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Abstract This paper analyzes an unreliable MX/G(M/H)/1 retrial system with vacation.
We present closed-form expressions for the important performance indicators of the system,
and derive the optimal vacation policies for minimizing the average waiting time of orbiting
customers. The performance metrics relevant for helpline services are developed. Numerical
experiments are conducted to examine the effect of vacation policy on the queue length and
busy period of the system.

Keywords Retrial systems · Vacations · Batch arrivals · Breakdown · Reliability

1 Introduction

We explore the application of retrial system to model helpline service provision in non-
government organization (NGO). Operating under a resource-constrained environment,
retrial systems with repeated attempts are prevalent and improving operational efficiency
can be challenging. Three attributes are particularly salient: (i) repeated requests for urgent
aid-support are often less prone to balking, (ii) allocation of resources are usually determined
by NGO and (iii) support that is limited by manpower expertise. To motivate, we consider
NGOs that manage helpline services focusing on domestic issues such as family violence
to scarce resource distribution. The lack of manpower is a cruel reality that plagues NGOs
and is in contrast to the commercial environment where large number of live agents are
staffed. Furthermore, high level of neediness implies that blocking is less likely to happen.
Constrained by manpower, organization can consider the following policy for the blocked
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victim: server will request for victim’s number and searches for it when it is available, i.e.,
not serving other callers. Once these blocked distressed callers are cleared from the system,
the helpline goes into a period of vacation to represent periods under which helpline mainte-
nance is carried out, or duration for additional training to better equip the agent in handling
distressed callers. Motivated by the work of Atencia et al. (2008), we develop a stylized
model to capture useful performance metrics for service helplines where callers do not balk
and vacation is an important feature. The lack of financial resources and lack of manpower
are the main drivers of blocking and backlogging the potential callers seeking assistance.
With the implementation of searching and servicing the blocked callers, the helpline service
provider is in better control of handling stress level.

2 Literature review

The extant literature on retrial systems is vast. For the keen reader, detailed overviews can
be found in representative bibliographies such as Artalejo (1999a, b) and the survey in Falin
(1990). Generally, there are two types of retrial mechanisms: classical retrial policy and
constant retrial policy. For systems with classical retrial policy, one can refer the works of
Kulkarni and Choi (1990), Yang and Li (1994), Wang et al. (2001), Li et al. (2006) and
Falin (2008, 2010). The rate of repeated attempt is nθ whenever there are n callers who
independently seek service at a rate of θ . In our model, we adopt the constant retrial policy
that is introduced by Fayolle (1986)who investigate a telephone exchangemodel where caller
at the head of the queue retries for service in an M/M/1 system. In this case, the retrial rate
becomes (1−δ0,n)θ , where δ0,n is the Kronecker delta symbol. Choi et al. (1992) study retrial
queues motivated by communications protocols such as the ALOHA protocol and unslotted
CSMA/CD.Atencia et al. (2008) note that such retrial policy is ubiquitous in communications
and computer networks where repeated attempts are made by processor units independent
to the number of messages stored in each node of the waiting server. Meanwhile, retrial
systems with constant retrial policy are studied by Artalejo (1997), Aissani (2000), Li and
Zhao (2005), and Atencia et al. (2008). There is a growing interest in retrial systems with
vacation. Artalejo (1997) considers an M/G/1 queue with multiple vacations and N -policy.
Later, Aissani (2000) extends the study to MX/G/1 retrial system with multiple vacation.
Krishna Kumar et al. (2002) consider Bernoulli vacation schedule with general retrial times
using the technique of supplementary variables. Using the same technique, Senthilkumar and
Arumuganathan (2008) consider the single server retrial system with batch arrivals and two
phases of essential services under Bernoulli vacation policy.

We explore the application of MX/G(M/H)/1 retrial system with vacation that mimics
the infrastructure of a service helpline provider operating in a resource-challenged environ-
ment. First of all, the constant retrial rate whose independence from the orbit size mimics the
policy of service provider searching for backlogged customers. Next, the blocking of callers
frequently arises in situations when server is busy, breaks down or unavailable due to vaca-
tion. Server unreliability captures random malfunctioning from (a) agent falling sick or (b)
general equipment breakdown. On the other hand, service unavailability generated by server
vacation describes period of (a) equipment maintenance, (b) training, or even some necessary
procedures unique to humanitarian operations (c) paper work clearance from authority (if
service is requested for shipment of aid items). Thus, our vacation policy is very general
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that is based on multiple adaptive vacation (MAV) from Tian and Zhang (2006).1 We define
j-adaptive vacation policy to be the MAV policy when the maximum number of allowable
vacations is j .

Our contribution can be summarized can follows. First, we directly extend the work of
Atencia et al. (2008) by developing batch arrival, unreliable single server retrial system
with provider-determined j-adaptive vacation. With server vacation, we suggest an approach
based on collective marks to obtain the k-busy period into (a) server idle (due to waiting
for retrial) and (b) length of engaging the callers. As such, the busy period for the retrial
system under j-adaptive vacation is derived for the first time. Second, we deviate from the
work of Chang and Ke (2009) in the following way. While they focus on generalized retrial
times, we are more concerned with a model where restoration effort is necessary after server
breakdown by assuming that repair time is random in nature.

The rest of the paper is organized as follows. Section 3 presents the model of the system.
Section 4 studies the ergodicity of the embedded Markov chain which describes the number
of callers in the system when a caller is departing. Using supplementary variables, Sect. 5
obtains the probability generating functions for the number of callers under various vacation
policies. Section 7 derives the average waiting time of the callers and the average length of
the regenerative cycle. Section 6 analyzes the busy period, which is a key concern for service
providers in practice due to its direct implication on their utilization. Section 8 formulates the
long run average cost, based on the derivation of the average length of the regenerative cycle
in Sect. 7. We also determine the optimal vacation policy that is based on the cost parameters.
The conditions for the optimal vacation policies are presented. Section 9 extensively conducts
the numerical experiments. Section 10 suggests avenues for further research and concludes
the study.

3 Model

We consider our model from the perspective of helpline implementation by means of a parsi-
monious single-server retrial system with no waiting space. The Laplace–Stieltjes transform
for any cumulative distribution function F(·) with F(0) = 0 and F(∞) = 1 is given by
F̃(s) = ∫∞

0 e−st dF(t).

3.1 Arrivals

The distressed callers arrive in batches forming a compound Poisson process with rate λ.
With no waiting space, blocked callers are instructed to leave behind contact details and the
server will search for these blocked callers after service completion. Under this searching
mechanism, one can alternatively hold the view that the retrial rate induced from repeated
attempts is (1 − δ0,n)θ . Let X be the random variable for the size of an arriving batch such
that P(X = k) = ck . Define X (z) to be the p.g.f (probability generating function) of the
batch size. For the nth moment of X , EXn is denoted by γn .

1 MAV policies are based on the number of vacations taken before the first caller arrives. The server takes
vacation consecutively until at least one caller is found waiting in the system at the vacation completion instant
given a maximum number of vacations allowed. If no caller is found in the system after the end of the last
allowable vacation, server goes into idling and waits until one caller arrives. MAV policy is first proposed by
Takagi (1991) and later by Ke and Chu (2006) and Ke (2007) who refer it as “modified vacation policy”.
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3.2 Server

For simplicity, we assume that every caller will be served until service completes. The next
service epoch begins during the earlier time between the searched caller and new distressed
caller. Thus, competition for assistance comes from two sources: external arrival and orbit.
Let B be the random variable for the service time of a caller with c.d.f B(·), B(0) = 0, and
B(∞) = 1. Denote EB to be the average caller’s service time excluding repair. We assume
that the server has an exponential lifetime with failure intensity of α. When the server fails,
it is repaired immediately and the time required for repair is random variable R, with c.d.f
R(·), R(0) = 0, and R(∞) = 1. Let ER be the average repair time. On his arrival, the caller
who finds that the server is broken down or busy will join the retrial group. No service will
be rendered when the system breaks down. In the case when server fails during service, the
caller will wait until the server is repaired. Let H be the random variable representing the
generalized service time for each caller whose distribution function is given by H(t). From
Tang (1997), it can be shown that

H(t) = P(H ≤ t) =
∞∑

l=0

∫ t

0
R(l)(t − u)e−αu (−αu)l

l! dB(u).

Using the argument found inWang et al. (2001, p. 366) of taking Laplace transform, we have
EH = EB(1 + αER). Let Mn denote the number of callers arriving during the nth service
time with P(Mn = k) = mn,k . If H̃(s) denote the LST of distribution function H w.r.t s,
then we can show that

∑∞
k=0 z

k P(Mn = k) = H̃(λ − λX (z)).

