
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-2018 

SLADE: A smart large-scale task decomposer in crowdsourcing SLADE: A smart large-scale task decomposer in crowdsourcing 

Yongxin TONG 

Lei CHEN 

Zimu ZHOU 
Singapore Management University, zimuzhou@smu.edu.sg 

H. V. JAGADISH 

Lidan SHOU 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
TONG, Yongxin; CHEN, Lei; ZHOU, Zimu; JAGADISH, H. V.; and SHOU, Lidan. SLADE: A smart large-scale 
task decomposer in crowdsourcing. (2018). IEEE Transactions on Knowledge and Data Engineering. 30, 
(8), 1588-1601. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4534 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


1

SLADE: A Smart Large-Scale Task Decomposer
in Crowdsourcing

Yongxin Tong, Member, IEEE , Lei Chen, Member, IEEE , Zimu Zhou, Student Member, IEEE ,
H. V. Jagadish, Member, IEEE , Lidan Shou, and Weifeng Lv

Abstract—Crowdsourcing has been shown to be effective in a wide range of applications, and is seeing increasing use. A large-scale
crowdsourcing task often consists of thousands or millions of atomic tasks, each of which is usually a simple task such as binary
choice or simple voting. To distribute a large-scale crowdsourcing task to limited crowd workers, a common practice is to pack a set of
atomic tasks into a task bin and send to a crowd worker in a batch. It is challenging to decompose a large-scale crowdsourcing task
and execute batches of atomic tasks, which ensures reliable answers at a minimal total cost. Large batches lead to unreliable answers
of atomic tasks, while small batches incur unnecessary cost. In this paper, we investigate a general crowdsourcing task decomposition
problem, called the Smart Large-scAle task DEcomposer (SLADE) problem, which aims to decompose a large-scale crowdsourcing
task to achieve the desired reliability at a minimal cost. We prove the NP-hardness of the SLADE problem and propose solutions in
both homogeneous and heterogeneous scenarios. For the homogeneous SLADE problem, where all the atomic tasks share the same
reliability requirement, we propose a greedy heuristic algorithm and an efficient and effective approximation framework using an
optimal priority queue (OPQ) structure with provable approximation ratio. For the heterogeneous SLADE problem, where the atomic
tasks can have different reliability requirements, we extend the OPQ-based framework leveraging a partition strategy, and also prove its
approximation guarantee. Finally, we verify the effectiveness and efficiency of the proposed solutions through extensive experiments on
representative crowdsourcing platforms.

Index Terms—Crowdsourcing, Task Decomposition

F

1 INTRODUCTION

Crowdsourcing refers to the outsourcing of tasks tradition-
ally performed by an employee to an “undefined, generally
large group of people in the form of an open call [1]”. Early
success stories include Wikipedia, Yelp and Yahoo! An-
swers. In recent years, several general-purpose platforms,
such as Amazon Mechanical Turks (AMT) 1 and oDesk2,
have made crowdsourcing more powerful and manageable.
Crowdsourcing has attracted extensive research attention
due to its success in human intrinsic applications. Partic-
ularly, a wide spectrum of fundamental data-driven opera-
tions have been studied, such as max [2], [3], filtering [4],
inference [5], [6], [7] and so on. In addition, researchers
and practitioners also pave the way for building crowd-
powered databases and data mining systems, and a couple

• Y. Tong, and W. Lv are with the State Key Laboratory of Software Devel-
opment Environment, School of Computer Science and Engineering and
International Research Institute for Multidisciplinary Science, Beihang
University, Beijing, China. E-mail: {yxtong,lwf}@buaa.edu.cn.

• L. Chen is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong, China. E-mail: leichen@cse.ust.hk.

• Z. Zhou is with the Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Zurich, Switzerland. E-mail:
zimu.zhou@tik.ee.ethz.ch.

• H. V. Jagadish is with the Department of Electrical Engineering and
Computer Science, University of Michigan, 2260 Hayward Ave, Ann
Arbor, MI, USA. E-mail: jag@umich.edu.

• L. Shou is with the Key Laboratory of CAD & CG, Zhejiang University,
Hangzhou, China. E-mail: should@zju.edu.cn.

1. https://www.mturk.com/mturk/
2. http://www.odesk.com/

of prototypes have been successfully developed, such as
CrowdDB [8], Deco [9], [10], Qurk [11], Crowd Miner [12],
DOCS [13] and CDB [14]. We refer readers to tutorial [15]
for a full picture on crowdsourcing.

The rapid development of crowdsourcing platforms con-
tributes to the ever-increasing volume and variety of crowd-
sourcing tasks. A real-world crowdsourcing task can contain
thousands or millions of atomic tasks, where an atomic
task can be considered as a unit task that requires trivial
cognitive load. Despite the complexity and the variety of
the crowdsourcing task goals, most atomic tasks are in the
form of binary choices. According to a recent study on
27 million tasks performed by over 70,000 workers [16],
boolean questions dominate the types of task operations and
are widely applied in basic data-driven operations such as
filtering. These large-scale crowdsourcing tasks are usually
distributed to a wide range of crowd workers and are often
sensitive to false negatives. To distribute a large-scale task to
limited crowd workers, a common practice is to pack a set of
atomic tasks into a task bin and send to a crowd worker in a
batch [8], [17]. Furthermore, using a task bin to batch atomic
tasks is also an effective way to reduce the average cost per
atomic task [18]. In the following, we illustrate the adoption
of task bins in large-scale crowdsourcing tasks via a real-
world example in crowdsourced environment monitoring.

Example 1. (Fishing-Line Discovery) The over-use and out-
of-report of large fishing-lines violate the international fishing
treaties, but are difficult to monitor by only a small group of
people. To fight against such illegal usages of large fishing-lines,



2

(a) a1 (b) a2 (c) a3 (d) a4

Fig. 1: Fishing-Line Discovery

a project has been published on the Tomnod website3, where
a satellite image covering more than 2 million km2 has been
transformed into a large trunk of small pieces of images. The
participants are asked to decide “whether there is a ‘fishing-line’
shape in the given piece of image”, which is considered as an
“atomic task”. Figure 1 shows four example images in four atomic
tasks a1, a2, a3, a4. Since the project manager cannot afford to
miss any dubious image, they ask multiple participants to review
the same image and any image with at least one “yes” will be
further scrutinised. The project manager needs to decide plans to
distribute these images. One way is to process a1 to a4 only once
but individually (10 cents each and 40 cents in total). Another
way is to group a1 and a2 in one task bin and a3 and a4 in
another task bin and then ask two workers to process each task bin
twice (12 cents for each task bin, 12*2*2=48 cents in total). Which
plan is better? Is there an even better choice?

We argue that the size of the task bins (or cardinal-
ity) plays a crucial role in the execution plan of a large-
scale crowdsourcing task in terms of cost and reliability.
Decomposing a large-scale crowdsourcing task into task
bins of a larger size results in a lower average cost of
each atomic task in the task bins. However, it is observed
that the overall reliability of a large batch of atomic tasks
tends to decrease due to the increase of cognitive load [18].
Consequently, these atomic tasks have to be executed more
times or dispatched to more workers to meet the reliability
requirement of the large-scale crowdsourcing task, which
leads to an increase in the total cost. Previous works either
set the fixed cardinality of a task bin [8], [9], [10] or adopt
simple heuristics to determine a single cardinality for the
entire large-scale crowdsourcing task.

To further reduce the total cost in executing a large-scale
crowdsourcing task while retaining the desired reliability,
we propose to harness a set of task bin cardinalities rather
than a single one. The key insight is that with the increase of
the cardinality of task bins, there is a mismatch in the drop
of per atomic task reliability and the drop of per atomic
task cost. For instance, it may cost 10 cents to process a1
individually with a reliability of 0.9, while it only costs 6
cents to process a1 in a task bin of size 2 (i.e., the cost
of the task bin is 12 cents), yet with a reliability of 0.8.
There is a 40% in per atomic task cost while only a 11%
drop in reliability, or equivalently, approximately 1.43 task
bins are needed to achieve a reliability (formally defined in
Section 3.1) of 0.9 at the cost of 0.6 × 1.43 = 0.86 cents.
With task bins of different cardinalities (and of different
reliability), we then have the flexibility to optimize the total

3. http://www.tomnod.com/

cost to satisfy a certain reliability requirement. In the above
example, to fulfill a reliability requirement of 0.9 on a1, the
optimal plan is to execute a1 individually (i.e., in a task bin
of size 1) once, while for a reliability requirement of 0.95, the
optimal plan is to execute a1 in a task bin of size 2 twice.

In this paper, we propose the Smart Large-scAle task
DEcomposer (SLADE) problem to investigate the optimal
plan to decompose a large-scale crowdsourcing task into
batches of task bins of varied sizes, which satisfies the
reliability requirements of each atomic task at a minimal
total cost. In effect, the SLADE problem is similar to the
role of the query optimizer of a database that tries to find
an efficient execution plan given a logical expression to be
evaluated. As far as we know, this is the first work to tackle
the large-scale crowdsourcing task decomposition problem.

To sum up, we make the following contributions:
• We identify a new crowdsourcing task decomposition

problem, called the Smart Large-scAle task DEcomposer
(SLADE) problem, and prove its NP-hardness.

• We study two variants of the SLADE problem. The first
is the homogeneous SLADE problem, where all atomic
tasks have the same reliability requirement. We propose
a greedy heuristic and an optimal priority queue-based
approximation algorithm with log n-approximation ra-
tio, where n is the number of all atomic tasks. The sec-
ond is the heterogeneous SLADE problem, where differ-
ent atomic tasks may have different reliability require-
ments. We extend the above approximation framework
to heterogeneous SLADE problem, which guarantees a
slightly lower approximation ratio.

• We extensively evaluate the effectiveness and efficiency
of the proposed algorithms on real datasets.

The rest of the paper is organized as follows. We present
a motivation experiment in Section 2, and formally for-
mulate the SLADE problem in Section 3. We analyze the
complexity of the SLADE problem in Section 4 and propose
approximation algorithms for the homogeneous SLADE
problem in Section 5 and for the heterogeneous SLADE
problem in Section 6, respectively. We evaluate the proposed
algorithms in Section 7 and review related work in Section 8.
Section 9 concludes this work.

