of the remaining tags.

Tags whose phase profiles are sufficiently similar to that of

the pivot are clustered. The algorithm then randomly picks

another pivot and repeats this process on the remaining tags

until the within-cluster sum of squares is minimized. Once the

algorithm terminates, we get the corresponding tag set.

Distance metric T (xi, xj): The desired distance metric

needs to deal with two issues: (1) phase trend inconsistency,

which means that phase trends may be of different lengths due

to multipath effect. (2) interrogation time inconsistency, which

indicates the phase values are sampled in different time slots

due to the random access protocol. To address these issues,

we use the Dynamic Time Warping (DTW) metric [15], which

allows two time series that are similar but locally out of phase

to align in a non-linear manner.

Handling phase scaling: Since phase is proportional to the

tag-to-antenna distance, it may vary slightly from tag to tag
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Fig. 9. Work flow of ShopMiner.

within the same category due to different positions of tags.

As shown in Fig. 7(b), V-shapes within these four tags are

the scaled version of each other. This scaling problem may

degrade the performance of DTW. Therefore we employ a

variant of DTW, called Derivative Dynamic Time Warping

(DDTW) [16], which exploits the same principle of DTW yet

uses the derivative of phases as input. DDTW tolerates the

phase difference in the Y-axis by inputting the derivatives of

phases rather than the absolute values.

IV. IMPLEMENTATION

This section describes the practical issues in implementing

ShopMiner.

A. Hardware

We prototype ShopMiner using COTS UHF RFID devices,

including ImpinJ speedway R420 RFID readers1 and Yeon

circularly polarized antennas. Each garment has an Alien

passive RFID tag model AZ-9634 attached. The reader is

connected to a local server via an Ethernet cable. To minimize

the influence of network latency, we time-stamp each tag

reading by the reader’s local clock.

B. Software

We implement the software component of ShopMiner in

Java. Fig. 9 shows the work flow. At the lowest level is the

1Our evaluations were conducted in China where, by default, RFID readers
select one fixed channel to operate. To enable ShopMiner in other countries
e.g. the US where readers are required to hop channels continuously according
to FCC regulations, we recommend the phase calibration scheme in [17] to
eliminate phase discontinuity.
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data collection module, which is integrated with the Octane

SDK and continuously interrogates the nearby tags to read

phase at a rate of 340 readings per second. The tag readings

are grouped according to the tag ID (96bit or 128bit identifier)

and stored in the local database. Initially, the data processing

module fetches the phase readings, and feeds them into the

popular category discovery module. After discovering popular

categories, ShopMiner collects their tag IDs and performs

pick-out/turn-around identification on the readings of these

tags and any nearby tags to detect hot items. ShopMiner

finally clusters hot items to excavate the correlated items. The

software runs on a Lenovo PC with an Intel Core i7-4600U

2.1GHz CPU and 8GB RAM.

C. Modulation Scheme Selection

A typical EPC Gen 2 reader supports multiple pre-

configured tag interrogation modes. Each mode differs in

modulation, resulting in different reading rates and sensitivity

to radio interference. For instance, the DenseReaderM4 mode

has a low reading rate but high resistance to interference,

while the MaxMiller mode yields a high reading rate yet

only works in clear RF environments. In ShopMiner a high

reading rate is required to track multiple items. However, the

dynamic environments in clothing stores can induce severe

interference to RFID interrogation, leading to noisy phase

readings. Thus it is crucial to balance the reading rate and

the resistance to interference. We empirically search for the

balance as follows. ShopMiner round-robins all the selectable

modulation schemes in order from the highest reading rate

to the lowest. The first scheme with the standard phase

variances V ar(θ) ≤ δ is selected for tag interrogation. We

conduct extensive experiments to test various thresholds, and

set δ = 0.1 for optimized performance.

D. Reader Deployment and Reader Collision

Mainstream commercial RFID readers can support four

antennas, with each antenna effectively covering an area of

4m × 4m. Hence the retailer can monitor an area of nearly

60m2 with one reader, which costs less than 1000 USD.