3.3 Vacation

Depending on the vacation policy predetermined by the organization, there are two quantities
of interests: the number of callers arriving during one vacation period and the total number of
callers over the entire vacation. The length of one vacation period is described by random V
with c.d.f V (·), V (0) = 0, and V (∞) = 1. Under policyF j , the server will leave for another
vacation when no callers are found in the orbit if j > 1 until a maximum j of such vacations
is taken. In this case, {Vn : 1 ≤ n ≤ j} is the associated i.i.d sequence of vacation period such
that Vn =d V , where =d means equal in distribution. Let ν be the total number of callers at
the end of the vacation. If we denote ζ j (z) = ∑∞

k=0 z
k P(ν = k), then P{ν = 0} = Ṽ (λ) j

whenever a maximum of j vacations is taken by the server. The p.g.f for the number of callers
at the end of the vacation is

ζ j (z) = Ṽ (λ) j + 1 − Ṽ (λ) j

1 − Ṽ (λ)
[Ṽ (λ − λX (z)) − Ṽ (λ)]. (1)

We note that (1) captures the retrial effect and is different from Takagi (1991, see Chapter
2). This departure is due to the absence of retrial phenomena for the conventional M/G/1
queue, implying that server idleness or non-idleness is fully determined by vacation termi-
nal epoch. With server dedicated for searching blocked victims, this presents an additional
window for idleness after a maximum number of allowable vacations. Therefore, we make
a distinction between arrivals during a vacation period and arrivals during idle period. Thus,

Eν = 1−Ṽ (λ) j

1−Ṽ (λ)
λγ1EV .
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4 Ergodicity results

We analyze the embedded Markov chain under F j to determine the p.g.f for the queue
length and its associated ergodicity result. The key is to obtain an embedded Markov Chain
for the queue length using {Sn : n ∈ N }, the sequence of successive epoch of service
completion. It is sufficient to study the process at service completion times. We define Qn =
QP (Sn+) = OP (Sn+) and pi j = P(Qn+1 = j |Qn = i). Throughout this paper, let us
define ρ = λγ1EH , r(θ) = λγ1

λ+θ
, and κ(θ) = ρ + r(θ).

Lemma 1 The probability generating function for the queue-length left by a departing caller
can be written as

Q
F j
+ (z) = C j (θ)

λγ1
× H̃(λ − λX (z))

(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z

× {(1 − Ṽ (λ − λX (z)))(λX (z) + θ)g j (λ) + θ Ṽ (λ) j (1 − X (z))}. (2)

Furthermore, the embedded Markov chain at departure epoch for the process {Q(t) : t ≥ 0}
is ergodic if and only if κ(θ) < 1.

The necessary and sufficient condition for the ergodicity of the embedded Markov
chain is derived using Kaplan’s condition and Pake’s Lemma. Our result says that

λEX
(
EB(1 + αER) + 1

λ+θ

)
< 1 is needed to guarantee the stability of the retrial sys-

tem. Furthermore, this stability condition is independent in the choice of vacation policy.
Due to the definition of the mean-drift function for the embeddedMarkov chain, the one-step
drift removes the effect of callers arriving during vacation. Thus, the ergodicity result for
the retrial system without vacation would have same condition (see Atencia et al. (2008)).
Lemma 1 effectively generalizes the ergodicity result for the MX/G(M/H)/1 queue by
considering θ → ∞. This result coincides with Ke (2006) where stability is dependent on
the load factor EB(1 + αER), the expected generalized service time. With the additional
policy of searching for orbit callers, 1

λ+θ
represents the liability as a result of idleness that

reduces in increasing rate of searching θ . In the efficient management of the stability of the
retrial system, the decision maker should note that the choice of vacation has a lesser impact
than the rate of searching. Rather than worrying about the state of caller backlogging from
vacation, higher rate of searching efforts and increasing service efficiency (which includes
repairing breakdown) are more effective as levers in preventing system explosion. From now
on, we shall suppose that the condition κ(θ) < 1 holds.

5 Generating functions for the system sizes

We leverage on the ergodicity results to derive the steady state distribution of the retrial
system under vacation policy F j . In particular, we are interested to establish the relationship

between QF j (z) and Q
F j
+ (z) so as to obtain the queue length result. These investigations

lead to an important stochastic decomposition result for the stationary system size. During
t , C(t) = ν, 0, 1, 2 represents the server under vacation, idle, busy or under repair at time t .
Let ν(x) = dV (x)

1−V (x) , b(x) = dB(x)
1−B(x) , and r(x) = dR(x)

1−R(x) . Define the following for x, y, k ≥
0; 1 ≤ i ≤ j :
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ω
F j
ν,k,i (x)dx = lim

t→∞ P{C(t) = ν, OF j (t) = k, V i−(t) ∈ (x, x + dx)}.
ω
F j
0,k = lim

t→∞ P{C(t) = 0, OF j (t) = k}.
ω
F j
1,k(x)dx = lim

t→∞ P{C(t) = 1, OF j (t) = k, X−(t) ∈ (x, x + dx)}
ω
F j
2,k(x, y)dy = lim

t→∞ P{C(t) = 2, OF j (t) = k, X−(t) = x, Y− ∈ (y, y + dy)}.

For vacation policy P , we denote ωP
ν (z) = ∑ j

i=1 ωP
ν,i (z). Our next result provides closed-

form expressions for the p.g.f, allowing us to compute the long-run average fraction of
the time when the server is under vacation, idle, busy and under repair. For our purpose,

the following notations will be useful for stating this result, i.e., g j (λ) = 1−Ṽ (λ) j

1−Ṽ (λ)
and

C j (θ) = 1−κ(θ)

g j (λ)EV+ θ Ṽ (λ) j
λ(λ+θ)

.

Theorem 1 The stationary distribution of the process {OF j (t) : t ≥ 0} has the following
generating functions

ω
F j
ν,i (z, x) = C j (θ)Ṽ (λ)i−1[1 − V (x)]e−(λ−λX (z))x , 1 ≤ i ≤ j (3)

ω
F j
0 (z) = C j (θ)

{
θ Ṽ (λ) j

λ

[
H̃(λ − λX (z)) − z

]+ z
[
1 − Ṽ (λ − λX (z))

]
g j (λ)

}

[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z] (4)

ω
F j
1 (z, x) = C j (θ)

{(1 − Ṽ (λ − λX (z)))(λX (z) + θ)g j (λ) + θ Ṽ (λ) j [1 − X (z)]}
[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z]

× [1 − B(x)]e−(λ−λX (z)+α−α R̃(λ−λX (z)))x (5)

ω
F j
2 (z, y, x) = αω

F j
1 (z, x)[1 − R(y)]e−(λ−λX (z))y . (6)

In particular, if we omit the elapsed vacation times, service times and repair times, the
stationary distribution of the process {OF j (t) : t ≥ 0} has the following generating functions

ω
F j
ν (z) = C j (θ)g j (λ)

(
1 − Ṽ (λ − λX (z))

λ − λX (z)

)

ω
F j
1 (z) = C j (θ)

(1 − Ṽ (λ − λX (z)))(λX (z) + θ)g j (λ) + θ Ṽ (λ) j [1 − X (z)]
[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z]

× 1 − H̃(λ − λX (z))

λ − λX (z) + α − α R̃(λ − λX (z))

ω
F j
2 (z) = αω

F j
1 (z)

1 − R̃(λ − λX (z))

λ − λX (z)
.

Using Theorem 1, we derive the steady-state probabilities by letting z → 1−.

Corollary 1 The long-run average fraction of the time for the various server activities are
given by the following:

(i) the server takes vacation with probability ω
F j
ν (1) = C j (θ)g j (λ)EV.

(ii) the server is idle with probability ω
F j
0 (1) =

θ
λ(λ+θ)

Ṽ (λ) j+κ(θ)EVg j (λ)

EVg j (λ)+ θ
λ(λ+θ)

Ṽ (λ) j
− ρ.
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(iii) the server is busy with probability ω
F j
1 (1) = λγ1EB.

(iv) the server is under repair with probability ω
F j
2 (1) = αω

F j
1 (1)ER.

For non-profits, the fraction of time when the server is busy is an important measure. Further-
more, it is interesting to note that the long run fraction of the busy period and server repairing
time are independent of vacation policy type. Intuitively, this lead us to conclude the follow-
ing. We are interested to obtain stochastic decomposition result for our retrial system and to
motivate this, we first consider the related result under F j .

