
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2017

Mining sandboxes for Linux containers Mining sandboxes for Linux containers

Zhiyuan WAN
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Xin XIA
Zhejiang University

Liang CAI
Zhejiang University

Shanping LI
Zhejiang University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WAN, Zhiyuan; LO, David; XIA, Xin; CAI, Liang; and LI, Shanping. Mining sandboxes for Linux containers.
(2017). 10th IEEE International Conference on Software Testing (ICST 2017): Toyko, Japan, March, 13-17:
Proceedings. 92-102.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4528

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mining Sandboxes for Linux Containers
Zhiyuan Wan∗, David Lo†, Xin Xia∗‡, Liang Cai∗, and Shanping Li∗
∗College of Computer Science and Technology, Zhejiang University, China

†School of Information Systems, Singapore Management University, Singapore
{wanzhiyuan, xxkidd, leoncai, shan}@zju.edu.cn, davidlo@smu.edu.sg

Abstract—A container is a group of processes isolated from
other groups via distinct kernel namespaces and resource allo-
cation quota. Attacks against containers often leverage kernel
exploits through system call interface. In this paper, we present
an approach that mines sandboxes for containers. We first explore
the behaviors of a container by leveraging automatic testing, and
extract the set of system calls accessed during testing. The set of
system calls then results as a sandbox of the container. The mined
sandbox restricts the container’s access to system calls which are
not seen during testing and thus reduces the attack surface. In
the experiment, our approach requires less than eleven minutes
to mine sandbox for each of the containers. The enforcement of
mined sandboxes does not impact the regular functionality of a
container and incurs low performance overhead.

I. INTRODUCTION

Platform-as-a-Service (PaaS) cloud is a fast-growing seg-
ment of cloud market, being projected to reach $7.5 billion by
2020 [1]. A PaaS cloud permits tenants to deploy applications
in the form of application executables or interpreted source
code (e.g. PHP, Ruby, Node.js, Java). The deployed applica-
tions execute in a provider-managed host OS, which is shared
with applications of other tenants. Thus a PaaS cloud often
leverages OS-based techniques, such as Linux containers, to
isolate applications and tenants.

Containers provide a lightweight operating system level
virtualization, which groups resources like processes, files
and devices into isolated namespaces. This gives users the
appearance of having their own operating system with near
native performance and no additional virtualization overhead.
Container technologies, such as Docker [2], enable an easy
packaging and rapid deployment of applications. However,
most containers that run in the cloud are too complicated
to trust. The primary source of security problems in contain-
ers is system calls that are not namespace-aware [3]. Non-
namespace-aware system call interface facilitates the adversary
to compromise untrusted containers to exploit kernel vulner-
abilities to elevate privileges, bypass access control policy
enforcement, and escape isolation mechanisms. For instance,
a compromised container can exploit a bug in the underlying
kernel that allows privilege escalation and arbitrary code
execution on the host [4].

How can cloud providers protect the clouds from untrusted
containers? One straightforward way is to place the container
in a sandbox to restrain its access to system calls. By re-
stricting system calls, we could also limit the impact that an

‡Corresponding author

Testing Container Monitor System call accessed

Production

User

Process

Control

File

Management

Device

Management

Information

Maintenance

Communication

Process

Control

File

Management

Device

Management

Information

Maintenance

Communication

Container Sandbox System call denied

1. Sandbox mining

2. Sandbox enforcing

Fig. 1: Our approach in a nutshell. Mining phase monitors
accessed system calls when testing. These system calls make
up a sandbox for the container, which later prohibits access to
system calls not accessed during testing.

adversary can make if a container is compromised. System
call interposition is a powerful approach to restrict the power
of a program by intercepting its system calls [5]. Sandboxing
techniques based on system call interposition have been de-
veloped in the past [6], [7], [8], [9], [10], [11]. Most of them
focus on implementing sandboxing techniques and ensuring
secure system call interposition. However, generating accurate
sandbox policies for a program are always challenging [7].
We are inspired by a recent work BOXMATE [12], which
learns and enforces sandbox policies for Android applications.
BOXMATE first explores Android application behavior and
extracts the set of resources accessed during testing. This set is
then used as a sandbox, which blocks access to resources not
used during testing. We would like to port the idea of sandbox
mining in BOXMATE to be able to confine Linux containers.

A container comprises multiple processes of different func-
tionalities that access distinct system calls. Different containers
may access distinct sets of system calls. Therefore, a common
sandbox for all the containers is too coarse. In this paper, we
present an approach to automatically extract sandbox rules for
a given container. The approach is composed of two phases
shown in Fig. 1:

• Sandbox mining. In the first phase, we mine the rules
that will make the sandbox. We use automatic testing to
explore container behaviors, and monitor all accesses to
system calls.

• Sandbox enforcing. In the second phase, we assume
that system calls which are not accessed during the
mining phase should not be accessed in production either.

Consequently, if the container (unexpectedly) requires
access to a new system call, the sandbox will prohibit
access.

To the best of our knowledge, our approach is the first
technique to leverage automatic testing to extract sandbox
rules for Linux containers. While our approach is applicable to
any Linux container management service, we selected Docker
as a concrete example because of its popularity. Our approach
has a number of compelling features:

• No training in production. In contrast to anomaly
detection systems, our approach does not require training
process in production. The “normal” system call access
would already be explored during the mining phase.

• Reducing attack surface. The mined sandbox detects
system calls that cannot be seen during the mining
phase, which reduces the attack surface by confining the
adversary and limiting the damage he/she could cause.

• Guarantees from sandboxing. Our approach runs test
suites to explore “normal” container behaviors. The test-
ing may be incomplete, and other (in particular mali-
cious) behaviors are still possible. However, the testing
covers a safe subset of all possible container behaviors.
Sandboxing is then used to guarantee that no unknown
system calls aside from those used in the testing phase
are permitted.

We evaluate our approach by applying it to eight Docker
containers and focus on three research questions:
RQ1. How efficiently can our approach mine sandboxes?

We automatically run test suites on Docker containers, and
check the system call convergence. It takes less than two
minutes for the set of accessed system calls to saturate. In
addition, we compare our mined sandboxes with the default
sandbox provided by Docker. The default sandbox allows more
than 300 system calls [13] and is thus too coarse. On the
contrary, our mined sandboxes allow 66 - 105 system calls for
eight containers in the experiment, which significantly reduce
the attack surface.
RQ2. Can automatic testing sufficiently cover behaviors?

If a system call S is not accessed during the mining phase,
later non-malicious access to S would trigger a false alarm.
We run use cases that cover core functionality of containers to
check whether the enforcing mined sandboxes would trigger
alarms. The result shows that all the use cases end with no
false alarms.
RQ3. What is the performance overhead of sandbox
enforcement?

