
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2017 

Law enforcement resource optimization with response time Law enforcement resource optimization with response time 

guarantees guarantees 

Jonathan CHASE 
Singapore Management University, jdchase@smu.edu.sg 

Jiali DU 
Singapore Management University, jiali.du.2012@phdis.smu.edu.sg 

Na FU 
Singapore Management University, nafu@smu.edu.sg 

Truc Viet LE 
Singapore Management University, trucviet.le.2012@phdis.smu.edu.sg 

Hoong Chuin LAU 
Singapore Management University, hclau@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer Sciences Commons, and the Operations Research, Systems Engineering and 

Industrial Engineering Commons 

Citation Citation 
CHASE, Jonathan; DU, Jiali; FU, Na; LE, Truc Viet; and LAU, Hoong Chuin. Law enforcement resource 
optimization with response time guarantees. (2017). 2017 IEEE Symposium Series on Computational 
Intelligence SSCI: Honolulu, November 27 - December 1: Proceedings. 1074-1080. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4530 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Law Enforcement Resource Optimization with
Response Time Guarantees

Jonathan Chase, Jiali Du, Na Fu, Truc Viet Le
Hoong Chuin Lau *

School of Information Systems, Singapore Management University, Singapore

Abstract—In a security-conscious world, and with the rapid
increase in the global urbanized population, there is a growing
challenge for law enforcement agencies to efficiently respond
to emergency calls. We consider the problem of spatially and
temporally optimizing the allocation of law enforcement resources
such that the quality of service (QoS) in terms of emergency
response time can be guaranteed. To solve this problem, we
provide a spatio-temporal MILP optimization model, which we
learn from a real-world dataset of incidents and dispatching
records, and solve by existing solvers. One key feature of our
proposed model is the introduction of risk values that allow a
planner to flexibly make a tradeoff between their resource budget
and the targeted service quality. Experimental results on real-
world incident data, and simulations run on learned synthetic
data, show a significant reduction in resource requirements
over current practice, with violating QoS or abusing resource
utilization.

Index Terms—Resource Allocation, Law Enforcement Staffing,
Data-Driven

I. INTRODUCTION

On 3rd June 2017, two concurrent terrorist attacks took
London by surprise, as a van drove into pedestrians on London
Bridge, and men armed with knives attacked passers-by in
the Borough Market area. In the aftermath, the Metropolitan
Police attracted praise for the speed of their attendance on the
scene [1]. To achieve a response time of 8 minutes requires
effective planning and a well-designed deployment in a dense,
congested city. Planning for urban environments is vital and
increasingly so, as the UN has identified an increasing trend of
urbanization across the world [2]. With a number of terrorist
attacks hitting Western cities in the last 3 years [3], urban law
enforcement agencies are under pressure to respond to emer-
gency incidents promptly and reliably, whilst simultaneously
being expected to economize on running costs. A key area
in which to lower expenses is through manpower reduction or
redeployment, intelligently utilizing law enforcement agents to
achieve a high degree of responsiveness with a lower staffing
level. However, when reducing costs and manpower, it is easy
to overtax the remaining staff, and in [4] it was found that
the tiredness level of police officers influenced their ability
to choose correctly when faced with the decision to open
fire on a suspect. Given a number of questionable recent
police shootings in the US, some of which have led to civil
unrest [5], the work demands placed on staff are an essential
consideration of any resource optimization process.

*Corresponding Author (hclau@smu.edu.sg)

In this work, we are concerned with spatio-temporal staffing
optimization in the context of law enforcement, which is a
24/7 service where officers are rostered on rotating shifts
of 8-12 hours [6]. The expected outcome is an efficient
resource allocation that can reduce the number of man-hours
while guaranteeing a certain quality of service (QoS), without
excessively increasing utilization. Specifically, we study the
problem of optimizing the staffing level of law enforcement
agents (i.e., officers) across base locations and time periods
throughout a day using a data-driven approach. Our goal
is to design high-fidelity allocation strategies so as to meet
response time requirements for incidents of different priorities
that maximize resource savings over the current practice.

We thus make the following key contributions:

• Based on real-world incident data provided by a large
law enforcement agency, we propose a mixed integer
linear programming (MILP) model for the deterministic
resource optimization problem with guaranteed response
time requirements.

• We solve the deterministic optimization model with sam-
pling approximation to accommodate the dynamics of the
incidents drawn from historical data.

• We perform extensive experiments simulated from real-
world data to test the robustness of our solution, and
experimental results demonstrate the potential savings
in the staffing level over the current practice to meet
response time requirements, without significant stress on
resource utilization.

