Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

6-2019

Collusion attacks and fair time-locked deposits for fast-payment
transactions in Bitcoin

Xingjie YU
Singapore Management University, xjyu@smu.edu.sg

Shiwen Michael THANG
Singapore Management University, swthang.2015@mais.smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Finance and Financial Management Commons, and the Information Security Commons

Citation

YU, Xingjie; THANG, Shiwen Michael; LI, Yingjiu; and DENG, Robert H.. Collusion attacks and fair time-
locked deposits for fast-payment transactions in Bitcoin. (2019). Journal of Computer Security. 27, (3),
375-403.

Available at: https://ink.library.smu.edu.sg/sis_research/4526

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published in Journal of Computer Security, 2019, 27 (3), 375-403.
https://doi.org/10.3233/JCS-191274

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
Accepted version

Collusion attacks and fair time-locked
deposits for fast-payment transactions in
Bitcoin'

Xingjie Yu *, Michael Shiwen Thang, Yingjiu Li and Robert Huijie Deng

School of Information Systems, Singapore Management University, Singapore
E-mails: stefanie_yxj@ hotmail.com, swthang.2015@mais.smu.edu.sg, yjli@smu.edu.sg,
robertdeng @smu.edu.sg

Abstract. In Bitcoin network, the distributed storage of multiple copies of the block chain opens up possibilities for double-
spending, i.e., a payer issues two separate transactions to two different payees transferring the same coins. While Bitcoin has
inherent security mechanism to prevent double-spending attacks, it requires a certain amount of time to detect the double-
spending attacks after the transaction has been initiated. Therefore, it is impractical to protect the payees from suffering in
double-spending attacks in fast payment scenarios where the time between the exchange of currency and goods or services
is shorten to few seconds. Although we cannot prevent double-spending attacks immediately for fast payments, decentralized
non-equivocation contracts have been proposed to penalize the malicious payer after the attacks have been detected. The basic
idea of these contracts is that the payer locks some coins in a deposit when he initiates a transaction with the payee. If the
payer double-spends, a cryptographic primitive called accountable assertions can be used to reveal his Bitcoin credentials for
the deposit. Thus, the malicious payer could be penalized by the loss of deposit coins. However, such decentralized non-
equivocation contracts are subjected to collusion attacks where the payer colludes with the beneficiary of the depoist and
transfers the Bitcoin deposit back to himself when he double-spends, resulting in no penalties. On the other hand, even if the
beneficiary behaves honestly, the victim payee cannot get any compensation directly from the deposit in the original design.

To prevent such collusion attacks, we design fair time-locked deposits for Bitcoin transactions to defend against double-
spending. The fair deposits ensure that the payer will be penalized by the loss of his deposit coins if he double-spends and the
victim payee’s loss will be compensated within a locked time period. We start with the protocols of making a deposit for one
transaction. In particular, for the transaction with single input and output and the transaction with multiple inputs and outputs,
we provide different designs of the deposits. We analyze the performance of deposits made for one transaction and show how
the fair deposits work efficiently in Bitcoin. We also provide protocols of making a deposit for multiple transactions, which can
reduce the burdens of a honest payer. In the end, we extend the fair deposits to non-equivocation contracts for other distributed
systems.

Keywords: Bitcoin, fair deposit, double-spending, collusion attacks, time-locked

1. Introduction

As a decentralized crypto-currency system, to eliminate the central bank, Bitcoin uses blockchain to
take the role of a distributed ledger. This enables every participant to keep a copy of transaction records

I'This paper is an extended journal version of our previous conference paper (In IEEE Conference on Dependable and Secure
Computing (2017)).
*Corresponding author. E-mail: stefanie_yxj@hotmail.com.

mailto:stefanie_yxj@hotmail.com
mailto:swthang.2015@mais.smu.edu.sg
mailto:yjli@smu.edu.sg
mailto:robertdeng@smu.edu.sg
mailto:stefanie_yxj@hotmail.com

which would classically be stored at central banks in traditional banking system. The distributed stor-
age of multiple copies of the blockchain opens up possibilities for double-spending attacks. A double-
spending attack is launched by a malicious payer, i.e., a payer who performs two separate transactions
with two different payees transferring the same coins. Bitcoin addresses this problem by, in a sense, let-
ting the entire network verify the legitimacy of the transactions, so that double-spending can be detected
by other participants. The payee is advised to accept the transaction after the block containing his/her
transaction is confirmed as at least k£ blocks deep in the consensus blockchain. This is because, if a payee
waits for the transaction to advance into the blockchain a number of k blocks, then the probability that
an attacker can build an alternative blockchain that reorganizes the public blockchain (which contains
the double-spending transaction) drops exponentially with k [16].

Nowadays, Bitcoin is accepted worldwide in a number of fast payment scenarios, where the time be-
tween the exchange of Bitcoin currency and goods or services should be shorten to a few seconds. For
example, different types of vending machines that accept Bitcoin were deployed a few years ago [10,31],
and the number of Bitcoin vending machines continues to grow recently [30]. Other examples demand-
ing Bitcoin fast-payment transactions include fast-food payments, e.g., in USA [36], Singapore [26] and
Russia [33], and marketplace in-store payments, e.g., in South Africa [19] and Japan [12]. Although
payees can be effectively protected from double-spending attacks if they accept the transactions till the
blocks containing their transactions are at least k blocks deep, it requires payees to wait for far longer
than a few seconds and is therefore impractical for fast payments.

However, if a payee accepts a transaction immediately, it is of limited value to detect the double-
spending attack after a malicious payer has already obtained the goods or services due to the fact that Bit-
coin users are anonymous and that users can hold multiple accounts. Researchers have demonstrated that
unless appropriate countermeasures are integrated in current Bitcoin implementations, double-spending
attacks on fast payments could succeed with overwhelming probability and can be mounted at low cost,
thus compromising the trustworthiness and economic standing of Bitcoin [20]. It is important to pro-
tect payees from double-spending attacks without increasing transaction pending time in fast payment
scenarios.

Although current Bitcoin transaction confirmation models cannot provide realtime prevention of
double-spending attacks for fast payments, we still can penalize the dishonest payer after a double-
spending attack has been detected. Ruffing et al. [34] proposed a non-equivocation contract which could
be applied in Bitcoin to penalize the double-spending payer by loss of bitcoins. Their scheme is based on
the idea of a time-locked Bitcoin deposit that can be opened by a beneficiary (i.e., a person who is sup-
posed to detect a payer’s double-spending and extract the payer’s private key if the payer doubly spends)
upon the detection of double-spending. After the deposit is confirmed by Bitcoin network, the payer
sends an accountable assertion for each fast-payment transaction to the payee along with the transaction
information, who forwards them to the beneficiary for storing. If the payer double-spends, the bene-
ficiary can extract the payer’s secret key with two conflicting assertions, then transfer all funds in the
deposit to his/her own Bitcoin account. If the payer behaves honestly, he/she will regain full control of
the deposit after the time-lock expires. Therefore, by setting aside a high-enough deposit, it is expected
that the malicious payer would have no incentive to double-spend his/her fast-payment transactions.

However, such non-equivocation contracts are subjected to collusion attacks where a malicious payer
can collude with the beneficiary to transfer the Bitcoin deposit back to himself/herself when he/she
double-spends, resulting in no penalties. Moreover, this deposit is unfair to a victim payee (i.e., a payee
who suffers from double-spending). This is because whether the payer colludes with the beneficiary or
not, there is no compensation to the victim payee since the deposit is made for the beneficiary only. In

a business perspective, the victim payee, who may be a service provider or a product seller, may lose
valuable time and effort, and may result in a loss of profits. A solution for preventing double-spending
in fast payment scenarios with the guarantee of compensation to the victim payee’s loss is in demand.

Our goal is to design new protocols for making time-locked deposits to not only effectively defend
against double-spending in Bitcoin fast payments, but also prevent collusion attacks and guarantee the
compensation to a victim payee’s loss. We first provide a solution to make a deposit for one transaction,
which is first introduced in our conference paper [38]. In our protocol, the payer needs to create a time-
locked deposit for his/her transaction with the payee, so that the payer could be penalized by the loss
of his/her deposit if he/she double-spends within the locked time period. Our protocol ensures that the
payee’s loss is compensated in the case of double-spending.

In Bitcoin network, each transaction requires certain transaction fee to be paid to miners. To reduce
the transaction fees for a honest payer who has never double-spent and has no intention of equivocating
in the future, we design a protocol allowing a payer to make just one deposit for multiple transactions,
which is an extension of our conference paper [38]. In particular, a payer can make a deposit for multiple
transactions. If the payer double-spends any transaction among the transactions which are protected
under the deposit, our protocol ensures that the payee of the double-spending transaction get a fair
compensation from the deposit.

To make it more convenient for a payer and a payee to set up a deposit, the beneficiary of the deposit
can be a randomly selected miner rather than an explicit beneficiary. Accordingly, we provide an ex-
tension of making deposits without any explicit beneficiary in this paper. We also extend our solution
to non-equivocation contracts. Compared to the non-equivocation contracts proposed in [34], our non-
equivocation contracts not only penalize the equivocating party but also compensate a victim party’s
loss. In addition, our non-equivocation contracts are resistent to the collusion attacks between the equiv-
ocating party and the beneficiary.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries. Section 3 presents
our threat model in Bitcoin network. Section 4 presents the design of a fair time-locked deposit for one
Bitcoin transaction. Section 5 implements the setup and usage of fair deposits in Bitcoin network and
evaluates its usability and efficiency. Section 6 introduces the design of fair deposits for multiple Bitcoin
transactions. Section 7 provides an extension of our design to deposits without explicit beneficiaries.
Section 8 introduces an extension of our scheme to non-equivocation contracts applicable to various
distributed systems. Section 9 describes the related work. Section 10 concludes this paper.

2. Preliminaries

In this section, we introduce preliminary facts of non-equivocation contracts, time-locked deposit, and
accountable assertion scheme, which are used throughout this paper.

2.1. Non-equivocation contracts

Ruffing et al. [34] proposed a non-equivocation (i.e., making conflicting statements) contract for dis-
tributed system to penalize the party who equivocates by losing Bitcoins. The protocol is based on the
idea of a time-locked Bitcoin deposit that can be opened by a predefined beneficiary in the case of an
equivocation. By setting aside a high-enough deposit with a beneficiary, it is expected that the malicious
payer would have no incentive to equivocate. In their protocol, to use a time-locked deposit for a trans-
action, Party A creates a Bitcoin key pair and sets up the accountable assertion scheme with the same

key pair. A then creates a deposit with a third party. The payee(s), Party B, waits till the deposit has
been confirmed by the Bitcoin network and then receives the statement and the assertion from A. B then
verifies the assertion and if it is valid, forwards it to the beneficiary. If the beneficiary detects an equiv-
ocation in two records specifying the context, statements, and assertions, he/she can extract A’s secret
key and use it to transfer the funds in the deposit to his/her own Bitcoin address. Else, A will regain full
control of the deposit after the time-lock expires.

This protocol, however, may be subjected to a collusion attack since only the payer’s signature is
required in the output script of the deposit transaction. The malicious payer can collude with the benefi-
ciary to transfer the Bitcoin deposit back to himself/herself when he/she double-spends, resulting in no
penalties. On the other hand, even if the payer has double-spent the transaction and the beneficiary has
behaved honestly, there is no compensation to the victim payee since the coins locked in the deposit can
only be redeemed by the beneficiary.