We evaluate the performance overhead of enforcing mined
sandboxes on a set of containers. The result shows that
sandbox enforcement incurs very low end-to-end performance
overhead (0.6% - 2.14%). Our mined sandboxes also provide
a slightly lower performance overhead than that of the default
sandbox.

The remainder of this paper is organized as follows. After
discussing background and related work in Section II, Section
III specifies the threat model and motivation of our work.

Section IV and V detail two phases of our approach. We
evaluate our approach in Section VI and discuss threats to
validity and limitations in Section VII. Finally, Section VIII
closes with conclusion and future work.

II. BACKGROUND AND RELATED WORK

A. System Call Interposition

System calls allow virtually all of a program’s interactions
with the network, filesystem, and other sensitive system re-
sources. System call interposition is a powerful approach to
restrict the power of a program [5].

There exists a significant body of related work in the
domain of system call interposition. Implementing system call
interposition tools securely can be quite subtle [5]. Garfinkel
studies the common mistakes and pitfalls, and uses the system
call interposition technique to enforce security policies in the
Ostia tool [14]. System call interposition tools, such as Janus
[6], [15], Systrace [7], and ETrace [16], can enforce fine-
grained policies at granularity of the operating system’s system
call infrastructure. System call interposition is also used for
sandboxing [6], [7], [8], [9], [10], [11] and intrusion detection
[17], [18], [19], [20], [21], [22], [23], [24], [25].

Seccomp-BPF framework [26] is a system call interposition
implementation for Linux Kernel introduced in Linux 3.5. It is
an extension to Seccomp [27], which is a mechanism to isolate
a third-party application by disallowing all system calls except
for reading and writing of already-opened files. Seccomp-
BPF generalizes Seccomp by accepting Berkeley Packet Filter
(BPF) programs to filter system calls and their arguments. For
example, the BPF program can decide whether a program can
invoke the reboot() system call.

In Docker, the host can assign a Seccomp BPF program
for a container. Docker uses a Seccomp profile to capture a
BPF program for readability [13]. Fig. 2 shows a snippet of
Seccomp profile used by Docker, written in the JSON [28]
format.

By default, Docker disallows 44 system calls out of 300+ for
all of the containers to provide wide application compatibility
[13]. However, the principle of least privilege [29] requires
that a program must only access the information and resources
necessary to complete its operation. In our experiment, we
notice that top-downloaded Docker containers access less than
34% of the system calls which are whitelisted in the default
Seccomp profile.

Containers are granted more privileges than they require.

B. System Call Policy Generation

Generating an accurate system call policy for an existing
program has always been challenging [7]. It is difficult and
impossible to generate an accurate policy without knowing
all possible behaviors of a program. The question “what does
a program do?” is the general problem of program analysis.
Program analysis falls into two categories: static analysis and
dynamic analysis.

Static analysis checks the code without actually executing
programs. It sets an upper bound to what a program can do.

{
"defaultAction": "SCMP_ACT_ERRNO",
"architectures": [

"SCMP_ARCH_X86_64",
"SCMP_ARCH_X86",
"SCMP_ARCH_X32"

],
"syscalls": [

{
"name": "accept",
"action": "SCMP_ACT_ALLOW",
"args": []

},
{

"name": "accept4",
"action": "SCMP_ACT_ALLOW",
"args": []

},
...

]
}

Fig. 2: A snippet of Docker Seccomp profile, expressed in
JavaScript Object Notation (JSON).

If static analysis determines some behavior is impossible, the
behavior can be safely excluded. Janus [6] recognizes a list
of dangerous system calls statically. Wagner and Dean [19]
derive system call sequences from program source code.

The limitation of static analysis is over-approximation. The
analysis often assume that more behaviors are possible than
actually would be. Static analysis is also undecidable in all
generality due to the halting problem.

Static analysis produces over-approximation.

Dynamic analysis analyzes actual executions of a running
program. It sets a lower bound of a program’s behaviors. Any
(benign) behavior seen in past executions should be allowed
in the future as well. Given a set of executions, one can learn
program benign behaviors to infer system call policies. There
is a rich set of articles about system call policy generation
through dynamic analysis. Some studies look at a sequence
of system calls to detect deviations to normal behaviors [18],
[17], [23]. Instead of analyzing system call sequences, some
studies take into account the arguments of system calls. [24]
uses finite state automata (FSA) techniques to capture temporal
relationships among system calls [25], [30]. Some studies
keep track of data flow between system calls [20], [31].
Other researchers also take advantage of machine learning
techniques, such as Hidden Markov Models (HMM) [22], [32],
Neural Networks [33], and k-Nearest Neighbors [34].

The fundamental limitation of dynamic analysis is incom-
pleteness. If some behavior has not been observed so far, there
is no guarantee that it may not occur in the future. Given the
high cost of false alarms, a sufficient set of executions must
be available to cover all of the normal behaviors. The set of
executions can either derive from testing, or from production
(a training phase is required) [12].

Dynamic analysis requires sufficient “normal” executions
to be trained with.

C. Consequences

Sandboxing, program analysis and testing are mature tech-
nologies. However, each of them has limitations: sandboxing
needs policy, dynamic analysis needs executions, and testing
cannot guarantee the absence of malicious behavior [12].
Nonetheless, Zeller et al. argue that combining the three not
only mitigates the limitations, but also turns the incomplete-
ness of dynamic analysis into a guarantee [35]. In our case,
system call interposition-based sandboxing can guarantee that
anything not seen yet will not happen.

III. THREAT MODEL AND MOTIVATION

Most containers that run in the cloud, e.g., Web server,
database systems and customized applications, are too com-
plicated to trust. Even with access to the source code, it
is difficult to reason about the security of a container. An
untrusted container might be compromised by carefully craft
inputs because of exploitable vulnerabilities. A compromised
container can further do harm in many ways. For instance, a
compromised container can exploit a bug in the underlying
kernel that allows privilege escalation and arbitrary code
execution on the host [4]; it can also acquire packet of another
container via ARP spoofing [36]. We assume the existence of
vulnerabilities to the adversary that he/she can use to gain
unauthorized access to the underlying operating system and
further compromise other containers in the cloud.

We observe that system call interface is the only gateway
to make persistent changes to the underlying systems [7].
Nevertheless, system call interface is dangerously wide; less-
exercised system calls are a major source of kernel exploits. To
limit the impact an adversary can make, it is straightforward to
sandbox a container and restrict the system calls it is permitted
to access. We notice that the default sandbox provided by
Docker disallows only 44 system calls – the default sandbox
is too coarse. Containers are granted more privileges than
they require. To follow the principle of least privilege, our
approach automatically mines sandbox rules for containers
during testing; and later enforces the policy by restricting
system call invocations through sandboxing.