2 MOTIVATION EXPERIMENTS

In this section, we study the tradeoff between the per atomic
task reliability and the per atomic task cost as a func-
tion of the task bin size (cardinality), which motivates our
SLADE problem. We conduct the motivation experiments on
Amazon Mechanical Turk (AMT) using the following two
crowdsourcing tasks.



3

(a) (b)

Fig. 2: Screen-shots of (a) Jelly-Beans-in-a-Jar and (b) Micro-
Expressions Identification.

Example 2. (Jelly-Beans-in-a-Jar) Given a sample image con-
taining 200 dots, a crowd worker is asked to determine whether
another image contains more dots or not. Each image is an atomic
task of binary choice, whose answer is independent of each other
(Figure 2(a)). We then specify the cardinality of a task bin ranging
from 2 to 30 by aligning the target images along the question
webpage. For each task bin, 10 assignments are issued to smooth
the randomness of workers, and three different incentive costs for
one task bin are tested ($0.05, $0.08 and $0.1). As is typical in
such scenarios, we set a response time threshold, after which the
batch of atomic tasks is considered too slow for practical use. We
used 40 minutes as the threshold.

Example 3. (Micro-Expressions Identification) Some campaign
activities record photos or videos and ask the crowd to find the
participants with certain expressions. The crowd may receive basic
training on the targeted micro-expression and then photos or
videos are distributed to be screened. As shown in Figure 2(b),
a crowd worker is expected to label the emotion of another
target portrait as positive or negative given a sample portrait.
The images are from the Spontaneous Micro-expression Database
(SMIC) [19]. We also vary the cardinality from 2 to 30 with the
incentive cost per task bin as $0.05, $0.1 and $0.2, respectively.
Similarly, we set a time threshold of 30 minutes.

Figure 3 characterizes the relationships among the car-
dinality, confidence and cost of a task bin on both the Jelly-
Beans-in-a-Jar (Jelly, Figure 3a) and the Micro-Expressions
Identification (SMIC, Figure 3b) tasks. Here confidence
refers to the average probability that the crowds can cor-
rectly complete each atomic task in this task bin. We also
conduct experiments on the Jelly dataset with different diffi-
culty (Figure 3c). The difficulty of a Jelly task is indicated by
the number of dots in the given sample image. We specify
the difficulty level as 1 for 50 dots, level 2 for 200 dots, and
level 3 for 400 dots (labeled as Diff. 1/2/3).

Take Figure 3a as an illustration. Overtime task bins (not
finished within 40 minutes) are shown in dotted lines, while
the rest are in sold lines. We see that the confidence declines
with the increase of cardinality. After cardinality of 14 (resp.
24), the task bins with cost $0.05 ($0.08) are disqualified since
no enough answers are obtained within 40 minutes. As the
cardinality goes from 2 to 30, the confidence decreases from
0.981 to 0.783, and the average cost per atomic task decreases
from $0.025 (= 0.05/2) to $0.003 (= 0.1/30).

We make the following observations: (1) There is a mis-
match in the drop of confidence and the drop in cost. Specifi-
cally, the confidence only decreases from 0.981 to 0.783 while
the average cost per atomic task decreases from 0.025 to

0.003. The moderate drop in confidence may be explained
by the preference of performing a sequence of similar atomic
tasks, which reduces cognitive load of task-switching [20].
It indicates the potential of total cost saving to apply task
bins rather than dispatch each atomic task individually to
each crowd worker. (2) The decreasing trends of confidence
vary for different costs (see the curves for the cost of 0.05,
0.08, and 0.1). Thus it is more flexible to achieve certain
accuracy requirement by using a combination of task bins
of different sizes and confidence. (3) While the confidence
of crowd workers tend to be less sensitive to the drop in
cost (i.e., reward to workers), the quantity of crowd workers
is notably sensitive to the drop in cost (e.g., the maximal size
for in-time responses at a cost of 0.05 is only half of that at a
cost of 0.1 (14 vs. 30).

The above observations hold for different types of tasks
(Figure 3b) and for the same tasks of different difficulty
levels ( Figure 3c). The difference lies in the absolute values,
e.g., the general confidence is only 0.7 for the SMIC tasks. It
is essential to adopt a set of task bins as probes to evaluate
the difficulty of different types of atomic tasks so as to select
a proper set of task bins. We refer readers to [18] for further
discussions on the difficulties and task designs of atomic
tasks. In this paper, we focus on how to batch atomic tasks
that are homoplasmic and thus with the same difficulty.
Packing tasks that vary significantly in difficulty is out of
the scope of this work.

3 PROBLEM STATEMENT

In this section, we first introduce several important concepts
of large-scale crowdsourcing tasks and then formally define
the SLADE Problem and discuss its complexity.

3.1 Preliminaries
We focus on large-scale crowdsourcing tasks consisting of
atomic tasks. An atomic task, denoted by ai, is defined
as a binary choice problem. Due to their trivial cognitive
load and simple structure, atomic tasks of boolean ques-
tions dominate the types of task operations adopted in the
marketplace [16]. We further define a large-scale crowd-
sourcing task T as a set of n independent atomic tasks, i.e.,
T = {a1, a2, · · · , an} (n = |T |). Large-scale crowdsourcing
tasks are common in real-world crowdsourcing. For exam-
ple, in the fishing-line discovery application, an atomic task
is to decide whether there is a fishing-line shape in a given
image, while the whole task consists of over 100,000 satellite
images to be checked. Note that typical tasks posted on pop-
ular crowdsourcing platforms such as AMT and oDesk are
large-scale tasks consisting of simple atomic tasks that can
be handled independently by each crowd worker, e.g., the
decision of one image will not affect that of another image.
We therefore omit the task coordination among co-workers
and refer readers to [21] for the high-level discussions on
complex task decomposition.

As discussed in Section 2, batched atomic tasks hold
promise to reduce the total cost of a large-scale crowdsourc-
ing task with achieving the same accuracy requirement. The
aim of this study is to explore the design space of cost-
effective batched atomic task decomposition plans for a
large-scale crowdsourcing task. Formally, we define a batch
of atomic tasks as l-cardinality task bins as follows.



4

Cardinality

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
on

fid
en

ce

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

cost=0.05
cost=0.08
cost=0.1

(a)

Cardinality

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
on

fid
en

ce

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cost=0.05
cost=0.1
cost=0.2

(b)

Cardinality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
on

fid
ec

e

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Diff. 1
Diff. 2
Diff. 3

(c)

Fig. 3: Relationships among the cardinality, confidence, and cost of a task bin tested on (a) Jelly-Beans-in-a-Jar, (b) Micro-
Expressions Identification tasks; and on (c) Jelly-Beans-in-a-Jar tasks of different difficulties.

Definition 1 (l-Cardinality Task Bin). An l-cardinality task bin
is a triple, denoted as bl =< l, rl, cl >, where (1) the cardinality
l is the maximum number of different atomic tasks that can be
included in the task bin; (2) rl is the confidence, which indicates
the average probability that the crowds can correctly complete each
atomic task in this task bin; (3) cl is the incentive cost given to
the crowds who complete all the atomic tasks in this task bin.

An l-cardinality task bin is similar to a container, which
can contain at most l atomic tasks. Different combinations of
atomic tasks can be contained in a task bin, and the atomic
tasks contained in an l-cardinality task bin are given to one
crowd worker in a bundle. Table 1 shows an example of
task bins, {b1, b2, b3}, where the i-th column corresponds to
the i-cardinality task bin. For example, the second column
represents the 2-cardinality task bin b2, with the confidence
r2 = 0.85 and the cost c2 = 0.18. Based on the observations
in Section 2, Table 1 assumes the average cost and the
confidence of an atomic task drop with the increase of the
task bin cardinality. For example, the average costs of the
three task bins are 0.1, 0.09 and 0.08, respectively, while their
confidences are 0.9, 0.85, and 0.8, respectively.

In practice, the choices of task bin cardinalities and the
corresponding confidences and costs can be learned from
historical records. In fact, popular marketplaces such as like
AMT and oDesk use a set of different task bins as real-time
probes to monitor the quality of the current work flow [22].
To obtain the parameters of the set of tasks bins, when
a batch of atomic tasks arrives, one can regularly issue
testing task bins with different cardinalities. The atomic
tasks in testing task bins are the same as the real tasks,
yet the ground truth is known to calculate the confidence.
A database system, although crowd-powered, always has a
response time requirement, which is inversely proportional
to the incentive cost of each task bin. Thus the cost for each
cardinality is calculated as the minimum cost that meets
the response time requirement. After obtaining the answers

TABLE 1: A Set including 3 Task Bins

Task Bins b1 b2 b3
Cardinality l 1 2 3
Confidence rl 0.9 0.85 0.8

Incentive Cost (USD) cl 0.1 0.18 0.24

TABLE 2: Summary of Symbol Notations

Notation Description
ai an atomic task

T = {a1, · · · , an} a large-scale crowdsourcing task
bl an l-cardinality task bin

B = {b1, · · · , bm} the set of task bins
n = |T | the number of atomic tasks in T
m = |B| the number of task bins in B

rl the confidence for each atomic task in a bl
cl the incentive cost of a bl
β an arbitrary task bin

B(ai) the set of assigned task bins for ai
Rel(ai,B(ai)) the reliability of ai in the set B(ai)
R(ai,B(ai)) the equivalent reduction of Rel(ai,B(ai))

ti the reliability threshold of ai
DPT optimal decomposition plan of T

from the testing task bins, the confidence can be obtained by
regression or counting methods.

Each atomic task is usually performed by multiple crowd
workers to guarantee the quality of the task [18]. For batched
atomic tasks, each atomic task is assigned to multiple task
bins for the same purpose.

Since many real-world crowdsourcing applications re-
quire low false negative ratios, e.g., discovering fishing-lines
from satellite images, we define the reliability of an atomic
task as the probability of no false negatives. We can link the
reliability of an atomic task to the confidences of the task
bins where the atomic task is assigned.

Definition 2 (Reliability). Given an atomic task ai and the
set of assigned task bins B(ai), the reliability, denoted by
Rel(ai,B(ai)), of ai in B(ai) is as follows:

Rel(ai,B(ai)) = 1−
∏

β∈B(ai)

(1− r|β|) (1)

where |β| is the cardinality of the task bin β, and r|β| is the
confidence of the task bin β.

Equation (1) represents the estimated possibility that ai
can be correctly completed by at least one assigned task bin.