Corollary 2 Let κ(θ) < 1. Under vacation policy F j ,

(i) the p.g.f for the number of callers in orbit is given by

OF j (z) = C j (θ)
(1 − z)

(λ − λX (z))[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z]
× {(1 − Ṽ (λ − λX (z)))(λX (z) + θ)g j (λ) + θ Ṽ (λ) j [1 − X (z)]} (7)

(ii) the p.g.f for the number of callers in the system is given by

QF j (z) = OF j (z)H̃(λ − λX (z)).

The p.g.f of the system size allows us to conclude that QF j (z) = γ1(1−z)
1−X (z) Q

F j
+ (z). This holds

in MX/G/1 retrial system without vacation or MX/G/1 with multiple adaptive vacation
queue without retrial. Let NP and OP be the system size and orbit size of our retrial system
at an arbitrary point under vacation policy P . Collorary 2 implies that the system size of the
retrial system with vacation is the sum of two independent random variables, i.e., NP =
OP+Number of arrivals during generalized service time. Let �0(z) denote the p.g.f of the
number of callers in an unreliable single server retrial system under constant retrial policy.
Atencia et al. (2008) have shown that

�0(z) = (λ + θ)(1 − κ(θ))(1 − z)H(λ − λX (z))

[(λX (z) + θ)H(λ − λX (z)) − (λ + θ)z] .

Using �0(z) and Corollary 2, we obtain the following crucial result under F j . For the
general result, we consider the following. Denote NR to be number of callers in the
MX/G(M/H)/1 retrial system without vacation and N0 to be the stationary queue length
of the MX/G(M/H)/1 queue without retrial or vacation.

Theorem 2 The stationary system size of the MX/G(M/H)/1 retrial system under j-

adaptive vacation can be written as N
F j
ν = NR + NF j , where NF j is the additional queue

length due to the vacation effect. The p.g.f of NF j is given by

NF j (z) = (1 − Ṽ (λ − λX (z)))(λX (z) + θ)g j (λ) + θ Ṽ (λ) j [1 − X (z)]
(
(λ + θ)EVg j (λ) + θ

λ
Ṽ (λ) j

)
(λ − λX (z))

. (8)

The stationary system size of MX/G(M/H)/1 under j-adaptive vacation can be written as
a sum of three random variables.

Theorem2 allows us to conclude that the stationary system size of theMX/G(M/H)/1 retrial
system under j-adaptive vacation can be written as a sum of three random variables. The
average waiting time is one of the most important performance measures of service quality.
In the previous section, we obtain the important result from decomposing the number of
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callers of the retrial system under vacation into two independent random variables, namely,
the system size for the unreliable batch arrival single server retrial system without vacation
and system size due to the vacation effect. This decomposition is extremely useful in helping
us to compute the average size of the system. By using the p.g.f of NF j (z) in Theorem 2, we
can obtain the average number of callers in the system caused by the vacation effect (denoted
by ENF j ). Applying L’Hospital rule and letting z → 1, we get

ENF j =
[

λγ1g j (λ)[EV + 1
2 (λ + θ)(Var(V ) + (EV)2)]

(λ + θ)EVg j (λ) + θ
λ
Ṽ (λ) j

]

.

Denote  = EB2

(EB)2
ρ2 + λγ2 EH + α(λγ1)

2ERES. Denote EN to be the mean number of
callers in the retrial group for the batch retrial system without vacation. From the result of
Atencia et al. (2008, Corollary 2), we have the average number of the callers in the system
is given by

EN = λ(γ2 + 2γ1ρ)

2(λ + θ)(1 − κ(θ))
+ 

(1 − κ(θ))
+ ρ

Thus, the overall average system size will be the sum, i.e., ENF j +EN . It is left to check that
the total system size is increasing in j , the number of vacation taken. To this end, we shall
present some special cases where the system takes multiple vacations, i.e., after coming from
a vacation, the server takes another vacation as long as there are no callers in the orbit. Aissani
(2000) refers to this policy as the exhaustive vacation policy. Using Theorem 1, we obtain
the results similar to the work of Aissani (2000). Finally, we consider the MX/G(M/H)/1
retrial system where the server takes exactly one vacation immediately at the end of the busy
period. If it finds no caller in the orbit upon returning from the vacation, it becomes idle until
one caller arrives. To the best of our knowledge, there is no existing work that considers an
unreliable single server retrial system taking exactly one vacation. Using applying j = 1 in
Corollary 2, we shall state the result without proof.

Corollary 3 Let P be the given vacation policy. For multiple-vacation policy,

(i) the p.g.f for the number of callers in orbit is given by

OM(z) = C∞(θ)
(1 − z)[1 − Ṽ (λ − λX (z))](λX (z) + θ)

(λ − λX (z))[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z] ,

(ii) the p.g.f for the number of callers in the system is

QM(z) = OM(z)H̃(λ − λX (z)).

Otherwise, we have QS(z) = OS(z)H̃(λ − λX (z)) and

OS(z) = C1(θ)
(1 − z){(1 − Ṽ (λ − λX (z)))(λX (z) + θ) + θ Ṽ (λ)[1 − X (z)]}

(λ − λX (z))[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z] ,

If we let θ → ∞, we will obtain the p.g.f of system size for the unreliable MX/G/1 queue
without retrial taking single vacation. Furthermore, if we consider a single batch arrival, i.e.,
X (z) = z and α = 0, then the p.g.f exactly coincides with that of Takagi (1991).
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6 Busy period analysis

In our retrial system, it is necessary to differentiate two types “idleness” for theworking server
driven by the presence of vacation. To see this, we appeal to the concept of k-busy period
which is defined as the time period between starting with k callers and service completion.
The notion of idleness in Atencia et al. (2008) is solely based onwaiting for servicing the next
arrival or caller in orbit under k-busy period. Beginning with k callers “idleness” can happen
even after vacation. Thus, “server-waiting” period is different from “idle” period (driven by
vacation) in our system. Using the method of collective marks, we analyze the busy period of
our unreliable retrial system with vacation. Our approach deviates from Atencia et al. (2008)
that allows us to “split” the busy period into value-adding working-length and efficiency-
draining “server-waiting” plus “repair-servicing” periods. We define the busy period of our
unreliable retrial system under P as the length between the instant when the server starts to
serve the first caller after vacation to the instant when the system empties at the instant of
last departure epoch, denoted by LP .

Once service begins, the server goes through periods of working, waiting (through caller
searching), or under repair. After the vacation, the first caller served may arrive from the
orbit or external sources. Our objective in this section is to compute the average length
of the cumulative server-waiting period, working period, and repair period that make up
ELP . Inspired by Falin and Templeton (1997), we consider an auxiliary Poisson flow of
“catastrophe” of rate s that is independent of the system functioning. For the given s > 0,
the quantity random τs represents the time in which the catastrophe occurs. Indeed, we must
have P(τs ≤ x) = 1− e−sx . Let {Sn : n ≥ 1} be the sequence of epoch where callers depart.
Denote π

(k)
ni (s) to be the probability that at the time Si (since the beginning of the k-busy

period), no catastrophe has occurred and the k-busy period did not end before Si . For i = 1,
π

(k)
n1 (s) is the probability that at the first departure epoch, no catastrophe occurred, there are

n callers and k-busy period did not end. This is equivalent to the probability that during the
serving of the first caller, there are n − k + 1 arrivals and catastrophe did not end. We define
f (k)(s, z, y) =∑∞

n=1 z
n∑∞

i=1 y
iπ

(k)
ni (s).

Lemma 2 The generating function f (k)(s, z, y) satisfies the functional equation
{
1 −

(
y

z

)(
λX (z) + θ

s + λ + θ

)
H̃(s + λ − λX (z))

}
f (k)(s, z, y) = yzk−1 H̃(s + λ − λX (z)).

(9)

The purpose of defining π
(k)
ni (s) is to help us analyze the k-busy period (assuming that it

starts at t = 0) through the following:

P(k)
0ni (t) = P{L(k) > t,C(t) = 0, Q(t) = n, I (t) = i}

P(k)
1ni (t, x)dx = P{L(k) > t,C(t) = 1, ω(t) ∈ (x, x + dx), Q(t) = n, I (t) = i}

ϕ
(k)
0ni (s) =

∫ ∞

0
e−st P(k)

0ni (t)dt; ϕ
(k)
1ni (s, x) =

∫ ∞

0
e−st P(k)

1ni (t, x)dt.