IV. SANDBOX MINING

A. Overview

During the mining phase, we automatically explore con-
tainer behaviors, and monitor its system calls. This section
illustrates the fundamental steps of our approach during the
mining phase.

1) Enable tracing: The first step is to prepare the kernel to
enable tracing. We use container-aware monitoring tool sysdig
[37] to record system calls that are accessed by a container at
run time. The monitoring tool sysdig logs:

• an enter entry for a system call, including timestamp,
process that executes the system call, thread ID (which
corresponds to the process ID for single-threaded pro-
cesses), and list of system call arguments;

[github.com/opencontainers/runc/libcontainer/utils/
utils_unix.go: CloseExecFrom]

1 openat()
2 getdents64()
3 lstat()
4 close()
5 fcntl()
[github.com/opencontainers/runc/libcontainer/

capabilities_linux.go: newCapWhitelist]
6 getpid()
7 capget()
[github.com/opencontainers/runc/libcontainer/system/

linux.go: SetKeepCaps]
8 prctl()
[github.com/opencontainers/runc/libcontainer/

init_linux.go: setupUser]
9 getuid()
10 getgid()
11 read()
[github.com/opencontainers/runc/libcontainer/

init_linux.go: fixStdioPermissions]
12 stat()
13 fstat()
14 fchown()
[github.com/opencontainers/runc/libcontainer/

init_linux.go: setupUser]
15 setgroups()
[github.com/opencontainers/runc/libcontainer/system/

syscall_linux_64.go: Segid]
16 setgid()
[github.com/opencontainers/runc/libcontainer/system/

syscall_linux_64.go: Seuid]
17 futex()
18 setuid()
[github.com/opencontainers/runc/libcontainer/

capabilities_linux.go: drop]
19 capset()
[github.com/opencontainers/runc/libcontainer/

init_linux.go: finalizeNamespace]
20 chdir()
[github.com/opencontainers/runc/libcontainer/

standard_init_linux.go: Init]
21 getppid()
[github.com/opencontainers/runc/libcontainer/system/

linux.go: Execv]
22 execve()
[github.com/docker-library/hello-world/hello.c:

_start()]
23 write()
24 exit()

Fig. 3: 24 system calls accessed by hello-world container
discovered by our approach, and functions (in []) that first
trigger them.

• an exit entry for a system call, with the properties men-
tioned above, except that replacing the list of arguments
with return value of the system call.

2) Automatic testing: In this step, we select a test suite that
covers functionality of a container. Then we run the test suite
on the targeted container. During testing, we automatically
copy the tracing logs at constant time intervals. This allows us
to compare at what time system call was accessed. Therefore,
we can monitor the growth of the sandbox rules overtime based
on these snapshots.

3) Extract system calls: A script extracts the set of system
calls accessed by a container from the tracing logs.

B. Case Study

As an example of how our approach explores container
behaviors, let us consider hello-world container [38]. This
container employs a Docker image which simply prints out
a message and does not accept inputs. We discover 24 system
calls during testing. The actual system calls are listed in Fig. 3.
Docker init process [39] and hello-world container invoke
the system calls as follows:

• SYSCALL 1 Right after the Seccomp profile is ap-
plied, Docker init process closes all unnecessary file
descriptors that are accidentally inherited by accessing
openat() , getdents64(), lstat(), close(),
and fcntl().

• SYSCALL 6 Then Docker init process creates a
whitelist of capabilities with the process information by
accessing getpid() and capget().

• SYSCALL 8 Docker init process preserves the existing
capabilities by accessing prctl() before changing user
of the process.

• SYSCALL 9 Docker init process obtains the user ID
and group ID by accessing getuid() and getgid();
Later it reads the groups and password information from
configuration file by accessing read().

• SYSCALL 12 Docker init process fixes the per-
missions of standard I/O file descriptors by accessing
stat(), fstat(), and fchown(). Since these file
descriptors are created outside of the container, their
ownership should be fixed and match the one inside the
container.

• SYSCALL 15 Docker init process changes groups,
group ID, and user ID for current process by ac-
cessing setgroups(), setgid(), futex() and
setuid().

• SYSCALL 19 Docker init process drops all capabil-
ities for current process except those specified in the
whitelist by accessing capset().

• SYSCALL 20 Docker init process changes current
working directory to the one specified in the configuration
file by accessing chdir().

• SYSCALL 21 Docker init process then compares the
parent process with the one from the start by accessing
getppid() to make sure that the parent process is still
alive.

• SYSCALL 22 The final step of Docker init process is
accessing execve() to execute the initial command of
hello-world container.

• SYSCALL 23 The initial command of hello-world con-
tainer executes hello program. The hello program
writes a message to standard output (file descriptor 1)
by accessing write() and finally exits by accessing
exit().

Ideally, we expect to capture the set of system calls accessed
only by the container. However, the captured set include some
system calls that are accessed by Docker init process. This
is because applying sandbox rules is a privileged operation;

Docker init process should apply sandbox rules before
dropping capabilities. We notice that Docker init process
invokes 22 system calls to prepare runtime environment before
the container starts. If Docker init process accesses fewer
system calls before the container starts, our mined sandboxes
could be more fine-grained.

The system calls characterize the resources that hello-world
container accesses in our run. Since the container does not
accept any inputs, we find the 24 system calls are an exhausted
list. The testing will be more complicated if a container accepts
inputs to determine its behavior.

V. SANDBOX ENFORCING

A. Overview

The second phase of our approach is sandbox enforcing,
which monitors and possibly prevents container behavior. We
need a technique that conveniently allows user to sandbox any
container. To this end, we leverage Seccomp-BPF [26] for
sandbox policy enforcement. Docker uses operating system
virtualization techniques, such as namespaces, for container-
based privilege separation. Seccomp-BPF further establishes
a restricted environment for containers, where more fine-
grained security policy enforcement takes place. During sand-
box enforcement, the applied BPF program checks whether
an accessed system call is allowed by corresponding sandbox
rules. If not, the system call will return an error number;
or the process which invokes that system call will be killed;
or a ptrace event [40] is generated and sent to the tracer if
there exists one. This section illustrates the two steps of our
approach during sandboxing phase.

1) Generate sandbox rules: This step translates the set
of system calls discovered in mining phase into sandbox
rules using awk tool. For instance, write() is one of the
discovered system calls during sandbox mining for hello-world
container. It will be translated to a sandbox rule with name
write, action SCMP_ACT_ALLOW, and no constraint applied
to the arguments (args) as follows:

{
"name": "write",

"action": "SCMP_ACT_ALLOW",
"args": []

}

When the system call write() is accessed during sandbox-
ing, it will be permitted according to the specified action, i.e.,
SCMP_ACT_ALLOW. After translating each system call entry
into a sandbox rule, these rules constitute a whitelist of system
calls that are allowed by the sandbox. We define the default
action of the sandbox as follows:

"defaultAction": "SCMP_ACT_ERRNO"

During sandboxing, when a container accesses a system call
which is not included in the whitelist, the sandbox will deny
the system call and make the system call return an error
number (SCMP_ACT_ERRNO).