II. RELATED WORK

Manpower optimization focuses on solving the problems
of staff allocation (number of agents on duty for a given
time and place) and staff scheduling (timing and staffing
levels for implementable shifts). [7] formulates an integer
optimization problem to schedule manpower in a multiskill
call center. Manpower optimization has received extensive
attention in computational intelligence, as these techniques can
be employed for a range of applications, in our case, to law
enforcement scheduling. There is a need in law enforcement
to develop a more sophisticated approach to staffing than
simplistic historical data analysis that has characterized the
status quo [8]. Crime prediction is a notoriously challenging
problem and therefore if the allocation methodology is too
simplistic, the uncertainty in incident occurrence will lead



to both over-provisioning and under-provisioning for different
times and places [9].

To increase the sophistication of law enforcement allo-
cation, [10] applies staff scheduling to rail security pa-
trol scheduling. Staff are allocated to patrol stations spatio-
temporally, comparing three mathematical models and evalu-
ating on a real test case. Since police dispatch data is kept
electronically, there are extensive data available for historical
incidents, including location, time of occurrence, and officer
engagement and travel times. [11] uses historical data to
devise a visual analytics-based approach to prediction as a
tool for resource allocation. Seasonal Trend decomposition is
used to model crime patterns and predict the spatio-temporal
distribution of future incidents, although no staff allocation
is proposed to accompany this analysis. [12] justifies the use
of crime data in law enforcement deployment because low
response times, targeted patrolling, and a sense of police
‘omnipresence’ all contribute to reducing the number of crime
incidents in a city. The report also found that the level of
crime is inversely proportional to the number of police officers,
a result that we aim to achieve through intelligent resource
deployment rather than manpower increases. [13] uses these
insights to propose an evolutionary patrol design algorithm
based on a multiobjective optimization model, to enhance se-
curity in Northern Seattle. Similarly, we adopt an optimization
model in this paper, but do not rely on the assumption that
the incident data follows a Poisson distribution. Instead, we
optimize directly on a large set of real incident data to better
account for uncertainty, and assess the performance by way
of simulation, using both incident prediction and response
time prediction to improve the realism of the scenario. [14]
also adopts an optimization approach, but adopts an iterative
Bender’s decomposition method to consider the behaviour
changes of criminals in response to police patrols

In addition to assessing the optimal deployment of resources
to handle crime incidents, it is also necessary to schedule
staff in a reasonable and humane way. [15] studies the
welfare of 275 police officers working 8-hour, 10-hour, and
12-hour shifts. Quality of life is measured on a number of
factors including their ability to perform, health, and off-duty
employment. The study found that officers working 12-hour
shifts had a lower level of well-being than those working
shorter shifts, therefore in this paper we consider a number
of shift patterns to see if good incident response performance
can be achieved while accommodating officer welfare. In this
paper we build response time guarantees into the optimization
QoS, but run simulations to calculate the expected utilization
rates for agents to verify that our solution provides acceptable
workloads for individuals.

III. PROBLEM DEFINITION

We consider a law enforcement and staffing allocation
problem. A set of agents are assigned to patrol predefined
geographic regions, ready to respond to incidents when they
occur. These incidents are received via emergency calls, and
may correspond to a range of situations, from murder and

bomb threats, to theft and noise disturbances. When an inci-
dent is logged, it is assigned an urgency rating, and an agent
is dispatched to attend, with the aim of arriving at the incident
(the response time) within the time limit defined by the QoS
agreement for that incident’s urgency level. Certain incidents
require more than one agent to attend, in which case additional
agents are also dispatched, although their response time is
not factored into the QoS agreement. Agents remain at the
incident until it is resolved (the engagement time), and only
then are they free to attend another incident. The objective
of the work outlined in this paper is to find the minimum
number of agents required to be on duty, and their geographic
locations, to meet the QoS for a user-defined proportion of
incidents. We illustrate the scenario under consideration in
Fig. 1, showing an example incident occurrence and attendance
timeline.

Formally, the law enforcement staffing and allocation prob-
lem is an optimization problem that can be described by the
tuple:

< R,L, T ,∆, α > .

The goal is to decide the staff levels across different base
locations L to meet the response time requirements, ∆, for a
given set of incidents, R, within a given risk level, α, under
the travel matrix, T . More precisely, the decision variables
are the number of agents needed at different base locations
at different time periods of the day in order to minimize the
number of resources used while satisfying the response time
requirement constraint.