We consider two important transient distributions based on the system having n callers with
exactly i services completed at time t . In particular, P(k)

0ni (t) represents the probability in
which the k-busy period has not expired for the batch-arrival unreliable retrial system which
is idle at t . On the other hand, P(k)

1ni (t, ·) represents the cumulative distribution for the elapsed
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service time when the k-busy period has not expired when server is busy at t . In order to
understand the probabilistic interpretation of the transforms, we have

sϕ(k)
0ni (s) = P{L(k) > τs,C(τs) = 0, Q(τs) = n, I (τs) = i};

sϕ(k)
1ni (s, x) = P{L(k) > τs,C(τs) = 1, ω(τs) ∈ (x, x + dx), Q(τs) = n, I (τs) = i}.

For a given s > 0, sϕ(k)
0ni (s) is the probability that at time τs when the first catastrophe

occurred, the server was free, there were n callers in the system and exactly i had com-
pleted service but the k-busy period had not expired. The interpretation of sϕ(k)

1ni (s, x)dx is
similar and can be found in the work of Falin and Templeton (1997). To develop results of
splitting the k-busy period, we define two additional generating functions ϕ

(k)
0 (s, z, y) =

∑∞
i=1 y

i∑∞
n=1 z

nϕ
(k)
0ni (s) and ϕ

(k)
1 (s, z, y, x) = ∑∞

i=0 y
i∑∞

n=0 z
nϕ

(k)
1ni (s, x). The exact

expressions are found in the “Appendix”.

Theorem 3 The expected length of a k-busy period, EL(k) is the sum of L(k)
0 and L(k)

1 given
by

L(k)
0 = k − 1 + ρ

(λ + θ)(1 − ρ) − λγ1
; L(k)

1 = EH(k(λ + θ) − λγ1)

(λ + θ)(1 − ρ) − λγ1
.

Finally, EL(k) = L(k)
0 + L(k)

1 = [1+(λ+θ)EH ]k−1
(λ+θ)(1−ρ)−λγ1

.

Note that the length of the k-busy period increases in the number of starting callers and the
reliability of the server. We can further refine L(k)

1 into the sum of expected working length
and repair length.

Corollary 4 The quantity L(k)
1 can be written as the sum of L(k)

w and L(k)
r given by

L(k)
w = EB(k(λ + θ) − λγ1)

(λ + θ)(1 − ρ) − λγ1
; L(k)

r = αERES(k(λ + θ) − λγ1)

(λ + θ)(1 − ρ) − λγ1
.

6.1 Busy period under vacation policy F j

Applying the k-busy period developed earlier, we consider the busy period under j-adaptive
vacation. With F j , we assume that the server takes at most j number of vacations repeatedly
until at least one caller is found in the orbit when the server returns from the vacation. If
no message is found by the end of the j th vacation, the server becomes idle. Again, we let
π̃ (k)(s) be the L.S.T of the k-busy period. The event {ν = 0} will generate π̃ (m)(s) with
probability cm . Suppose at the end of vacation, there are k ≥ 1 callers in the orbit. With
probability θ

θ+λ
, π̃ (k)(s) is the L.S.T generated and with probability λcm

λ+θ
, π̃ (k+m)(s) is the

L.S.T generated. Hence given that {ν = k} for k ≥ 1, the busy period generated has L.S.T
θ

λ+θ
π̃ (k)(s)+ λ

λ+θ

∑∞
m=1 cm π̃ (k+m)(s). To facilitate our derivation, we define the following:

ϕ0(s, z, y) =
∞∑

k=1

νk

∞∑

i=1

yi
∞∑

n=1

zn
{

θ

λ + θ
ϕ

(k)
0ni (s) + λ

λ + θ

∞∑

m=1

cmϕ
(k+m)
0ni (s)

}

;

ϕ1(s, z, y, x) =
∞∑

k=1

νk

∞∑

i=1

yi
∞∑

n=1

zn
{

θ

λ + θ
ϕ

(k)
1ni (s, x) + λ

λ + θ

∞∑

m=1

cmϕ
(k+m)
1ni (s, x)

}

.
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The following generating functions will be critical for:

ψ0(s, z, y) = ν0

∞∑

m=1

cmϕ
(m)
0 (s, z, y) + ϕ0(s, z, y)

ψ1(s, z, y, x) = ν0

∞∑

m=1

cmϕ
(m)
1 (s, z, y, x) + ϕ1(s, z, y, x).

Theorem 4 The expected length of an F j -busy period, ELF j is the sum of L
F j
0 and L

F j
1

given by

L
F j
0 = Eν − 1 + κ(θ) + Ṽ (λ) j θγ1

λ+θ

(λ + θ)(1 − κ(θ))
; LF j

1 = ρ

⎡

⎣
1−Ṽ (λ) j

1−Ṽ (λ)
EV + θ

λ(λ+θ)
Ṽ (λ) j

(1 − κ(θ))

⎤

⎦ .

Furthermore, we have ELF j = − 1
λ+θ

+
(
1−Ṽ (λ) j

1−Ṽ (λ)
EV + Ṽ (λ) j θ

λ(λ+θ)

)
κ(θ)

1−κ(θ)
.

We now state the main result as a corollary to Theorem 4.

Corollary 5 L
F j
1 further be splitted up into L

F j
w and L

F j
r given by

L
F j
w =

λγ1EB
(
1−Ṽ (λ) j

1−Ṽ (λ)
EV + Ṽ (λ) j θ

λ(λ+θ)

)

(1 − κ(θ))
; LF j

r = αERL
F j
w .

Remark In particular, when j = 1, one can show that ELS = − 1
λ+θ

+ κ(θ)
C1(θ)

.

7 Regenerative cycle

Every epoch in which the busy period ends are the system’s regeneration points. At those
points, the number of callers in the system is zero. In order to formulate the long run average
cost of the system per unit time under a given vacation and retrial policy, we are required to
find the length of the regenerative cycle. This cycle is defined as the length of time between
two successive regeneration points. We devote this section to computing the average length
of the regenerative cycle. The generalized idle time of the retrial systemwill be defined as the
total vacation period plus the first server-waiting period (if any). LetCP

ν be the random length
of this cycle under the vacation policies P ∈ {F j : j ≥ 1}. Then ECP

ν = EζP
ν + ELP ,

where ζP
ν is the generalized idle time due to vacation policy P . Let I ′ d= eλ+θ , I o

d= eλ, and
N (t) be the arrival process of the number of batches of callers during (0, t]. First of all, we
derive the L.S.T of ζ

F j
ν , Ĩ

F j
ν (s) = E[e−sζ

F j
ν ].

Lemma 3 The L.S.T of ζ
F j
ν is given by

Ĩ
F j
ν (s) =

[
1 − Ṽ (s + λ) j

1 − Ṽ (s + λ)

]
(Ṽ (s) − Ṽ (s + λ))

λ + θ

s + λ + θ
+ Ṽ (s + λ) j

λ

s + λ
. (10)

The average length of ζ
F j
ν is given by Eζ

F j
ν = 1−Ṽ (λ) j

λ+θ
+ EV

[
1−Ṽ (λ) j

1−Ṽ (λ)

]
+ 1

λ
Ṽ (λ) j .
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In order to see the proof of this result, we consider the following:

ζ
F j
ν =

{
V1 + · · · + Vn + I ′ w.p P{N (V1) = 0, . . . , N (Vn) > 0}, 1 ≤ n ≤ j
V1 + · · · + Vj + I o w.p P{N (V1) = 0, . . . , N (Vj ) = 0}.

Thepresence of caller in the vacationperioddetermines the arrival rate for service. If any caller
arrives during the nth vacation, then the first initiation of the busy period is exponentially dis-
tributed withmean 1

λ+θ
because of callers presence in the orbit. On the other hand, if no caller

is present up to j vacations, then the first caller will arrive with mean 1
λ
. If any callers arrive

during the nth vacation for 1 ≤ n ≤ j , we have E[e−s(V1+···+Vn+I ′)e−λV1 . . . e−λVn−1(1 −
e−λVn )] = [Ṽ (s + λ)]n−1(Ṽ (s) − Ṽ (s + λ)) λ+θ

s+λ+θ
. If no caller arrive during vacation, we

have E[e−s(V1+···+Vj+I o)e−λV1 . . . e−λVj ] = Ṽ (s + λ) j λ
s+λ

. Hence, we obtain Ĩ
F j
ν (s). We

can easily derive Eζ
F j
ν using − lims→0+ d

ds Ĩ
FV
ν (s). Differentiating (10) w.r.t s and letting

s → 0+, we obtain Eζ
F j
ν . In particular, when θ → ∞, the L.S.T of the generalized idle

period under vacation policy F j is Ĩν(s) =
[
1−Ṽ (s+λ) j

1−Ṽ (s+λ)

]
(Ṽ (s)− Ṽ (s+λ))+ Ṽ (s+λ) j λ

s+λ

for the ordinary queue without retrial. If we let j → ∞, we obtain the L.S.T of the vaca-

tion of M/G/1 queue with multiple vacation ĨMν (s) =
[
Ṽ (s)−Ṽ (s+λ)

1−Ṽ (s+λ)

]
. See Takagi (1991,

pg. 123–124). For the case when j = 1, the average length of the generalized idle period

is 1
λ+θ

+ 1−κ(θ)
C1(θ)

. Denote L
F j
ν be the length of the vacation taken by the server (over one

regenerative cycle), its L.S.T can be derived by ignoring I o and I ′ following the proof in
Lemma 3 . In fact the L.S.T is easily shown to be

E[e−sL
F j
ν ] = (Ṽ (s) − Ṽ (s + λ))

[
1 − Ṽ (s + λ) j

1 − Ṽ (s + λ)

]
+ Ṽ (s + λ) j .