2) Enforce sandbox rules: The resulting Seccomp profile
now contains all sandbox rules that allow the system calls
observed in the mining phase. We then start the container
with the Seccomp profile to enforce mined sandbox rules using
docker run --security-opt seccomp.

B. Case Study

As an example of how our approach operates, consider
hello-world container again. The default Docker sandbox
allows more than 300 system calls, which is a considerable
attack surface. In that default setting, a compromised hello-
world container could simply mount a directory that contains
a carefully crafted program. The program could open a socket
by accessing system call socket(), which is an abnormal
behavior. By enforcing our mined sandbox, hello-world con-
tainer is not allowed to access socket(). Thus we prevent
the container from opening a socket and doing further harm.

VI. EXPERIMENTS

A. Overview

In this section, we evaluate our approach to answer three
research questions as follows:
RQ1. How efficiently can our approach mine sandboxes?

We evaluate how fast the sets of system calls are saturated
for eight containers. Notice that the eight containers are the
most popular containers in Docker Hub [41] and have a
large number of downloads. The details of them are shown
in TABLE I. The eight containers can be used in PaaS, and
provide domain-specific functions rather than basic functions
provided by OS containers (e.g. Ubuntu container). Note that
python as a programming language provides a wide range of
functionality, and python container can potentially access all
system calls. Mining sandbox for python container will be
useless because the mined sandbox will be too coarse. Thus we
setup Web framework Django [42] on top of python container.
This makes python container have specific functionality. In
addition, we compare the mined sandboxes with the default
one provided by Docker to see if the attack surface is reduced.
RQ2. Can automatic testing sufficiently cover behaviors?

Any non-malicious system call behavior not explored during
testing implies a false alarm during production. We evaluate
the risk of false alarms: how likely is it that sandbox mining
misses functionality, and how frequently will containers en-
counter false alarms. We check the mined sandboxes of the
eight containers against the use cases. We carefully read the
documentation of the containers to make sure the use cases
reflect the containers’ typical usage.
RQ3. What is the performance overhead of sandbox
enforcement?

As a security mechanism, the performance overhead of
sandbox enforcement should be small. Instead of CPU time,
we measure the end-to-end performance of containers – trans-
actions per second. We compare the end-to-end performance
of a container running in three environments: 1) natively
without sandbox, 2) with a sandbox mined by our approach,
and 3) with default Docker sandbox.

TABLE I: Experiment subjects. Open https://hub.docker.com/ /<identifier> for details.

Name Version Description Stars Pulls Identifier (links to Web page)
Nginx 1.11.1 Web server 3.8K 10M+ nginx
Redis 3.2.3 key-value database 2.5K 10M+ redis
MongoDB 3.2.8 document-oriented database 2.2K 10M+ mongo
MySQL 5.7.13 relational database 2.9K 10M+ mysql
PostgreSQL 9.5.4 object-relational database 2.5K 10M+ postgres
Node.js 6.3.1 Web server 2.6K 10M+ node
Apache 2.4.23 Web server 606 10M+ httpd
Python 3.5.2 programming language 1.1K 5M+ python

The containers in the experiments run on a 64-bit Ubuntu
16.04 operating system inside VirtualBox 5.0.24 (4GB base
memory, 2 processors). The physical machine is with an Intel
Core i5-6300 processor and 8GB memory.

1) Testing: We describe the test suites we run in the
experiment as follows:
Web server (Nginx, Apache, Node.js, and Python Django).
After executing docker run, each container experiences a
warm-up phase which lasts for 30 seconds. After the warm-
up phase, the Web server gets ready to serve requests. We
remotely start with a simple HTTP request using wget tool
from another virtual machine. The request fetches a file from
the server right after the warm-up phase. It is followed by
a number of runs of httperf tool [43] also from that virtual
machine. httperf continuously accesses the static pages hosted
by the container. The workload starts from 5 requests per
second, increases the number of requests by 5 for every run,
and ends at 50 requests per second.
Redis. The warm-up phase of Redis container lasts for 30
seconds. After the warm-up phase, we locally connect to
the Redis container via docker exec. Then we run the
built-in benchmark test redis-benchmark [44] with the default
configuration, i.e., 50 parallel connections, totally 100,000
requests, 2 bytes of SET/GET value, and no pipeline. The
test cases cover the commands as follows:

• PING: checks the bandwidth and latency.
• MSET: replaces multiple existing values with new val-

ues.
• SET: sets a key to hold the string value.
• GET: gets the value of some key.
• INCR: increments the number stored at some key by one.
• LPUSH: inserts all the specified values at the head of the

list.
• LPOP: removes and returns the first element of the list.
• SADD: adds the specified members to the set stored at

some key.
• SPOP: removes and returns one or more random ele-

ments from the set value.
• LRANGE: returns the specified elements of the list.

MongoDB. The warm-up phase of MongoDB container lasts
for 30 seconds. After the warm-up phase, we run mongo-perf
[45] tool to connect to MongoDB container remotely from
another virtual machine. mongo-perf measures the throughput
of MongoDB server. We run each of the test cases in mongo-
perf with tag core, on 1 thread, and for 10 seconds. The detail
of test cases is described as follows:

• insert document: inserts documents only with object ID
into collections.

• update document: randomly selects a document using
object ID and increments one of its integer field.

• query document: queries for a random document in the
collections based on an indexed integer field.

• remove document: removes a random document using
object ID from the collections.

• text query: runs case-insensitive single-word text query
against the collections.

• geo query: runs nearSphere query with geoJSON format
and two-dimensional sphere index.

MySQL. The warm-up phase of MySQL container lasts for
30 seconds. After the warm-up phase, we create a database,
and use sysbench [46] tool to connect to MySQL container.
We then run the OLTP database test cases in sysbench with
maximum request number of 800, on 8 threads for 60 seconds.
The test cases include the following functionalities:

• create database: creates a database test.
• create table: creates a table sbtest in the database.
• insert record: inserts 1,000,000 records into the table.
• update record: updates records on indexed and non-

indexed columns.
• select record: selects records with a record ID and a

range for record ID.
• delete records: deletes records with a record ID.

PostgreSQL. The warm-up phase of PostgreSQL container
lasts for 30 seconds. After the warm-up phase, we connect
to PostgreSQL container using pgbench [47] tool. We first run
pgbench initialization mode to prepare the data for testing. The
initialization is followed by two 60-second runs of read/write
test cases with queries. The test cases cover the functionalities
as follows:

• create database: creates a database pgbench.
• create table: creates four tables in the database,

namely pgbench_branches, pgbench_tellers,
pgbench_accounts, and pgbench_history.