2.2. Time-locked deposits

We create time-locked deposit based on a script command denoted by CheckLockTime Verify (CLTV)
which has been newly merged into Bitcoin Core. CLTV allows users to create a bitcoin transaction of
which the transaction outputs are spendable only at some point in the future. As such, the coins sent in
that transaction are time-locked until either a specified date, or until a certain number of blocks has been
mined.

The payer who creates the time-locked deposit cannot transfer the coins in the deposit with his/her
secret key before the lock time 7' = Tiet + Teont + Taef, Where Toer + Teons 1S the safety margin of the lock
time, and Ty is the additional lock time added on the safety margin. 74 should be decided based on the
negotiation between the payer, the payee and the beneficiary if it is necessary. The safety margin ensures
that the closing transaction has already been confirmed by the Bitcoin network before the deposit can be
spent by the payer alone.

In particular, T} should ensure sufficient time for the deposited transaction to be included in a block
and broadcasted to the Bitcoin network. Since the proof-of-work (POW) of one block in the Bitcoin
network takes 10 mins on average, T;,ec = 10 min can sufficiently ensure the broadcast of the deposited
transaction [13]. T..ys should ensure sufficient time for the deposited transaction to be confirmed in
Bitcoin network, i.e., the deposited transaction is out of danger of being double-spent. In the Bitcoin
network, a transaction is considered as confirmed if it has been backed up by least six blocks. As sug-
gested by Ruffing et al. [34], the six desired blocks that back up a transaction could be secured after
24 blocks have been added in Bitcoin network. This is because the arrival of blocks in Bitcoin net-
work is Poisson-distributed, and the probability that fewer than six desired blocks have been found is
Pr[X < 5] < 27!8 for X ~ Pois(24), where X is an integer greater than 0. Hence, T.on; = 240 min is
sufficient to secure the confirmation of the transaction. Throughout the paper, the lock time of a deposit
should be longer than the safety margin Ty,e; + Tconr = 250 min.

2.3. Accountable assertion scheme

An accountable assertion is a cryptographic primitive introduced by Ruffing et al. [34]. The idea
of this promitive is to bind statements to contexts in an accountable way: if the payer equivocates,
i.e., asserts two contradicting statements in the same context, then any observer can extract the payer’s
Bitcoin secret key and, as a result, use it to force the loss of the payer’s funds. We use the accountable

assertion scheme to detect double-spending transactions, and extract the secret key if double-spending
happens. Accountable assertions are constructed based on chameleon hash function which is a collision-
resistant hash function that allows a user to compute collisions efficiently using a trapdoor. It supports
the extractability property where a deterministic polynomial time algorithm exists which reveals the
secret key when a collision occurs. An accountable scheme includes four algorithms: key generation,
assertion, verification and extraction. An accountable assertion scheme is defined as follows:

o (apk, ask, auxsk) < Gen(1"): The key generation algorithm outputs a key pair consisting of a
public key apk and a secret key ask, and auxiliary secret information auxsk. It is required that for
each public key, there is exactly one secret key.

o 7/ | <« Assert(ask, auxsk, ct, st): The assertion algorithm takes as input a secret key ask, auxiliary
secret information auxsk, a context ct, and a statement st. It returns either an assertion 7 or L to
indicate failure.

o b < Verify(apk, ct, st, T): The verification algorithm outputs 1 if and only if 7 is a valid assertion
of a statement ct in the context st under the public key apk.

e ask < Extract(apk, ct, sty, st1, Ty, T1): The extraction algorithm takes as input a public key apk, a
context ct, two statements sty, sti, and two assertions 1, T;. It outputs either the secret key ask or L
to indicate failure.

3. Threat model

In our threat model, a payer can maliciously double-spend an input of a Bitcoin transaction, but he/she
cannot control more than 50% computation power. Rosenfeld [32] has demonstrated that a malicious
payer with less than 50% of the total computational power is able to perform a double-spending by
brute force and a bit of luck. If a malicious payer controls more than 50% computational power, he/she
can double-spend any transaction, including the deposit transaction. Even worse, such malicious payer
has a chance of succeeding in rewriting the entire block chain, which would affect the whole Bitcoin
network. Hence, the inability to control more than 50% computation power is one of the fundamental
security assumptions of Bitcoin. We assume that no payer can break this assumption as well as other
fundamental security properties of Bitcoin, such that a payer cannot break a payee’s private key.

Ruffing et al. have proven the security of accountable assertion algorithm in [34], and proposed pro-
tocols to defend against non-equivocations in distributed networks, such as double-spending in Bitcoin.
However, in their threat model, no collusion attacks are considered between a payer and a beneficiary.
In our threat model, a payer may collude with a beneficiary. Although we assume that a beneficiary
can collude with a payer, he/she does not risk to lose his/her incentive defined in the deposit, which is
outlined in Section 4. Since Bitcoin users are anonymous, a payer may create an account and assign this
account to act as a beneficiary.

In the case of making one deposit for multiple transactions, we allow the payer to collude with the
beneficiary. Moreover, we also allow the payer to collude with both the beneficiary and any payee(s),
or act as the beneficiary itself. In addition, the payer can create fake payees who are nothing but the
payer him/herself for making some deposit transactions. More specifically, a payer can issue a deposit
for multiple transactions and some of these transactions may transfer coins to his/her own addresses.
In the case of making deposit without an explicit beneficiary, we allow the payer to play as a miner or
collude with a miner.

4. Fair time-locked deposits

This section introduces and analyzes the design and usage of the fair time-locked deposits that thwart
double-spending in Bitcoin transactions. We start with a simple case where a deposited transaction in-
cludes just one input and one output. Then we introduce the extension to a transaction with multiple
inputs and outputs. In this section, we introduce the deposit with an explicit beneficiary; a deposit with-
out an explicit beneficiary is discussed in Section 7.

4.1. Deposit for transactions with one input and one output

We first provide a solution to create a deposit for a transaction that contains one input and one output.
Party A (i.e., payer) makes a payment to Party B (i.e., payee). Once A makes a transaction to B spending
coins on B’s services (or products), A creates a deposit for this transaction with beneficiary P. A should
lock d + A coins in this deposit. If A doubly spends, d coins are used to compensate B’s loss and A
coins are transferred to P as his/her incentive to detect A’s double-spending. The value of A is decided
based on a negotiation between A and P.

To ensure that B’s loss can be fully compensated once A doubly spends, the value of d can be set as
the value of coins transferred to B in the deposited transaction. However, for a honest payer who has
limited coins, such deposit value may obstruct his/her normal transactions. Hence, the value of d could
also be decided based on a negotiation between A and B. A could lock relatively less coins in the deposit
if B agrees. Considering that the negotiation between A and B requires additional user interactions, it
may affect the usability.

To provide better usability and also decrease the amount of coins locked in the deposit for a honest
payer, a minimum value of d could be specified in the implementations of our protocol. However, the set
of this minimum value may cause some practical problems. If the minimum value of d is relatively low,
e.g., 10% of the transaction value, a malicious payer who has sufficient coins can initiate a transaction
transferring a large amount of coins (e.g., 10 coins) to the payee with a minimum deposit (e.g., 1 coin).
In this case, the malicious payer may doubly spend without worrying the loss of the deposit. Meanwhile,
the victim payee cannot get fair enough compensation from the deposit. If the minimum value of d is
relatively high, e.g., 90% of the transaction value, the incentive for a malicious payer to double-spend
would decrease to a low level. However, a honest payer who only has limited coins may feel burdensome
for paying such deposits.

To impose a sufficient penalty on a malicious payer while decreasing the burdens on a honest payer,
the minimum value of d could be decided based on a payer’s reputation which is computed based on
the payer’s previous transaction behaviors. Generally, if a payer acts honestly in a transaction, his/her
reputation increases accordingly. The reputation of a payer continuously increases along with the in-
creasing number of his/her honest transactions. Otherwise, if a payer acts dishonestly in a transaction,
e.g., double-spends, his/her reputation severely decreases. The minimum value of d varies according to
a payer’s reputation, and a payer with higher reputation could be entitled with a less minimum value.

Since Bitcoin network is anonymous, a malicious payer may initiate a double-spending transaction
with a new Bitcoin account (which has no transaction records as a payer). Therefore, we suggest that,
for all new Bitcoin accounts, the minimum value of d should be set as the value of the deposited trans-
action. Unfortunately, such reputation-based deposits cannot impose sufficient penalty on a malicious
payer who has sophisticatedly behaved well in previous transactions with a maintained account and
later doubly spent with this account. However, it increases the cost of double-spending attacks due to

the transaction fees and overhead for maintaining a highly reputable account. It remains interesting to
design the algorithms for calculating the reputation and generating the corresponding minimum deposit
value based on previous works on reputation systems (e.g., [3,14,15,39]), which is however, out of the
scope of this work.

This deposit is secured by A’s secret key sk4, and the corresponding public key is pk 4. Furthermore,
the deposit is locked till some point 7 in the future. It means that even though A owns the secret key sk 4,
he/she cannot redeem the deposit until time 7. However, before time 7', with the usage of accountable
assertion scheme, it is possible for P to learn the secret key sk, if A double-spends. Therefore, if A
double-spends, P can recover sk4, and then P and B can use their secret keys along with sk, to redeem
the deposit. Here, the role of the beneficiary P can also be performed by the payee B. Consequently, B
should take all the responsibilities of the beneficiary.

The key pairs (pk,, ska), (pkg, skg), (pkp, skp), and other Bitcoin key pairs involved in our protocols
are all generated and managed in a standard way, e.g., by Bitcoin wallets, which is the same as the key
generation and management in the current Bitcoin structure. A Bitcoin wallet is an app or a program
that allows a user to send and receive Bitcoins. It also keeps tracking of the user’s Bitcoin balance held
in one or more bitcoin addresses and stores the user’s transaction histroy. A Bitcoin wallet can be used
to generate and manage private keys for the user. Some Bitcoin wallets also allow users to import their
private keys generated from outside of the wallets. Since our protocols focus on the usage of private
keys, the generation and management of private keys are out of scope.

4.1.1. Deposit setup

To create a deposit for the transaction in which A transfers coins to B, A should generate an account-
able assertion. In particular, when creating the assertion, the context ct in this assertion is the transaction
number of the previous output which the current input of the closing transaction is redeemed from. The
statement st in the assertion is a random number generated by B. The assertion will be sent to B first
for verification, and then sent to P who will detect A’s double-spending. If P has received two different
assertions generated under the same cz, P can confirm that A has double-spent the input. Then, P can
recover sk using the two received assertions, and thus redeem the coins locked in the deposit. Figure 1
shows the message flow for setting up a deposit.

Party A Party B Beneficiary P

1. Generate a Bitcoin key pair
(pka, ska) & an assertion
T & Assert(ask,,auxsk,,ct,st)

2. Send (apk,, ct, st,)

3. Verify (apk,, ct, st, t) =1

4. Generate a Bitcoin key pair

(pksg, skg)
5. Send pkg
6. Send (apky, ct, st, T)
7. Generate a Bitcoin key pair
k,, sk
8. Send pk, (pky. sky)

9. Generate the output scripts
of the deposit with pk, pkg pk,

Fig. 1. Deposit setup for one transaction.