Table 2 summarizes the notations used in this paper.

3.2 SLADE Problem
According to the definitions of task bins and the reliability of
each atomic task, we define the SLADE Problem as follows.



5

Fig. 4: Illustration of the SLADE Problem

Definition 3 (SLADE Problem). Given a large-scale crowd-
sourcing task T consisting of n atomic tasks {a1, . . . , an}, the
corresponding reliability thresholds {t1, . . . , tn} for each atomic
task, and a set of task bins B = {b1, . . . , bm}, the SLADE
Problem is to find a planning DPT = {τi, bi}mi=1, which means
task bin bi is used for τi times, to minimize the total cost,∑m
i=1 τici, such that Rel(ai,B(ai)) ≥ ti, ∀ai ∈ T .

In particular, if the reliability threshold ti of each atomic
task is the same, the variant of the SLADE problem is
called the homogeneous SLADE problem, which is studied
in Section 5. When the reliability thresholds of the atomic
tasks are different, the variant is called the heterogeneous
SLADE problem, which is discussed in Section 6. Moreover,
each atomic task can be assigned to multiple l-cardinality
task bins in a decomposition plan, i.e., each atomic task
can be dispatched to and processed by multiple crowd
workers to improve the reliability (will be defined shortly)
of each atomic task. We illustrate the (homogeneous) SLADE
problem via the following example.

Example 4. (Homogeneous SLADE Problem) Given a crowd-
sourcing task T = {a1, a2, a3, a4}, where each atomic task ai
is the same as in Figure 1, a set of task bins B = {b1, b2, b3}
in Table 1, and the reliability thresholds of each atomic task
ti = 0.95, 1 ≤ i ≤ 4, the homogeneous SLADE problem can
be illustrated in Figure 4. A feasible decomposition plan, P1, is
to adopt four 2-cardinality task bins, i.e., {a1, a2}, {a1, a2},
{a3, a4} and {a3, a4}, respectively. In P1, the reliability of ai,
(1 ≤ i ≤ 4 is 1− (1−0.85)× (1−0.85) = 0.98 > 0.95, with a
total cost of 0.18×4 = 0.72. Another feasible decomposition plan,
P2, is to use two 3-cardinality task bins and one 2-cardinality task
bin, i.e., {a1, a2, a3}, {a1, a2, a4} and {a3, a4}, respectively.
The reliability of all the atomic tasks in P2 also exceeds 0.95, while
P2 costs only 0.24 × 2 + 0.18 = 0.66. Figure 4 illustrates the
two decomposition plans. In fact, P2 is the optimal decomposition
plan since it has the lowest total cost among all the feasible
decomposition plans. Note that the cost saving scales up with the
amount of the atomic tasks in T . For a large-scale crowdsourcing
task T with thousands or millions of atomic tasks, the optimal
decomposition plan can reduce substantial incentive costs while
retaining the desired reliability for each atomic task.

4 PROBLEM REDUCTION

In this section, we first reduce the reliability constraint of
the SLADE problem to an equivalent simple form. Then,
we prove the NP-hardness of the SLADE problem. We
also show that there are polynomial-time solutions to a
relaxed variant of the SLADE problem. Finally, we reduce

the SLADE problem to the covering integer programming (CIP)
problem [23], and apply the existing solution of the CIP
problem as the baseline algorithm for our SLADE problem.

4.1 Reduction of Reliability

We equivalently rewrite Equation (1) in Definition 2 as:

R(ai,B(ai)) = −ln(1−Rel(ai,B(ai)) =
∑

β∈B(ai)

−ln(1− r|β|)

(2)
In Definition 2, the constraint of the SLADE problem

is that the reliability of each atomic task satisfies a given
reliability threshold ti, namely Rel(ai,B(ai)) ≥ ti. Base
on Equation (2), this constraint is equivalent to −ln(1 −
Rel(ai,B(ai)) ≥ −ln(1 − ti), namely

∑
β∈B(ai)

−ln(1 −
r|β|) ≥ −ln(1 − ti) , for an atomic task ai. Thus the
reliability of an atomic task is transformed to a sum of∑
β∈B(ai)

−ln(1− r|β|) .

4.2 Complexity Results

We first show the NP-hardness of the SLADE problem and
then demonstrate that there are polynomial-time solutions
to a relaxed variant of the SLADE problem.

Theorem 1. The SLADE problem is NP-Hard.
Proof. To complete the proof, we reduce the Unbounded
Knapsack Problem(UKP) [24] to the SLADE problem. Then
the hardness of the SLADE problem follows.

An instance of UKP is: given a set of m items with
weights {w1, · · · , wm} and values {v1, · · · , vm}, and each
item can be used unbounded multiple times. The deci-
sion problem is to decide whether there exists a set N =
{n1, · · · , nm} (denoted as the number that each item is
used) such that the total weight is no more than a specific
weight threshold, i.e.

∑m
i=1 ni · wi ≤ W and the total value

is no less than a given value threshold, i.e.
∑m
i=1 ni · vi ≥ V .

Without loss of generality, we can assume that vi > 0 for
every item.

An instance of SLADE problem can be constructed from
the above instance of UKP as follows:
• Construct m task bins B = {b1, · · · , bm}. Each item in

UKP corresponds to a task bin.
• For each task bin bi, let ci = wi and ri = 1− e−vi .
• For the crowdsourcing task T in SLADE problem, there

is only one atomic task a1 with the reliability threshold
t1 = 1− e−V .

Let DPT = {τi, bi}mi=1 be the decomposition plan of the
SLADE instance. To complete the proof, we prove that the
decomposition plan DPT spends no more than W subject
to
∑m
i=1 [τi · − ln (1− ri)] ≥ − ln (1− t1) if and only if N =

{τ1, · · · , τm} is a feasible solution of UKP.
Since there is only one atomic task in T , then the reduc-

tion of reliability defined by Equation (2) is equal to
m∑
i=1

[τi · − ln (1− ri)] =
m∑
i=1

[τi · − ln (1− 1 + e−vi)] =

m∑
i=1

τi · vi.

Besides, − ln (1− t1) = − ln (1− (1− e−V )) = V .
Therefore, a feasible decomposition planDPT of the SLADE
problem should satisfy

∑m
i=1 τi · vi ≥ V . And we also know



6

that the cost of this plan is
∑m
i=1 τi · ci =

∑m
i=1 τi · wi, which

should be no more than W .
Therefore, as long asDPT is a feasible plan of the SLADE

problem, N = {τ1, · · · , τm} must be a feasible solution of
UKP and vice versa.

To sum up, the decision version of SLADE problem
can be reduced from an instance of UKP and UKP is NP-
Complete. Hence, the decision version of SLADE problem
is NP-Complete and the SLADE problem is NP-Hard.

Complexity of a relaxed variant of the SLADE problem.
Although the SLADE problem is NP-Hard, there is a relaxed
variant which can be solved in polynomial time. The relaxed
variant requires that the confidences of all task bins are
always greater than the maximum reliability threshold of
all atomic tasks, namely rj ≥ tmax where 1 ≤ j ≤ m, and
tmax is the maximum ti (1 ≤ i ≤ n). That is, each atomic
task satisfies its reliability threshold requirement no matter
which task bin it is assigned to. This relaxed variant of the
SLADE problem can be simplified to the ROD CUTTING
problem [25], which has an efficient dynamic programming
exact solution with O(nm) time complexity, where n and m
are the number of atomic tasks in the large-scale task and
the number of distinct task bins, respectively.

4.3 Baseline Algorithm

In this subsection, we first reduce the SLADE problem to
the CIP problem [23] and present a baseline algorithm using
existing solutions of the CIP problem.

The CIP problem is shown as follows. Given a matrix
U of integer non-negative coefficients ui,j ∈ N (i ∈ I =
{1, · · · , |I|}, j ∈ J = {1, · · · , |J |}), and positive vectors C
and V , the CIP problem is to find a vector Y ∈ N such that

min
∑
j∈J

cjyj

s.t.
∑
j∈J

uijyj ≥ vi ∀i ∈ I

yj ∈ N, ∀j ∈ J

(3)

where yj ∈ Y , cj ∈ C and vi ∈ V [23].
We can reduce the SLADE problem to the CIP problem

in two steps.
• Step 1. For the n atomic tasks in T and an l-cardinality

task bin bl ∈ B, there are
(n
l

)
distinct combination

instances, which consist of the set Cl (l ∈ {1, · · · ,m})
and |Cl| =

(n
l

)
. Thus, let |J | =

∑m
l=1 |Cl|, and

for j ∈ [1 +
∑l−1
i=1 Ci,

∑l
i=1 Ci], each cj = cl and

uij = − ln (1− rl) if the task ai is batched into an l-
cardinality task bin in the jth instance of J .

• Step 2. For each atomic task ai with the reliability
threshold ti in the SLADE problem, we have vi =
− ln(1− ti) (vi ∈ V ) and |I| = n in the CIP problem.

Finally we come up with a baseline algorithm for the
SLADE problem as follows.
• Transform the SLADE problem to the CIP problem by

the aforementioned reduction process.
• Solve the CIP problem via existing methods [23].
• Return the results of the reduced CIP problem, which

is equivalent to the planning of the SLADE problem.

Algorithm 1: Greedy

Input: A large-scale task T = {a1, . . . , an}, a set of
task bins {b1, . . . , bm}, a reliability threshold t

Output: An approximate decomposition plan DPT ,
and an approximate total cost CostT

1 DPT ← ∅;
2 Initialize θ = {θ1, · · · , θn} for each atomic task, where

each θi ← − ln(1− t);
3 Rank T = {ai1 , · · · , ain} in non-ascending order of θi;
4 while θi1 > 0 do
5 l∗ ← argminl∈B

cl
min{l×(− ln(1−rl)),

∑l
k=1 θik}

;

6 DPT ← DPT ∪ {{ai1 , · · · , ail∗}};
7 CostT ← CostT + cl∗ ;
8 for k ← 1 to l∗ do
9 θik ← θik − (− ln(1− rl∗));

10 Rank T = {ai1 , · · · , ain} in non-ascending order
of θi;

11 return DPT and CostT

Note that the baseline algorithm cannot give the opti-
mal solution, as the CIP problem [23] is NP-hard. Existing
solutions are only approximate. Although the baseline algo-
rithm can be applied to both homogenous and heterogenous
SLADE problems and can be easily implemented, the reduc-
tion step will generate exponential (

∑m
l=1

(n
l

)
) combination

instances. Thus, the baseline algorithm is impractical for
large-scale crowdsourcing tasks, where there can be thou-
sands or millions of atomic tasks. Accordingly, we only
generate part of the combination instances for performance
evaluation. To address the scalability issue, we propose a
greedy heuristic algorithm and an optimal priority queue-
based approximation framework in the next two sections.