• insert record: inserts 15, 150 and 1,500,000 records into
the aforementioned tables expect pgbench_history
respectively.

• update and select record: executes pgbench built-in
TPC-B-like transaction with prepared and ad-hoc queries:
updating records in table pgbench_branches,
pgbench_tellers,and pgbench_accounts, and
then doing queries, finally inserting a record into table
pgbench_history.

https://hub.docker.com/_/

Re
di

s
M

on
go

D
B

Po
stg

re
SQ

L

M
yS

Q
L

Py
th

on

A
pa

ch
e

N
od

e.j
s

N
gi

nx

0

500,000

1,000,000

1,500,000

2,000,000

Fig. 4: Number of system call execution of the containers.

2) Statistics: During sandbox mining, the eight containers
execute approximately 5,340,000 system calls. The number of
system call execution of the eight containers is shown in Fig.
4. We can see that the number of system call execution goes to
thousands or even millions. Thus tracing and analyzing system
calls on a real-time environment will cause a considerate
performance penalty. To achieve low performance penalty,
we only trace and analyze system calls in sandbox mining
phase. A decomposition of the most frequent system calls of
each container is shown in Fig. 5. The system call with the
highest frequency is recvfrom() which is used to receive
a message from a socket. The corresponding system call
sendto() which is used to send a message on a socket has
high frequency as well. The system calls that monitor multiple
file descriptors are also prominent, such as epoll_ctl()
and epoll_wait(). System calls that access filesystem are
also executed frequently, such as read() and write().

B. Growth of System Calls

Fig. 6 shows the system call saturation charts for the eight
containers. We can see that six charts “flatten” before one
minute mark, and the remaining two before two minutes. Our
approach has discovered 76, 74, 98, 105, 99, 66, 73, and 74
system calls accessed by Nginx, Redis, MongoDB, MySQL,
PostgreSQL, Node.js, Apache, and Python Django containers
respectively. The number of accessed system calls is far less
than 300+ of the default Docker sandbox. The attack surface
is significantly reduced.

During the warm-up phase, the number of system calls
accessed by each of the containers grows rapidly. After the
warm-up phase, for all of the Web servers except Apache, the
simple HTTP request causes a further increase and the number
of system calls converges; for Apache container, httperf causes
a small increase and the number of system calls shows no
change later. For Redis container, connecting to the container
via docker exec causes a first increase after the warm-
up phase; and later redis-benchmark triggers a small increase.
For MongoDB, MySQL and PostgreSQL containers, mongo-
perf, sysbench and pgbench cause a small increase after the
warm-up phase.

The answer of RQ1 is: our approach can mine the saturated
set of system calls within two minutes. The mined sandboxes
reduce the attack surface.
Sandbox mining quickly saturates accessed system calls.

C. False Alarm

1) Use cases: Our approach stops discovering new ac-
cessed system calls before the testing ends. However, does
this mean that the most important functionality of a container
is actually found? To answer this question, we carefully read
the documentation of the containers and prepared use cases
which reflect containers’ typical usages. TABLE II provides a
full list of the use cases. We implemented all of these use cases
as automated bash test cases, allowing for easy assessment
and replication.

After mining the sandbox for a given container, the cen-
tral question for the evaluation is whether these use cases
would be impacted by the sandbox, i.e., a benign system call
would be denied during sandbox enforcing. To recognize the
impact of sandbox, we set the default action of sandboxes
to be SCMP_ACT_KILL in the experiment. When the mined
sandbox denies a system call, the process which accesses the
system call will be killed, and auditd [48] will log a message
of type SECCOMP for the failed system call. Note that the
default action of our mined sandboxes is SCMP_ACT_ERRNO
in production.

2) Results: The “Messages in auditd” column in TABLE
II summarizes the number of messages logged by auditd. We
can see that no message is logged by audid for the 30 use
cases. The number of false alarm is zero.

The answer of RQ2 is: we did not find any impact from
the mined sandboxes on the regular functionalities of the
containers. Even automatic testing of a small workload is
suitable to cover sufficient “normal” behaviors for the use
cases in TABLE II.

Mined sandboxes require no further adjustment on use
cases.

D. Performance Evaluation

To analyze the performance characteristics of our approach,
we run the eight containers in three environments: 1) natively
without sandbox as a baseline, 2) with a sandbox mined by
our approach, and 3) with the default Docker sandbox. We
measure the throughput of each container as an end-to-end
performance metric. To minimize the impact of network, we
run each of the containers using host networking via docker
run --net=host. We repeat each experiment 10 times
with a less than 5% standard deviation.

For Redis, MongoDB, PostgreSQL and MySQL contain-
ers, we evaluate the transactions per second (TPS) of each
container by running the aforementioned tools in Section
VI-B. The percentage reduction of TPS per container for
Redis, MongoDB, PostgreSQL and MySQL is presented in
Fig. 7. We notice that enforcing mined sandboxes incurs a
small TPS reduction (0.6% - 2.14%) for the four containers.