To generate an assertion, B generates a random number as st and sends it to A. After receiving sz, A
starts to generate the assertion. A first creates a Bitcoin key pair (pk 4, sk4) which can be used to redeem
the deposit after the expiry time 7. Then, A sets up the accountable assertion scheme with the Bitcoin
key pair (pk,, sk4). That is, A predefines the secret key of the chameleon hash tree ask4 := sk4, creates
the corresponding public key apk 4, and the auxiliary secret information auxsk4 as specified in the key
generation algorithm. Note that, apk, = (pky4, z), where z is calculated based on chameleon hash values
calculated in the key generation process, and auxsky, = k, where k is generated by a pseudo-random
function.

Next A uses the transaction number of the previous output as ct and the random number received from
B as st to generate an assertion t <— Assert(aska, auxsky, ct, st). However, not all transaction numbers
can be mapped into the chameleon tree and thus be used to generate an assertion. If the transaction num-
ber cannot be mapped into the chameleon tree, A needs to re-generate a Bitcoin key pair and construct a
new chameleon tree until cf can be mapped to a chameleon hash value in the tree. When the assertion is
successfully constructed, A sends t, apk 4, ct and st to B for verification.

After receiving t, apk,, ct and st, B first verifies ct and st. If cf and st are correct, B further verifies ©
using apk 4, ct and st. If T is valid, B generates a Bitcoin key pair (pky, skp) of his/her private address
ap and sends pkj to A for defining the release condition of the deposit. Meanwhile, B sends the record
(t, apk,, ct, st) to P for storing. After receiving the record (t, apk,, ct, st) from B, P generates a key
pair (pkp, skp) of his/her private address ap and sends pkp to A. Otherwise, if the verification of st fails,
B can either ask A to regenerate an assertion or just cut off the transaction with A if he/she has enough
reason to believe that A is malicious.

The deposit scripts are illustrated in Fig. 2. To ensure enough incentive for P as well as enough com-
pensation to B, this deposit has two outputs when A double-spends: d coins are transferred to address ag
and A coins are transferred to address ap. The release condition Iz defines the requirements for trans-
ferring d coins to ag. [1g should ensure that such coins can only be redeemed with the authorization of
B before the expiry time 7. Hence, o4 and o are both required in I15. 04 and op are signatures on the
transaction transferring d coins from agep, to ap with sk, and sk, respectively. The release condition ITp
defines the requirements for transferring A coins to ap. I1p should ensure that such coins can only be
transferred to ap with the authorization of both P and B. Hence, 0);, 0 and o}, are all required in ITp.
Here, 0, 0 and o}, are signatures on the transaction transferring A coins from aqep to a, with sky4, skp
and skp, respectively.

Deposit

In-script: O pre (3a_prevs dep)

out-script_1 (agep, ap):
Ift<T, o), Og,
Else o,

Value: Bd

out-script_2 (agep, ap):
Ift<T, oy, 0’g, O,
Else o,

Value: BA

Fig. 2. Deposit script for one transaction.

Beneficiary Payee

1. Extract sky¢Extract (apk,, ct, st, T, st’, T')
2. Generate (2, ap)

3. Send Ca(agep, as)

4. Verify 0p(agep, ag)

5. Generate 0’g(agep, ap)
6. Send o’g(agep, ap)

7. Publish [6’y(agep, @p), Pk, ap] as a
witness

9. Generate 0'p(agep, ap) & O'a(agep, 3p) 8. Generate Og(ag,,, a) &
Redeem (ay,, ap) with 05, 0y, 0’ Redeem (ag,, ag) with 6, g

Fig. 3. Deposit usage for one transaction.

4.1.2. Deposit usage

If P detects the same ct in two different records (z, apk 4, ct, st) and (', apk 4, ct, st'), it means that A
has double-spent the input that is redeemed from the previous output cz. Then P uses t and 7’ to extract
A’s secret key sk and collaborates with B to transfer the coins locked in the deposit. Figure 3 shows
the message flow of the deposit usage when A double-spends.

1. P uses the corresponding assertions T and 7’ to extract A’s secret key sk,.

P generates a signature o4 on the transaction (agep, @p) using sk,.

P sends o4 (agep, ap) to B.

B verifies 04 (agep, ap) using the corresponding public key pk .

If 04 (aqep, ap) is a valid signature, B creates a signature o (dgep, ap) on the transaction (dgep, ap)

using the secret key skg.

B sends o (agep, ap) to P.

7. In case that B may not generate o (adep, ap) and send it to P, B needs to publish (0 (agep, ap),
pkg, ap) (either on his/her own bulletin board, on the blockchain or on some other “alt-chain”) as
a witness that enables everyone to check that his/her action was correctly performed.

8. B generates a signature on o (agep, ap) on the transaction (aqep, ap) using his/her secret key skp.
Therefore, B can transfer the d coins to his/her address ag using op(dqep, ap) and op(agep, ap).

9. After receiving og(agep, ap), P generates a signature op(agep, ap) on the transaction (dgep, ap)
using his/her secret key skp and a signature oy (dgep, ap) using sky. Therefore, P can transfer
the A coins to address ap using oy, (Aaep, ap), 05 (adep, ap) and oy (aqep, ap) to satisfy the release
condition.

Al

4

4.1.3. Security analysis

Our design is resistent to collusion attacks by requiring B’s private key to redeem the deposit when
A double-spends. The collusion between A and P will not work due to the lack of B’s secret key skp.
In our design, P can transfer A coins to his/her private address only if B has signed the transaction
(agep, ap) with his/her secret key sk . Therefore, if P wants to gets the d coins in the deposit, he/she has
to generate 04 (dqep, ap) and send it to B first.

If a malicious payer chooses one of his/her own accounts to act as the beneficiary, although the in-
centive locked in the deposit will be transferred to the payer’s own address, he/she cannot transfer the
compensation for the victim payee to his/her address due to the requirement of the victim payee’s sig-
nature for redeeming the compensation. In this way, the payer still needs to transfer the same amount of

coins as he/she has doubly spent to the victim payee. Hence, the payer achieves no benefit in such case
through double-spending attacks.

Our design also ensures that B can get his/her compensation of d coins and P can get A coins as
his/her benefits. This is because if P signs a transaction transferring less than d coins to B with sk, B
will not sign the transaction (agep, ap) with skz. Meanwhile, since P signs a transaction only transferring
d coins to B, B cannot transfer all the coins in the deposit to his/her private address. Moreover, the
requirement of publishing a witness also forces B to sign a transaction transferring A coins to P. If B
refuses to sign the transaction (aqgep, ap), P cannot get the incentive in this deposit. However, since B’s
misbehavior will be detected and broadcasted to the whole Bitcoin network, it is hard for B to find a
beneficiary for his/her future transactions. The possible negative influence on his/her future transactions
can force B to behave honestly (i.e., sign a transaction to transfer A coins to P with skp).

Although B has published o (aaep, ap), we ensure that only P can transfer A coins that are locked
in the deposit to his/her private address ap by the additional requirement of o, (dgep, @p) in the release
condition ITp. If o are not required in the release condition ITp, A may use his/her secret key to
generate the signature o (dgep, @ p) to transfer the coins to his/her private address along with o which is
published by B. On the other hand, if o is not required in the release condition ITp, P may transfer all
d + A coins to his/her private address if it recovers A’s secret key sk, or colludes with A, which could
result in that B get no compensation.

4.2. Deposit for transactions with multiple inputs and outputs

For a transaction with multiple inputs and outputs, to ensure that any payee who suffers in double-
spending can get compensation, deposits should be created for each payee, respectively. Note that the
multiple inputs of the transaction may be made by several payers. In this case, the payers need to generate
a Bitcoin key pair for the deposits by negotiation, so that the payers can be regarded as one payer who
generates the Bitcoin key pair. Hence, in this section, we consider multiple payers as one payer.

4.2.1. Deposit setup

Party A (i.e., payer) makes a transaction with k payees, Bj, B», ..., By, in the deposited transaction,
and Party P; serves as the beneficiary for the deposit made to B;. A should lock dpuy; + Amuy; coins in
the deposit made to B; with the expiry time 7, where dp,y, is the total value of coins that compensate
to B; if A double-spends, and Ap,y, is the incentive for P; to detect the A’s misbehavior. The value of
Ay, 1s decided based on a negotiation between A and P;, while the value of dp,,, can be decided based
on a negotiation between A and B;. Since k payees are involved in the deposited transaction, it may be
troublesome for the payer to negotiate with all payees. Hence, the value of dp,y, could be simply set
as the value of the coins transferred to B; in the deposited transaction. To decrease the coins locked in
the deposits for honest payers, a reputation system can be designed for calculating a minimum value of
dmult,- .

For a deposit made to B;, the output script is similar to the deposit made for a transaction with single
input and output. The release condition of dy,y; coins requires signatures generated respectively un-
der the payer’s secret key sk, and the payee’s secret key skg;. The release condition of Ay, requires
signatures generated respectively under sk, skg; and the respective beneficiary’s secret key skp;.

Since the double-spending of any input could result in the invalidation of all outputs, to make sure B;
can get dmuy; coins from the deposit, sk4 should be able to be recovered from the double-spending of
any input. Therefore, A should generate an assertion for each input and send all the assertions to P;. All
the assertions should be generated under the same chameleon tree where ask, := sk,.

To create deposits to all payees, A first generates n accountable assertions 7;, j € {1,2,...,n} for
n inputs respectively. To generate 7;, ct; is the transaction number of the previous output which the
Jjth input is redeemed from. s¢; is a random number decided by all the payees. For example, st; can
be generated by hashing the conjunction of all random numbers generated by each payee with MDS5
function.

To make a deposit to B;, A sends the n records: (apky, ct;, stj, tj), j = (1,2,...,n), to B; for verifi-
cation. If all the records are verified as valid, B; sends all these records to the respective beneficiary P;.

4.2.2. Deposit usage

After receiving n records (apky, ctj, stj, tj), j = (1,2,...,n), if P; detects a different assertion
under the same ct;, he/she can recover sk, and generate a signature o,; on the transaction that transfers
dmul, coins to B; from the deposit using sk,. If oy; is verified by B;, B; generates a signature oj; on
the transaction that transfers A, coins to P; from the deposit using skg; and sends oy, to P;. Then B;
also needs to publish a witness. After that, B; generates a signature op; on the transaction that transfers
dmuy; coins to B; from the deposit using skg;. Therefore, B; can use op; and oy, to satisfy the release
condition of the dy, coins. Meanwhile, after receiving oy, from B;, P; create signatures o, and o on
the transaction that transfers Ap,y, coins to P; from the deposit using skp; and sky4, respectively. Then
P; can use oy;, 0p, and o, to satisfy the release condition of the Ap,,, coins locked in the deposit.

Although we introduce the solution to make a deposit to the payee B; with the beneficiary P;, the payer
could create the deposits for different payees with the same beneficiary. This is because, the records sent
to each P; are the same and the sk, used in all deposits is the same. Hence, if a beneficiary recovers the
sk 4, he/she can generate 0,; on the transaction (agep, ap;) using sk4 forall B;,i = (1,2, ..., k). Further-
more, instead of respectively making k deposits, the payer can create only one deposit to all k payees.
In this case, the deposit transaction should contain k + 1 outputs. If the payer double-spends, k outputs
transfer the compensations to k payees, respectively, and the other output transfers the incentive to the
beneficiary. The release conditions of the compensations locked in this deposit require the signatures of
the payer and the respective payee, which is the same as in the deposit separately made to the respective

payee.