Differentiating the above expression w.r.t s and letting s → 0, we obtain EL
F j
ν = EVg j (λ).

Let L
F j
idle to be the average idle period in one regenerative cycle. It is easy to verify that

L
F j
idle = Eζ

F j
ν − EL

F j
ν + L

F j
0 = ω

F j
0 (1)
C j (θ)

. For the retrial system under the multiple vacation
policy, we have the following result.

Corollary 6 The L.S.T of ζM
ν is given by

ĨMν (s) =
[
Ṽ (s) − Ṽ (s + λ)

1 − Ṽ (s + λ)

]
λ + θ

s + λ + θ
. (11)

The average length of ζM
ν is given by EζM

ν = 1
λ+θ

+
[

EV
1−Ṽ (λ)

]
.

The expression for ĨMν (s) can be derived easily by letting j → ∞. The derivation of EζM
ν

is similar. Using Lemma 3 and Corollary 6, we can easily provide the result for EC
F j
ν for

j ≥ 1. It turns out that the formula for the average length of the regenerative cycle is extremely
simple.

Corollary 7 The average length of the regenerative cycle under policy F j is given by

EC
F j
ν =

[
EV 1−Ṽ (λ) j

1−Ṽ (λ)
+ V (λ) j θ

λ(λ+θ)

]

1 − κ(θ)
= 1

C j (θ)
. (12)
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We provide some comparative studies on the average length of the busy period of the
M (x)/G/1 with and without vacations. Let ELo be the average length of the busy period for
the unreliable retrial system in Atencia et al. (2008). They show that ELo = κ(θ)/λ−1

(λ+θ)(1−κ(θ))
.

First we establish a monotonicity result of the busy period w.r.t the vacation policy of the
busy period.

Lemma 4 Suppose the condition κ(θ) < 1 holds.

1. If θ
λ(λ+θ)

> EV
1−Ṽ (λ)

, the average length of the busy period ELF j decreases as j increases.

2. If θ
λ(λ+θ)

≤ EV
1−Ṽ (λ)

, the average length of the busy period ELF j increases as j increases.

8 Long run average cost and vacation policy

What is the optimal vacation policy we shall adopt given the cost parameters? The long run
average cost (LRAC) will be used as our objective function. We show that either multiple
vacation or single vacation policy is optimal. The cost considerations include setting a reward
for taking vacations, cost for idling and repair. We also include q > 0 indicating the average
fraction of idling or taking a break during vacation period. In real life, when the server is
taking a vacation, it may include supplementary jobs that can provide value to the com-
pany such as preventive maintenance. Otherwise, server may be taking a break or on leave,
incurring costs (of idling) to the firm. Our aim in this section is to investigate the relation-
ship between the extent of idling during vacation and the optimal vacation policy of the call
centre. Throughout this section, let us assume that for all retrial rates θ ∈ (0,∞), we have
κ(θ) = ρ + λγ1

λ+θ
< 1.

Notations Meaning

rν Reward per unit time taking vacation
c0 Cost per unit time of idling
ch Cost per unit time of holding callers in orbit
cr Cost of repair per unit time
q Average fraction of time idling during vacation, q ∈ [0, 1]

From the notations above, it can be seen that −rν(1 − q) + c0q is the reward per unit
time gained by the system during vacation. It is easily seen that when q = 0, there is no
idling and maximal value is added while q = 1 implies only idling cost is incurred. Using
elementary renewal reward theory, the long run average cost of operating a server per unit
time GF j (θ, q) is given by

GF j (θ, q) = (−rν(1 − q) + c0q)
L
F j
ν

EC
F j
ν

+ chλEW
F j + c0

L
F j
idle

EC
F j
ν

+ cr
L
F j
r

EC
F j
ν

= (−rν(1 − q) + c0q)ω
F j
ν (1) + chλEW

F j + c0ω
F j
0 (1) + crω

F j
2 (1).

Let us define the following notations:

0 =
[
EV + 1

2
(λ + θ)(Var(V ) + (EV)2)

]
, Y j = EVg j (λ) + θ

λ(λ + θ)
Ṽ (λ) j

1(q) = (−rν(1 − q) + c0q)(1 − κ(θ))EV + c0κ(θ)EV + chr(θ)0,
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2 = −c0ρ + αcrλγ1ESER + ch

(
λ(γ2 + 2γ1ρ)

2(λ + θ)(1 − κ(θ))
+ 

1 − κ(θ)
+ ρ

)
,

φq(ch) = chr(θ)0

EV(1 − κ(θ))(1 − q)
; �(c0, q) = −c0 + φq(ch). (13)

Then, it can be shown that GF j (θ, q) can be expressed as

GF j (θ, q) = g j (λ)1 + θc0 Ṽ (λ) j

λ(λ+θ)

Y j
+ 2. (14)

Using (14) and after some simplification, we obtain

GF j+1(θ, q) − GF j (θ, q) = θ Ṽ (λ) j

λ(λ + θ)

(
1(q) − c0EV

Y jY j+1

)
. (15)

Theorem 5 Let (c0, rν, ch) be the given vector of cost and reward parameters, and q be the
average fraction of idling time during vacation,

(i) if q ∈ [0, 1), policy S is optimal, when rν < �(c0, q), otherwise M is optimal.
(ii) if q = 1, policy S is always optimal.

Proof We give an outline of the proof.

(i) Let q ∈ [0, 1) be fixed and suppose rν < �(c0, q). From (15), note that

c0EV − 1(q)

= c0EV + rν(1 − q)(1 − κ(θ))EV − c0q(1 − κ(θ))EV − c0κ(θ)EV − chr(θ)0.

< c0EV + (−c0 + φq(ch))(1 − q)(1 − κ(θ))EV − c0q(1 − κ(θ))EV

− c0κ(θ)EV − chr(θ)0 = 0.

Therefore for all j ≥ 1, GF j+1(θ, q) > GF j (θ, q) and so S is optimal. The proof that
M is optimal when rν > �(c0, q) is similar.

(ii) If q = 1, we have GF j+1(θ, q) > GF j (θ, q) for all j ≥ 1 since 1(1) = c0EV +
chr(θ)0. Thus, c0EV − 1(1) = −chr(θ)0 < 0, and so S is the optimal policy. �	

Figure 1 illustrates that the optimal vacation policy for the server is to either take single
vacation or multiple vacations. It can shown that as q ∈ [0, 1) (extent of idling) increases,
the extent of adopting S becomes larger. But when q = 1 and fixed ch , S is optimal for all
(rν, c0).

Fig. 1 Optimal vacation policies under different cost parameters
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9 Numerical experiment

In this section, we present some numerical examples to study the impact of parameters on the
system performance such as queue length and busy period induced by the vacation policy.
Parameters are set so that the ergodicity condition is met. In the first experiment study, we
want to study the effect of variability of the vacation length on the system size. Specifically,
if we allow the vacation length to be more variable, what is the impact on the average number
of callers and busy period for the system? To proceed, we adopt the concept of relative
variability using Definition 4.8 in Song (1994).

Definition 1 Consider two random variables X and Y having the same mean EX = EY ,
having distributions F and G with densities f and g. Suppose X and Y are either both
continuous or both discrete. We say that X is more variable than Y , denoted by X ≥var Y ,
if f crosses g exactly twice, first from above and then from below.

To this end, we consider the model where X ∼ Geo(0.5), λ = 0.2, θ = 3, α = 0.05.
For convenience, we choose EB = 0.4 and ER = 0.8. Assuming that only the vacation
length varies, the rest of the parameters are kept constant. We plot our results for the mean
system size affected across the different values of vacation. Figure 2 shows the experiment
with V1 ∼ Erlang(2, 0.5), V2 ∼ Erlang(8, 2), V3 ∼ Erlang(1, 0.5), V4 ∼ Erlang(4, 2). It
is easy to see that V1 ≥var V2 and V3 ≥var V4. Figure 2 shows that for vacation length
that is more variable, the average number of callers in the system caused by any number of
successive vacation taken is always larger.