ep
ol

l
w

ai
t

cl
os

e
re

cv
fr

om
op

en
fs

ta
t

st
at

ep
ol

l
ct

l
se

ts
oc

ko
pt

w
ri

te
v

w
ri

te
se

nd
fil

e
ac

ce
pt

fu
te

x
m

m
ap

m
pr

ot
ec

t
re

ad
se

le
ct

rt
si

ga
ct

io
n

ac
ce

ss
m

un
m

ap

0

1,000

2,000

3,000

(a) Nginx

ep
ol

l
ct

l
re

ad
w

ri
te

ep
ol

l
w

ai
t

cl
os

e
se

ts
oc

ko
pt

op
en

fc
nt

l
ac

ce
pt

rt
si

ga
ct

io
n

so
ck

et
co

nn
ec

t
m

m
ap

fu
te

x
st

at
br

k
m

pr
ot

ec
t

m
ad

vi
se

ac
ce

ss
se

le
ct

0

0.2

0.4

0.6

0.8

1
·106

(b) Redis

re
cv

fr
om

se
nd

to
sc

he
d

yi
el

d
fu

te
x

se
le

ct
pw

ri
te

cl
oc

k
ge

tti
m

e
na

no
sl

ee
p

cl
os

e
op

en
fd

at
as

yn
c

pr
ea

d
fs

ta
t

m
m

ap
re

ad
m

un
m

ap
ge

td
en

ts
w

ri
te

rt
si

gp
ro

cm
as

k
se

ts
oc

ko
pt

0

2

4

6

8
·105

(c) MongoDB

tim
es

re
cv

fr
om

fu
te

x
se

nd
to

sc
he

d
yi

el
d

po
ll

w
ri

te
re

ad
io

ge
te

ve
nt

s
cl

os
e

op
en st
at

m
m

ap
ls

ee
k

fs
ta

t
m

un
m

ap
pw

ri
te

io
su

bm
it

m
ad

vi
se

fs
yn

c

0

0.5

1

1.5

·105

(d) MySQL

ls
ee

k
re

cv
fr

om re
ad

w
ri

te
se

nd
to

po
ll

st
at

se
m

op
cl

os
e

fd
at

as
yn

c
op

en br
k

io
ct

l
m

m
ap

se
m

ct
l

ls
ta

t
du

p
m

pr
ot

ec
t

fs
ta

t
si

gn
al

de
liv

er

0

0.5

1

1.5

2
·105

(e) PostgreSQL

ep
ol

l
w

ai
t

ep
ol

l
ct

l
re

ad
ac

ce
pt

cl
os

e
w

ri
te

w
ri

te
v

fu
te

x
m

m
ap

m
ad

vi
se

m
pr

ot
ec

t
rt

si
ga

ct
io

n
m

un
m

ap
se

le
ct

io
ct

l
fs

ta
t

op
en br
k

ac
ce

ss
rt

si
gp

ro
cm

as
k

0

2,000

4,000

6,000

8,000

(f) Node.js

fu
te

x
re

ad
ep

ol
l

w
ai

t
cl

os
e

ep
ol

l
ct

l
op

en st
at

fc
nt

l
m

m
ap

m
un

m
ap

ge
ts

oc
kn

am
e

w
ri

te
ac

ce
pt

w
ri

te
v

tim
es

sh
ut

do
w

n
se

le
ct

m
pr

ot
ec

t
w

ai
t4

fs
ta

t

0

0.5

1

1.5

2

·104

(g) Apache

st
at

fu
te

x
se

nd
to

cl
os

e
ge

td
en

ts
po

ll
w

ri
te

fs
ta

t
se

t
ro

bu
st

lis
t

pr
oc

ex
it

cl
on

e
m

ad
vi

se
sh

ut
do

w
n

re
cv

fr
om ex

it
ac

ce
pt

re
ad

op
en

op
en

at
ls

ta
t

0

1

2

3

·105

(h) Python Django

Fig. 5: Histogram of system call frequency for each of the containers.

0 30 60 90 120 150 180

0

20

40

60

80

(a) Nginx

0 40 80 120 160 200

0

20

40

60

80

(b) Redis

0 80 160 240 320 400 480 560 640

0

50

100

(c) MongoDB

0 20 40 60 80 100 120

0

50

100

(d) MySQL

0 20 40 60 80 100 120

0

50

100

(e) PostgreSQL

0 30 60 90 120 150 180

0

20

40

60

(f) Node.js

0 30 60 90 120 150 180

0

20

40

60

80

(g) Apache

0 30 60 90 120 150 180

0

20

40

60

80

(h) Python Django

Fig. 6: Per-container system call saturation for the containers in TABLE I. y axis is the number of accessed system calls, x
axis is seconds spent.

Mined sandboxes produce a slightly smaller TPS reduction
than that of the default sandbox (0.83% - 4.63%). The reason
is that the default sandbox contains more rules than mined
sandboxes, and thus the corresponding BFP program needs
more computation during sandboxing.

For Web server containers, we evaluate the throughput, i.e.,
responses per second, of each container by running httperf
tool. To measure the response rate of each container, we
increase the number of requests per second that are sent to
the container. The result is shown in Fig. 8. Web server
containers running with sandboxes achieve a performance very
similar to that of the containers running without sandboxes. We
can see that the achieved throughput increases linearly with
offered load until the container starts to become saturated.
The saturation points of Nginx, Node.js, Apache and Python
Django are around 7,000, 3,000, 2,500 and 300 requests per
second respectively. After offered load is increased beyond

that point, the response rate of the container starts to fall off
slightly.

The answer of RQ3 is: enforcing system call policies adds
overhead to a container’s end-to-end performance, but the
overall increase is small.
Sandboxes incur a small end-to-end performance overhead.

VII. THREATS AND LIMITATIONS

System call access is either benign or malicious. Our
approach automatically decides on whether a system call
accessed by a container should be allowed. As we do not
assume a specification of what makes a benign or malicious
system call access for a container, we face two risks:

• False positive. A false positive occurs when a benign
system call is mistakenly prohibited by the sandbox,
degrading a container’s functionality. In our setting, a
false alarm happens if some benign system call is not

TABLE II: Use cases. auditd logs a message when a system call is denied by the sandbox.

Container Use Case Functions Messages in auditd
Nginx Access static page Access default page index.html, 50x.html -

Access non-existent page Access non-existent page hello.html -
Redis SET command Connect to Redis server, set key to hold the string value -

GET command Connect to Redis server, get the value of key -
INCR command Connect to Redis server, increment the number stored at key by one -
LPUSH command Connect to Redis server, insert all the specified values at the head of

the list stored at key.
-

LPOP command Connect to Redis server, remove and returns the first element of the
list stored at key

-

SADD command Connect to Redis server, add the specified members to the set stored
at key

-

SPOP command Connect to Redis server, remove and return one or more random
elements from the set value store at key

-

LRANGE command Connect to Redis server, return the specified elements of the list stored
at key

-

MSET command Connect to Redis server, replace multiple existing values with new
values

-

MongoDB insert Connect to mongod, use database test, insert record
{image:"redis",count:"1"} into collection falsealarm,
exit

-

save Connect to mongod, use database test, update record in collection
falsealarm, exit

-

find Connect to mongod, use database test, list all records in collection
falsealarm, exit

-

MySQL CREATE DATABASE Connect to MySQL server, create database test, list all databases,
exit

-

CREATE TABLE Connect to MySQL server, use database test, create table
FalseAlarm, insert record, exit

-

INSERT Connect to MySQL server, use database test, insert record into table
FalseAlarm, exit

-

UPDATE Connect to MySQL server, use database test, update record, exit -
SELECT Connect to MySQL server, use database test, list all records, exit -

PostgreSQL CREATE DATABASE Connect to PostgreSQL server, create database test, list all
databases, exit

-

CREATE TABLE Connect to PostgreSQL server, connect to database test, create table
FalseAlarm, exit

-

INSERT Connect to PostgreSQL server, connect to database test, insert
record into table FalseAlarm, exit

-

UPDATE Connect to PostgreSQL server, connect to database test, update
record in table FalseAlarm, exit

-

SELECT Connect to PostgreSQL server, connect to database test, list all
records in table FalseAlarm, exit

-

Node.js Access existent URI Access / -
Access non-existent URI Access non-existent URI /hello -

Apache Access static page Access default page index.html -
Access non-existent page Access non-existent page hello.html -

Python Django Access existent URI Access / -
Access non-existent URI Access non-existent URI /hello -

Redis MongoDB PostgreSQL MySQL

5%

4%

3%

2%

1%

0%

enforcing mined sandbox
enforcing default sandbox

Fig. 7: Percentage reduction of transactions per second (TPS)
due to sandboxing.

seen during mining phase, and thus not added to sandbox
rules to be allowed. The number of false alarms can be
reduced by better testing.