4.2.3. Security analysis

The deposits for transactions with multiple inputs and multiple outputs provide the same security
as the deposits for transactions with single input and output. When A double-spends, our design re-
quires the collaboration among the beneficiaries and the victim payees to withdraw the deposits. For
i €{1,2,...,k}, the collusion between A and P; will not work since B;’s secret key skp, is required
in the release condition. Our design also ensures that B; can get his/her compensation of dy,y, coins,
since B; will not sign the transaction (agep, ap) with skp if P; signs a transaction transferring less than
dmuy; coins to B; with sk4. Meanwhile, our design also grantees the incentive for P;. Since P; signs a
transaction transferring only dpy; coins to B;, B; cannot transfer all the coins in the deposit to his/her
private address. Moreover, B; is required to sign the transaction transferring Ay, coins to P;’s private
address and publish a corresponding witness which forces B; to behave honestly.

Our design can prevent collusion attacks between different beneficiaries. If A sends the record
(apky, ctj, stjo, Tjo) to B;, i € {1,2,...,k}, and the record (apk,, ct;, st;j1, tj1) to By, these two
different records will be sent to P; and P, respectively. Then, P; can collude with P;,; to recover
sk, even if A has not double-spent the input with the transaction number ct;. In our design, all payees
receive the same records (apk,, ct;, stj, t;), j = (1,2, ..., n), from the payer. Hence, for the same ct;,

all beneficiaries receive the same sz; from the respective payee. The usage of the same st; can prevent
P; recovering sk, through colluding with other beneficiary.

5. Implementation and evaluation

In this section, we describe how our fair deposits for one transaction can be implemented in Bitcoin
network. We use a deposit created for a transaction with single input and output as an example. We also
evaluate the validation of our scripts and the effectiveness of the accountable assertion algorithm used
in our design. To make deposits for a transaction with multiple inputs and outputs, the scripts for each
deposit are basically the same as a deposit made for a transaction with single input and output. Hence,
the scripts validation provided in this section can also demonstrate the validity of the deposit transactions
created for the transactions with multiple inputs and outputs.

5.1. Implementation

We implement the accountable assertion algorithm based on the codes published online [35] by Ruff-
ing et al. In the deposit setup phase, the accountable assertion is generated and verified using the asser-
tion algorithm Assert(ask, auxsk, ct, st) and the verification algorithm Verify(apk, ct, st, T) respectively.
In our implementation, most of the parameters used by Ruffing et al. [34] are left intact. Particularly, we
use HMAC-SHA?256 to instantiate the pseudorandom function F, SHA256 to instantiate the collision-
resistant hash function H, and HMAC-SHA256 with fixed keys to instantiate the random oracles L and S.
The height of the tree [= 64 and the arity n = 2 are the same as that were used by Ruffing et al. [34].

However, to generate an assertion, we customize the context and the statement used in the accountable
assertion algorithm. In our implementation, the context ct is the Bitcoin address of the input of the
transaction that has been deposited. This Bitcoin address can identify the respective input in Bitcoin
network. As we introduced in Section 4, in each Bitcoin transaction, instead of Bitcoin address of the
input, the transaction number of the previous output which the input of the deposited transaction is
redeemed from can also be used to identify this input. The transaction number is constructed by the
value of prevTx (which is the hash identifying the previous transaction) and the value of index (which
is the index of the respective output in that transaction). Considering that the prevTX and index can
all be found out by tracing the Bitcoin address, we just use the input Bitcoin address of the deposited
transaction as the ct in our implementations.

There are two ways to represent the Bitcoin address — hex format and Base56Check encoding. In our
implementation, we use a 20-byte hexadecimal Bitcoin address as ct. The bitcoin address can also be
represented in Base56Check encoding in other implementations with some minor modifications on our
codes. To use the Base56Check encoding, the cf needs to support a variable length since Base56Check
encoding ranges from 25-34 characters. In our implementaion, the statement st is 32-byte random num-
ber r,, generated by the payee and sent to the payer for generating the assertion.

In the deposit usage phase, the beneficiary extracts the payer’s secret key sk using the key extraction
algorithm Extract(apk, ct, st, st', T, t'). After extracting sk, the beneficiary calculates the address ag,
ap and generates a signature on the transaction (agep, a@p) using sk,. In our implementation a Bitcoin
address a is formed from the public key of an ECDSA key pair in the formal way by hashing the public
key with SHA-256 first and RIPEMD-160 subsequently, prepending a version number, and appending
a checksum for error detection. Thus, the address ag where the coins in the output; will be transferred
to is derived from the payee’s public key pky, and the address ap where the coins in the output, will

be transferred to is derived from the beneficiary’s public key pk,. After generating the signature on the
transaction (aqep, ap) using sky, the beneficiary sends ag, ap and the signature to the payee. If the payee
verifies ap, ap and the signature on the transaction (aqep, apg) as valid, he/she generates a signature on
the transaction (aqgep, ap) using skp and sends it back to the beneficiary.

The Bitcoin script language supports a CHECKSIG operation that reads a public key and a signature
from the stack and then verifies the signature against the public key on a message that is derived in
a special way from the current transaction. This (and its multi-sig version) is the only operation that
performs signature verification. In our deposit transaction, the outputs require the verification of signa-
tures against specific public keys. In the output scripts, we make use of a I[F-ELSE structure, so that
if the payer double-spends, the victim payee and the beneficiary access to the deposit, locking out the
payer. Otherwise, if the payer acts honestly, he/she can get the deposit back. We design the pubkey
script (scriptPubKey) for the deposit transactions as follows, where Output_B denotes the output re-
deemed and controlled by the payee and Output_P denotes the output redeemed and controlled by the
beneficiary:

e Output_B:
IF
DUP HASH160 <PK g hash> EQUALVERIFY
CHECKSIGVERIFY
ELSE
<Lock Time> CHECK_LOCKTIMEVERIFY DROP
ENDIF
DUP HASH160 <PK 4 hash> EQUALVERIFY
CHECKSIG

e Output_P:
HASH160 <redeemScript hash> EQUAL
where the redeemScript is:
IF 2 PKp, PKp 2 CHECKMULTISIGVERIFY
ELSE
<Lock Time> CHECKLOCKTIMEVERIFY DROP
ENDIF
<PK 4> CHECKSIG

Correspondingly, once the beneficiary has detected the payer’s double-spending, the required signature
script (scriptSig) would be as follows:

e For Output_B
<04> <PK, > <op> <PKp> OP_1
e For Output_P
<oa> OP_0 <op> <op> OP_1 <redeemScript>

where the payer’s signature is obtained from the beneficiary’s extraction of the payer’s private key.
If the payer has not double-spent, he/she can gain full access to his/her deposit using the following
scriptSig:

e For Output_B
<o,> <PK,> OP_0

e For Output_P
<o4> OP_0 <redeemScript>.

We write the scripts using Bitcoin script language. However, since the IF_ELSE structure used in our
scripts is not considered as standard by Bitcoin Core’s IsStandard() or IsStandardTx(), the transactions
that use our scripts would not be considered as standard transactions. Although Bitcoin nodes running
in the default settings may not accept, broadcast, or mine non-standard transactions, the transactions
that use our scripts can still be supported in the current Bitcoin network without any modifications on
Bitcoin structures. This is because Bitcoin nodes that accept non-standard transactions have already
existed in the Bitcoin network. The transactions that use our scripts can be broadcasted to Bitcoin nodes
which accept non-standard transactions and finally be confirmed by the Bitcoin network. In the future,
if the Bitcoin network is updated with a standardization of the /F-ELSE structure due to its increasing
usage, the transactions that use our scripts will also be supported by Bitcoin nodes running in the default
settings.

5.2. Validation and evaluation

5.2.1. Scripts validation

We show the validity of our scripts by observing the evaluation of the respective scriptSig and
scriptPubKey in the stack. According to the Developer Guide released by Bitcoin Project [7], if false
is not at the top of the stack after the scriptPubKey has been evaluated, the transaction is valid (provided
there are no other problems with it). To test whether the transactions that transfer the coins locked in the
deposit are valid, scriptSig and scriptPubKey operations are executed one item at a time in the evalua-
tion stack, starting with the payer’s scriptSig and continuing to the end of the scriptPubKey provided by
whom redeems the deposit.

Figure 4 and Fig. 5 show the evaluation stack during the validation of scriptPubKey provided by
the payee and the beneficiary, respectively, if the payer double-spends. We can see that at the end of
the computations, the return value at the top of the stack is TRUE, affirming that our scripts can be
performed successfully and the transactions using these scripts are valid. Detailed description of these
validation processes are given in Appendix. We also evaluate the stack during the scripts validation in
the event that the payer acts honestly and the corresponding evaluation stacks over time are given in the

Stack OPCodes
< 0a>, <PKa>, < 0g >, <PKg>, 1
< 0a>, <PKa>, < 05 >, <PKg> OP_IF
< 0a>, <PKa>, < 0g >, <PKg>, <PKg> | OP_DUP
< 0a>, <PKa>, < 0g >, <PKg>, OP_HASH160
<PKg Hash>
< 0>, <PKa>, < 0 >, <PKg>, Push <PKg Hash> to the stack
<PKg Hash>, <PKg Hash>
< 0a>, <PKa>, < 0g >, <PKg> OP_EQUALVERIFY
< 0a>, <PKp> OP_CHECKSIGVERIFY; OP_ENDIF
< 04>, <PKa>, <PKa> OP_DUP
< 04>, <PKa>, < PK4 Hash> OP_HASH160
< 0a>, <PKa>, < PKa Hash>, Push <PK, Hash> to the stack
<PKa Hash>
< 0a>, <PKa> OP_EQUALVERIFY
TRUE OP_CHECKSIG

Fig. 4. Evaluation stack during the Output_B script validation when the payer double-spends.

Stack OPCodes
<0a> 0,<0p> <0p >,
1, <RedeemScript>
<ga>,0,<0p> <0p>, OP_HASH160
1, <RedeemScript Hash>
<0ga>,0,<0p > <0g>, Push <RedeemScript Hash> to
1, <redeemScript Hash>, the stack
<RedeemScript Hash>
<04>,0,<0p>,<0g>, 1 OP_EQUAL
<0x>0,<0p> <0 > OP_IF
<0p>, 0,<0p> <0 >, OP_2; Push <PKe> and <PKg> to
2, <PKp>, <PKg>, 2 the stack; OP_2
<gp> OP_CHECKMULTISIGVERIFY;
OP_ENDIF
< 08>, <PKa> Push <PKx> to the stack
TRUE OP_CHECKSIG

Fig. 5. Evaluation stack during the Output_P script validation when the payer double-spends.

Table 1
Accountable assertion performance evaluation
Operation AVG Time (ms)
[34] Our Fair Deposits
Assertion generation 9 18
Assertion verification 4 8
Key extraction N/A 36

Appendix. The results demonstrate that the transactions that redeem the deposit using our scripts are
also valid when the payer acts honestly.

5.2.2. Performance evaluation

Comparing with the current Bitcoin transaction mechanism, our solution causes additional overhead
by performing the accountable assertion algorithm. The overhead is mainly caused by assertion gener-
ation, assertion verification and key extraction. Hence, we evaluate the overhead caused by these oper-
ations and present our experiments in details. Moreover, we also present a comparison on the overhead
between our solution and the first accountable assertion algorithm [34].

