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InSPeCT: Iterated Local Search for
Solving Path Conditions

Fuxiang Chen1,3, Aldy Gunawan2, David Lo2 and Sunghun Kim1

Abstract— Automated test case generation is attractive as it
can reduce developer workload. To generate test cases, many
Symbolic Execution approaches first produce Path Conditions
(PCs), a set of constraints, and pass them to a Satisfiability
Modulo Theories (SMT) solver. Despite numerous prior studies,
automated test case generation by Symbolic Execution is
still slow, partly due to SMT solvers’ high computationally
complexity. We introduce InSPeCT, a Path Condition solver,
that leverages elements of ILS (Iterated Local Search) and
Tabu List. ILS is not computational intensive and focuses on
generating solutions in search spaces while Tabu List prevents
the use of previously generated infeasible solutions. InSPeCT is
evaluated against two state-of-the-art solvers, MLB and Z3, on
ten Java subject programs of varying size and complexity. The
results show that InSPeCT is able to solve 16% more PCs than
MLB and 41% more PCs than Z3. On average, it is 103 and 5
times faster than Z3 and MLB, respectively. It also generates
tests with higher test coverage than both MLB and Z3.

I. INTRODUCTION

Testing is an essential component in ensuring the quality
of deliverable software. However, it is both an expensive and
a time consuming activity [1]. Thus, automated test case
generation is attractive as it can help reduce developers’
workload. To generate tests with high coverage, various
Symbolic [2] and Concolic [3] testing techniques have been
introduced [4] [5]. These approaches first use Symbolic
Execution to produce Path Conditions (PCs) – a set of
constraints consisting of unsolved variables, arithmetic and
relational operators – and then pass them to a Satisfiability
Modulo Theories (SMT) solver such as Z3 [6]. The solver
then analyzes the PCs and produces a solution (a mapping of
variables to values that solves the constraints) for the solvable
PCs. Each mapping of solved variable values guides the
execution flow of the code and serves as a test case. Despite
numerous prior studies, automated test case generation is
still slow, partly due to the high computational cost of SMT
solvers. Some constraints, especially non-linear arithmetic
constraints, are challenging.

Over the last decade, application of (meta)heuristics, such
as Simulated Annealing [7] and Tabu Search [8], in Software
Engineering (aka. Search-Based Software Engineering) has
risen to become an active research area [9] [10].

1Fuxiang Chen and Sunghun Kim are affliated with Clova AI Re-
search, Naver Corp. and with the Department of Computer Science
and Engineering, the Hong Kong University Science and Technology
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We propose InSPeCT (Iterated Local Search for Path
CondiTion), a novel technique leveraging Iterated Local
Search (ILS) and Tabu Lists for solving PCs. ILS focuses
on generating solutions in search spaces, while using a
Tabu List prevents the use of previously generated infeasible
solutions. InSPeCT is composed of two main phases: the
Randomization Phase, and the Improvement Phase. The Ran-
domization Phase uses simple heuristics to solve PCs while
the Improvement Phase focuses on solving the remaining
unsolved PCs by generating more possible input values.

InSPeCT is able to solve a total of 1,104 (88.5%) PCs from
a standard benchmark suite consisting of ten Java subject
programs and it is consistent in its solvability performance
with small variance (out of five runs, the number of PCs
solved has a minimum variance of 0.56 and a maximum
variance of 4.56 out of the ten subjects). Each Phase/Strategy
is also able to solve a reasonable number of PCs that were
previously unsolvable in the earlier Phase/Strategy. InSPeCT,
when compared to existing state-of-the-art SMT solvers,
MLB [11] and Z3 [6], solves 16% more PCs than MLB
and 41% more PCs than Z3. InSPeCT also achieves higher
test coverage as compared to MLB and Z3. Furthermore,
InSPeCT is more efficient than MLB and Z3. It is 103×
faster than Z3 and 5× faster than MLB, on average.