• False negative. A false negative occurs when a malicious
system call is mistakenly allowed by the sandbox. In our
setting, a false alarm can happen in two ways:

– False negative allowed during sandbox enforcing.
The inferred sandbox rules may be too coarse, and
thus allow future malicious system calls. For in-
stance, a container may access system calls mmap(),
mprotect() and munmap() as benign behaviors.
However, code injection attack could also invoke
these system calls to change memory protection. This
issue can be addressed by inferring more fine-grained
sandbox rules.

– False negative seen during sandbox mining. The
container may be initially malicious. We risk to
mine the malicious behaviors of the container during
mining phase. Thus malicious system calls would
be included in the sandbox rules. This issue can be

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

8,000

(a) Nginx

0 1,000 2,000 3,000 4,000
0

1,000

2,000

3,000

(b) Node.js

0 1,000 2,000 3,000 4,000
0

1,000

2,000

3,000

(c) Apache

0 100 200 300 400 500
0

100

200

300

(d) Python Django

without sandbox with mined sandbox with default sandbox
Fig. 8: Comparison of per-container reply rate for Nginx, Node.js, Apache, and Python Django without sandbox, with sandbox
mined by our approach, and with default sandbox. y axis is response rate (responses per second), x axis is request rate (requests
per second).

addressed by identifying malicious behaviors during
mining phase.

Although our experimental results demonstrate the feasibil-
ity of sandbox mining for containers, our sample of containers
is small and the containers are database systems and Web
servers. For other containers, we have to design different
testing. In addition, some containers may comprise multiple
processes which have distinct responsibilities, for instance,
a Linux, Apache, MySQL and PHP (LAMP) stack in one
container. This may increase attack surface, and lead to more
false negatives.

The set of use cases we have prepared for assessing the
risk of false alarms (TABLE II) does not and cannot cover
the entire range of functionalities of the analyzed containers.
Although we assume that the listed user cases represent the
most important functionalities, other usage may yield different
results.

Finally, in the absence of a specification, a mined policy
cannot express whether a system call is benign or malicious.
Although our approach cannot eliminate the risks of false
positives and false negatives, we do reduce the attack surface
by detecting and preventing unexpected behavior.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present an approach to mine sandboxes
for Linux containers. The approach explores the behaviors
of a container by automatically running test suites. From
the execution trace, the approach extracts set of system calls
accessed by the container during the mining phase, and

translates the system calls into sandbox rules. During sandbox
enforcement, the mined sandbox confines the container by
restricting its access to system calls. Our evaluation shows
that our approach can efficiently mine sandboxes for containers
and substantially reduce the attack surface. In our experiment,
automatic testing sufficiently covers container behaviors and
sandbox enforcement incurs low overhead.

In the future, we would like to mine more fine-grained
sandbox policy, taking into account the system call arguments,
temporal features of system calls, internal states of a container,
or data flow from and to sensitive resources. More Fine-
grained sandbox may lead to more false positives and increase
performance overhead. We have to search for sweet spots
that both minimize false positives and performance overhead.
Meanwhile, we have to avoid Time-of-check-to-time-of-use
(TOCTTOU) problems when examining system call argu-
ments. We also plan to leverage modern test case generation
techniques to systematically explore container behaviors. This
may help to cover more normal behaviors of a container. In
addition, for now we enforce one system call policy on a
whole container. Whereas a container may comprise multiple
processes which have distinct behaviors. To further reduce the
attack surface, We could enforce a distinct policy for each
process which corresponds to the behavior of that process.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments. This research is supported by NSFC Program
(No. 61602403), and National Key Technology R&D Program

of the Ministry of Science and Technology of China (No.
2015BAH17F01).

REFERENCES

[1] G. I. A. Inc., “Platform as a Service PaaS Market Trends,”
http://www.strategyr.com/MarketResearch/Platform as a Service
PaaS Market Trends.asp, 2015, [Online; accessed 2016-08-16].

[2] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[3] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Proceedings of the 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS 2015). IEEE, 2015, pp. 171–
172.

[4] “CVE-2016-0728,” http://www.cve.mitre.org/cgi-bin/cvename.cgi?
name=2016-0728, [Online; accessed 2016-08-16].

[5] T. Garfinkel et al., “Traps and pitfalls: Practical problems in system call
interposition based security tools,” in Network and Distributed System
Security Symposium (NDSS 2003), vol. 3, 2003, pp. 163–176.

[6] I. Goldberg, D. Wagner, R. Thomas, E. A. Brewer et al., “A secure envi-
ronment for untrusted helper applications: Confining the wily hacker,” in
Proceedings of the Conference on USENIX Security Symposium, 1996.

[7] N. Provos, “Improving host security with system call policies,” in
Proceedings of the Conference on USENIX Security Symposium, 2003.

[8] A. Acharya and M. Raje, “Mapbox: Using parameterized behavior
classes to confine untrusted applications,” in Proceedings of the con-
ference on USENIX Security Symposium. USENIX Association, 2000.

[9] T. Fraser, L. Badger, and M. Feldman, “Hardening cots software with
generic software wrappers,” in Proceedings 1999 IEEE Symposium on
Security and Privacy (S&P 1999). IEEE, 1999, pp. 2–16.

[10] C. Ko, T. Fraser, L. Badger, and D. Kilpatrickv, “Detecting and counter-
ing system intrusions using software wrappers,” in Proceedings of the
Conference on USENIX Security Symposium, 2000, pp. 1157–1168.

[11] T. Kim and N. Zeldovich, “Practical and effective sandboxing for non-
root users,” in Proceedings of the Conference on USENIX Annual
Technical Conference (USENIX ATC 13), 2013, pp. 139–144.

[12] K. Jamrozik, P. von Styp-Rekowsky, and A. Zeller, “Mining sandboxes,”
in Proceedings of the 38th International Conference on Software Engi-
neering (ICSE 2016). ACM, 2016, pp. 37–48.

[13] “Seccomp security profiles for Docker,” https://docs.docker.com/engine/
security/seccomp, [Online; accessed 2016-08-16].

[14] T. Garfinkel, B. Pfaff, M. Rosenblum et al., “Ostia: A delegating archi-
tecture for secure system call interposition,” in Network and Distributed
System Security Symposium (NDSS 2004), 2004.