For each round of the experiments, we first generate a Bitcoin key pair as the payer’s Bitcoin key
pair and a Bitcoin address as the confext. The Bitcoin key pairs used in each round are all generated
using OpenSSL 1.0.1h. The corresponding Bitcoin addresses are calculated with the RIPEMDI160()
and SHA256() commands in the OpenSSL C4-+ library. We then generate and verify an accountable
assertion using the generated Bitcoin key pair and the context, and record the required time for assertion
generation and verification respectively. After that, we generate another assertion using the same context
and different statement, and then extract the Bitcoin private key from these two conflicted assertions. In
addition, we also record the required time for the key extraction. We run the experiments for 50 rounds
and the average time for assertion generation, assertion verification and key extraction are recoded in
Table 1.

The experiments are performed on a 2.4 GHz (Intel Core 15-4258U) machine with a DDR3-1600 MHz
RAM. Ruffing et al. [34] also evaluate the overhead of their design caused by assertion generation
and assertion verification. Comparing with [34], our design needs more time to generate and verify an
assertion. This is because in our design the size of the context and the statement grow by a significant

amount. We use a 20-byte hexadecimal Bitcoin address as the context and a 32-byte random number as
the statement, while the context is 8-byte and the statement is 3-byte in [34]. However, the computational
overhead of our design is still millisecond-level, hence it is still manageable and acceptable.

In other computing environments, the overhead of our solution and the overhead of [34] would be
different from our evaluation due to the different computation power of computing devices. Compared
to the common computing devices for Bitcoin transactions, the device we evaluated, i.e., a 2.4 GHz
(Intel Core i15-4258U) machine with a DDR3-1600 MHz RAM, is not at the high end. If our solution is
performed on a device with higher computation power, the overheard would further decrease. In addition,
our evaluation demonstrates that the overhead of our solution is in the same order of magnitude as that
of [34].

In terms of communication, comparing to the current Bitcoin transaction mechanism, the transfer
of assertions in our solution causes additional communication overhead. The size of assertion in our
solution is the same as the solution in [34]. Note that a chameleon hash value is a point on the secp256k1
curve and thus requires less than 33 bytes in the compressed form. A random input of the chameleon
hash function is a 32-byte integer in the underlying field of the curve. The assertion in our solution
is a sequence of 64 chameleon hash values and chameleon hash random inputs. Therefore, it takes
64 x (33 bytes 4 32 bytes) = 4160 bytes.

6. Extension to a deposit for multiple transactions

In this section, we propose a solution for creating a deposit for multiple transactions to reduce the
transaction fees. In our solution, a payer who has decided to perform n transactions could make one
deposit with the expiry time 7 for the n transactions. After the deposit is confirmed by the Bitcoin
network, the n transactions will be initiated and broadcasted to the Bitcoin network for confirmation. If
the beneficiary detects a double-spending transaction among the n transactions before the expiry time
T, the victim payee of the double-spending transaction will get compensation from the deposit.

6.1. Deposit setup

Party A (i.e., payer) makes n transactions with n payees, By, B, ..., B,, and Party P serves as the
beneficiary who is responsible for detecting A’s double-spending. The value of coins locked in the
deposit is d' = Z?zl dp; + A x n, where dp; is the value of coins used to compensate B;’s loss if
A double-spends the ith transaction, and A is the incentive for the beneficiary to identify a double-
spending transaction. The value of A is decided based on a negotiation between the A and P. The value
of dg; should ensure that each payee who has suffered in a double-spending transaction can get sufficient
compensation of his/her loss from the deposit. Hence, the value of dp; can be set as the value of the ith
transaction. The value of dp; can also be decided based on a negotiation between A and B;, though it
may be troublesome for A to negotiate with all n payees. To decrease the coins locked in the deposit for
a honest payer, a reputation system can be designed for calculating a minimum value for dp;.

Compared to a deposit for one transaction, the setup of a deposit for multiple specific transactions
requires a pre-negotiation process between the payer and each payee as shown in Fig. 6. For simplicity,
we use the case that each deposited transaction only has one payee as an example.

To create a deposit for n transactions, A first creates a Bitcoin key pair (pk,, sks). Also, A sets
up the accountable assertion scheme with the Bitcoin key pair (pk,, sk4). That is, A predefines the
secret key ask, := sk, of the accountable assertion scheme and creates the corresponding public key

Party A Party Bi Beneficiary P

1. Send stai

2. Generate a Bitcoin key pair (pk,, sk,) & an
assertion T, ¢ Assert(asky,auxsky,cty;,stai)

3. Send (apky, cty;, Stai, Tai)

4. Verify (apky, cta;, Sta, Tai) =1
5. Send (apk,, ctyy Sta, Tai)

6. Generate a Bitcoin key pair
(kg ske;)
7. Send pkg;

8. Generate an output scripts of
the deposit with pk, pkg; pkp

Fig. 6. The message flow of deposit setup for multiple transactions.

Deposit

In-script: Op_gep (@n's Agep)

out-script_V; (agep, 1)
Value: Bds1

out-script_V; (agep, agi) :
If<T, Op(adep Asi) s Tgi (gep, Am)
EISe UA (adepl aA)

Value: Bdsi

out-script_V, (agep, agn)

Value: B den

out-script_Pi (agep, ap):
Ift<T, O'al@qep, ap), O'6i (3aeps 3p) , O'p (Auep s Ap)
Else 0’4 (agep, ap)

Value: BA

Fig. 7. Deposit script for multiple transactions.

apk 4, and the auxiliary secret information auxsk 4 as specified in the key generation algorithm. Note that
apk, = (pky, z). Fori € {1,2, ..., n}, to generate the assertion t4;, B; generates a random number and
sends it to A as st4;. Then, A uses the transaction number of the output which the input of the transaction
with B; is redeemed from as ct4; to generate 7; along with st4;.

Then A sends the record (apk 4, cta;, Stai, Ta;) to B;. After verifying that Verify(apk 4, ctai, Stai, Tai) =
1, B; sends the record to the beneficiary P for storing. Meanwhile, B; generates a Bitcoin key pair
(pkg,, skp;) and sends pkg; to A. After receiving pkpg,, pkg,, ..., and pkg, from all n payees, A asks P
for his/her public key to generate the output scripts of the deposit. Then P generates a bitcoin keypair
(Pkp, skp) and sends pkp to A. After that, A defines the output script of the deposit as shown in Fig. 7
and broadcasts the deposit transaction in the Bitcoin network for confirmation.

The release conditions of Output_B; (i.e., the output to compensate B;’s loss) and Output_P; (i.e., the
output to incentivize the beneficiary to detect the double-spending of the transaction made to B;) are sim-
ilar with Output_B and Output_P introduced in Section 5.1. The design of the scripts for Output_B; and
Output_P; is referred to the scripts for Output_B and Output_P, respectively given in Section 5.1, and
the required public keys in the output scripts should be changed to corresponding public keys required
in Output_B; and Output_P;, respectively.

This deposit has n +n outputs. Among these outputs, n outputs ensure that dg; coins can be transferred
to B;’s private address ag;, wherei = 1,2, ..., n, if A double-spends the transaction with B;. If A acts
honestly, dp; coins can be transferred to A’s private address a, after the expiry time 7. The other n
outputs ensure that, if P detects that A double-spends the transaction with B;,i € {1,2, ..., n}, A coins
can be transferred to P’s private address ap. Otherwise, if A has not double-spent the transaction with
B;, A coins can be transferred to A’s private address a4.

In this deposit, we design n outputs each of which transfers A coins to P’s private address. It can
motivate P to detect as many double-spending transactions as possible, since each output requires a
signature generated using a victim payee’s private key. Only if P has detected that A double-spent the
transaction with the victim payee, the victim payee will sign the transaction transferring A coins to P’s
private address using his/her secret key. Thus, P can transfer A coins to his/her private address.

6.2. Deposit usage

When P detects that A double-spends the transaction with B;, i € {1, 2, ..., n} before the expiry time
T, he/she can work with party B; to transfer dp; coins from the deposit to B;’s private address and A
coins to P’s private address. Figure 8 shows the message flow of the deposit usage after P detects that
A has double-spent the transaction made with B;. The usage of the deposit can be described as follows:

1. If P detects different st4; in two records with the same cts;: (apky, ctaj, stai,, Tai,) and
(apk 4, ctai, Stai,, Tai,), P uses the assertions t4;, and 74;, to extract A’s secret key sk 4.

P creates a signature oy; on the transaction (agep, ag;) using sk,.

Then P sends oy; to B;.

B; verifies oy4; using the corresponding public key pk ,.

If 0y; is valid, B; creates a signature o;(dqep, ap) on the transaction (agep, ap) that transfers A
coins to P’s private address using the secret key skp;.

6. B; sends of;(dqep, ap) to P.

kv

Beneficiary P Party Bi
(i-th Victim Party)

1. Extract sky&Extract (apk,, ctay, Staio Taio s Stain Tain)
2. Generate O (agep, ag)

3. Send Oail@gep s Api)

4. Verify om(adep, ag)

6. Send U’Ei(adepl ap) 5. Generate ¢’ Bi(adep, ap)

7. Publish [0"g(agep , @), Pkgi, 3p] @s @
witness

9. Generate 0’p(agep, ap) & 0'i(agep, @p) ; 8. Generate Og; (ayep, api) &
P ;
Redeem (aye,, ap) With o'y, 0g;, 0'p Redeem (aye,, ag;) With o, Oy

Fig. 8. Deposit usage for multiple transactions.

7. In case that B; may not generate oj;(dqep, ap) and send it to P, B; needs to publish (oy;, pkp;)
(either on his/her own bulletin board, on the blockchain or on some other ““alt-chain”) as a witness
that enables everyone to check that his/her action was correctly performed.

8. Then B; generates a signature op;(agep, ap;) On transaction (dqep, ap;). Therefore, B; can transfer
the dp; coins to his/her private address using op; and oy; to satisfy the release condition.

9. After receiving op;(agep, ap), P generates a signature o (dgep, @p) on the transaction (dgep, @)
using his/her secret key sk, and a signature o4, (dgep, ap) using sks. Therefore, P can transfer the
A coins to his/her personal address.

6.3. Security analysis

Our design is resistent to the collusion attacks between the payer and the beneficiary by requiring B;’s
private key to transfer dp; coins to B;’s private address and transfer A coins to P’s private address when
A double-spends the transaction made with B;. The collusion between A and P will not work due to the
lack of B;’s secret key skp;. In the cases where the payer chooses one of his/her own accounts to act as the
beneficiary, although the incentive locked in the deposit could be transferred to the payer’s own address
if he/she double-spends some of the deposited transactions, he/she cannot transfer the compensation to
the victim payees to his/her address due to the requirement of the victim payees’ signatures to redeem
the corresponding compensation.

Our design is also resistent to the collusion attacks between payer A, beneficiary P and a malicious
payee B,,q € {1,2, ..., n}. In such collusion attacks, only dp,+ A coins in the deposit can be controlled
by the attackers, i.e., payer A, beneficiary P and a malicious payee By, g € {1, 2, ..., n}. If the payer A
has double-spent the transaction made with a payee and wants to transfer the corresponding coins locked
in the deposit to his/her private address, the real victim’s signature is still required. Hence, even if the
payer has created some “fake” payees for the deposit, he/she still cannot grab the coins deposited for the
real transactions and the real victim’s compensation is still guaranteed.

7. Extension to deposits without an explicit beneficiary

In this section, we provide an extension to deposits of which the beneficiary is a randomly selected
miner rather than an explicit beneficiary. In this case, each miner can perform as a beneficiary of the
deposit and detect A’s misbehavior of double-spending. For simplify, we only design the protocol of
making a deposit without an explicit beneficiary for a transaction that only contains one input and output.
Based on some further extensions of the protocol introduced in this section, a deposit without an explicit
beneficiary can also be made for a transaction with multiple inputs and outputs, and even for multiple
transactions.