II. RELATED WORK

Metaheuristics, such as Simulated Annealing [13] and
Tabu Search [8], have been widely applied in solving combi-
natorial optimization problems. However, the application of
metaheuristics in software engineering has only began to gain
attention within the last decade [9] [14]. Clarke et al. [14]
summarize the application of metaheuristic algorithms for
solving problems in software engineering and report that
the most widely used metaheuristic in software testing is
Genetic Algorithm [12], [15], followed by Simulated An-
nealing [13] [7].

Diaz et al. [16] introduce TSGen, an automatic generator
of tests for a given program. This is reported to be the
first work incorporating Tabu Search in order to perform
automatic test generation. They introduce two cost functions
to intensify and diversify the search, and a process to find
neighborhoods. Sahin and Akay [17] compare several meta-
heuristic algorithms on software test data generation. The Ar-
tificial Bee Colony [18], Particle Swarm Optimization [19],
Differential Evolution [20] and Firefly Algorithms [21] are
used for problems that need to find maximum values.

In Software Engineering, particularly in the field of Sym-
bolic Execution, PCs are generally solved by a SMT solver
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such as Z3 [6]. Z3, developed by Microsoft, has been
reported to solve more PCs than other SMT solvers such as
CVC3 [22] and Yices [23]. Z3 incorporates multiple theories
to reason about and generate solutions for PCs. Z3 has been
reported to have difficulty in solving complex PCs such
as those involving non-linear operations [24]. Dinger and
Agha [25] introduce the Concolic Walk (CW) algorithm,
combining linear constraint solving and heuristic search to
solve complex arithmetic path conditions. CW differentiates
between linear and non-linear constraints, and uses an off-
the-shelf solver to solve linear constraints. However, CW is
only evaluated on a corpus of small programs of up to 335
LOC.

Recently, Li et al. [11] proposed a new symbolic execution
tool, MLB, that is based on Machine Learning Based con-
straint solving to solve path conditions. MLB transforms the
path conditions into optimization problems. It adapts RACOS
[26], a Machine Learning based optimization technique, by
using the dissatisfaction degree as the objective function. It is
reported that MLB outperforms CW [25], SPF-CORAL [27],
SPF-Mixed [28] and jCUTE [29] in terms of the number of
solved PCs.

III. BACKGROUND

Symbolic Execution (SymEx) is a technique for analyzing
source code to determine what inputs cause which part
of the code to be executed. SymEx is commonly used in
Software Testing to identify test cases (software inputs) that
cause different parts of the software to be executed. SymEx
executes the code with symbols as arguments and at each
decision point (e.g. the test of an if statement), it collects
the conditions leading to the choice that is made. Such a
sequence of conditions is known as a Path Condition (PC).

A PC resembles a logical formula with variables and
different arithmetic operators (addition, subtraction, multi-
plication, division and modulo), relational operators (>=,
<=, >, <, == and �=) and logical operators (AND and OR).
A PC may consist of multiple subconstraints refered to as
branches. Solving a PC requires providing actual values to
the variables that will cover the respective path. A PC can
be linear or non-linear where the latter is harder to solve,
and can involve variables of various data types (e.g. Integer,
Floating point, Strings, etc). Solving constraints involving
variables of Integer data types is known to be a hard problem.
In our paper, we are focusing on PCs that are non-linear and
consist of integer-typed variables.

Fig. 1 shows an example of a piece of code (lines 1 - 8)
and one possible PC. The code involves three variables i0, i1
and i2. When this PC is passed to a SMT solver, the solver
returns a possible mapping of variables to values that satisfies
the constraints, as shown in line 11. This variable mapping
represents a test case that can drive the code execution from
the beginning to line 8.

Solving more PCs implies that more test cases will be
generated to cover more paths. Thus, more code will be
typically covered (tested) when more PCs are solved. SMT
solvers are usually used in Software Testing to solve PCs

Fig. 1. An example code listing and a PC with its solved values

automatically. Fundamentally, SMT solvers depend on SAT
solvers to determine the satisfiability of the PC.