However, multiple readers are required for large stores or

critical regions, e.g. racks for new products where more

customers are expected. Since the coverage of multiple readers

may overlap, collision is an important issue in a multi-tag-

multi-reader system. As Fig. 10 shows, there are two types

of collisions: The first is tag-to-tag collision, where multiple

tags respond to the reader at the same time slot, making the

reader unable to resolve any ID. The second is reader-to-

reader collision. For a tag residing in the overlap between

the interrogation zones of two adjacent readers, it may hear

from both readers, and fail to resolve the command from either

reader if the readers broadcast concurrently.

We adopt retransmission to resolve tag-to-tag collision, a

common approach in slotted ALOHA protocol. To minimize

the reader-to-reader collision, we propose a reader scheduling

algorithm based on the Maximal Weighted Independent Set

(MWIS). Given an undirected graph G(V,E), an independent

set of G is a subset S ⊆ V such that no node pair (u, v) are

Case 01 Case 02

Fig. 10. Illustration of collisions. Case 1: tag-to-tag collision; Case 2: reader-
to-reader collision.

neighbours in G, and every node w �∈ S has a neighbour

in S. In the context of ShopMiner, we denote each RFID

reader as a vertex in the graph. The weight on each edge

indicates the number of tags that can be interrogated by both

end point readers. ShopMiner employs the algorithm in [18]

to find the MWIS, and schedules the reader to interrogate

tags. The time complexity is asymptotically logarithmic in n
(the number of nodes), which will not introduce significant

computational overhead. To balance the workload of each

reader, we sequentially wake up the readers in the independent

set (algorithm’s output) and the readers in the complement of

this independent set. The initial weight of each edge is set

based on the intersection of the tag set acquired by each reader.

The weight of each edge is then updated every T minutes,

where T changes with time. For instance, more customers

browse stores when getting off work. Hence it is more likely

to see frequent items change during these periods. Thus T
should be small to guarantee the system correctness.

E. Filtering Interference from Employees

ShopMiner is designed to work in clothing stores in a self-

service mode, where customers are expected to browse through

the shops freely without the company of sales assistants.

However, in many clothing stores, employees still frequently

put clothes from the fitting rooms back to racks. Since

ShopMiner cannot differentiate clothes held by employees

from customers using RF signals, employees may impose

interference to ShopMiner, especially for correlated items.

We thus implement an interference filtering mechanism in

ShopMiner to filter items held by employees as follows.

We assume that each employee wears an RFID tag with a

known ID to ShopMiner. ShopMiner then detects employees

holding clothes items in the same principle as correlated item

discovery in Section III-C. This is because the phase readings

of both the employee tag and item tags still exhibit similar

temporal patterns. Therefore, we adopt the same clustering

method for correlated item detection, but further separate the

clusters with tag IDs known to be attached to employees, and

exclude these clusters for correlated item discovery.

While employees bringing items back to the racks can

induce interference for correlated items discovery, employees

bringing items from the warehouse may indicate customers’

interest in the garments, as customers tend to ask employees

for items of a different color or size that are not shown on the

racks. To utilize this information, we need to check whether



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. PP, NO. 99, APR 2017 8

Fig. 11. Snapshot of data storage in ShopMiner.

the employee has been to the warehouse. This can be achieved

by deploying an additional reader within or at the door of

the warehouse, which monitors the comings and goings of

employee tags. Items co-located with the employee from the

warehouse (detected by phase reading clustering) are identified

as hot items.

F. Reducing Computation and Storage Overhead
Reduce computation overhead. Since hundreds of items

may be picked out or turned around frequently in a clothing

store, it is important to minimize the amount of items for

correlated item discovery. As most of the items picked out or

turned around may be hung directly back on the rack without

being tried on, they do not belong to any category of correlated

items and hence can be filtered out. In ShopMiner, only the

tags satisfying the following two conditions will be considered

for correlated item discovery: (1) The item has been picked

out or turned around; (2) The item is sequentially identified

by different RFID readers (indicating the item is in motion).