7.1. Deposit design

Let Party A denote the payer, Party B denote the payee, and d denote the value of the transaction
between A and B. To enable each miner monitor A’s behavior and recover A’s secret key sk, if A
double-spends, B needs to publish the received record (apk, ct, st,) to all the miners who have the
incentive to store it. The release condition of B’s compensation locked in the deposit remains the same
as a deposit with an explicit beneficiary. Thus, if A double-spends, the miner who reveals A’s secret key
sk, signs the transaction that transfers d coins to B’s private address with sk, and sends the signature

to B. After receiving a signature from a miner, B first verifies the signature. If the signature is verified
as valid, B can transfer the compensation to his/her private address with signatures generated with skp
and sk 4. The expiry time of a deposit without an explicit beneficiary is still 7 = The; + Teont + Tdet-

Unlike in a deposit with an explicit beneficiary, in a deposit without an explicit beneficiary, the release
condition of the incentive for the beneficiary should not require a signature generated with the benefi-
ciary’s secret key. This is because the payer cannot define the output script with the beneficiary’s public
key which is indeterminate at the time of creating the deposit. Therefore, the release condition of the in-
centive requires signatures on the transaction that transfers A coins to the beneficiary’s (i.e., the random
miner’s) private address respectively using the payer’s secret key and the payee’s secret key. Hence, after
receiving a signature on the transaction (aqgep, ap) generated with sk from a miner, the payee B should
generate a signature on the transaction (agep, @miner) Using his/her secret key sk and sends this signature
to the miner. After that, B also needs to publish a witness as an evidence of his/her honest behavior.
Then the miner generates a signature on the transaction (dgep, @miner) Using A’s secret key sk to redeem
the incentive locked in the deposit together with the signature received from B. The design of the scripts
is referred to the output scripts given in Section 5.1. Particularly, the required public keys in the scripts
of the output that ensures the incentive to the beneficiary should be changed to pk, and pkj.

7.2. Security analysis

Since the accountable assertion is published to all miners, any miner who wants to get the incentive
can recover A’s secret key sk, if A double-spends. However, only one miner can finally get the incentive.
There are two different ways to decide which miner can finally be the beneficiary. In the first way, only
the first miner who recovers sk 4 and sends the payee a signature generated from sk can get the incentive.
The payee only generates a signature on the transaction that transfers the incentive to the miner who is
the first one to send the payee a signature on the transaction (aqep, ap) generated with sk 4. In the second
way, the miner who includes a transaction that transfers the incentive to his/her own account in a block
and adds the next block to the consensus blockchain will claim the incentive. Hence, for every miner
who sends a signature on the transaction (aqep, ap) using sk 4 to the payee, the payee generates and sends
the miner a signature on the transaction that transfers the incentive to the miner.

Compared to the first way, both the payee and miners consume more computation powers in the second
way. Therefore, the computation overhead is relatively lower in the first way. However, the first way is
subject to an attack where a malicious payer plays as a miner or colludes with a miner. It is easy for the
payer who plays the role of a miner or colludes with a miner to be the first one to send a signature on
(agep, ap) with sk, if the network latency is not considered, since such miner does not need to recover
sk4. Even if the payer plays as a miner or collude with a miner, he/she can only transfer the incentive for
the beneficiary to his/her own address and the victim payee can still get fair enough compensation due
to the requirement of the victim payee’s signature to redeem the coins that were deposited for the payee.

In addition, the first way may be unfair to other miners if the payee selects a particular miner as the
beneficiary and colludes with it. In particular, the payee could ignore the signatures on (aqep, ap) with
sk, sent by other miners and keep waiting for the signature sent by the particular miner. The collusion
between the payee and a particular miner would not cause an honest payer’s loss, since the particular
miner can only recover the payer’s secret key if the payer double-spends. However, such collusion is
unfair to other miners who have dedicated to monitor the payer’s behavior and should have the fair
chance for the incentive. To prevent such unfairness, each miner who sends a signature on (agep, ap)
with sk, to the payee should publish a witness as the evidence of sending the signature. It enables

everyone to check the publication time of a witness, and thus be aware of the first miner who sends the
signature to the payee.

In the second way, although the malicious payer A can participate in the mining process, only if A
controls a majority of the computation power in the network, he/she can ensure that the transaction
that transfers the incentive to his/her address can be confirmed by the network. Hence, the computation
power required for successfully transferring the incentive to A’s address in the second way is much more
than the first way. However, as we discussed in our threat model (Section 3), A cannot control a majority
of the computation power in the network, which is one of the underlying assumptions for security of the
Bitcoin network.

In both two ways, we do not need to prevent A from pre-mining the transaction that transfers all
coins in the deposit to his/her address as discussed in [34]. This is because signatures generated using
skp are required for transferring the coins in the deposit to both the miner and the payee if the payer
double-spends.

8. Extension to non-equivocation contracts

Besides preventing double-spending in Bitcoin, our deposit scheme can also be used for creating non-
equivocation contracts in various distributed systems that employ public append-logs to protect data
integrity, e.g., in cloud storage and social networks. Our extension to non-equivocation contracts can
provide integrity protection for distributed systems and enhance the security of the systems equipped
with other data protection schemes, such as data encryption [4,28,29,37] and access control [24,25].
For instance, in a system that requires users to trust in a service provider for data integrity, the service
provider may choose to equivocate and show different users different states of the system. With the non-
equivocation contract built based on our scheme, if the service provider equivocates to two users, i.e.,
shows different states of the systems, it will be penalized by losing the funds locked in a deposit and the
user who suffers from the equivocation will get compensation from the deposit. This section explains
how to extend our deposits to non-equivocation contracts.

8.1. Non-equivocation contracts between two parties

Non-equivocation contracts between two parties-the sender A and the receiver B, are also built on the
idea that with accountable assertions, it is possible to learn the key sk 4 if the sender A equivocates. The
sender A creates a time-locked deposit as a guarantee for his/her honest behavior. The deposit is secured
by the sender’s secret key sk 4; the corresponding public key is pk . Furthermore, the deposit expires at
some point 7 in the future. That is, even though A owns the secret key sk, he/she cannot access the
funds in the deposit until time 7". Before time 7', accessing the funds requires cooperation between the
receiver B (or parties if appropriate) and a predefined beneficiary P. Therefore, A defines the output
scripts of the deposit with B’s public key pky and P’s public key pkp as introduced in Section 4.1.1, and
the design of the scripts is referred to the output scripts given in Section 5.1. Hence, the receiver B and
the beneficiary P will be given the funds if A equivocates.

Once the deposit is confirmed by the Bitcoin network, party B is ready to receive an accountable
assertion generated under statement st and ct from the sender A. Here st should be a unique statement
associate with the unique context ct. In an example scenario, a service provider violates the linearity
of the system by showing contradicting states to different users, which can be considered as an equivo-
cation. Although clients can cryptographically verify the append-only property, i.e., that a new system

state is a proper extension of an old known system state, a malicious server can still provide different
extensions to different clients. To build non-equivocation contracts in this scenario, the context ct is a
revision number of the state, and the statement st is a digest of the state itself at this revision number.

The accountable assertions scheme allows the user A to produce assertions of statements st in contexts
ct under the public key pk,. If A behaves honestly, sk, will stay secret, and A can use it to withdraw
the deposit once time T has been reached. However, if A equivocates to some honest users B and C,
i.e., A asserts two different statements sty, = st; in the same context ct, then P can use sty, st;, ¢t and
the two corresponding assertions received from B and C and to extract the sender’s secret key sk4. Then
B and P can use sk, together with his/her credentials to withdraw the deposit and thereby penalize the
malicious sender A.

8.2. Non-equivocation contracts between multiple parties

Non-equivocation contracts can also be built between the sender A and multiple receiving parties B;,
i = (1,2,...,n). The sender A creates a Bitcoin key pair (pk, sk). Also, A sets up the accountable
assertion scheme with the Bitcoin key pair (pk, sk) as introduced in Section 2.3.

Then A collects the receivers’ public keys pkg;, i = (1,2, ...,n), and the beneficiary P’s public
key pkp. A then creates a deposit of d’ coins with expiry time 7 using these pky;, i = (1,2,...,n),
pkp, and pk, as introduced in Section 4.2. The value of coins locked in the deposit should be equal to
d' =" diax; + A X m, where dpay, is the ith maximum value among the n transactions, and A is the
incentive for the beneficiary to detect the non-equivocation. After that, every party B;,i € {1,2, ..., n}
expects to receive asserted statements from A waits until the transaction that creates the deposit has been
confirmed by the Bitcoin network. The usage of this deposit can be described as follows:

1. Whenever A is supposed to send a statement s¢; to different protocol parties in a context ct;, party
A additionally sends an assertion t; < Assert(ask, auxsk, ct;, st;).

2. Each payee B; verifies that Verify(apk, ct;, st;, ;) = 1 and the expiry time. B; ignores the message
if any of the checks fail. Otherwise, B; sends the record (apk, ct;, st;, t;) to the beneficiary P, who
will store it.

3. After that, if P detects an equivocation in two records (apk, ct;, st;,, t;,) and (apk, ct, st;,, T;,),
he/she uses the corresponding assertions to extract A’s secret key sk <— Extract(apk, ct;, st;,,
Sti,, Tiy, Ti;). Then P cooperates with receive parties to transfer the funds in the deposit as intro-
duced in Section 6.2.

9. Related work

In this section, we summarize the related work in non-equivocation contracts, incentivized computa-
tion in Bitcoin, and reputation systems.

9.1. Non-equivocation contracts

Non-equivocation contracts are a form of smart contract [8,9,21]. To ensure that a secret key obtained
through equivocation is indeed associated with funds, every party that should be prevented from equivo-
cating is required to put aside a certain amount of funds in a deposit [1,6,8,23]. In the deposit schemes,
the funds are time-locked in the deposit, i.e., the depositor cannot withdraw them during a predetermined
time period. On the other hand, deposits with explicit beneficiaries and payment channels are possible
to be made even without time-locked features [2,8].

9.2. Incentivized computation in bitcoin

In Bitcoin network, the proof of work are undertaken by all miners who are rewarded for validating
blocks by incentive coins. However, being the first to successfully verify a block (i. e., being the first
to finnd a valid nonce) happens only with a very small probability. Miners therefore often group into
mining pools where multiple miners contribute to the block generation conjointly. Multiple different
payout functions are used for sharing the profits in mining pools [32]. However, If the controlled supply
of coins continues as specified, approximately in the year 2032 the reward will be less than 1 BTC, and
in the year 2140 it will be down to zero. According to [11], this kind of deflation is a self-destruction
mechanism. It puts the security of crypto currencies at risk by driving of miners. Whether the transaction
fees will suffice to compensate the decreasing reward and to provide the necessary incentive for miners
remains unclear and is controversially discussed [22]. It is obvious that our scheme provide a new way
to reward the miners with coins.

9.3. Reputation systems

Credit systems where users are rewarded for good work and fined for cheating (assuming a trusted
arbiter/supervisor in some settings) are proposed in [5,18]. Fair secure computation with reputation
systems was considered in [3]. Particularly, in Bitcoin network, it is possible to trace transactions back
in history. Therefore, even if a double-spending transaction is successful, the blockchain allows nodes to
recognize double-spendings and to identify the tainted coins [17]. The victim will likely keep an eye on
these coins and track their flow. Other traders might not be willing to accept tainted coins, because they
will always be associated with a fraud. This leads to blacklisting and whitelisting considerations. Moser
et al. provided first thoughts on quantifying and predicting the risks that are involved [27].