5 HOMOGENEOUS SLADE
In this section, we study the homogeneous SLADE problem,
where all reliability thresholds ti(1 ≤ i ≤ n) are equal.
Thus, all reliability thresholds are simplified as t (ti = t,∀i)
in the rest of this section. In Section 5.1, we first present a
greedy heuristic algorithm, called Greedy, which is simpler
and more efficient than the baseline algorithm but has
no approximation guarantee. Then we propose an optimal
priority queue-based (OPQ) algorithm in Section 5.2, which
is not only faster than the Greedy algorithm but also guar-
antees log n approximation ratio, where n is the number of
atomic tasks in a specific large-scale crowdsourcing task. In
particular, in some cases, the OPQ-Based algorithm can even
return the exact optimal solution.

5.1 Greedy Algorithm
To obtain a decomposition plan that satisfies the reliability
threshold and has low total cost, we need to consider both
the incentive cost (cost for short) and the confidence of the
assigned task bins to each atomic task. A task bin with
smaller cost will result in lower total cost, while a task bin
with higher confidence can possibly reduce the number of
task bins used in the decomposition plan. Therefore, the
greedy algorithm is to consider the cost-confidence ratio of



7

each task bin and its corresponding atomic tasks and include
the task bin and its corresponding atomic tasks with the
lowest ratio into the decomposition plan until the all atomic
tasks satisfy the reliability threshold constraint.

Specifically, the cost-confidence ratio for an l-cardinality
task bin and its corresponding atomic tasks is defined as:

ratio =
cl

min{l × (− ln(1− rl)),
∑l
k=1 θik}

(4)

In Equation (4), cl is the cost of the l-cardinality task bin
bl, and rl is the confidence of the atomic tasks in bl. As
explained in Section 4.1, − ln(1 − rl) is the contributed
reliability per atomic task in bl. Thus, l × (− ln(1 − rl)) is
the total contributed reliability for the atomic tasks in bl.
We further define the threshold residual θik of the ik-th
(1 ≤ k ≤ l) atomic task, which is its reliability threshold
subtracting its current total reliability contributed by the
assigned task bins. It is possible that the total threshold
residual of the assigned l atomic tasks in bl is smaller
than − ln(1 − rl), thus the cost-confidence ratio should
be cl

min{l×(− ln(1−rl)),
∑l
k=1 θik}

. Based on the cost-confidence
ratio, the main idea of the greedy algorithm is to choose
the locally optimal task bin bl∗ and assign l∗ atomic tasks
with the highest l∗ threshold residuals in each iteration,
and then the algorithm maintains the threshold residual of
each atomic task and ranks all the atomic tasks according
to their current threshold residuals. Finally, the algorithm
terminates when every threshold residual becomes zero.

The procedure of the greedy algorithm is illustrated
in Algorithm 1. Initially, the decomposition plan DPT is
empty in line 1. Line 2 initializes the threshold residual θi
of each atomic task to − ln(1 − t). Then it ranks n atomic
tasks in terms of their threshold residuals in line 3. Lines
4-10 iteratively perform the greedy strategy. As long as at
least one atomic task fails to satisfy the reliability threshold
requirement, the algorithm chooses the task bin with the
minimum cl

min{l×(− ln(1−rl)),
∑l
k=1 θik}

. After choosing the
locally optimal task bin bl∗ , the algorithm allocates the first
l∗ ranked atomic tasks in T to the final decomposition
plan and adds cl∗ to the incentive cost in lines 6 and 7,
respectively. Then, the threshold residuals of the first l∗

ranked atomic tasks are reduced by− ln(1−rl∗) each in lines
8-9. Afterwards the algorithm re-ranks all the atomic tasks
in T in a non-ascending order of their threshold residuals
in line 10. Finally, the whole procedure terminates when the
threshold residual of each atomic task is zero.

Example 5 (Greedy Algorithm). Back to our running example.
Given a crowdsourcing task with 4 atomic tasks, the set of task
bins in Table 1, and the reliability threshold t = 0.95, Algorithm 1
executes as follows. It first initializes each θi = 2.996 where
1 ≤ i ≤ 4. Since all θi’s are the same, the initial order of
the atomic tasks is < a1, a2, a3, a4 >. Then the algorithm
selects the first task bin {a1} in the first round because the
ratio 0.1

− ln(1−r1) = 0.043 is the smallest in line 5. Then,
θ1 = 2.996 − 2.303 = 0.693, and the algorithm re-ranks T as
< a2, a3, a4, a1 >, based on the corresponding threshold residu-
als of 2.996, 2.996, 2.996, 0.693. The algorithm continues similar
iterations till all the threshold residuals become zero. The final de-
composition plan is: {a1}, {a2}, {a3}, {a4}, {a1, a2, a3}, {a4},
with a total cost of 0.74.

Fig. 5: Illustration of an arbitrary combination of task bins
Comb = {3× b1, 2× b2, 1× b3}.

Computational Complexity Analysis. Note that the task
bin with the maximum cardinality has the smallest confi-
dence for each atomic task in this task bin. Therefore given
an arbitrary atomic task and a reliability threshold t in the
homogeneous SLADE problem, the upper bound on the
number of iterations in Algorithm 1 is nd ln(1−t)

ln(1−rm)e, where
rm is the confidence of the m-cardinality task bin, n is
the total number of atomic tasks, and m is the maximum
cardinality of all the task bins. Furthermore, the algorithm
needs to rank all the atomic tasks according to their current
threshold residuals, which costs O(n log n) time per iter-
ation. Hence the total computational complexity of Algo-
rithm 1 is O(nd ln(1−t)

ln(1−rm)e(m+ n log n)) = O(n2 log n) since

d ln(1−t)
ln(1−rm)e is a constant and m� n in practice.

5.2 Optimal-Priority-Queue-based (OPQ) Algorithm

In this subsection, we introduce an approximation algorithm
based on a specific data structure, called the optimal prior-
ity queue. This approximation algorithm not only returns
decomposition plans with lower total cost in practice but
also has a lower time complexity. In particular, with the
optimal priority queue data structure, we can even obtain
the exact optimal solution in certain cases. In the following,
we first introduce how to construct the optimal priority
queue and then devise a faster approximation algorithm
that guarantees log n approximation ratio.

5.2.1 Constructing the Optimal Priority Queue
Before introducing the optimal priority queue data struc-
ture, we first define two basic concepts, the lowest common
multiple in a combination of task bins and the unit cost of an
atomic task using this combination. Denote a combination
of task bins as Comb = {nk1 × bk1 , · · · , nkl × bkl}, where
nki × bki means that an atomic task is assigned nki times to
ki-cardinality task bins. The least common multiple, denoted
as LCM , of Comb is lcm(k1, k2, · · · , kl), which represents
the number of atomic tasks in T to be assigned using this
combination. The unit cost of Comb is UC =

∑l
i=1

cki
ki
nki .

Example 6. (Combination (Comb)) Given the set of task bins in
Table 1, we can construct an arbitrary combination of task bins
e.g., Comb = {3 × b1, 2 × b2, 1 × b3}. For Comb, its lowest
common multiple is LCM = 1 × 2 × 3 = 6, and the unit cost
of an atomic task using Comb is UC = 3 × 0.1 + 2 × 0.18

2 +
1 × 0.24

3 = 0.56, meaning that we can assign 6 atomic tasks
to Comb, with an “averaged” incentive cost of 0.56 per atomic
task and a total cost of 0.56 × 6 = 3.36 for the 6 atomic tasks.
Figure 5 illustrates the above Comb and how 6 atomic tasks are



8

Algorithm 2: Building Optimal Priority Queue

Input: A set of task bins B = {b1, . . . , bm}, a reliability
threshold t

Output: An optimal priority queue OPQ
1 Enumerate(1, 0, ∅, B, t);
2 Remove any OPQi with OPQi.LCM ≥ OPQj .LCM

and OPQi.UC ≥ OPQj .UC for some j;
3 return OPQ;
4 SubFunction:Enumerate(p, q, S,B, t)
5 for k ← p to m do
6 Add bk into S;
7 if ∀i: S.LCM < OPQi.LCM or S.UC < OPQi.UC

then
8 if q − ln(1− rk) ≥ − ln(1− t) then
9 Insert S into OPQ;

10 Remove any OPQi with
OPQi.LCM = S.LCM and
OPQi.UC > S.UC;

11 else
12 Enumerate(k, q − ln(1− rk), S,B, t);

13 Remove bk from S;

assigned in this combination, where each atomic task is assigned
to six task bins (three 1-cardinality bins, two 2-cardinality bins
and one 3-cardinality bins). For example, as shown in the last row
in Figure 5, the atomic task a1 is assigned into the six task bins
({a1}, {a1}, {a1}, {a1, a2}, {a1, a2}, {a1, a2, a3}).

Definition 4 (Optimal Priority Queue). Given a set of task bins
B = {b1, · · · , bm} and a reliability threshold t, an optimal prior-
ity queue OPQ is a priority queue consisting of the combinations
of task bins (Comb’s) and satisfies the following conditions: (1)
the elements in the optimal priority queue is ranked in an descend-
ing order of their corresponding LCM values; (2) for any element
OPQi (with OPQi.LCM and OPQi.UC) in the optimal
priority queue, there is NO element OPQj (with OPQj .LCM
and OPQj .UC) such that OPQi.LCM ≥ OPQj .LCM and
OPQi.UC ≥ OPQj .UC ; (3) all the combinations of task bins
in this optimal priority queue satisfy the reliability threshold
requirement for each atomic task.