Our second experiment investigates how the vacation policy affects the busy period. We
want to numerically discuss the impact of a stochastically more variable vacation length on
the busy period. Figure 3 shows that a more variable vacation length induces a greater mean
busy period. Furthermore, the larger the number of vacations taken, the larger the mean busy
period as well.

The third experiment discusses the impact of retrial rate and server failure rate on the busy
period of the system with vacation. We assume that the server adopts single vacation policy
with V ∼ Erlang(1, 0.5), EB = 0.4, λ = 2, X ∼ Geo(0.5) and ER = 1. Figure 4 shows that
for each failure server rate α, the mean busy period is decreasing in θ , the retrial rate. As θ

increases, the retrial system behaves more closely to those of M (X)/G/1 queue with vacation

Fig. 2 Plot of ELF j versus j
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Fig. 3 Plot of ELF j versus j

Fig. 4 Plot of ELF j versus α and θ

and unreliable server. As such the busy period decreases because there is almost negligible
retrial times and callers are queueing to be served. The right diagram in Figure 4 shows that
for every retrial rate θ , the mean busy period increases in the server failure intensity, α which
is again intuitive.

The last experiment involves fixing the vacation length V ∼ Erlang(1, 0.5). We want to
study the joint impact of vacation policy and mean repair time on the busy period. Denote
v(= ER) and j to be the mean repair time and number of successive vacations taken by the
server, respectively. The left diagram in Figure 5 shows that whenever the mean repair length
increases, the busy period increases as well. Furthermore, we notice that as the successive
number of vacation increases, the impact on the busy period gets reduced. The right diagram
of Figure 5 shows that as the number of successive vacation increases, the busy period
increases but stabilizes after a finite number of vacations. Numerically, we have establish the
fact that for stochastically larger repair length of the server, the longer the mean busy period
of the retrial system with vacation.
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Fig. 5 Plot of ELF j versus j and v

10 Discussions and conclusions

Motivated by helpline services operating in resource-challenged environment, we described
and analyzed an unreliable single server retrial system with batch arrivals under multiple
adaptive vacation policy. Our system generalizes a retrial systemwhere the server takes either
single vacation or multiple vacations. The constant retrial policy is adopted due to manpower
shortage and searching for customers becomes important to handle the high level of stress and
workload.We apply the technique of embeddedMarkov chain to derive the p.g.f of the system

size at departure, denoted by Q
F j
+ (z). Furthermore, by using the technique of supplementary

variables, we derive the p.g.f of system size at any time, denoted by QF j (z). We establish the

relationship between QF j (z) and Q
F j
+ (z) which agrees in many M/G/1 queueing systems

without vacations, including the retrial version. The stochastic decomposition of the system
size is given and expressed as the sum of three random variables. Under this class of vacation
policy, we show that single vacation policy minimizes caller’s average waiting time. The
technique of collective marks is applied to compute the system’s average server-waiting
length, average working length, and repair length. Finally, we derive the average length of
a regenerative cycle to formulate an optimization model. Interestingly, our analysis reveals
that either the single vacation or the multiple vacation policy is optimal to minimizing the
long run average cost for the helpline service provider.

Congruent with intuitions, our experiment results show that variability of vacation length
increases the average number of callers in the system. As the number of callers in orbit
accumulates, the length of the busy period increases. For the same reason, increase in server
failure rate and repair time also increase the length of the busy period. On the other hand,
increase in retrial rate reduces the idle time of the computer. The net effect is the shortening
of the busy period. We note that while an increase in the number of vacations taken by the
server increases the busy period, the length of the busy period stabilizes rather quickly. We
conjecture that this observation arises because service rate is relatively much higher than the
caller arrival rate.

Our study assumes that the service rule is exhaustive. A natural extension of themodel will
be to consider vacation policy with non-exhaustive service. This means that the server can
take vacation even when there are some callers in the orbit. So far, non-exhaustive service has
only been studied in queues without retrial. One can also consider general inter-retrial times
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because it is more realistic to assume that callers have different behaviors. Recent efforts in
the investigation of more interesting vacation policies have appeared in works of Ke (2006,
2003). The work of Chang and Ke (2009) that focuses on generalized retrial times can be
included in our model. This extension might be significant because unreliable systems with
generalized retrial times and repair times are not studied in literature. It is worthwhile to look
at the joint impact of the generalized retrial times and repair times on the busy period.

Appendix

Notations Meaning

P Vacation policy
MX /G/1 Batch-arrival, general service-time queue
MX /G(M/H)/1 Unreliable batch-arrival, general service and repair-time after Markovian breakdown
F j Maximum allowable vacations to be taken is j
S Single-vacation policy, i.e., j = 1
M Multiple-vacation policy, i.e., j → ∞
QP (t) Transient number of callers both in service and in orbit under P and at t
OP (t) Transient number of callers in orbit under P and at t
IP (t) Transient number of callers in service under P and at t

QF j (z) p.g.f of the system size at arbitrary epoch
V i−(t) Elapsed i th vacation time at t
Xi−(t) Elapsed i th service time at t
Ri−(t) Elapsed i th repair time at t
C(t)(= ν, 0, 1, 2) State of the server at t , i.e., vacation, idle, busy or repair

L(k) k-busy period for the MX /G(M/H)/1 retrial system without vacation

LP Busy period of MX /G(M/H)/1 under P and LP = LP0 + LPw + LPr , where

LP0 Server-waiting time for the next busy epoch under LP

LP1 Generalized working length under P (LP1 = LPw + LPr )

LPw Value-adding or working length under LP

LPr Repair length during LP

L(k)
0 Server-waiting time for the next busy epoch under L(k)

L(k)
1 Generalized working length under k-busy period (L(k)

1 = L(k)
w + L(k)

r )

L(k)
w Value-adding or working length under L(k)

L(k)
r Repair length during L(k)

I (t) Number of services completed at time t

ω(t) The elapsed service time of the work at time t

Proof of Lemma 1 (i) The first part is to compute the p.g.f left by a departing caller. We
divide our proofs into two cases.
Case 1 Given that Qn = 0, the server goes into vacation immediately at Sn because it finds
that the orbit is empty. Two events may happen, {Qn = 0, ν = 0} and {Qn = 0, ν > 0}. On
the event {Qn = 0, ν = 0}, we must have Qn+1 = X − 1 + Mn+1. On the other hand, for
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the event {Qn = 0, ν = i} for i ≥ 1, we have

Qn+1 =
{
i + Mn+1 − 1 w.p θ

λ+θ

i + Mn+1 − 1 + X w.p λ
λ+θ

.

P{Qn+1 = k|Qn = 0, ν = i}=
{∑k+1

l=1 clmn+1,k−l+1 if i = 0
λ

λ+θ

∑k−i+1
j=1 mn+1,k− j−i+1c j+ θ

λ+θ
mn+1,k−i+1 if i≥1.

Thus, we have

p0k =
∞∑

i=0

P{Qn+1 = k|Qn = 0, ν = i}P{ν = i |Qn = 0}

= Ṽ (λ) j
k+1∑

l=1

clmn+1,k−l+1

+
k+1∑

i=1

⎧
⎨

⎩
λ

λ + θ

k−i+1∑

j=1

mn+1,k− j−i+1c j + θ

λ + θ
mn+1,k−i+1

⎫
⎬

⎭
νi . (16)

Case 2 For Qn ≥ 1, then we have similar argument. There are two types of customers that
competes when Qn ≥ 1. One is the arrival of a new batch of customer, while the other is the
random customer from the orbit. On {Qn = i}, where i ≥ 1, we have

Qn+1 =
{
i + Mn+1 + X − 1 w.p λ

λ+θ

i + Mn+1 − 1 w.p θ
λ+θ

.

Thus, we have for k ≥ i ,

pik = λ

λ + θ

k−i+1∑

j=1

c jmn+1,k−i+1− j + θ

λ + θ
mn+1,k−i+1. (17)

We want to compute the steady state distribution of the system size immediately after
departure epoches. Since {Qn : n ∈ N} constitutes a Markov chain, we can compute its
steady state by using πP = π and π1 = 1. P = [pi j ] is the transition matrix of the
embedded Markov Chain {Qn} and π = (π0, π1π2 . . .), where πk is the long run fraction

when a departing customer leaves behind k customers in the system. Let Q
F j
+ (z) be the p.g.f

of the system size that is left behind by a departing customer, then Q
F j
+ (z) = ∑∞

k=0 πk zk .