10. Conclusion

In this paper, we propose fair deposits against double-spending for Bitcoin transactions. The fair de-
posits can be used to prevent the collusion attacks between the payer and the beneficiary, and guarantee
the compensation to the payee’s loss. We first provide a solution to make a deposit for one transaction,
including both the transaction with single input and output and the transaction with multiple inputs and
outputs. We analyse the performance of our fair deposits and show that it has an acceptable overhead.
Considering that double-spending transactions happen with a low probability in Bitcoin, we extend our
fair deposits to multiple transactions, so as to reduce the payer’s cost per transaction. To allow any ran-
dom miner to perform as the beneficiary of a deposit, we introduce an extension of the fair deposits
without an explicit beneficiary. We also extend our fair deposits to non-equivocations contracts to pre-
vent equivocations in other distributed systems.

Acknowledgment

This work was supported by the Singapore National Research Foundation under NCR Award Number
NRF2015NCR-NCR003-002. We thank the associate editor and the two reviewers whose insightful
comments and suggestions helped improve and clarify this manuscript.

Appendix. Scripts validation

To test wether a transaction that transfers the coins locked in the deposit is valid, we evaluate the stack
over time. During the script validation, the scriptSig is prefixed to the beginning of the scriptPubKey and
executed. The operations are executed one at a time, starting with the scriptSig and continuing to the end
of the scriptPubKey.

A.l. Output_B scripts validation

Figure 9 shows the evaluation of scriptPubKey provided by the payee when the payer double-spends;
and the process can be described as follows:

e The elements of the payee’s scriptSig are added to an empty stack. Because they are all just data,
nothing is done except adding them to the stack.

e From the payer’s scriptPubKey, OP_IF is executed first, popping the top most value from the stack.
The statements in the OP_IF will execute if the popped value is not False, otherwise the statements
in the OP_ELSE will be executed. Since it is True, the statement block under OP_IF will be next to
be executed.

e Next, the OP_DUP operation pushes a copy of the data currently at the top of the stack, therefore
creating a copy of PKp.

e OP_HASH160 then pops the top most element and pushes a hash of it onto the stack. This creates
a hash of PKj.

e The script then pushes to the stack a copy of the hash of the payee’s public key that was received
before the deposit was made. At this point, there should be two copies of PK 5 hash at the top of the
stack.

Data Provided by the Payee B in the Input ScriptSig of the Transaction that Transfers the Deposited Coins
A's Sig PK, B's Sig PKy oP_1

Instructions and Data Provided by the Payer A in the Deposit Transaction’s ScriptPubKey
OP_IF OP_DUP OP_HASH160 PKg hash ‘OP_EQUALVERIFY ‘OP_CHECKSIGVERIFY

‘OP_ENDIF OP_DUP OP_HASH160 PK, hash OP_EQUALVERIFY OP_CHECKSIG

OP_EQUALVERIFY

OP_IF OP_HASH160 PKg hash PKg hash
OP_1 oP_1 OP_DUP " PKg) PKg hash PKg hash OP_CHECKSIGVERIFY
PK, PKy PKg PK, PKy PKy PK,
B’s Sig B’s Sig B’s Sig B's Sig B’s Sig B’s Sig B's Sig
PK, PK, PK, PK, PKy PK, PK,
A’s Sig A’s Sig A’s Sig A's Sig A’s Sig A's Sig A’s Sig

OP_EQUALVERIFY

OP_HASH160 PK, hash PK, hash

OP_DUP " PKy PKy hash PK, hash OP_CHECKSIG
PK, PK, PK, PK, PK,
A’s Sig. A’s Sig A’s Sig A's Sig A's Sig TURE

Fig. 9. Evaluation stack during the Output_B script validation when the payer double-spends.

e Then, OP_EQUALVERIFY, the equivalent of executing OP_EQUAL followed by OP_VERIFY,
checks the two values at the top of the stack. Here, it checks if the two hashes at the top of the
stack are equal. If they are indeed equal, True will be pushed to the stack, and False otherwise. At
this point, it pops the top value of the stack (the result of OP_EQUAL) and checks it. If the value
is False, it immediately terminates evaluation and the transaction validation fails. Otherwise, the
validation proceeds with the next operation.

e OP_CHECKSIGVERIFY then checks the signature provided by the payee with the public key.
If the signature matches the public key and was generated using all of the data required
to be signed, OP_CHECKSIGVERIFY will allow the next operation to continue. Similar to
OP_EQUALVERIFY, if the signature does not match the public key, the evaluation terminates and
the transaction validation fails.

e Similar to what was done with PKz, OP_DUP, OP_HASH160, and OP_EQUALVERIFY is then
executed on PK 4.

e Finally, OP_CHECKSIG will check the signature of the payer and her public key. OP_CHECKSIG
will push the value True onto the top of the stack if they are indeed matching.

If false is not at the top of the stack after scriptPubKey is executed, or if validation does not terminate
prematurely, the transaction is deemed valid.

In the event of no double-spending, the payee’s secret key cannot be recovered by the beneficiary and
the payee. Then, the scriptSig will be provided by the payer, containing her signature and her public
key. The evaluation of the scripts is similar to that in the equivocation case, except that the OP_ELSE
statement block will be executed. Figure 10 shows the evaluation of the stack in this case; and this
process can be described as follow.

e By putting OP_0 at the top of the stack, the OP_ELSE statement block will be executed.
e The lock time is then pushed to the stack and the OP_CHECKLOCKTIMEVERIFY will execute.
This operation takes the top most element of the stack and compares it to the transaction’s nLock-

Data Provided by the Payer A in the Input ScriptSig of the Transaction that Transfers the Deposited Coins
A’s Sig PK, oP_0

Instructions and Data Provided by the Payer A in the Deposit Transaction’s ScriptPubKey

OP_IF Lock Time OP_CHECKLOCKTIMEVERIFY OP_DROP
OP_ENDIF OP_DUP OP_HASH160 PK, hash OP_EQUALVERIFY OP_CHECKSIG
OP_IF OP_CHECKLOCKTIMEVERIFY | | OP_DROP OP_HASH160
oP_0 oP_0 Lock Time Lock Time Lock Time OP_DUP »| PKy
PK, PK, PK, PK, PK, PK, PK,
A's Sig A's Sig A's Sig A's Sig A’s Sig A’s Sig A’s Sig
OP_EQUALVERIFY
PK, hash PK, hash
PK, hash PK, hash OP_CHECKSIG
PK, PK, PK,
A's Sig As Sig A's Sig TuRe

Fig. 10. Evaluation stack during the Output_B script validation when no double-spending.

Time field. If the top most element is greater than nLockTime, the validation of the script continues.
If the top most element is smaller than nLockTime or negative, or larger than 500,000,000, or if the
stack is empty, the transaction fails.

e Since lock time is not removed by OP_CHECKLOCKTIMEVERIFY, OP_DROP will remove lock

time.
e The rest is similar to the last few operations given in the equivocation case.

A.2. Output_P scripts validation

We now examine the stack execution for Output_P scripts. In the case of an equivocation, similar to
Output_B, the OP_IF statement block is needed. Note that for Output_P, the scripts make use of the Pay-
to-Script-Hash (P2SH) structure, where the redeemScript is first hashed and checked using OP_EQUAL
before validating scriptPubKey. Figure 11 shows the evaluation of scriptPubKey provided by the bene-
ficiary when the payer double-spends; and the process can be described as follows:

e The beneficiary’s scriptSig’s elements are pushed to an empty stack. Because they are all just data,
nothing is done except adding them to the stack.

e OP_IF then pops OP_1, the top most element of the stack currently. This allows execution of the
OP_IF block.

e Then, OP_2, PKp, PKp, and another OP_2 are pushed to the stack to prepare for OP_
CHECKMULTISIGVERIFY.

e OP_CHECKMULTISIGVERIFY compares the signatures against the public keys until it finds a
ECDSA match. The check process is repeated till all signatures have been checked or if there
are not enough public keys remaining to produce a successful result. Care must be taken to
place the signatures and public keys in order to prevent failure. Due to an off-by-one error,
OP_CHECKMULTISIGVERIFY takes another element of the stack, OP_O in this case, which will
be consumed but not used in this operation. After checking the signatures, it returns True if the

Data Provided by the Beneficiary P in the Input ScriptSig of the Transaction that Transfers the Deposited Coins
A’s Sig oP_o P's Sig B’s Sig OoP_1

Instructions and Data Provided by the Payer A in the Deposit Transaction’s ScriptPubKey
OP_IF oP_2 PK, PKg oP_2 OP_CHECKMULTISIGVERIFY

OP_ENDIF PK, OP_CHECKSIG

OP_CHECKMULTISIGVERIFY
oP_2 oP_2
PK, PK, PKy
OP_IF PK, PK, PK, PI;.,
oP_1 oP_1 oP_2 oP_2 oP_2 oP_2 oﬁ_z
B's Sig B’s Sig B's Sig B's Sig B’s Sig B's Sig B’s Sig
P's Sig P’s Sig P'ssig | P'sSig | P'sSig | P’sSig P's .Sig OP_CHECKSIG
oP_0 oP_0 oP_0 oP_0 oP_0 oP_0 m;_o PK, P.KA

A's Sig A's Sig A’s Sig A’s Sig A's Sig A's Sig A’s Sig A’s Sig A’s Sig TURE

Fig. 11. Evaluation stack during the Output_P script validation when the payer double-spends.

Data Provided by the Payer A in the Input ScriptSig of the Transaction that Transfers the Deposited Coins

A’s Sig | oP_0
Instructions and Data Provided by the Payer A in the Deposit Transaction'’s ScriptPubKey
OP_IF Lock Time ‘OP_CHECKLOCKTIMEVERIFY OP_DROP
OP_ENDIF PK, OP_CHECKSIG
OP_IF OP_CHECKLOCKTIMEVERIFY | | OP_DROP OP_CHECKSIG
oP_0 0oP_0 Lock Time Lock Time Lock Time PK, PK,
A’s Sig A's Sig A’s Sig A’s Sig A’s Sig A's Sig A's Sig TURE

Fig. 12. Evaluation stack during the Output_P script validation when no double-spending.

signatures check out, and False if they do not. It then executes OP_VERIFY, which pops the re-
sult of the signature checking and allows the validation to proceed if it is True and terminates the
validation process if it is False.

e PK, is pushed to the stack, where OP_CHECKSIG will consume it with the signature left on the

stack to output the final script validation result.

If the payer is honest, he/she will be able to obtain full control over the deposit, including the deposit
locked for the beneficiary. Figure 12 shows the evaluation stack during Output_P scripts validation if the
payer does not double-spend. The process can be described as follows:

e By putting OP_O0 at the top of the stack, the OP_ELSE statement block will be executed.
e The lock time is then pushed to the stack and the OP_CHECKLOCKTIMEVERIFY will execute.

This operation takes the top most element of the stack and compares it to the transaction’s nLock-
Time field. If the top most element is greater than nLockTime, the validation of the script continues.
If the top most element is smaller than nLockTime or negative, or larger than 500,000,000, or if the
stack is empty, the transaction fails.

Since lock time is not removed by OP_CHECKLOCKTIMEVERIFY, OP_DROP will remove lock
time.