Talbi et. al [30] define a metaheuristic as a search method-
ology or an algorithm for finding a near optimal solution to
an optimization problem within a solution space. We apply
Iterated Local Search (ILS) [31], a procedure to randomly
generate solutions and includes a perturbation mechanism
that makes it possible to escape local optima. In order to
avoid unnecessary analysis, we also include a feature of
Tabu Search, namely the Tabu List [8], which is responsible
for keeping track of all solutions (e.g. the variable values
that could not solve some PCs) that have been tested in
previous iterations. Our problem deals with discrete values
of integer-typed variables and our approach does not have
an explicit objective function, which is commonly used in
discrete optimization problems. However, we still have an
objective, which is to find a set of input variables that satisfies
a set of PCs.

IV. APPROACH

InSPeCT (Iterated Local Search for Path CondiTion),
consists of two main phases, namely (1) Randomization
and (2) Improvement. In the Randomization phase, a simple
heuristic for quickly solving some PCs is introduced by
generating variable values randomly. We then check whether
the resulting set of variable values can solve any PCs. If the
set of selected variable values is able to solve some PCs,
those solved PCs are removed from further consideration.

In the Improvement phase, the remaining PCs are solved
by using ILS to guide the selection of variable values. The
idea is to randomly generate values. However, in some cases,
InSPeCT can be trapped at certain values and is unable
to locate other values. Therefore, a perturbation strategy
is applied to further explore other possible values. We
iteratively adjust the variable values by adding or subtracting
some values to/from them.

A. Randomization Phase

This phase follows a simple heuristic for generating an
initial set of variable values within lower and upper bound
values for solving PCs. PCs that are solved according to
these values are considered solvable. Let P be a set of PCs
that needs to be solved. P = P ∗ ∪ P ′ where P ∗ and P ′

represent the set of solved and unsolved PCs, respectively.
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Algorithm 1 RANDOMIZATION (PC)
1: P ∗ ← ∅
2: P ′ ← P
3: i = 0
4: while the stopping criteria is not met do
5: for all j = 1 to |N | do
6: i ← i+ j
7: Set [LBn, UBn] = [−i, i] (∀n ∈ N )
8: Generate a variable value for each variable n within

[LBn, UBn] (∀n ∈ N )
9: while all PCs in P ′ have not been tested do

10: Select one PC randomly from P ′

11: Check whether the set of generated values is in the
Tabu List

12: if the set is not in the Tabu List then
13: Solve the selected PC with generated variable values
14: if the selected PC is solvable then
15: P ∗ ← P ∗∪ {the selected PC}
16: P ′ ← P ′\ {the selected PC}
17: else
18: Store the set of generated |N | variable values in

the Tabu List
19: end if
20: end if
21: end while
22: end for
23: end while
24: return P ∗ and P ′

At first, P ∗ = ∅ and P ′ = P (lines 1-2). A Tabu List is used
to keep track of the mappings that have been generated, but
were unable to solve that PC.

Let N be the set of variables appearing in the PCs. We
define lower and upper bound discrete values, LBn and
UBn for each variable n, which are initialized to -1 and
1, respectively (lines 5-7). A random number between the
lower and upper bound values (inclusive) is generated for
each variable independently (line 8). If we are unable to find
values that can solve the PC, the lower and upper bound
values are increased by a particular value iteratively, up to
|N |, as a threshold.

A PC from P ′ is selected randomly (line 10). The set of
generated variable values is checked to ensure that it is not
contained in the selected PC’s Tabu List (line 11). This set
of randomized values is then used by a scripting engine to
determine whether they solve the PC. If the set of randomized
values solves a PC, the PC is added to P ∗ (line 15) and
removed from P ′ (line 16), indicating that the PC has been
solved. Otherwise, the set of randomized values is added to
the PC’s Tabu List (line 18). This current set of randomized
values is then used to evaluate other PCs until all PCs in P ′

are tested (lines 9-21).
We then increment LBn and UBn (lines 5-6) and then

repeat the process. This process continues until a certain time
limit has passed (stopping criteria) (line 4). At the end, the
algorithm returns two sets, P ∗ and P ′ (line 24).