Using (2), (3) and definition of Q
F j
+ (z), we have after some tedious algebraic manipulation,

Q
F j
+ (z) = π0

{(1 − ζ j (z))(λX (z) + θ) + θ Ṽ (λ) j (1 − X (z))}H̃(λ − λX (z))

(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z
. (18)

From the normalization condition, Q
F j
+ (1) = 1, we can find the constant π0. Using (18)

and L’Hospital rule, we obtain
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lim
z→1− �(z) = π0

⎧
⎨

⎩

λγ1

[
1−Ṽ (λ) j

1−Ṽ (λ)
EV + θV (λ) j

λ(λ+θ)

]

1 − κ(θ)

⎫
⎬

⎭
= 1

⇔ π0 = 1 − κ(θ)

λγ1

[
1−Ṽ (λ) j

1−Ṽ (λ)
EV + θV (λ) j

λ(λ+θ)

] .

Using (1) and (18), we obtain the p.g.f of the queue length left by a departing customer is
given in the main paper.

(ii) (Sufficiency) The sufficiency of the ergodicity result can be shown using Pake’s Lemma
which is the statement as follows. If we have Q(x) ≥ 0, and for all x , there exist ε > 0 such
that E(Qt+1 −Qt |Qt = x) ≤ −ε < 0 for all x except on a finite set C , then {Qn} is positive
recurrent. To show sufficiency of our ergodicity result given any i and κ(θ) < 1, we choose
ε = 1

2 (1−κ(θ)) > 0. Due to the recursive structure of the embedded sequence {Qn : n ∈ N},
we apply Pake’s lemma as follows. The mean drift yi = E[Qn+1−Qn |Qn = i] is calculated
as follows.

yi = θ

θ + λ
E[Mn+1 − 1] + λ

θ + λ
E[X + Mn+1 − 1]

= EMn+1 − 1 + λ

θ + λ
γ1 = λγ1EH − 1 + λ

θ + λ
γ1.

Then, we have yi = −2ε, implying yi < −ε for all states except for a finite number of
states. Therefore, κ(θ) < 1 is sufficient for the embedded chain to be ergodic. The necessary
condition readily follows from Kaplan’s condition [see Senott et al. (1983)], namely yi < ∞
for all i ≥ 0 and there exists i0 ∈ Z+ such that yi ≥ 0 for all i ≥ i0. �	
Proof of Theorem 1 We define the generating functions

ων,i (z, x) =
∞∑

k=0

ων,k,i (x)z
k;ω0(z) =

∞∑

k=0

ω0,k(x)z
k;

ω1(z, x) =
∞∑

k=0

ω1,k(x)z
k;ω0(z, y, x) =

∞∑

k=0

ω2,k(x, y)z
k .

For notational parsimony, we omit the superscript F j in the following discussion. Using
the technique of supplementary variables, we obtain the following system of equations for
x ≥ 0, y ≥ 0, k ≥ 0:

[
d

dx
+ λ + ν(x)

]
ων,k,i (x) = λ

k∑

l=1

c jων,k−l,i (x), 1 ≤ i ≤ j (19)

[
d

dx
+ λ + b(x) + α

]
ω1,k(x) = λ

k∑

l=1

c jω1,k−l(x) +
∫ ∞

0
ω2,k(x, y)r(y)dy (20)

[
d

dx
+ λ + r(x)

]
ω2,k(x, y) = λ

k∑

l=1

c jω2,k−l(x, y). (21)

For k ≥ 1, we have

(λ + θ)ω0,k =
∫ ∞

0
ω1,k(x)b(x)dx +

j∑

i=1

∫ ∞

0
ων,k,i (x)ν(x)dx (22)
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λω0,0 =
∫ ∞

0
ν(x)ων,0, j (x)dx . (23)

These equations are to be solved under the boundary conditions:

ων,0,1(0) =
∫ ∞

0
ω1,0(x)b(x)dx (24)

ων,0,i (0) =
∫ ∞

0
ων,0,i−1(x)ν(x)dx, 2 ≤ i ≤ j (25)

ων,k,i (0) = 0, k ≥ 1, 1 ≤ i ≤ j (26)

ω1,k(0) = λ

k+1∑

j=1

c jω0,k− j+1 + θω0,k+1, k ≥ 0 (27)

ω2,k(x, 0) = αω1,k(x), k ≥ 0. (28)

The normalizing condition is

∞∑

k=0

⎡

⎣
j∑

i=1

∫ ∞

0
ων,k,i (x)dx + ω0,k +

∫ ∞

0
ω1,k(x)dx +

∫ ∞

0

∫ ∞

0
ω2,k(x, y)dydx

⎤

⎦ = 1.

(29)

Using generating functions, we can express system of equations to be
[ d
dx + λ − λX (z) + ν(x)

]
ων,i (z, x) = 0, 1 ≤ i ≤ j (30)

[ d
dx + λ − λX (z) + b(x) + α

]
ω1(z, x) = ∫∞

0 ω2(z, y, x)r(y)dy (31)
[

d
dy + λ − λX (z) + r(y)

]
ω2(z, y, x) = 0. (32)

∑ j
i=1 ων,0,i (0) + (λ + θ)ω0(z) − θω0,0

= ∫∞
0 ω1(z, x)b(x)dx +∑ j

i=1

∫∞
0 ν(x)ων,i (z, x)dx . (33)

The boundary conditions can be expressed as

ων,i (z, 0) = ων,0,i (0), 1 ≤ i ≤ j (34)

zω1(z, 0) = (λX (z) + θ)ω0(z) − θω0,0 (35)

ω2(z, 0, x) = αω1(z, x). (36)

To show ω
F j
ν,i (z, x), (30) implies that

ων,i (z, x) = ων,i (z, 0)[1 − V (x)]e−(λ−λX (z))x .

Next, (26), we have ων,i (z, 0) = ων,0,i (0). Using this, we have ων,0,i (x) = ωi (0, x) =
ων,0,i (0)[1 − V (x)]e−λx . Combining it with (25), we have ων,0,i (0) = ων,0,i−1(0)Ṽ (λ).
Recursively, we obtain for 1 ≤ i ≤ j ,

ων,i (z, x) = ων,0,1(0)Ṽ (λ)i−1[1 − V (x)]e−(λ−λX (z))x . (37)

In particular, we get

j∑

i=0

ων,0,i (0) = g j (λ)ων,0,1(0); λω0,0 = ων,0,1(0)Ṽ (λ) j . (38)
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Next, (32) implies

ω2(z, y, x) = ω2(z, 0, x)[1 − R(y)]e−(λ−λX (z))y . (39)

Using both (39) and (36), we get the expression in (6). Substituting (39) into (31), we obtain
the following:

[
d

dx
+ λ − λX (z) + b(x) + α − α R̃(λ − λX (z))

]
ω1(z, x) = 0. (40)

From (40), we get ω1(z, x) = ω1(z, 0)[1 − B(x)]e(λ−λX (z)+α−α R̃(λ−λX (z)))x . We substitute
ω1(z, x),(35), (37), and (38) into (33), we get

ων,0,1(0)g j (λ) + (λ + θ)ω0(z) = θ

λ
Ṽ (λ) jων,0,1(0)

+ 1

z
[(λX (z) + θ)ω0(z) − θ

λ
Ṽ (λ) jων,0,1(0)] (41)

After some re-arranging, we obtain

ω
F j
0 (z) = ων,0,1(0)

{ θ Ṽ (λ) j

λ
[H̃(λ − λX (z)) − z] + z[1 − Ṽ (λ − λX (z))]g j (λ)}

[(λX (z) + θ)H̃(λ − λX (z)) − (λ + θ)z] (42)

Next using (35) and (42), we have

ω1(z, x) = ων,0,1(0)

(
[1 − Ṽ (λ − λX (z))](λX (z) + θ)g j (y) + θ Ṽ (λ) j [1 − X (z)]

(λX (z) + θ)H̃(λX (z) + θ) − (λ + θ)z

)

× [1 − B(x)]e(λ−λX (z)+α−α R̃(λ−λX (z)))x . (43)

Integrating (43) w.r.t x , we obtain

ω1(z) = ων,0,1(0)

(
[1 − Ṽ (λ − λX (z))](λX (z) + θ)g j (y) + θ Ṽ (λ) j [1 − X (z)]

(λX (z) + θ)H̃(λX (z) + θ) − (λ + θ)z

)

× 1 − H̃(λ − λX (z))

λ − λX (z)
. (44)