Example 7. (Optimal Priority Queue) Back to our running
example, given the set of task bins in Table 1, the optimal priority
queue is shown in Table 3 with a reliability threshold of 0.95
for ai, 1 ≤ i ≤ 4. In Table 3, each column corresponds to
a combination of task bins. For example, for the first column
{2×b3},OPQ1.UC = 2× 0.24

3 = 0.16 andOPQ1.LCM = 3.
In addition, if an atomic task is assigned to the Comb in the
first column, its reliability is 2 × (− ln(1 − 0.8)) = 3.22 >
− ln(1− 0.95) = 2.996. Thus, the atomic task satisfies the relia-
bility threshold requirement. In fact, the Comb in the first column
is the optimal decomposition plan for OPQ1.LCM = 3 atomic
tasks. We describe an optimal priority queue based approximate
algorithm for arbitrary numbers of atomic tasks in Section 5.2.2.

To obtain the optimal priority queue, we design a depth-
first-search-based enumeration algorithm (Algorithm 2).
The algorithm starts depth-first-search enumeration from
one b1 instance, removes unnecessary elements and returns
the optimal priority queue in lines 1-3. In the depth-first-
search enumeration process in lines 5-13, each recursion
operation first checks whether the new combination cannot

TABLE 3: The Optimal Priority Queue (OPQ) of Table 1 (t=0.95)

Comb {2× b3} {2× b2} {2× b1}
UC 0.16 0.18 0.2
LCM 3 2 1

be pruned by Lemma 1 in line 7 and satisfies the reliability
threshold requirement in line 8. If yes, the algorithm inserts
the current combination into the optimal priority queue.
Otherwise the algorithm continues until a combination of
task bins satisfies the conditions in lines 7 and 8.

In Algorithm 2, the pruning rule in line 7 significantly
reduces the redundant enumeration space as shown below.

Lemma 1. Given two combinations of task bins Comb1
and Comb2, Comb2 and all combinations that are super-
sets of Comb2 can be safely pruned in the enumeration pro-
cess if Comb1.UC < Comb2.UC and Comb1.LCM ≤
Comb2.LCM .

Proof. According to the definition of the optimal priority
queue, this pruning rule deletes the combinations which
violate the requirement of monotonicity, i.e., condition (2).
Hence, the lemma is correct.

Example 8. (Building Optimal Priority Queue) Back to the set
of task bins in Table 1 and t = 0.95. Algorithm 2 first enumerates
the combinations based on b1 until the combination {2 × b1}
since 2 × (− ln(1 − 0.9)) = 4.605 > −ln(1 − 0.95) = 2.996.
Then, the algorithm inserts the combination {2× b1} as OPQ1,
which is the first element in the optimal priority queue OPQ.
After that, it recursively enumerates {b1 + b2}, which is updated
as OPQ1 because − ln(1 − 0.9) − ln(1 − 0.85) = 4.20 >
2.996, i.e., its LCM = 2 > 1 and its UC = 0.19 < 0.2.
{2 × b1} then becomes OPQ2. Note that {b1 + b2} is removed
from OPQ when the combination {2× b2} is enumerated because
2 × (− ln(1 − 0.85)) = 3.794 > 2.996, its LCM = 2 and its
UC = 0.18 < 0.19. The final OPQ is shown in Table 3.

5.2.2 OPQ-Based Algorithm
Based on the optimal priority queue, we propose an
enhanced approximation algorithm, called the optimal-
priority-queue-based algorithm (OPQ-Based for short). Its
main idea is to repeatedly utilize the optimal combinations
in the optimal priority queue to approximate the global
optimal solution. Given the number of atomic tasks in T ,
denoted by n, and the lowest common multiple of the
first element in the optimal priority queue, denoted by
LCM , the decomposition plan is globally optimal if n ≡
0, (modLCM). Otherwise, we prove that the enhanced
approximation algorithm still has a log n approximation
ratio guarantee.

The pseudo code of the OPQ-Based Algorithm is shown
in Algorithm 3. Line 1 initializes the optimal priority
queue using Algorithm 2. Then the algorithm iteratively
assigns atomic tasks to combinations of task bins in OPQ
in lines 4-17. Specifically, the algorithm assigns the first
b n
OPQ1.LCM

c × OPQ1.LCM atomic tasks to the first ele-
ment OPQ1 in OPQ in each iteration. The remaining n
mod OPQ1.LCM atomic tasks are processed in subsequent
iterations in lines 13-17. We record the previous assignment
in lines 16-17 to avoid the condition where the cost incurred



9

Algorithm 3: OPQ-Based

Input: A large-scale task T = {a1, . . . , an}, a set of
task bins {b1, . . . , bm}, a reliability threshold t

Output: An approximate decomposition plan DPT ,
and an approximate decomposition cost
CostT

1 Initialize the optimal priority queue OPQ;
2 Costprev ←∞;
3 while n > 0 do
4 while OPQ1.LCM > n do
5 Remove OPQ1 from OPQ;

6 k ← b n
OPQ1.LCM

c;
7 if k ×OPQ1.LCM ×OPQ1.UC > Costprev then
8 DPT ← Assignment(T ,

OPQprev, OPQprev.LCM );
9 CostT ←

CostT +OPQprev.LCM ×OPQprev.UC ;
10 n← n−OPQprev.LCM ;

11 else
12 DPT ← Assignment(T ,

OPQ1, k ×OPQ1.LCM );
13 CostT ←

CostT + k ×OPQ1.LCM ×OPQ1.UC ;
14 Remove the first k ×OPQ1.LCM atomic tasks

from T ;
15 n← n mod OPQ1.LCM ;
16 OPQprev ← OPQ1;
17 Costprev ← OPQ1.LCM ×OPQ1.UC ;

18 return DPT and CostT

in lines 8-10 in the current iteration is greater than the
previous one. Once the condition holds, we simply use
OPQprev to make assignments for the remaining tasks.
Since n is smaller than OPQprev.LCM , the algorithm will
terminate. We explain Algorithm 3 in the following example.

Example 9. (OPQ-Based Algorithm) Given the set of task bins
in Table 1 and a reliability threshold t = 0.95, the algorithm first
finds the optimal priority queue as in Table 3. Then in the first
iteration, the algorithm uses OPQ1 = {2× b3} to assign a1, a2
and a3. In the second iteration, it uses {2× b1} to assign a4. The
final decomposition plan is 2 × {a1, a2, a3} and 2 × {a4} with
the total cost of 1 × 3 × 0.16 + 1 × 1 × 0.2 = 0.68 (the cost of
one combination of {2 × b3} plus the cost of one combination of
{2× b1}), which is lower than 0.76 using the greedy algorithm.

Lemma 2. OPQ1 yields the lowest unit cost (OPQ1.UC) for
one atomic task in all the combinations of task bins (Comb).

Proof. Note that for any Comb which is used to accom-
plish one atomic task, its Comb.UC > OPQ1.UC if its
Comb.LCM > OPQ1.LCM , since this Comb must be
visited in Algorithm 2 and replaced by OPQ1. Suppose its
Comb.LCM < OPQ1.LCM , we consider two cases. If this
Comb remains inOPQ, it becomesOPQi and itsOPQi.UC
is still greater OPQ1.UC due to the smallest index of
OPQ1. If not, there must be an OPQi ∈ OPQ (i ≥ 1) such
that OPQi.UC < Comb.UC, and the result still holds.

Lemma 3. When the total number of tasks n is equal to
OPQ1.LCM , OPQ1 achieves an optimal solution.

Proof. From lemma 2 we know the lowest unit cost is
OPQ1.UC . Since we need to finish (at least) n atomic tasks,
the lemma follows straightaway.

By induction, we have the corollary below.

Corollary 1. When n is equal to k × OPQ1.LCM(k ∈ N+),
using OPQ1 for n times is an optimal solution.

The following theorem shows the approximation ratio of
Algorithm 3 (the OPQ-Based algorithm) for an arbitrary n.

Theorem 2. The approximation ratio of Algorithm 3 is log n,
where n denotes the number of atomic tasks in T .

Proof. We denote the index of combinations of task bins
in OPQ in Algorithm 3 by j1, j2, . . . , jr, where r is the
number of iterations of the algorithm. Then the number
of atomic tasks assigned in each iteration will be k1 ×
OPQ1.LCM, . . . , kl×OPQjr .LCM . We assume j1 = 1 for
a large-scale crowdsourcing task T , i.e., n ≥ OPQ1.LCM .
Lines 8-11 in Algorithm 3 indicate that for any s, t, 1 ≤
s ≤ t ≤ r, we have ks × OPQjs .LCM × OPQjs .UC ≥
kt ×OPQjt .UC ×OPQjt .UC . Then we have

OPT ≥ n×OPQ1.UC

≥ k1 ×OPQ1.LCM ×OPQ1.UC

≥ ks ×OPQjs .LCM ×OPQjs .UC, s = 1, 2, . . . , r.
(5)

The first inequality holds because the optimal value of the
linear programming relaxed from the original problem is a
lower bound of OPT . We sum up the costs incurred in each
iteration (ks × OPQjs .LCM × OPQjs .UC), then we have
CostT ≤ r × OPT . Next we give an upper bound of the
total number of iterations r. We consider some iteration s.
Here we use n to denote the number of remaining tasks in
this iteration. If OPQjs .LCM ≥ n/2, the remainder will
be n − OPQjs .LCM < n/2. If OPQjs .LCM < n/2, the
remainder is less than OPQjs .LCM < n/2. In total, at most
log n iterations, the algorithm terminates. The approxima-
tion ratio will be log n.

Computational Complexity Analysis: According to
Algorithm 3, the time complexity of this algorithm is
O(α log n), where α is the cost to make assignment for
OPQ1.LCM atomic tasks, which is small in practice.

6 HETEROGENEOUS SLADE
In this section, we study the heterogeneous SLADE problem,
where the atomic tasks in a large-scale crowdsourcing task
can have different reliability thresholds. In the following,
we will introduce how to extend our proposed algorithms,
Greedy and OPQ-Based in the homogeneous scenario to
solve the heterogeneous SLADE problem.

First, we shows that the Greedy algorithm (Algorithm 1)
still works by only changing the reliability thresholds of the
atomic tasks. In fact, for Algorithm 1, different reliability
thresholds ti only affect the original threshold residual θi of
each atomic task in line 2 in Algorithm 1. Thus the algorithm
still works in the heterogeneous SLADE problem.