Such a heuristic prunes a large portion of uncorrelated items

and boosts the efficiency of correlation analysis.
Reduce data storage. In ShopMiner, RFID readers pe-

riodically interrogate tags to continuously monitor customer

behaviours and the acquired data accumulate gradually. Fig. 11

shows a snapshot of the data acquired with time when an

RFID reader monitors 5 items. The data volume increases

linearly with time and rapidly accumulates to over 10Mb after

30s. That is, ShopMiner will generate 24Gb data monitoring

only 100 items each hour, which is intolerable for practical

deployment. To reduce the data storage overhead, ShopMiner

runs the popular category discovery and hot item identification

modules online. Only data of hot items will be stored in the

database for off-line correlated item discovery. As Fig. 11

shows, after such data pruning, ShopMiner incurs significantly

lower storage overhead, which accumulates to only 0.2Mb

after 30s. That is, there will be only 480Mb data to 100 tags

in one hour, which is negligible compared to the unfiltered

24Gb data. We admit that for large-scale shops, tag populations

would be high and hence the data volume still accumulate

rapidly. Thus we recommend performing off-line correlated

item discovery each hour and discarding any accumulated data

after each round of analysis.

V. EVALUATION

In this section, we introduce the experiment scenario and

detail the system performance.

Experiment field

A

RFID tag

Reader antenna

B

Fig. 12. Prototype deployment and testing environments.

(a) d = 20cm (b): d = 30cm (c): d = 60cm

(d): one customer (e): two customers (f): three customers

d d d

Fig. 13. Illustration of testing scenarios with three item-to-customer distances
((a) - (c)) and three different numbers of customers((d) - (f)).

A. Scenario

We evaluate the performance of ShopMiner in two typical

indoor environments: (a) an office of 26×14 m2 to mimic a

large store and (b) a twin-bedroom apartment of 13×9 m2 to

mimic a small clothing store (Fig. 12). In both test environ-

ments, we hang 20 garments on a clothing rack (2m long and

1.4m high). The space between each adjacent garment is about

5cm. The location of the clothing rack is denoted as the dashed

squares in Fig. 12. Each antenna is of 26cm x 26cm and placed

on a bracket 0.8m above the floor. The center of each antenna

is around 1m apart. We also test ShopMiner with different

item-to-customer distances and numbers of nearby customers

as in Fig. 13.

B. Popular Category Discovery

We evaluate the performance of popular category discovery

in terms of granularity, which represents the minimum number

of items that ShopMiner can detect when a customer stands

still in front of a garment.

Impact of confidence level (1-α): We vary α from 0.01 to

0.2, and calculate the true positive rates (TPR) and the true

negative rates (TNR). We define TPR (TNR) as the fraction of

correctly identified body blocking (no body blocking) events

among all body blocking (no body blocking) events. Fig. 14(a)

plots the TPR and TNR under various confidence levels.

ShopMiner achieves a balanced TPR and TNR of over 91%

using a confidence level of 0.86, which is used afterwards.

Impact of threshold θ: As shown in Equation 2, a large

θ causes ShopMiner to mistake browsing events for a non-

browsing event (e.g. one customer stands still for only a

short time to examine an item of interest, then moves on).

Conversely, a small θ causes ShopMiner to mistaken non-

browsing events as a browsing event (e.g., a customer walks
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Fig. 14. Impact of (a) confidence level (b) threshold γ and (c) tag spacing on popular category discovery.
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Fig. 15. Robustness of popular category discovery with different (a) numbers of antennas, (b) item-to-customer distances, (c) numbers of customers and (d)
item-to-customer distances with multiple customers.

slowly around the rack and unintentionally blocks the LOS

path). We define TPR (TNR) as the fraction of correctly

identified browsing (non-browsing) events among all browsing

(non-browsing) events. Fig. 14(b) plots TPR and TNR under

a range of thresholds θ. ShopMiner achieves a balanced TPR

and TNR of over 92% using a threshold of 12s, which we use

in the subsequent evaluations.