Each incident, r ∈ R, is a tuple, < l, d, c, t, s >, where l is
the location of occurrence, d is the demand (number of agents
needed), c is the class representing the urgency level, t is the
time of occurrence, and s is the service (or engagement) time
required (superscript r is omitted for simplicity). Let Tl,l′,t be
the travel time (in minutes) from location l to location l′ at time
t. In practice, upon receiving an emergency call, the operator
would first identify and assign a certain urgency level to the
incident. Each urgency level has a required maximum response
time, which is computed as the time between the receipt of
the call and the time of arrival of the dispatched agent(s)
to the location of the incident, consisting of the dispatching
time and the agent’s traveling time. Satisfying the response
time constraint is the key metric for the QoS. Let ∆ be the
maximum response time vector of all urgency levels. Incidents
with higher urgency should be responded to faster than those
with lower urgency. That is, ∆c < ∆c′ , where c is a class
with higher urgency than c′.

A good resource plan is able to tradeoff between the
resource cost and the service quality. Note that resource
requirements are not only location-based, but are also time-
varying (i.e. spatio-temporal in nature). The granularity of
time, for example, can be day and night, hourly interval, peak
and non-peak period, etc.

To this end, we first propose a Mixed Integer Linear Pro-
gramming (MILP) model for the problem defined above. We
then solve the model with consideration of incident dynamics
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Agents (cars or officers) patrol their assigned geographic regions. When an incident occurs, 

an agent is assigned to attend with a travel time that can meet the QoS requirements.

Fig. 1. Illustration of the system model under consideration. Agents attend incidents, with success defined as the first arriving agent’s response time falling
within the time limit defined by the QoS agreement.

from historical data using Sample Average Approximation
(SAA) [16].

IV. MATHEMATICAL MODEL

In this section we describe the optimization model in detail.
The key notations are summarized in Table I.

TABLE I
KEY NOTATIONS USED IN OPTIMIZATION MODEL.

Variable
i Agent index and its base location li

r Incident index and its location lr

Tli,lr Travel time from location of agent i to location of
request r

dr Number of agents required to attend request r
cr Class (urgency level) of request r
tr Start time of request r
sr Service (engagement) time of request r
yi Binary variable indicating if agent i is required
yri Binary variable indicating if agent i serves incident r
yq,ri Binary variable indicating if i serves r after serving q
ρri Binary variable indicating if agent i is the first

responder to request r
zr Binary variable indicating if the response time target

was met for request r
δr Calculated response time for incident i
eqi Calculated ending time for agent i upon serving q

The proposed MILP model is given in (1)-(19). Given
a dataset comprising a large number of historical incident
records, we solve this model optimally based on the Sample

Average Approximation (SAA) method proposed by [16].
More specifically, the objective is to minimize the total number
of agents on duty subject to the requirement that the QoS
constraint is met over the set of incidents given in the dataset.

min
∑
i

yi (1)

s.t.

δr ≤ Tli,lr · yri + tr +M · (1− yri ) ∀r, i (2)
δr ≥W r ∀r (3)
Tli,lr · yri + tr +M · (1− yri ) ≥W r ∀r, i (4)
Tli,lr · yri + tr +M · (yri + ρri − 2) ≤W r∀r, i (5)
yri ≥ ρri ∀r, i (6)∑

i

ρri = 1 ∀r (7)

yri ≤ yi ∀i, r (8)∑
i

yri = dr ∀r (9)

yq,ri ≤ yqi ∀i, q, r, q 6= r (10)
yq,ri ≤ yri ∀i, q, r, q 6= r (11)∑
q

yq,ri = yri ∀i, q, r, q 6= r (12)

yq,ri ≤ tr − eqi
M

+M(1− yqi ) + yqi ∀i, q, r (13)



eri ≤ tr + Tli,lr + sr +M(1− yq,ri ) ∀i, q, r (14)
eri ≥ tr + Tli,lr + sr +M(yq,ri − 1) ∀i, q, r (15)

yq,ri ≤ tr − eqi
M

+ 1 ∀i, q, r (16)

zr ≥ δr −∆c

M
∀r, cr = c (17)∑

r z
r

|R|
≤ α (18)

zr ∈ {0, 1} ∀r (19)

1) Computing the response time: A QoS key criterion is
the response time to incidents. If more than one agent is
dispatched to an incident, the response time is taken to
be the first car to arrive at the scene. This is linearized
in constraints (2) – (7), where δr denotes the response
time for incident r, and Tli,lr represents the travel time
from the agent’s location li to the incident location lr

when r happens. δr can be computed as the minimum
travel time of all the responding agents, where the binary
indicator yri = 1 indicates agent i is dispatched to attend
r. W r denotes a lower bound on the response time δr,
binary variable ρri serves as a location indicator that
shows where the first agent comes from, and M is a
large number. That is, i will be the first agent to be
dispatched if yri = 1 and ρri = 1. If i is not dispatched,
ρri must be 0, as shown in (6).