[15] D. A. Wagner, “Janus: an approach for confinement of untrusted
applications,” Ph.D. dissertation, Department of Electrical Engineering
and Computer Sciences, University of California at Berkeley, 1999.

[16] K. Jain and R. Sekar, “User-level infrastructure for system call interpo-
sition: A platform for intrusion detection and confinement,” in Network
and Distributed System Security Symposium (NDSS 2000), 2000.

[17] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of computer security, vol. 6, no. 3,
pp. 151–180, 1998.

[18] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proceedings 1996 IEEE Symposium on
Security and Privacy (S&P 1996). IEEE, 1996, pp. 120–128.

[19] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in
Proceedings 2001 IEEE Symposium on Security and Privacy (S&P
2001). IEEE, 2001, pp. 156–168.

[20] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in Proceedings 2006 IEEE Symposium on Security and Privacy (S&P
2006). IEEE, 2006, pp. 15–pp.

[21] V. Kiriansky, D. Bruening, S. P. Amarasinghe et al., “Secure execution
via program shepherding,” in Proceedings of the Conference on USENIX
Security Symposium, vol. 92, 2002, p. 84.

[22] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: Alternative data models,” in Proceedings 1999 IEEE
Symposium on Security and Privacy (S&P 1999). IEEE, 1999, pp.
133–145.

[23] A. Somayaji and S. Forrest, “Automated response using system-call de-
lay,” in Proceedings of the Conference on USENIX Security Symposium,
2000, pp. 185–197.

[24] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in Proceed-
ings 2001 IEEE Symposium on Security and Privacy (S&P 2001). IEEE,
2001, pp. 144–155.

[25] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system
call detection,” ACM Transactions on Information and System Security
(TISSEC), vol. 9, no. 1, pp. 61–93, 2006.

[26] “Yet another new approach to seccomp,” http://lwn.net/Articles/475043,
[Online; accessed 2016-08-16].

[27] “Seccomp and sandboxing,” http://lwn.net/Articles/475043, [Online; ac-
cessed 2016-08-16].

[28] “JSON,” http://www.json.org, [Online; accessed 2016-08-16].
[29] J. H. Saltzer and M. D. Schroeder, “The protection of information in

computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

[30] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the detection of
anomalous system call arguments,” in European Symposium on Research
in Computer Security (ESORICS 2003). Springer, 2003, pp. 326–343.

[31] C. Fetzer and M. Süßkraut, “Switchblade: enforcing dynamic personal-
ized system call models,” in ACM SIGOPS Operating Systems Review,
vol. 42, no. 4. ACM, 2008, pp. 273–286.

[32] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance measurement
using hidden markov models,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2006, pp. 19–40.

[33] D. Endler, “Intrusion detection. applying machine learning to solaris
audit data,” in Proceedings of the 14th Annual Computer Security
Applications Conference (ACSAC 1998). IEEE, 1998, pp. 268–279.

[34] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439–448,
2002.

[35] A. Zeller, “Test complement exclusion: Guarantees from dynamic anal-
ysis,” in Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension (ICPC 2015). IEEE Press, 2015, pp. 1–2.

[36] S. Whalen, “An introduction to arp spoofing,” Node99 [Online Docu-
ment], April, 2001.

[37] “sysdig,” http://www.sysdig.org, [Online; accessed 2016-08-16].
[38] “hello-world,” https://hub.docker.com/ /hello-world, [Online; accessed

2016-08-16].
[39] “runc libcontainer version 0.1.1,” https://github.com/opencontainers/

runc/blob/v0.1.1/libcontainer/standard init linux.go, [Online; accessed
2016-08-16].

[40] “Ptrace documentation,” https://lwn.net/Articles/446593, [Online; ac-
cessed 2016-08-16].

[41] “Docker Hub,” https://hub.docker.com/explore, [Online; accessed 2016-
08-16].

[42] “Django: a high-level Python Web framework,” https://www.
djangoproject.com, [Online; accessed 2016-08-16].

[43] D. Mosberger and T. Jin, “httperf: a tool for measuring web server
performance,” ACM SIGMETRICS Performance Evaluation Review,
vol. 26, no. 3, pp. 31–37, 1998.

[44] “How fast is Redis?” http://redis.io/topics/benchmarks, [Online; ac-
cessed 2016-08-16].

[45] “Mongo-perf,” https://github.com/mongodb/mongo-perf, [Online; ac-
cessed 2016-08-16].

[46] “SysBench,” https://github.com/akopytov/sysbench, [Online; accessed
2016-08-16].

[47] “pgbench,” https://www.postgresql.org/docs/9.3/static/pgbench.html,
[Online; accessed 2016-08-16].

[48] “auditd,” http://linux.die.net/man/8/auditd, [Online; accessed 2016-08-
16].

http://www.strategyr.com/MarketResearch/Platform_as_a_Service_PaaS_Market_Trends.asp
http://www.strategyr.com/MarketResearch/Platform_as_a_Service_PaaS_Market_Trends.asp
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0728
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0728
https://docs.docker.com/engine/security/seccomp
https://docs.docker.com/engine/security/seccomp
http://lwn.net/Articles/475043
http://lwn.net/Articles/475043
http://www.json.org
http://www.sysdig.org
https://hub.docker.com/_/hello-world
https://github.com/opencontainers/runc/blob/v0.1.1/libcontainer/standard_init_linux.go
https://github.com/opencontainers/runc/blob/v0.1.1/libcontainer/standard_init_linux.go
https://lwn.net/Articles/446593
https://hub.docker.com/explore
https://www.djangoproject.com
https://www.djangoproject.com
http://redis.io/topics/benchmarks
https://github.com/mongodb/mongo-perf
https://github.com/akopytov/sysbench
https://www.postgresql.org/docs/9.3/static/pgbench.html
http://linux.die.net/man/8/auditd

	Mining sandboxes for Linux containers
	Citation

	I Introduction
	II Background and Related Work
	II-A System Call Interposition
	II-B System Call Policy Generation
	II-C Consequences

	III Threat Model and Motivation
	IV Sandbox Mining
	IV-A Overview
	IV-A1 Enable tracing
	IV-A2 Automatic testing
	IV-A3 Extract system calls

	IV-B Case Study

	V Sandbox Enforcing
	V-A Overview
	V-A1 Generate sandbox rules
	V-A2 Enforce sandbox rules

	V-B Case Study

	VI Experiments
	VI-A Overview
	VI-A1 Testing
	VI-A2 Statistics

	VI-B Growth of System Calls
	VI-C False Alarm
	VI-C1 Use cases
	VI-C2 Results

	VI-D Performance Evaluation

	VII Threats and Limitations
	VIII Conclusion and Future Work
	References