Impact of Tag Spacing: If two tags are closely placed, they

will both backscatter signals from the reader, thus affecting the

actual phase readings of either tag [17]. Such a coupling effect

from neighboring tags restricts the minimal spacing of tags for

ShopMiner to properly operate. Fig. 14(c) shows the impact

of tag spacing on phase readings. We vary the spacing of two

tags from 0.2cm to 5cm, and plot the phase readings of one

tag as well as its ground truth phase reading calculated by

propagation models. As shown, the smaller the tag spacing,

the larger the phase reading deviates from the ground truth.

From our evaluation, we recommend a minimal tag spacing

of 2cm to avoid strong interference from neighboring tags.

Granularity: In this experiment, a customer browses

through a rack of clothes and stands still in front of the ones

of interest. The distance between the customer’s route and

the rack is 0.3m. We repeat the experiment 50 times with

different numbers of antennas. Fig. 15(a) shows the detection

granularity with different numbers of antennas. The detection

granularity is about 6 pieces of clothes with one antenna.

With more antennas, the average granularity improves and

peaks at 3.2 pieces of clothes with four antennas, yet with

larger variance in granularity. This is because the achievable

granularity is limited by both the number of antennas (i.e.,
number of links) as well as the size of human body. As shown

in Fig. 2(b), customers tend to stand close to the racks when

browsing garments and block links of multiple items, making it

difficult to achieve a granularity of 1 piece even with sufficient

antennas. Even worse, the closer spacing between garments,

the more difficult to achieve finer-grained granularity. Alt-

hough such a granularity fails to precisely reveal the specific

item that the customer is browsing, it can remarkably narrow

down the scope of candidates. Furthermore, as garments of

the same style are often hung close, such a granularity can

guarantee that ShopMiner identifies those popular category.

We use four antennas in the following experiments.

Robustness: We vary the distance between the item and the

customer (termed as item-to-customer distance) d from 0.2m

to 0.6m, and examine how it affects the detection granularity.

The antenna is put 2m away from the rack. As Fig. 15(b)

shows, the detection granularity decreases moderately with the

increase of the item-to-customer distance. Specifically, when

the customer is with close proximity (0.3m) to the items, the

detection granularity maintains at 2.9 pieces on average. As

we increase d to 0.6m, the granularity drops to 5 pieces on

average. This may be because the customer blocks more links

between the undesired items and the antenna, hence leading

to coarser detection granularity.

We also test the detection granularity with multiple cu-

stomers. The distance between the rack and customers is

about 0.3m. Fig. 15(c) shows the granularity with different

numbers of customers browsing clothes simultaneously. When

there is only one customer, ShopMiner performs best, with

a detection granularity of 3.2 pieces on average. With more

customers, e.g., n = 3, the detection granularity drops to 5.3

pieces on average, as more customers will introduce more

complex multipath reflections. We also investigated the impact

of item-to-distance in multi-customer scenarios. Fig. 15(d)
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plots the granularity with the following settings. Group 1: three

customers at a distance of 0.3m from the rack for comparison.

Group 2: three customers at a distance of 0.6m from the

rack. Group 3: three customers with each at a distance of

0.3m, 0.6m and 0.9m from the rack, respectively. As shown,

multiple customers further away (0.6m) results in an average

granularity of 6.4 pieces of clothes. The detection granularity

is worse with multiple customers at diverse distances (Group

3), indicating that complicated signal propagation will lead to

performance degradation in detection granularity.

Summary: ShopMiner can detect popular categories with

a TPR of 92%. The detection granularity degrades slightly

with the increase of item-to-customer distance and the number

of customers. Deploying more antennas help improve the

detection granularity but the granularity is also limited by the

size of human body.

C. Hot Item Identification

We evaluate hot item identification in terms of TPR and

FPR. TPR is defined as the proportion of successfully detected

pick-out and turn-around actions among all pick-out and turn-

around actions. FPR is defined as the proportion of mistaken

pick-out or turn-around actions over all non-pick-out and non-

turn-around actions.

Accuracy: In this experiment, a volunteer randomly picks

out or turn around different garments for 20 times. Two other

volunteers hang out around the rack as interference. The

experiment was repeated 20 times in two scenarios by 10

different volunteers. The ground-truth is recorded by video.