2) Preventing resource preemption and fulfilling de-
mand of incidents: When an agent is attending an inci-
dent, it must remain at the incident for the entire duration
required to service the request, it cannot be pre-empted
to serve another request. In addition, incidents belonging
to different classes may request different numbers of
agents and those demands must be fulfilled. This can
be achieved by the constraints (8) – (13). Constraints
(8) – (11) require that i can only be dispatched if it is
available. The sum over all agents must fulfil the demand
dr, for all r, as shown in (9). Constraint (13) enforces
that once an agent is occupied, it cannot be assigned to
another incident until the current service has completed.
That is, if i is serving q, and r occurs before q ends,
then i cannot serve r and (13) forces yri to be 0.

3) Dispatching agents when incidents arrive: Since inci-
dents can be served by agents from different locations,
the problem of planning the spatial and temporal re-
source supply becomes challenging. To this end, we use
an intermediate variable yq,ri to denote the sequence that
i serves. yq,ri = 1 indicates the process that i serves
r after q. We have constraints (14) – (16) where eri
is the ending time of serving incident r for agent i,
i.e., the moment i becomes available after attending r.
Suppose q was the last incident i attended, i.e., yq,ri = 1,
then eri consists of three parts: r′s starting time, tr, the
response time, Tli,lr , of the dispatched agents and the
engagement time, sr, to attend r represented in (14)
and (15). Thus, due to constraint (16), the necessary

TABLE II
FEATURES USED TO LEARN A PREDICTIVE MODEL FOR THE TRAVEL TIME.

Feature Description
traffic_travel_time Time-dependent travel time computed by

Google Maps
mean_travel_time Hourly average travel time from location to location

captured by data
is_urgent Binary classification whether the incident is urgent

or non-urgent
is_resource_sharing Whether the responding car comes from a different

base location
num_cars Number of cars dispatched to respond

to the incident
hours Integer hour of the incident’s occurrence

time (0–23)

condition of yiq,r = 1 is tr ≥ eqi .
4) Ensuring risk embedded QoS: Without loss of gen-

erality, we assume a single QoS constraint that, given
0 ≤ α < 1, allows at most α fraction of the incidents
within a planning horizon to fail, i.e., whose response
times exceed the respective maximum thresholds for the
incidents given in R. This requirement is linearized in
constraints (17) – (19) where δr is the response time for
request r, with a response time target of ∆c for incidents
of class c. If the response time for an incident, r, exceeds
the target, the binary variable, zr = 1, indicating a
failure.

V. TRAVEL TIME PREDICTION

While historical data may provide details for the specific
time and location of incidents, as well as the required en-
gagement time, the aim of our model is to determine staffing
levels that are robust against future occurrence of incidents.
Hence, we propose to solve the model using historical data
(viewed as training data), but evaluating the resulting solution
on extensive simulated (testing) data.

One key challenge is to be able to generate realizations
of incident data together with accurate response time for an
agent at its location to respond to a particular incident. To
that end, we apply a machine learning technique to predict
response time values for an agent attending an incident. We
first assume that the dispatched agent always starts from its
base location. This is due to the lack of complete information
about the agent’s actual location as it patrols from point to
point throughout the day. We propose a regression model that
predicts the travel time (in minutes) from its base location to
the incident location using the relevant features derived from
the provided data. Table II summarizes these features.

In this regression model, the true travel time captured
by the data (i.e., the duration from when the agent’s car
is dispatched to its arrival time at the incident location) is
the response variable. The features in Table II were derived
from a combination of both regression analysis and random
forest feature importance. traffic_travel_time is the
estimated travel time from the agent’s base location to the
incident location computed by Google Maps API at the time
the agent was dispatched. mean_travel_time is the hourly
average travel time from the agent’s base location to the



Fig. 2. Evaluation of predictive models for travel time prediction using 10-
fold CV.

incident’s location. is_urgent is a binary classification
whether the incident is urgent or not. we assume the number
of urgency levels to be 2 without loss of generality, i.e.
incidents are classified as either urgent or non-urgent, with
their respective response time requirement. Here, without loss
of generality, we assume the number of urgency levels to be
2, i.e. incidents are classified as either urgent or non-urgent.
is_resource_sharing is a binary variable indicating
whether the dispatching car comes from a different base
location. This typically happens when the resources near the
incident’s location are being deployed and unavailable, thus
resources from another (neighboring) base location are called
for. num_cars is the number of responding cars dispatched.
hours is the integer hours of the incident’s timestamp.
Thus, both the spatio-temporal features of the incident and
its response information are taken into consideration in the
predictive model.