10

Algorithm 4: Building Optimal Priority Queue Set

Input: A large-scale task T = {a1, . . . , an}, a set of
task bins B = {b1, . . . , bm}, reliability
thresholds {t1, . . . , tn}

Output: A set of optimal priority queues OPQS
1 Initialize OPQS ← ∅, θ = {θ1, . . . , θn}, where each
θi ← − ln(1− ti);

2 θmin ← min(θ1, . . . , θn);
3 θmax ← max(θ1, . . . , θn);
4 α← blog θminc, i← 0;
5 while 2α+i < θmax do
6 if 2α+i+1 > θmax then
7 τ ← θmax;

8 else
9 τ ← 2α+i+1;

10 OPQi ← Algorithm2(B, 1− eτ );
11 OPQS ← OPQS ∪OPQi;
12 i← i+ 1;

13 return OPQS

The OPQ-Based algorithm (Algorithm 3) can be also
extended to the heterogeneous scenario using the following
partition method, and we call the extended algorithm OPQ-
Extended. The main idea is to partition the whole set of
atomic tasks into groups and run Algorithm 3 for each
group. Specifically, we first use quantiles of 2α+i to divide
the range of the thresholds into different intervals. α will be
defined in line 4 of Algorithm 4. Since the upper bound of
an interval can bound the thresholds of the atomic tasks that
fall into this interval, we construct some optimal priority
queues based on the upper bounds of the divided intervals.
Then for each interval, we can perform Algorithm 3 to
obtain an approximate decomposition plan.

The Algorithm 4 shows the process that builds a set of
optimal priority queues, denoted by OPQS, based on the
range of the thresholds [θmin, θmax]. Specifically, the algo-
rithm iteratively builds an optimal priority queue OPQi

for the interval with the upper bound 2α+i+1. In line 7, it
ensures that the upper bound of the final interval is θmax.
In each iteration, the algorithm increases i by 1 in line 12
and thus proceeds to the next interval. The algorithm will
terminate until the upper bound is greater than θmax. It
finally returns the set of optimal priority queues OPQS.

Example 10 (Building Optimal Priority Queue Set). Back to
our running example of four atomic tasks a1, a2, a3 and a4, we
set their reliability thresholds to 0.5, 0.6, 0.7 and 0.86. Thus the
corresponding the values of θi = − ln(1 − ti) are θ1 = 0.69,
θ2 = 0.92, θ3 = 1.61 and θ4 = 1.97, respectively. The parameter
α is initialized as blog 0.69c = −1. In the first (i = 0) iteration,
since 2−1+0+1 = 20 = 1 < 1.97 = θmax, therefore τ = 1
and OPQ0 is generated with threshold 1 − e−1 = 0.632 using
Algorithm 2. Table 4 shows the optimal priority queue OPQ0

generated after this iteration. Then in the second (i = 1) iteration,
note that 2 > 1.97 = θmax, τ = θmax = 1.97. Hence OPQ1 is
generated with the threshold 1 − e−1.97 ≈ 0.86, which is shown
in Table 5. Finally, OPQS = {OPQ0, OPQ1} in this example.

The basic idea of the optimal priority queue-extended

Algorithm 5: OPQ-Extended

Input: A large-scale task T = {a1, . . . , an}, a set of
task bins B = {b1, . . . , bm}, reliability
thresholds {t1, . . . , tn}

Output: An approximate decomposition plan DPT ,
and an approximate decomposition cost
CostT

1 Initialize θ = {θ1, . . . , θn}, where each
θi ← − ln(1− ti);

2 α← blog θminc, β ← dlog θmax
θmin
e;

3 Initialize OPQS = {OPQ0, . . . , OPQβ−1} using
Algorithm 4;

4 Set S0, . . . , Sβ−1 all ∅;
5 foreach ai ∈ T do
6 Find the lowest j s.t. θi ≤ 2j ;
7 Assign ai into Sj−α−1;

8 foreach task set Si do
9 if i equals β − 1 then

10 DPSi ← Algorithm3(B, tmax, OPQ
i);

11 CostSi ← Algorithm3(B, tmax, OPQ
i);

12 else
13 DPSi ← Algorithm3(B, 1− e−2α+i+1

, OPQi);
14 CostSi ← Algorithm3(B, 1−e−2α+i+1

, OPQi);

15 DPT ← DPT ∪DPSi ;
16 CostT ← CostT + CostSi ;

17 return DPT and CostT

(OPQ-Extended) algorithm is to partition all atomic tasks
into different groups and run the OPQ-Based algorithm
(Algorithm 3) based on the building optimal priority queue
set algorithm (Algorithm 4) for each group. Algorithm 5
illustrates the procedure. First, all atomic tasks are divided
into different groups in lines 5-7. For each atomic task, the
algorithm finds the upper bound of the interval in which θi
lies, and assigns it to the corresponding set. Then, for each
set of atomic tasks Si, we perform the OPQ-Based algorithm
(Algorithm 3) using the corresponding OPQi in lines 8-16.
Finally, we merge the decomposition plan for each set to
generate the global decomposition plan in line 17.

Example 11 (OPQ-Extended Algorithm). Back to our running
example of four atomic tasks a1, a2, a3 and a4 with their reliabil-
ity thresholds to 0.5, 0.6, 0.7 and 0.86, the optimal priority queue
set OPQS = {OPQ0, OPQ1} is generated in Example 10.
Based on OPQS, the four atomic tasks are divided into two sets
S0 and S1. Specifically, a1, a2 and a3, a4 are assigned to S0

TABLE 4: The optimal priority queue OPQ0 (t = 0.632)

Comb {1× b3} {1× b2} {1× b1}
UC 0.08 0.09 0.1
LCM 3 2 1

TABLE 5: The optimal priority queue OPQ1 (t = 0.86)

Comb {1× b1}
UC 0.1
LCM 1



11

and S1, respectively. Algorithm 3 returns the decomposition plan
DPS0

= {a1, a2} for S0 using the combination of {1 × b2} in
OPQ0. Similarly, DPS0

= {{a3}, {a4}} for S1 using the com-
bination of {1× b1} in OPQ1. Finally the global decomposition
plan is {{a1, a2}, {a3}, {a4}} with a total cost of 0.38.

Theorem 3. The approximation ratio of Algorithm 5 is
2dlog θmax

θmin
e log n.

Proof. For any atomic task a ∈ Si, the transformed threshold
of a should be in the range of [2α+i, 2α+i+1). We define
Cost[2α+i,2α+i+1) as the cost incurred by the algorithm when
making assignments for all the atomic tasks in Si. Let
OPT2α+i+1 be the minimum cost when the transformed
threshold is homogeneously 2α+i+1. Following Theorem 2,
we immediately haveCost[2α+i,2α+i+1) ≤ log n∗OPT2α+i+1 .
Note that adopting the decomposition plan of OPT2α+i

twice can be regarded as a feasible decomposition plan for
the atomic tasks with the homogeneous transformed thresh-
old of 2α+i+1. This indicates that OPT2α+i+1 ≤ 2OPT2α+i .
When we use OPT[2α+i,2α+i+1) to describe the minimum
cost where the transformed thresholds of atomic tasks in
Si are heterogeneously in the range of [2α+i, 2α+i+1), we
have OPT2α+i ≤ OPT[2α+i,2α+i+1). Summing up over i,
the cost incurred by the algorithm Cost is no greater than
2dlog θmax

θmin
e log nOPT , where OPT is the optimal solution,

because i = 0, · · · , dlog θmax
θmin
e − 1.

Computational Complexity Analysis: In Algorithm 5,
there are at most dlog θmax

θmin
e iterations. Thus for each itera-

tion, the time complexity is O(dlog θmax
θmin
e(log n + α + γ)),

where α is the cost to find the optimal priority queue and γ
is the cost to make assignment for Si.

7 EXPERIMENTAL STUDY

This section presents the performance evaluation. All exper-
iments are conducted on an Intel(R) Core(TM) i7 3.40GHz
PC with 4GB main memory and Microsoft Windows 7 OS.
All the algorithms are implemented and compiled using
Microsoft’s Visual C++ 2010.

Our empirical studies are conducted on two real datasets
gathered by running tasks on Amazon MTurk. The first
dataset is gathered from the jelly-beans-in-a-jar experiments
(labelled as “Jelly”) and the second is from the micro-
expression identification experiments (labelled as “SMIC”).
The detailed settings of the two experiments are presented
in Section 2. We set the default value of maximum car-
dinality (|B|) to 20, and the number of atomic tasks to
10,000. In homogenous scenarios, the reliability threshold t
is set to 0.9 for all atomic tasks. In heterogeneous scenarios,
the default reliability thresholds are generated according to
the Normal distribution with parameters µ and σ set to
0.9 and 0.03, respectively. The experiments with reliability
thresholds generated according to heavy tailed and uniform
distributions are also conducted. As the results are similar,
we omit them due to the limited space.

In the following evaluations, Baseline, Greedy, and OPQ-
Based represent the baseline algorithm, the greedy algo-
rithm, and the optimal-priority-queue-based algorithm, re-
spectively. OPQ-Extended is the extended OPQ-Based algo-

rithm for heterogeneous scenarios. We mainly evaluate the
effectiveness and the efficiency of the algorithms.

7.1 Evaluations in the Homogeneous Scenario
This subsection presents the performance of the three algo-
rithms in the homogeneous scenario.

Varying t. Figure 6a and Figure 6b report the decompo-
sition cost with various reliability thresholds. The decompo-
sition costs of all the three algorithms decrease with a lower
reliability threshold t, because fewer crowd workers (and
thus task bins) are needed to satisfy the lower reliability
requirement. Figure 6c and 6d show the running time of
the three algorithms with the same sets of reliability thresh-
olds. The running time of OPQ-Based is insensitive to the
reliability threshold, while those of baseline and Greedy drop
dramatically with low reliability thresholds. This is because
OPQ-Based finds the optimal combination using the optimal-
priority-queue structure in advance.

Varying |B|. Figure 6e and Figure 6f show the decompo-
sition cost when the maximum cardinality |B| varies from
1 to 20. With the increase of the maximum cardinality |B|,
all algorithms tend to gain lower cost, as they can choose
from more kinds of task bins. We also see that the de-
composition cost of Baseline is significantly affected by |B|.
This is reasonable since Baseline obtains the solution via the
randomized rounding method, which is easily affected by a
random noise when |B| is small. Conversely, the other two
algorithms are less sensitive to |B|, especially when |B| ≥ 6.
Then we test the efficiency of the proposed algorithms with
the same set of |B|. The results are shown in Figure 6g
and Figure 6h. OPQ-Based outperforms the others due to
the optimal priority queue data structure design.