We first plot the Receiver Operating Characteristic (ROC) cur-

ves for detecting pick-out and turn-around actions in Fig. 16.

ShopMiner achieves a balanced detection accuracy of 92%

with a FPR of 13%. Table I further shows the confusion matrix

to distinguish pick-out and turn-around actions. ShopMiner

achieves TPRs of 94% and 96% for turn-around and pick-

out actions, respectively. Turn-around actions are misclassified

as pick-out with a 7% probability, while pick-out actions are

misclassified as turn-around with a 5% probability. The result

demonstrates that the auto-correlation based detection scheme

can successfully distinguish pick-out and turn-around actions

with high accuracy. The misclassification cases are mainly due

to the diversity in pick-out and turn-around actions, as well as

some corner cases e.g. accidentally dropping off garments. As

shown in Fig. 17, the phase trend of dropping off garments

will deviate from those of its neighboring tags, which will be

misclassified into a pick-out action. Some pick-out actions may

not exhibit notable changes (as the one in red), which leads to

higher similarity of phase trends among neighboring tags, and

will be misclassified into a turn-around action. Conversely, if

a customer half-turns a garment so that only one neighboring

garment is forced to vibrate, the similarity of phase trends will

be low, which leads to a misclassification into pick-out.

Robustness: As shown in Fig. 16, the detection accuracy

of pick-out/turn-around actions decreases slightly with more

customers, yet ShopMiner still achieves an accuracy of 85%

with a FPR of 22% with three customers. This is because mul-

tiple customers introduce complex propagation environment,

Fig. 16. ROC curve for pick-out/turn-around detection.

 

     Timestamp

Fig. 17. Phases of dropping off garments and picking out two adjacent
garments by two customers.

which introduces phase disturbance to each item. Similarly, as

shown in Table I, the misclassification rate rises moderately

with the increase of customers. Specifically, when there are

two customers in front of the same rack, ShopMiner achieves

an average misclassification rate of 8% and 5% for turn-

around and pick-out, respectively. This index increases slightly

with three customers, and finally peaks 11% and 7% with

four customers. This is because when multiple customers turn

around garments on the same rack, the garments near the

desired one will be pushed by multiple customers. Thus their

phases will change irregularly, which degrades the identifica-

tion performance.

Summary: ShopMiner achieves an overall accuracy of 92%

with a FPR of 13% for pick-out/turn-around detection. The

TPR of action identification is 96% and 94% for pick-out and

turn-around, respectively. ShopMiner is insensitive to up to

three customers.

D. Correlated Item Excavation

We evaluate the correlation item excavation in terms of

detection accuracy, which is defined as the proportion of

correctly identified correlated items over all correlated items.

Accuracy: In this experiment, a volunteer carries different

numbers of garments and walks around the reader’s reading

zone in two settings: (1) there is no blockage between the

volunteer and the reader, i.e. LOS condition; (2) there is one

person standing close to the reader to create NLOS propaga-

tion between the volunteer and the reader. The experiment was

repeated 200 times by 10 different volunteers for each setting.

Fig. 18(a) shows the detection accuracies using DTW and

DDTW metrics. As shown, the detection accuracies decrease

slightly with the number of correlated items in both LOS and

NLOS settings. Comparing the performance using DTW and

DDTW metrics, with one or two items, the detection accuracy
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(a) (b) (c)

Fig. 18. Performance of correlated item excavation with different (a) numbers of items (b) customer-to-antenna distances and (c) numbers of interfering
customers.
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TABLE I
CONFUSION MATRIX OF PICK-OUT/TURN-AROUND IDENTIFICATION.

Ground-truth
Predicted

Turn around Pick out
1 2 3 1 2 3

Turn around 187 184 178 13 16 22
Pick out 9 10 13 191 190 187

retains around 91% and 83% for the DDTW and DTW metrics,

respectively. With more garments, the performance gap under

different distance metrics becomes larger, and finally peaks

at 10%. It manifests that the DDTW metric significantly

improves the detection accuracy. Comparing the performance

under LOS and NLOS propagation, the accuracy for correlated

items discovery in the NLOS setting is around 5% lower than

that in the LOS setting, but still remains above 82% with six

items. Such a drop in accuracy is because when the LOS is

blocked by the person, there will be an abrupt change in phase

readings, and the changes are different for each tag, which will

decrease the similarity of phase trends among the tags.