Thus, we can obtain ω2(z) = αω1(z)
1−R̃(λ−λX (z))

λ−λX (z) . From the normalizing condition in (29),

we have
∑ j

i=1 ων,i (1) + ω0(1) + ω1(1) + ω2(1) = 1, and after some tedious algebra, we
get ων,0,1(0) = C j (θ). �	
Proof of Corollary 1 We only show (i) as the rest are similar. From Theorem 1, we consider

ω
F j
ν (1) = limz→1− C j (θ)g j (λ)

(
1−Ṽ (λ−λX (z))

λ−λX (z)

)
and applying L’Hospital rule, we obtain

ω
F j
ν (1) = C j (θ)g j (λ)EV = [1−κ(θ)]g j (λ)EV

g j (λ)EV+ θ Ṽ (λ) j
λ(λ+θ)

< 1. It is ready to verify thatω
F j
ν (1)+ω

F j
0 (1)+

ω
F j
1 (1) + ω

F j
2 (1) = 1. �	

Proof of Corollary 2 Let OF j (z) and QF j (z) be the p.g.f for the number of callers in orbit
and system respectively. In order to prove the results for (i) and (ii), they follow easily from

the fact that OF j (z) = ω
F j
ν (z) + ω

F j
0 (z) + ω

F j
1 (z) + ω

F j
2 (z) and QF j (z) = ω

F j
ν (z) +

ω
F j
0 (z) + z(ω

F j
1 (z) + ω

F j
2 (z)). �	
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Proof of Theorem 2 We want to show that the p.g.f for the number of customers in the orbit
can be written as the sum of three random variables. Let M be the orbit size of the system
based on constant retrial policy. First, we observe that Atencia et al. (2008, Theorem 3)
has shown that NR = N0 + M . Finally the p.g.f for NF j (z) allows us to conclude that

N
F j
ν = NF j + N0 + M . �	

Proof of Corollary 7 We have ECP
ν = ELP + EζP

ν and using results in Theorem 4 and
Corollary 6, we have the required result. �	
Proof of Lemma 2 To show Lemma 2, we consider the following. Denote mn(s) = P{M =
n, τs > H}. For any k ≥ 1, we have π

(k)
n,1(s) = mn−k+1(s) and for i ≥ 2,

π
(k)
n,i (s)=

n∑

j=1

π
(k)
n,i−1(s)

n− j+1∑

l=1

λcl
s + λ + θ

mn− j−l+1(s)+
n+1∑

j=1

π
(k)
j,i−1(s)

θ

s + λ + θ
mn− j+1(s).

Finally, the proof is completed by showing that
∑∞

n=0 mn(s)zn = H̃(s + λ − λX (z)). �	
For ease of exposition, we define F(s, z, y, x) = (s + λ + θ) − y

z (λX (z) + θ)H̃(s + λ −
λX (z)).

Proof of Theorem 3

The proof of Theorem 3 requires two further lemmas, i.e., Lemma 5 and Lemma 6. These
results allow us to compute the working and server-waiting length of the k-busy period.
Finally, we obtain EL(k) which agrees with Atencia et al. (2008) who use the technique of
supplementary variables.

Lemma 5 The generating function ϕ
(k)
0 (s, z, y) satisfies the functional equation

F(s, z, y, x)ϕ(k)
0 (s, z, y) = yzk−1 H̃(s + λ − λX (z)). (45)

Proof Using the fact that sϕ(k)
0ni (s) = P{L(k) > τs,C(τs) = 0, Q(τs) = n, I (τs) =

i} = s
s+λ+θ

π
(k)
ni (s). Thus, we have ϕ

(k)
0ni (s) = π

(k)
ni (s)

s+λ+θ
. The result follows from (9) since

ϕ
(k)
0 (s, z, y) = f (k)(s,z,y)

s+λ+θ
. �	

Lemma 6 The generating function ϕ
(k)
1 (s, z, y, x) satisfies the functional equation

ϕ
(k)
1 (s, z, y, x) = (1 − H(x))e−(s+λ−λX (z))x

×
[
zk−1 + 1

z
(λX (z) + θ)ϕ

(k)
0 (s, z, y)

]
. (46)

In addition, we have
∫ ∞

0
ϕ

(k)
1 (s, z, y, x)dx = 1 − H̃(s + λ − λX (z))

s + λ − λX (z)

×
[
zk−1 + 1

z
(λX (z) + θ)ϕ

(k)
0 (s, z, y)

]
. (47)
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Proof Observe that sϕ(k)
1ni (s, x) = P{L(k) > τs,C(τs) = 1, ω(τs) ∈ (x, x + dx), Q(τs) =

n, I (τs) = i}. Following the arguments in Falin and Templeton (1997) or Artalejo et al.
(2002), we obtain

ϕ
(k)
1n0(s, x) = [1 − H(x)]e−sx

n−k+1∑

r=1

e−λx (λx)r

r ! P{X1 + · · · + Xr = n − k + 1}

ϕ
(k)
1ni (s, x) = [1 − H(x)]e−sx

×
⎧
⎨

⎩

n∑

j=1

π
(k)
j i (s)

n− j+1∑

l=1

λcl
s + λ + θ

n− j+1−l∑

r=1

e−λx (λx)r

r ! P

(
r∑

t=1

Xt=n − j+1−l

)

+
n+1∑

j=1

π
(k)
j i (s)

θ

s + λ + θ

n− j+1∑

r=1

e−λx (λx)r

r ! P

(
r∑

t=1

Xt = n − j + 1

)⎫⎬

⎭
.

The result follows from the definition of ϕ
(k)
1 (s, z, y, x) after tedious algebraic manipula-

tions. Finally, (47) follows from integrating (46) w.r.t x . �	

Proof of Theorem 3 In order to compute L(k)
0 , we need to compute limz→1− ϕ(0, z, 1). Let

s = 0, y = 1 into (45), we obtain
[
(λ + θ) − 1

z
(λX (z) + θ)H̃(λ − λX (z))

]
ϕ

(k)
0 (0, z, 1) = zk−1 H̃(λ − λX (z)).

Differentiating the above equation w.r.t z and letting z → 1, we obtain the desired
result for L(k)

0 . The expected generalized working length of the k-busy period is given by

limz→1−
∫∞
0 ϕ

(k)
1 (0, z, 1, x)dx . Note that limz→1− 1−H̃(λ−λX (z))

λ−λX (z) = EH . �	
Proof of Corollary 4 The proof is immediate from Theorem 3 and the fact that EH =
EB(1 + αER). �	
Proof of Theorem 4

To prove Theorem 4, we shall begin with a preliminary lemma.

Lemma 7 The generating functions ψ0(s, z, y) and ψ1(s, z, y, x) satisfy the functional
equations

F(s, z, y, x)ψ0(s, z, y) = y

z

{
ζ j (z)

(
λX (z) + θ

λ + θ

)
+ θ

λ + θ
Ṽ (λ) j [X (z) − 1]

}

× H̃(s + λ − λX (z)).

ψ1(s, z, y, x) = (1 − H(x))e−(s+λ−λX (z))x 1

z

×
({

ζ j (z)

(
λX (z) + θ

λ + θ

)
+ θ

λ + θ
Ṽ (λ) j [X (z) − 1]

}

+ (λX (z) + θ)ψ0(s, z, y)) . (48)

Proof The results follow from applying Lemmas 5 and 6.
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Proof of Theorem 4 From Lemma 48, we let s = 0, y = 1, we have
[
(λ + θ) − 1

z
(λX (z) + θ)H̃(λ − λX (z))

]
ϕ0(0, z, 1)

= ζ(z)

z

(
λX (z) + θ

λ + θ

)
H̃(λ − λX (z)).

Differentiate the above equation w.r.t z and let z approach 1, we obtain L
F j
0 . Combining with

(1), L
F j
1 is obtained by using limz→1−

∫∞
0 ϕ(0, z, 1, x)dx . Finally, ELM = ϕ(0, 1, 1) +

limz→1−
∫∞
0 ϕ(0, z, 1, x)dx .

Proof of Lemma 4 To see this, we apply Theorem 4 and after some re-arranging, we have

ELF j = − 1

λ + θ
+
[
Ṽ (λ) j

(
θ

λ(λ + θ)
− EV

1 − Ṽ (λ)

)
+ EV

1 − Ṽ (λ)

]
κ(θ)

1 − κ(θ)
.

Given that Ṽ (λ) ≥ 0, Ṽ (λ) j is always increasing function in j . It is easy to see that the sign
of θ

λ(λ+θ)
− EV

1−Ṽ (λ)
determines the if ELF j is increasing or decreasing. �	
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