Finally, OP_CHECKSIG will check the signature of the payer and her public key. OP_CHECKSIG
will push the value True onto the top of the stack if they are indeed matching.

Therefore, similar to Output_B in the case of no equivocation, the evaluation of the stack for Output_P
will return True if the payer prepares scriptSig accordingly, resulting in successful deposit redeem.

References

(1]
(2]
(3]
(4]
(3]

(6]

M. Andrychowicz, S. Dziembowski, D. Malinowski and L. Mazurek, Secure multiparty computations on bitcoin, in:
Security and Privacy (SP), 2014 IEEE Symposium on, IEEE, 2014, pp. 443-458. doi:10.1109/SP.2014.35.

M. Andrychowicz, S. Dziembowski, D. Malinowski and £.. Mazurek, How to deal with malleability of bitcoin transactions,
2013, arXiv preprint arXiv:1312.3230.

G. Asharov, Y. Lindell and H. Zarosim, Fair and efficient secure multiparty computation with reputation systems, in:
Advances in Cryptology — ASTACRYPT 2013, Springer, 2013, pp. 201-220. doi:10.1007/978-3-642-42045-0_11.

B. Balamurugan and P.V. Krishna, Extensive survey on usage of attribute based encryption in cloud, Journal of emerging
technologies in web intelligence 6(3) (2014), 263-272.

M. Belenkiy, M. Chase, C.C. Erway, J. Jannotti, A. Kiip¢ii and A. Lysyanskaya, Incentivizing outsourced computation,
in: Proceedings of the 3rd International Workshop on Economics of Networked Systems, ACM, 2008, pp. 85-90. doi:10.
1145/1403027.1403046.

I. Bentov and R. Kumaresan, How to use bitcoin to design fair protocols, in: Advances in Cryptology — CRYPTO 2014,
Springer, 2014, pp. 421-439. doi:10.1007/978-3-662-44381-1_24.

http://dx.doi.org/10.1109/SP.2014.35
http://arxiv.org/abs/arXiv:1312.3230
http://dx.doi.org/10.1007/978-3-642-42045-0_11
http://dx.doi.org/10.1145/1403027.1403046
http://dx.doi.org/10.1145/1403027.1403046
http://dx.doi.org/10.1007/978-3-662-44381-1_24

(7]
(8]

(9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]

(17]
(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]

[29]

[30]
[31]

[32]
(33]

[34]
[35]

[36]
[37]

Bitcoin Project, Bitcoin developer guide. https://bitcoin.org/en/developer-guide#stratum.

Bitcoin Wiki, Providing a deposit. https://en.bitcoin.it/w/index.php?title=Contracts&oldid=50633\sharpExample_1:_
Providing_a_deposit.

V. Buterin, A next-generation smart contract and decentralized application platform. https://github.com/ethereum/wiki/
wiki/White-Paper.

coindesk, 6 Cool Machines that Accept Bitcoin. https://www.coindesk.com/6-cool-machines-accept-bitcoin/.

N.T. Courtois, On the longest chain rule and programmed self-destruction of crypto currencies, 2014, arXiv preprint
arXiv:1405.0534.

C. Darryn Pollock, Japan’s Electronics Marketplace Starts Adopting Bitcoin. https://cointelegraph.com/news/
japans-electronics-marketplace- starts-adopting-bitcoin.

C. Decker and R. Wattenhofer, Information propagation in the bitcoin network, in: IEEE P2P 2013 Proceedings, IEEE,
2013, pp. 1-10.

R. Dennis and G. Owenson, Rep on the roll: A peer to peer reputation system based on a rolling blockchain, International
Journal for Digital Society 7(1) (2016), 1123—1134. doi:10.20533/ijds.2040.2570.2016.0137.

A. Dorri, S.S. Kanhere, R. Jurdak and P. Gauravaram, Lsb: A lightweight scalable blockchain for iot security and privacy,
2017, arXiv preprint arXiv:1712.02969.

J. Garay, A. Kiayias and N. Leonardos, The bitcoin backbone protocol: Analysis and applications, in: International
Conference on the Theory and Applications of Cryptographic Techniques, 2015, pp. 281-310.

A. Gervais, V. Capkun, S. Capkun and G.O. Karame, Is bitcoin a decentralized currency? 2014.

P. Golle and I. Mironov, Uncheatable distributed computations, in: Topics in Cryptology — CT-RSA 2001, Springer, 2001,
pp- 425-440. doi:10.1007/3-540-45353-9_31.

B.K. Helms, South Africa’s Second Largest Supermarket Chain Pick n Pay Trials Bitcoin Payments. https://news.bitcoin.
com/south-africas-second-largest-supermarket-chain-pick-n-pay-trials-bitcoin-payments/.

G.O. Karame, E. Androulaki and S. Capkun, Double-spending fast payments in bitcoin, in: ACM Conference on Computer
and Communications Security, 2012, pp. 906-917.

A. Kosba, A. Miller, E. Shi, Z. Wen and C. Papamanthou, Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts, Technical report, Cryptology ePrint Archive, Report 2015/675, 2015. http://eprint.iacr.org.
J.A. Kroll, I.C. Davey and E.W. Felten, The economics of bitcoin mining, or bitcoin in the presence of adversaries, in:
Proceedings of WEIS, Vol. 2013, Citeseer, 2013.

R. Kumaresan and I. Bentov, How to use bitcoin to incentivize correct computations, in: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ACM, 2014, pp. 30—41.

C. Langaliya and R. Aluvalu, Enhancing cloud security through access control models: A survey, International Journal
of Computer Applications 112(7) (2015), 8-12.

C.-C. Lee, P--S. Chung and M.-S. Hwang, A survey on attribute-based encryption schemes of access control in cloud
environments, IJ Network Security 15(4) (2013), 231-240.

B.I.S.J. Lin, A café opened in Singapore that accepts bitcoin instead of cash and has a cryptocurrency ATM for people
running low. https://www.businessinsider.com/cashless-bitcoin-cafe-singapore-2017-12/?IR=T.

M. Moser, R. Bohme and D. Breuker, Towards risk scoring of bitcoin transactions, in: Financial Cryptography and Data
Security, Springer, 2014, pp. 16-32.

J. Ning, Z. Cao, X. Dong, H. Ma, L. Wei and K. Liang, Auditable s-times outsourced attribute-based encryption for access
control in cloud computing, IEEE Transactions on Information Forensics and Security 13(1) (2018), 94-105.

J. Ning, X. Dong, Z. Cao, L. Wei and X. Lin, White-box traceable ciphertext-policy attribute-based encryption supporting
flexible attributes, IEEE Transactions on Information Forensics and Security 10(6) (2015), 1274-1288. doi:10.1109/TIFS.
2015.2405905.

PELICOIN, Bitcoin Vending Machines: The Next Bitcoin Machine You’ll See Everywhere. https://www.pelicoin.com/
blog/bitcoin-vending-machines.

B.J. Redman, The Evolution of the Bitcoin Vending Machine. https://news.bitcoin.com/evolution-bitcoin-vending-
machine/.

M. Rosenfeld, Analysis of bitcoin pooled mining reward systems, 2011, arXiv preprint arXiv:1112.4980.

RT Question More, First restaurant in Russian capital accepts payment in bitcoin. https://www.rt.com/business/
394406-russian-restaurant-accepts-bitcoin/.

T. Ruffing, A. Kate and D. Schroder, Liar, liar, coins on fire!: Penalizing equivocation by loss of bitcoins, in: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, ACM, 2015, pp. 219-230.

T. Ruffing, A. Kate and D. Schroder, Implementation of accountable assertion scheme. http://crypsys.mmci.unisaarland.
de/projects/PenalizingEquivocation/.

SpendBitcoins, Fast Food Restaurants that accept bitcoin in United States. http://spendbitcoins.com/places/c/fast-food/.
P. Xu, S. He, W. Wang, W. Susilo and H. Jin, Lightweight searchable public-key encryption for cloud-assisted wireless
sensor networks, in: IEEE Transactions on Industrial Informatics, 2017.

https://bitcoin.org/en/developer-guide#stratum
https://en.bitcoin.it/w/index.php?title=Contracts&oldid=50633sharp Example_1:_Providing_a_deposit
https://en.bitcoin.it/w/index.php?title=Contracts&oldid=50633sharp Example_1:_Providing_a_deposit
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.coindesk.com/6-cool-machines-accept-bitcoin/
http://arxiv.org/abs/arXiv:1405.0534
https://cointelegraph.com/news/japans-electronics-marketplace-starts-adopting-bitcoin
https://cointelegraph.com/news/japans-electronics-marketplace-starts-adopting-bitcoin
http://dx.doi.org/10.20533/ijds.2040.2570.2016.0137
http://arxiv.org/abs/arXiv:1712.02969
http://dx.doi.org/10.1007/3-540-45353-9_31
https://news.bitcoin.com/south-africas-second-largest-supermarket-chain-pick-n-pay-trials-bitcoin-payments/
https://news.bitcoin.com/south-africas-second-largest-supermarket-chain-pick-n-pay-trials-bitcoin-payments/
http://eprint.iacr.org
https://www.businessinsider.com/cashless-bitcoin-cafe-singapore-2017-12/?IR=T
http://dx.doi.org/10.1109/TIFS.2015.2405905
http://dx.doi.org/10.1109/TIFS.2015.2405905
https://www.pelicoin.com/blog/bitcoin-vending-machines
https://www.pelicoin.com/blog/bitcoin-vending-machines
https://news.bitcoin.com/evolution-bitcoin-vending-machine/
https://news.bitcoin.com/evolution-bitcoin-vending-machine/
http://arxiv.org/abs/arXiv:1112.4980
https://www.rt.com/business/394406-russian-restaurant-accepts-bitcoin/
https://www.rt.com/business/394406-russian-restaurant-accepts-bitcoin/
http://crypsys.mmci.unisaarland.de/projects/Penalizing Equivocation/
http://crypsys.mmci.unisaarland.de/projects/Penalizing Equivocation/
http://spendbitcoins.com/places/c/fast-food/

[38] X. Yu, M.S. Thang, Y. Li and R.H. Deng, Fair deposits against double-spending for bitcoin transactions, in: /EEE Con-
ference on Dependable and Secure Computing, 2017.

[39] S.-W. Zheng and L. Fan, Credit model based on p2p electronic cash system bitcoin, Information Security and Communi-
cations Privacy 3 (2012), 040.

	Collusion attacks and fair time-locked deposits for fast-payment transactions in Bitcoin
	Citation

	Introduction
	Preliminaries
	Non-equivocation contracts
	Time-locked deposits
	Accountable assertion scheme

	Threat model
	Fair time-locked deposits
	Deposit for transactions with one input and one output
	Deposit setup
	Deposit usage
	Security analysis

	Deposit for transactions with multiple inputs and outputs
	Deposit setup
	Deposit usage
	Security analysis

	Implementation and evaluation
	Implementation
	Validation and evaluation
	Scripts validation
	Performance evaluation

	Extension to a deposit for multiple transactions
	Deposit setup
	Deposit usage
	Security analysis

	Extension to deposits without an explicit beneficiary
	Deposit design
	Security analysis

	Extension to non-equivocation contracts
	Non-equivocation contracts between two parties
	Non-equivocation contracts between multiple parties

	Related work
	Non-equivocation contracts
	Incentivized computation in bitcoin
	Reputation systems

	Conclusion
	Acknowledgment
	Appendix. Scripts validation
	Output_B scripts validation
	Output_P scripts validation

	References