Robustness: We evaluate the impact of the customer-to-

antenna distance on the correlated items detection accuracy

in Fig. 18(b). When the customer stands close to the antenna

(0.5m or 1m), the detection accuracy retains above 90%. The

accuracy drops to 88% when the customer is 2m from the

antenna. Hence the increase of customer-to-antenna distance

will not led to significant performance degradation.

We further examine the impact of customer population

on the detection accuracy. In this experiment, we arrange

different number of customers to walk around, with each

customer bringing different number of clothes. As shown in

Fig. 18(c), ShopMiner achieves an overall accuracy of 92%

when there are three customers. The detection accuracy then

decreases slightly with more customers. However, ShopMi-

ner still achieves an detection accuracy over 85% with 11

volunteers, showing that ShopMiner is robust to customer

population changes.
Summary: ShopMiner achieves an overall detection accu-

racy of over 93% with one customer, and that of over 85% with

six customers for correlated items discovery. Also ShopMiner

is insensitive to the number of customers and the antenna-to-

customer distance.

E. Employee Recognition
As discussed in Section IV-E, employees in the shops cause

false correlated item discovery and ShopMiner avoids the

impact of employees by filtering correlated items with tag

IDs from employees. Hence it is crucial to correctly read

the tags attached to employees. We evaluate the reading rate

of an RFID tag attached to a volunteer with different on-

body tag placements. Fig. 19 shows the detection accuracy of

employee tag with several common tag placements of on chest,
on waist, on wrist with motion and on wrist without motion.

As shown, the chest/waist placement yield detection rates of

above 85%, while wrist placement with motion achieves only

40% accuracy. This is because tags attached on wrist are

likely to contact with the skin, which dramatically affects

the backscatter signal. The results suggest employees wear

an RFID tag on chest or waist to ensure high detection

accuracy so as to eliminate their interference on correlated

item discovery.

F. Extending to Bookstores
In this experiment, we explore extending ShopMiner to

bookstores, another common scenario where items are of
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TABLE II
READING COUNTS OF DIFFERENT ITEMS.

Item Reading Count Item Reading Count
Paper Box 130 Plastic Cup 128
Wooden Box 126 Glass Cup 117
Iron Box 0 Pottery Cup 120
Cotton Cloth 108 Pencil 70
Book 113 Marker Pen 103

similar material and shape, and are tidily placed. Fig. 20

illustrates the experimental settings, where a pile of books

are placed on a shelf. We attach an RFID tag on the spine of

each book. To avoid the strong coupling effect as in Fig. 14(c),

we choose relatively thick books for evaluation, which results

in a tag spacing of roughly 2cm to 4cm. Different from

clothing stores, a customer usually picks out a book from

the shelf directly without turning it around. Hence we only

evaluate the performance of pick-out detection and correlated

item excavation. In this experiment, two volunteers randomly

picked out different numbers of books from the shelf. For

each number of books, the volunteers performed the pick-out

actions for 100 times. Fig. 21 shows the results of pick-out

detection and correlated item excavation (one correlated item

is actually pick-out detection). The pick-out detection accuracy

is around 95%, and the correlated item detection accuracies

are all above 90% for up to 5 books. Such a accuracy for books

is comparable to that for garments, indicating the feasibility

to apply ShopMiner in bookstores.

To further evaluate whether ShopMiner can be extended to

other stores, we select 10 daily goods of different material and

sizes. An RFID tag is attached to each item and we evaluate the

reading rates of tags within one second. Table II summarizes

the results. As shown, the reader fails to read metal items,

which limits the applicability of ShopMiner to grocery stores

and electronics stores. Items made of paper, plastic, wood,

etc., have similar or slightly higher reading rates compared

with books and clothes, indicating that ShopMiner may be

extended to monitor the customer interactions with these items.