B. Improvement Phase

We apply ILS to solve the remaining PCs by generating
more possible input values through some strategies. First, we

Algorithm 2 IMPROVEMENT (P, P ′, P ∗)
1: Set [LBn, UBn] = [-1,1] (∀n ∈ N )
2: while all PCs in P ′ have not been tested do
3: Select one PC randomly from P ′

4: Generate a set of n input variables with values, within
[LBn, UBn] (∀n ∈ N ) and ensure that it is not in the Tabu
List of the selected PC

5: Solve the selected PC with the generated input variables
6: if the selected PC is solvable then
7: P ∗ ← P ∗∪ {the selected PC}
8: P ′ ← P ′\ {the selected PC}
9: else

10: for all k = 1 to 2 do
11: Store a set of generated n input variables in the Tabu

List of the selected PC
12: Apply STRATEGY k
13: if the selected PC is solvable then
14: P ∗ ← P ∗∪ {the selected PC}
15: P ′ ← P ′\ {the selected PC}
16: break
17: end if
18: end for
19: end if
20: end while
21: return P ∗ and P ′

describe how other set of possible variable values are selected
by adjusting the lower and upper bound values of the relevant
variables. In order to further improve the chance of solving
P ′, we propose two different strategies to adjust the lower
and upper bound values of variables. Both are applied one
after the other. The algorithm is outlined in Algorithm 2.

We initially set the lower and upper bound values for all
variables to be -1 and 1 respectively (line 1). For each PC
that has not been solved, a random value for each variable
found in that PC is chosen. This set of randomized values is
checked against the Tabu List of that PC. If the set exists,
another set of values will be generated, until the new set
is not in the PC’s Tabu List (line 4). If the new set of
randomized values can solve the PC (line 6), P∗ and P ′

are updated accordingly (lines 7-8) and proceed to the next
PC (line 2). Otherwise, the two strategies, STRATEGY 1 AND
STRATEGY 2, are applied (lines 10-18). If a strategy is able
to solve the PC, we update P∗ and P ′ accordingly (lines
14-15) and terminate the process. Otherwise, we continue to
the next strategy. This would be stopped if either one of the
strategies is able to solve the PC or we have reached the last
strategy (lines 10-18).

1) Strategy 1: All variables are set to their initial value,
as selected in line 4 of Algorithm 2, and then each variable
is selected one at a time based on the frequency of its
appearance (in descending order) in the selected PC. The
value of the variable with the highest frequency is first
incremented by 1. The new set of mapping values is then
evaluated to see if it can solve the PC. This process continues
for i iterations. Our experimental study showed that 10 is the
best threshold for i.

After going through all the variables, one at a time, if
the PC is still unsolvable, the algorithm will reset all the
variables to the initial values (Algorithm 2 Line 4) and
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increment all the variables together by 1 for the same i
iterations. The algorithm again checks on each iteration if
the PC is solvable according to the resulting values. If
the PC is still not solved at the end of i iterations, the
algorithm resets all the variable values to the initial values
(line 4 of Algorithm 2) and repeats the same process by
increasing incrementally by a big delta value, instead of
1. We experimentally found that 100 is the best threshold
for the big delta value. For example, if the initial variable
value is 1, then the new variable value will be 101 after
increasing by 100. Again, if the PC is still unsolvable after
increasing all the variables independently, all the variables
are then incremented at once by the same big delta value for
the same i iterations. If the PC is still unsolved, it will flow
into Strategy 2.

2) Strategy 2: If the PC is still not solved with the new
sets of values, InSPeCT proceeds to STRATEGY 2. STRAT-
EGY 2 is similar to STRATEGY 1 except that it decreases the
variable values starting with the original mapping obtained
in Algorithm 2 line 4, instead of increasing them. If the PC
still could not be solved with the new sets of values, we
declare this PC as unsolvable by our algorithm.

This phase is applied to all the PCs that cannot be solved
in the Randomization Phase. Note that at the end of the
Improvement Phase, each PC may have a different Tabu List.
This phase is done by selecting one PC at a time. Therefore,
having one Tabu List for each PC is necessary. Randomized
values that cannot solve one particular PC may be able to
solve another PC in the next iteration of the Improvement
Phase.