The following models are evaluated: random forest, linear
regression, support vector machine (SVM), and gradient boost-
ing regression (GBR). All these models use the features listed
in Table II. We additionally evaluate a naive “baseline” model
that uses the mean_travel_time feature as the predicted
travel time for a given test incident. For the SVM model, the
RBF (radial basis function) kernel is used. For the GBR model,
we use the efficient implementation in the XGBoost package
[17]. We use both MAE (mean absolute error) and RMSE
(root-mean-square error) to evaluate the models. We perform
10-fold cross-validation (CV) on the provided data and take
the mean errors across the folds. The results are shown in Fig.
2 with the mean error rates and the variances (error bars) over
10 folds.

Fig. 2 shows that the model that performs the best (by both
MAE and RMSE) is the GBR model with average MAE well
below 4 minutes. Unsurprisingly, the baseline model performs
the worst (since it uses only one feature). Our experiments
show that GBR is the best model overall. GBR is a powerful
ensemble learning method that produces a predictive model
in the form of an ensemble of regression trees. It has been
shown to be robust against overfitting (hence, suitable for

highly skewed and long-tailed data such as travel time) in
many machine learning contests including the Netflix prize
[18]. Therefore, we choose GBR as our predictive model for
travel time estimation Tli,lr in our MILP model.

VI. EXPERIMENTAL EVALUATION

Our experimental evaluation consists of two parts. First, we
solve the optimization model using real-world incident data
provided by a national law enforcement agency (details are
omitted for the purposes of national security). The dataset
spans a one-year period and contains more than 200,000
incidents in total that require resource deployment. For each
incident, the data records the detailed information of the
location (latitude and longitude), timestamp, type and urgency
as well as dispatch information such as travel time and service
duration. In other words, the data tells us where, when, and
what happened, and how the incidents were responded to.
The optimization model was implemented using CPLEX [19]
as the main solver and run on a cluster with 2 Intel Xeon
E5-2665 2.90GHz processors (with a total of 24 threads) and
256GB of RAM. Our model provides time-varying resource
plans at each base location for a 24-hour planning horizon.
Solving the model for a year provides 365 individual solutions,
each satisfying a risk level of 0.10, with a single resource
allocation plan chosen conservatively to satisfy demand on
all days with the exception of occasional outliers. This single
allocation plan is then used as the input for the second part of
the experimental evaluation. Using a set of synthetic incidents
generated by applying machine learning techniques to the
provided historical data, we implement a simulated agent
dispatch system in Python [20]. The simulator reads the set of
incidents in chronological order, and assigns agents to attend
incidents, recording the observed risk and utilization for each
day.

A. Optimization Model: Computational Performance

It is well established that integer problems suffer from com-
putational tractability problems, with the traditional branch-
and-bound algorithm having exponential complexity [21]. For
our dataset, each day has an average of 550 incidents, which
is too large to reach an optimal solution quickly. To improve
computation time, we solve the optimization model for twelve
2-hour, four 6-hour and two 12-hour periods, computed in
parallel, and compare the computation time and memory
requirements to solve for a typical day. These results are given
in Table III. For 2-hour and 6-hour periods we set a 1-hour
run time cutoff, and for 12-hour set a 2-hour cutoff, recording
the duality gap to show how close to optimality the solution
came within the allotted time. This result shows clearly that
executing 12 parallel optimization problems running on a 2-
hour time window offers large performance gains over four
6-hour optimization runs, and particularly over two 12-hour
optimization runs.



TABLE III
IMPACT OF TEMPORAL DECOMPOSITION ON COMPUTATIONAL DEMANDS

Time Period Execution Time Memory Average
(hrs) (s) (GB) Duality Gap

2 33.5 3.1 0.9%
6 3650.4 11.4 6.5%

12 7316.7 23.4 33.9%

Fig. 3. The average savings (in number of agents) at 2-hour vs. 6-hour
intervals.