Items of smaller sizes e.g. pencil and marker pen have lower

reading rates, and we may encounter more severe interference

for closely placed small items. In summary, the reading rate of

ShopMiner is affected by the material and size of the items.

Therefore, it is non-trivial to extend ShopMiner to grocery

stores, where the products are of diverse material and sizes.

The metal objects can also interfere with the tags attached to

other items, thus leading to missed tag readings.

VI. RELATED WORKS

While wireless signals such as Wi-Fi are prevalent for acti-

vity recognition in smart homes and smart offices [19], [20],

[21], [22], [23], RFID-based solutions are preferred in human-

object interaction such as shopping behavior monitoring and

recognition. ShopMiner is inspired by this trend of wireless

sensing, and is particularly related to the following categories

of research.

Offline shopping behavior mining: Despite the academic

and commercial success in online shopping data acquisition,

there have been few for offline shops. You et al. [24] utilized

smartphones to record shopping time in physical stores. Kanda

et al. [25] designed a sensor network in retail stores to track

and cluster consumer locations, and further infer hot items.

We advance this area through RFID technologies, and acquire

more comprehensive data of shopping behaviors.

Shopping behavior recognition with wearable sensors:

Lee et al. [26] examined the impact of six kinds of activities on

customer behaviors using smartphone sensing. Sen et al. [27]

also utilized smartphones to detect pre-defined shopping activi-

ties in retail stores. Rallapalli et al. [28] proposed a customer

tracking and browsing behavior sensing system using smart

glasses. IRIS [29] combined a smartphone and a smartwatch

to recognize item-level interactions and further infer episode-

level attributes in grocery shops with high accuracy. While

these works provide shopping behavior data, they require

access to customers’ phones or wearable devices, which may

degrade the shopping experience.

RFID-based context sensing: OTrack [30] designed an

RSS-based RFID system to track the tag order for baggage

sorting. STPP [31] designed a phase profiling technique for

the relative localization of RFID tags. Tagoram [32] tracked

mobile RFID tags at a centimeter accuracy using hologram

techniques. Our work is inspired by these works in tag

tracking, but our focus is to leverage the phase pattern to infer

customer behaviors, rather than the location of tags.

RFID systems in physical stores: Melia et al. [33]

deployed an RFID system in an apparel retail store for

both operational (e.g., inventory management) and experiential

(e.g., interactive fitting room) enhancement. Our work also

utilizes RFID technology, yet focuses on the retailer side, i.e.
mining shopping behaviors. CBID [10], Tagbooth [11] and

IDSense [34] are the most closely related works. CBID [10]

exploited Doppler effects to detect customer behavior in shops.

Tagbooth [11] used RSS patterns to identify the pick-up

actions in retail stores. IDSense [34] extracted phase features

of a single tag to classify human-item interactions such as still,
translation, rotation and swing via machine learning. Our work

differs from these works in three aspects. (1) We incorporate

three key factors that are essential to retailers, i.e., which items

the customers browse, they show a interest in, and they pair up.

CBID and Tagbooth only detect pick-ups and infer correlated

items, and IDSense only infers hot items by counting the

number of human-item interactions. (2) We harness phase

information to mining the customer shopping behavior, which

is more accurate than RSS or Doppler measurements. (3)

Although both IDSense and our system utilize phase informa-

tion, we jointly leverage phase patterns of neighboring tags,

which enables finer-grained customer gesture detection, while

IDSense only uses the phase of a single tag.

VII. CONCLUSION

In this paper, we present the design, implementation and

evaluation of ShopMiner, an RFID-based shopping behavior

mining system for physical clothing stores. With an RFID

tag attached to each garment, ShopMiner could detect which

garments customers stop beside, pick out, turn around, or

pair up. Such shopping behavior data could benefit retailers



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. PP, NO. 99, APR 2017 13

to discover popular categories, hot items, and correlated pairs

for better trading strategies and tie-in promotions. We examine

the accuracy and robustness of ShopMiner in various testing

scenarios. Results show that ShopMiner achieves high accu-

racy in customer shopping behavior identification and holds

potential for practical deployment.
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