Scalability. We first study the decomposition cost of the
three algorithms, by setting the number of atomic tasks, i.e.,
parameter #, from 1,000 to 10,000. Figure 6i and Figure 6j
compare the decomposition cost of the three algorithms. As
expected, when the # of atomic tasks increases from 1,000 to
100,000, the decomposition cost of the three algorithms all
increases. This is because more atomic tasks lead to more
crowd workers and thus more total cost. OPQ-Based has
the smallest decomposition cost on the two datasets. This
is because OPQ-Based first finds the optimal combinations
for an atomic task and provides the decomposition plan
in terms of the optimal combinations. This also verifies the
better approximation ratio of OPQ-Based in practice. Greedy
is more effective than Baseline in some cases. This is because
Baseline utilizes a randomized rounding method, which may
not be effective in certain cases. Figure 6k and Figure 6l
plot the running time of the three algorithms with the same
set of atomic task quantities. OPQ-Based is the fastest, and
Baseline is much slower than OPQ-Based but faster than
Greedy. This is because OPQ-Based pre-computes the optimal
combinations for an atomic task while Greedy adopts the
iterative strategy based on the local optimal solutions.

Conclusion. OPQ-Based is both more effective and effi-
cient than the other two. Baseline is the least effective and
Greedy is the least efficient.

7.2 Evaluations in the Heterogeneous Scenario
This subsection presents the performance of the algorithms
for the heterogeneous scenario, where different atomic tasks



12

Reliability Threshold t

0.
870.
9 

0.
92

0.
95

0.
97

C
os

t (
U

S
D

)

400

500

600

700

800

900

1000

1100

1200

Greedy
OPQ-Based
Baseline

(a) Homo(Jelly): t vs. Cost

Reliability Threshold t

0.
870.
9 

0.
92

0.
95

0.
97

C
os

t (
U

S
D

)

300

400

500

600

700

800

900

1000

1100

1200

1300

Greedy
OPQ-Based
Baseline

(b) Homo(SMIC): t vs. Cost

Reliability Threshold t

0.
870.
9 

0.
92

0.
95

0.
97

T
im

e 
(s

ec
on

ds
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Greedy
OPQ-Based
Baseline

(c) Homo(Jelly): t vs. Time

Reliability Threshold t

0.
870.
9 

0.
92

0.
95

0.
97

T
im

e 
(s

ec
on

ds
)

0.2

0.4

0.6

0.8

1

1.2

1.4

Greedy
OPQ-Based
Baseline

(d) Homo(SMIC): t vs. Time

Max. Cardinality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
U

S
D

)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Greedy
OPQ-Based
Baseline

(e) Homo(Jelly): |B| vs. Cost

Max. Cardinality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
U

S
D

)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Greedy
OPQ-Based
Baseline

(f) Homo(SMIC): |B| vs. Cost

Max. Cardinality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e 
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

16

Greedy
OPQ-Based
Baseline

(g) Homo(Jelly): |B| vs. Time

Max. Cardinality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e 
(s

ec
on

ds
))

0

2

4

6

8

10

12

14

Greedy
OPQ-Based
Baseline

(h) Homo(SMIC): |B| vs. Time

# of atomic tasks (×104)

0.
1

0.
3

0.
5 1 
 

1.
5 2 
 

3 
 

5 
 

7.
5

10
 

C
os

t (
U

S
D

)

0

1000

2000

3000

4000

5000

6000

7000

8000

Greedy
OPQ-Based
Baseline

(i) Homo(Jelly): # vs. Cost

# of atomic tasks (×104)

0.
1

0.
3

0.
5 1 
 

1.
5 2 
 

3 
 

5 
 

7.
5

10
 

C
os

t (
U

S
D

)

0

1000

2000

3000

4000

5000

6000

7000

8000

Greedy
OPQ-Based
Baseline

(j) Homo(SMIC): # vs. Cost

# of atomic tasks (×104)

0.
1

0.
3

0.
5 1 
 

1.
5 2 
 

3 
 

5 
 

7.
5

10
 

T
im

e 
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

Greedy
OPQ-Based
Baseline

(k) Homo(Jelly): # vs. Time

# of atomic tasks (×104)

0.
1

0.
3

0.
5 1 
 

1.
5 2 
 

3 
 

5 
 

7.
5

10
 

T
im

e 
(s

ec
on

ds
)

0

20

40

60

80

100

120

Greedy
OPQ-Based
Baseline

(l) Homo(SMIC): # vs. Time

Fig. 6: Results of Homogeneous Scenarios

σ of Reliability Threshold t
i

0.
01

0.
02

0.
03

0.
04

0.
05

C
os

t (
U

S
D

)

300

400

500

600

700

800

900

1000

Greedy
OPQ-Extended
Baseline

(a) Heter(Jelly): σ of t vs. Cost

σ of Reliability Threshold t
i

0.
01

0.
02

0.
03

0.
04

0.
05

T
im

e 
(s

ec
on

ds
)

0

1

2

3

4

5

6

Greedy
OPQ-Extended
Baseline

(b) Heter(Jelly): σ of t vs. time

µ of Reliability Threshold t
i

0.
870.
9 

0.
92

0.
95

0.
97

C
os

t (
U

S
D

)

300

400

500

600

700

800

900

1000

1100

1200

Greedy
OPQ-Extended
Baseline

(c) Heter(Jelly): µ of t vs. Cost

µ of Reliability Threshold t
i

0.
870.
9 

0.
92

0.
95

0.
97

T
im

e 
(s

ec
on

ds
)

0

1

2

3

4

5

6

Greedy
OPQ-Extended
Baseline

(d) Heter(Jelly): µ of t vs. Time

Fig. 7: Results of Heterogeneous Scenarios

may have different reliability thresholds. We generate the
reliability thresholds following the Normal distribution. As
with the evaluations for the homogeneous scenario, the
experimental results on Jelly and SMIC are similar in the
heterogenous scenario. Hence we only present the results
on the “Jelly” dataset in the heterogenous scenario.

Varying standard deviation σ. Figure 7a and Figure 7b
show the performance by varying the standard deviation σ
of the reliability thresholds. With increasing σ, the decompo-
sition costs of the three algorithms decrease. However, the
change is not monotonous. It depends on two factors. First,
as σ increases, the number of distinct reliability thresholds
increases. Yet the decomposition cost with more distinct
reliability thresholds might not be greater than that with
fewer distinct reliability thresholds. The decomposition cost
depends on the values of the reliability thresholds rather

than the number of distinct reliability thresholds. Thus, the
change of decomposition cost is not monotonous. Second,
as σ increases, the likelihood of larger reliability thresholds
also increases. The increase of the reliability threshold is
ln(1 − ∆t), where ∆t is the increase ratio of the reliability
threshold t. Thus, the trend of decomposition cost must de-
crease when the standard deviation of reliability thresholds
increases. Figure 7b shows that the running time of the three
algorithms increases when σ increases. Due to the increase
of σ, the number of distinct reliability thresholds increases.
Hence, the three algorithms need more search space to
find their approximate optimal solutions. Particularly, the
running time of OPQ-Extended increases notably because
it has to build a priority queue for each type of reliability
threshold. With more distinct reliability thresholds, OPQ-
Extended needs more running time.



13

# of atomic tasks (×104)

0.
1

0.
3

0.
5 1 
 

1.
5 2 
 

3 
 

5 
 

7.
5

10
 

T
im

e 
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

Greedy
OPQ-Extended
Baseline

(a) Heter(Jelly): # vs. Time

# of atomic tasks (×104)

0.
1

0.
3

0.
5 1 
 

1.
5 2 
 

3 
 

5 
 

7.
5

10
 

T
im

e 
(s

ec
on

ds
)

0

50

100

150

Greedy
OPQ-Extended
Baseline

(b) Heter(SMIC): # vs. Time

Fig. 8: Scalability Results of Heterogeneous Scenarios

Varying mean µ. Figures 7c and 7d show the results by
varying the mean µ of reliability thresholds. With decreasing
µ, the decomposition cost of the three algorithms decreases.
In most cases, OPQ-Extended has the lowest decomposition
cost. This makes sense because OPQ-Extended first discovers
the optimal combination for an atomic task and provides the
decomposition plan based on the optimal combination.

Scalability. We study the scalability of the proposed
algorithms in Figures 8a and 8b over both the Jelly and
SMIC datasets, by varying the parameter # from 1,000 to
100,000. The overall tendency resembles the cases in homo-
geneous scenarios. But with larger number of the atomic
tasks, OPQ-Based takes longer running time compared to
that in homogeneous scenarios. This is because OPQ-Based
has to construct optimal priority queues for various distinct
reliability threshold values in heterogeneous scenarios.

Conclusion. In the heterogeneous scenarios, when the
number of distinct reliability thresholds increases, the three
algorithms spend more running time. When the number
of lower reliability thresholds increases, the decomposition
cost will decrease.

8 RELATED WORK

Human computation has been practiced for centuries.
Specifically, whenever a “human” serves to “compute”, a
human computation is observed. This leads to a history
of Human Computation even longer than that of electronic
computer. However, with the emergence of Internet web ser-
vice, especially the one that facilitates online labor recruiting
and managing like Amazon MTurk (AMT) and oDesk, hu-
man computation starts to experience a new age where the
source of human is broadened to a vast pool of crowds,
instead of designated exerts or employees. This type of
outsourcing to crowds, i.e., crowdsourcing, is now receiving
countless success in many areas such as fund raising, logis-
tics, monitoring and so on. The practice introduced in this
paper is within the collection of data-driven applications,
where database services and data mining services adopt
online crowds as a Human Processing Unit (HPU) to tackle
human intrinsic tasks [26], [27], [28].

In data-driven applications, human cognitive abilities
are mainly exploited in two types: voting among many
options, and providing contents according to certain re-
quirements. Most basic queries in database [8] and data
mining [29], [30] can be decomposed into simple voting as
human tasks: task assignment [31], [32], [33], filtering [4],
[34] into two-option voting (Yes or No), join [5], [17], entity

resolution [5], [35], [36], and schema matching [37] into
two-option or multiple voting (connecting same entities),
and ranking and top-k [2], [3], [38]. Meanwhile, to break
the close world assumption in traditional databases, human
are enrolled to provide extraneous information to answer
certain queries: item enumeration [39], counting [40], and
so on.