B. Optimization Model: Resource Savings from Shorter Time
Windows

In addition to a faster computation time, optimizing on a
shorter time period allows a more nuanced allocation result,
as the quantity and spatial distribution of demand can vary
significantly with the time of day. Optimizing over a 2-
hour period allows us to examine a greater range of shift
handover times and shift lengths without needing to rerun the
optimization, which, for a whole year, is a time-consuming
process. Whilst the 12-hour solution takes prohibitively long
to reach a sub-optimal solution, the 6-hour option is more
reasonable. However, it lacks the potential for flexible planning
that the 2-hour option allows, and overestimates the number of
agents required for a given time period, as illustrated in Fig. 3,
where we show a comparison of the two approaches for one
major geographic area from the historical data. The difference
between the two methods is particularly highlighted in the
early morning time period, where a peak in demand is closely
followed by a trough, which the 6-hour time window does not
adequately capture, making it imprecise when designing shift
patterns.

C. Optimization Model: Shift Design Savings

A key goal of law enforcement resource optimization cen-
ters around the goal of reducing the manpower required to
maintain good response times. We calculated three alternative
shift systems and evaluate the savings offered by the optimiza-
tion model over current practice, as shown in Fig. 4. Shift
Model 1 follows the current practice of 4 teams rotating in
12-hour shifts, with shift handover taking place at 8am and
8pm. Agents follow a rotational pattern of a day shift, then a
night shift, followed by two rest days. Shift Model 2 considers

Fig. 4. Resource savings offered by each shift pattern.

alternative handover times, in this case 6am and 6pm, but
maintains the 4 team rotational pattern used by Model 1. Shift
Model 3 reorganizes the 4 team rotation into 3 teams that
remain on duty for a 24-hour period, with members of the team
alternating between rest and active duty, in 8-hour periods
from midnight to 8am, 8am to 4pm and 4pm to midnight.
This model employs a different rotational pattern, with a team
working for a whole day, followed by two rest days. The
transformation of 4 teams into 3 permits a larger saving of
overall resources.

D. Simulation: Effect of Savings on Utilization

In addition to the goal of saving resources through opti-
mization, it is important to ensure that individual agents do not
become overworked. To determine the real-world viability of
our proposed solution, we test each shift pattern against a year
of synthetic incidents by simulating a chronological dispatch-
ing process. An optimization problem can essentially ‘see the
future’, as agents are allocated to incidents with full knowl-
edge of subsequent incidents. However, in the real world, an
emergency dispatcher would not have this knowledge, thus
this simulation verifies that our solution is able to achieve the
targeted risk level in practice, without the advantage of full
knowledge about the states of the system. Given the savings
offered by each shift pattern, as observed in Fig. 4, we plot
the observed utilization rates from the simulation, and provide
the probability density function and cumulative distribution
function for the observed data in Fig. 5. Each day rarely
exceeds the target utilization rate of 40%, showing that the
proposed savings are still reasonable in practice, without over-
taxing agents. Whilst this target rate may seem low, there are
a number of overheads to allow for that are not captured by
the engagement time of an incident, such as the time spent
doing paperwork, and scheduled training, that may also take
place during working hours. Interestingly, these results show
that a 20% difference in resource savings between Model 3
and Models 1 and 2 does not equate to such a significant
difference in utilization rates. This shows that the intelligent
design of a shift system can permit greater resource savings
without significant sacrifices in QoS.



Fig. 5. Effect of different shift patterns on utilization.

VII. CONCLUSIONS AND FURTHER WORK

In this work, we considered the problem of law enforcement
manpower allocation and proposed a deterministic resource
optimization model that is evaluated using real world emer-
gency request data, with response time prediction based on
machine learning techniques. Our solution framework embeds
decision makers’ risk attitudes, which allows the planners
to flexibly choose their own tradeoffs between the resource
cost and the risk they are willing to take. Our experimental
results indicate significant resource savings over the current
practice, as well as simulating a real world dispatch process
to demonstrate reasonable utilization rates. We believe that
this work can provide a practical solution for law enforcement
agencies to efficiently and effectively respond to crimes and
incidents. Future work should introduce stochasticity allowing
us to account for greater seasonality in demand, permitting for
the dynamic selection of an allocation solution given changing
season and environmental features. The assumption that agents
start from a fixed location should also be relaxed, incorporating
patrol design and more realistic travel time prediction. The
incorporation of these features should provide a powerful
and flexible tool for law enforcement agencies to handle the
demands of a security-conscious world.
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