Moreover, several recent works have also been devel-
oped to optimize the performance of crowdsourcing plat-
forms for different aspects [18], [21]. In particular, [18]
proposes a difficulty control framework for the tasks based
on majority voting aggregation rules. CrowdForge [21] is a
prototype to decompose complex task like article writing,
science journalism to small tasks. Note that most of the
aforementioned work focus on higher-level query transfor-
mation from a specific type of task into the form of task bins
and the corresponding aggregation rules, but our paper is
the first work that focuses on providing a comprehensive
instruction to build the in-effect “query optimizer” module
in crowd-powered databases.

9 CONCLUSION

In this paper, we propose a general crowdsourcing task
decomposition problem, called the Smart Large-scAle task
DEcomposer (SLADE) Problem, which is proven to be NP-
hard. To solve the SLADE Problem, we study it in ho-
mogeneous and heterogeneous scenarios, respectively. In
particular, we propose a series of efficient approximation
algorithms using the greedy strategy and the optimal prior-
ity queue data structure to discover near-optimal solutions.
Finally, we verify the effectiveness and efficiency of the
proposed algorithms through extensive empirical studies
over representative crowdsourcing platforms.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-
tive comments on this work. Yongxin Tong and Weifeng
Lv are supported in part by National Grand Fundamental
Research 973 Program of China under Grant 2015CB358700,
NSFC Grant No. 61502021 and 61532004, and SKLSDE
(BUAA) Open Program SKLSDE-2016ZX-13. Lei Chen is
supported in part by the Hong Kong RGC Project 16202215,
Science and Technology Planning Project of Guangdong
Province, China, No. 2015B010110006, NSFC Grant No.
61729201, 61232018, Microsoft Research Asia Collaborative
Grant, Huawei Grant and NSFC Guang Dong Grant No.
U1301253. Lidan Shou is supported in part by NSFC Grant
No. 61672455. Lei Chen and Weifeng Lv are the correspond-
ing authors of this paper.

REFERENCES

[1] J. Howe, Crowdsourcing: Why the Power of the Crowd Is Driving the
Future of Business. Crown Business, 2009.

[2] S. Guo, A. G. Parameswaran, and H. Garcia-Molina, “So who
won?: dynamic max discovery with the crowd,” in SIGMOD 2012.

[3] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis, “Max
algorithms in crowdsourcing environments,” in WWW 2012.

[4] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom, “Crowdscreen: algorithms for filtering
data with humans,” in SIGMOD 2012.



14

[5] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowd-
sourcing entity resolution,” PVLDB 2012.

[6] H. Hu, Y. Zheng, Z. Bao, G. Li, J. Feng, and R. Cheng, “Crowd-
sourced POI labelling: Location-aware result inference and task
assignment,” in ICDE 2016.

[7] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng, “Truth inference in
crowdsourcing: Is the problem solved?” PVLDB 2017.

[8] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: answering queries with crowdsourcing,” in SIGMOD
2011.

[9] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Poly-
zotis, and J. Widom, “Deco: a system for declarative crowdsourc-
ing,” PVLDB 2012.

[10] H. Park and J. Widom, “Query optimization over crowdsourced
data,” PVLDB 2013.

[11] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller,
“Demonstration of qurk: a query processor for humanoperators,”
in SIGMOD 2011.

[12] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart, “Crowd-
miner: Mining association rules from the crowd,” PVLDB 2013.

[13] Y. Zheng, G. Li, and R. Cheng, “DOCS: domain-aware crowd-
sourcing system,” PVLDB 2016.

[14] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu,
X. Zhang, and H. Yuan, “CDB: optimizing queries with crowd-
based selections and joins,” in SIGMOD 2017.

[15] G. Li, Y. Zheng, J. Fan, J. Wang, and R. Cheng, “Crowdsourced
data management: Overview and challenges,” in SIGMOD 2017.

[16] A. Jain, A. D. Sarma, A. Parameswaran, and J. Widom, “Un-
derstanding workers, developing effective tasks, and enhancing
marketplace dynamics: A study of a large crowdsourcing market-
place,” PVLDB 2017, vol. 10, no. 7, pp. 829–840, 2017.

[17] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller,
“Human-powered sorts and joins,” PVLDB 2011.

[18] J. Gao, X. Liu, B. C. Ooi, H. Wang, and G. Chen, “An online cost
sensitive decision-making method in crowdsourcing systems,” in
SIGMOD 2013.

[19] T. Pfister, X. Li, G. Zhao, and M. Pietikainen, “Recognising spon-
taneous facial micro-expressions,” in ICCV 2011.

[20] P. D. Adamczyk and B. P. Bailey, “If not now, when?: the effects of
interruption at different moments within task execution,” in CHI
2004.

[21] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “Crowdforge:
crowdsourcing complex work,” in UIST 2011.

[22] S. Faradani, B. Hartmann, and P. G. Ipeirotis, “What’s the right
price? pricing tasks for finishing on time,” in HCOMP 2011.

[23] V. V. Vazirani, Approximation Algorithms. Springer Science &
Business Media.

[24] M. Silvano and T. Paolo, Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, 1990.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms (3rd Version). MIT Press 2009.

[26] G. Li, J. Wang, Y. Zheng, and M. J. Franklin, “Crowdsourced data
danagement: A survey,” TKDE 2016.

[27] H. Garcia-Molina, M. Joglekar, A. Marcus, A. G. Parameswaran,
and V. Verroios, “Challenges in data crowdsourcing,” TKDE 2016.

[28] A. I. Chittilappilly, L. Chen, and S. Amer-Yahia, “A survey of
general-purpose crowdsourcing techniques,” TKDE 2016.

[29] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart, “Crowd
mining,” in SIGMOD 2013.

[30] R. Gomes, P. Welinder, A. Krause, and P. Perona, “Crowdcluster-
ing,” in NIPS 2011.

[31] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng, “Qasca: A quality-
aware task assignment system for crowdsourcing applications,” in
SIGMOD 2015.

[32] Y. Zheng, R. Cheng, S. Maniu, and L. Mo, “On optimality of jury
selection in crowdsourcing,” in EDBT 2015.

[33] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng, “icrowd: An adaptive
crowdsourcing framework,” in SIGMOD 2015.

[34] A. G. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta,
N. Polyzotis, and J. Widom, “Optimal crowd-powered rating and
filtering algorithms,” PVLDB 2014.

[35] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng, “Leveraging
transitive relations for crowdsourced joins,” in SIGMOD 2013.

[36] C. Chai, G. Li, J. Li, D. Deng, and J. Feng, “Cost-effective crowd-
sourced entity resolution: A partial-order approach,” in SIGMOD
2016.

[37] C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao, “Reducing
uncertainty of schema matching via crowdsourcing,” PVLDB 2013.

[38] S. B. Davidson, S. Khanna, T. Milo, and S. Roy, “Using the crowd
for top-k and group-by queries,” in ICDT 2013.

[39] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar, “Crowd-
sourced enumeration queries,” in ICDE 2013.

[40] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh, “Count-
ing with the crowd,” PVLDB 2012.

Yongxin Tong received the Ph.D. degree in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy in 2014. He is currently an associate pro-
fessor in the School of Computer Science and
Engineering, Beihang University. His research
interests include crowdsourcing, uncertain data
mining and management and social network
analysis. He is a member of the IEEE.

Lei Chen received the B.S. degree in computer
science and engineering from Tianjin University,
China, in 1994, the M.A. degree from the Asian
Institute of Technology, Thailand, in 1997, and
the Ph.D. degree in computer science from the
University of Waterloo, Canada, in 2005. He is
now an professor at the Department of Com-
puter Science and Engineering, Hong Kong Uni-
versity of Science and Technology. His current
research interests include data-driven crowd-
sourcing, uncertain and probabilistic databases,

Web data management, multimedia a. Currently, he serves as an editor-
in-chief for VLDB Journal, an associate editor-in-chief for IEEE Transac-
tion on Data and Knowledge Engineering and a Trustee Board Member
of VLDB Endowment.

Zimu Zhou received the Ph.D. degree in com-
puter science and engineering from the Hong
Kong University of Science and Technology in
2015, the BE degree in 2011 from the Depart-
ment of Electronic Engineering at Tsinghua Uni-
versity, Beijing, China. He is currently a post-
doctoral researcher at the Computer Engineer-
ing and Networks Laboratory, ETH Zurich. His
research interests include wireless networks,
mobile computing and crowdsourcing. He is a
student member of the IEEE and ACM.

H. V. Jagadish received the Ph.D. degree from
Stanford University in 1985. He is currently the
Bernard A Galler Collegiate professor of elec-
trical engineering and computer science at the
University of Michigan. His research interests
include databases and Big Data. He is a member
of the IEEE.

Lidan Shou received the Ph.D. degree in com-
puter science from the National University of
Singapore. He is a professor with the Col-
lege of Computer Science, Zhejiang University,
China. Prior to joining the faculty, he worked in
the software industry for more than two years.
His research interests include spatial database,
data access methods, visual and multimedia
databases, and web data mining.

Weifeng Lv received the Ph.D. degree in com-
puter science from Beihang University. He is a
professor, the dean of the School of Computer
Science and Engineering, and vice director of
the State Key Laboratory of Software Devel-
opment Environment. His research interests in-
clude large-scale software development meth-
ods and massive data oriented software support
technology. He is the leader of the group of
national smart city standard.


	SLADE: A smart large-scale task decomposer in crowdsourcing
	Citation

	Introduction
	Motivation Experiments
	Problem Statement
	Preliminaries
	SLADE Problem

	Problem Reduction
	Reduction of Reliability
	Complexity Results
	Baseline Algorithm

	Homogeneous SLADE
	Greedy Algorithm
	Optimal-Priority-Queue-based (OPQ) Algorithm
	Constructing the Optimal Priority Queue
	OPQ-Based Algorithm


	Heterogeneous SLADE
	Experimental Study
	Evaluations in the Homogeneous Scenario
	Evaluations in the Heterogeneous Scenario

	Related Work
	Conclusion
	References
	Biographies
	Yongxin Tong
	Lei Chen
	Zimu Zhou
	H. V. Jagadish
	Lidan Shou
	Weifeng Lv