V. EVALUATION SETTINGS

We evaluate InSPeCT on ten out of the eleven Java pro-
grams from the benchmark set that comes with the CarFast
tool [32]. CarFast is a technique used to generate high
coverage test cases faster by selecting and executing code
branches that contain higher numbers of statements earlier.

Table I characterizes the ten Java subjects in terms of their
corresponding complexity metrics and their total number of
PCs. The first column gives the name of the subject (S)
and the second column shows its number of lines of code
(LOC). The third column displays the number of classes and
methods in each subject (C/M). The fourth (Nested Block
Depth/NBD) and fifth (McCabe Cyclomatic Complexity/M-
CCC [33]) columns show the different complexities of the
subjects in the form of average/maximum values. The last
column shows the total number of PCs and the number of
PCs that are determined by Z3 as unsatisfiable (UNSAT).

Table II shows the characteristics of the PCs from the ten
subjects in terms of the minimum, median, and maximum
number of branches, variables and various operator.

The experiments are run on a desktop computer running
Ubuntu 14 64bit with an Intel Core i7-6700 CPU @ 3.4GHz
with 32 GB RAM. InSPeCT is compared with two other
state-of-the-art techniques, namely MLB (only one master
version) [11] and Z3 (version 4.5.0) [6].We run all models
for five consecutive repetitions.

TABLE I
SUBJECTS UNDER TEST WITH THEIR COMPLEXITY LEVELS.

Subject LOC C/M NBD MCCC # of PCs
tp300 0.3K 4/3 2.5/6 6.3/20 98/97
tp600 600 5/5 2.3/5 10.4/30 189/148
tp1k 1K 18/61 2.2/9 3.8/14 36/34
tp2k 2K 24/49 2.0/5 4.5/13 109/106
tp5k 5K 37/184 2.0/8 5.2/23 106/106
tp7k 7K 38/469 2.2/8 4.3/19 103/101
tp10k 10K 111/765 2.4/8 4.7/23 159/151
tp50k 50K 61/428 4.2/12 22.3/56 191/182
tp80k 80K 96/1.6K 3.4/8 10.7/27 244/184

sp500k 500K 311/2.2K 4/7 34.1/93 146/137

TABLE II
CHARACTERISTICS OF THE PCS

Min Median Max
# of Branches 3 12 19
# of Variables 1 6 15

# of + operator/PC 0 8 598
# of - operator/PC 0 9 397
# of * operator/PC 0 8 258
# of / operator/PC 0 4 226

# of % operator/PC 0 4 267

Z3 reports that a PC is either solved, UNSAT or UN-
KNOWN. Z3 may characterise a PC as UNKNOWN if it
relies on non-linear arithmetic, as Z3 is highly incomplete
in solving non-linear arithmetic equations [24]. We have
observed that Z3 may run on some PCs for several hours
with no solution. In these cases, Z3 eventually exhausts all
the resources. Thus, we decided to timeout the processing of
a PC after two minutes. Likewise, InSPeCT times out on a
PC after two minutes of processing.

VI. RESULT

Table III shows the total number of solved PCs by In-
SPeCT. The first column displays the subjects, whereas the
second to fourth columns display the statistics about the PCs
solved. InSPeCT can solve between 76% and 96% of the
solvable PCs out of the ten subjects. It is also fairly consistent
in the number of PCs solved with a minimum variance of
0.56 and a maximum variance of 4.56 out of the ten subjects.
The fifth and sixth columns of Table III show the mean
number of solved PCs in InSPeCT’s Randomization Phase
(Phase 1) and its variance among the five runs respectively.
Phase 1 is able to solve between 32% and 48% of the
solvable PCs with a reasonable variance amongst the five
runs. On average, InSPeCT is able to solve approximately
44% of the PCs in ten subjects with a reasonable variance.

The seventh through twelfth columns of Table III show
the mean number of solved PCs in InSPeCT’s Improvement
Phase (Phase 2). Columns seven and eight show the mean
number of PCs solved in the initial randomized solution
generated during Phase 2 and its variance among the five
runs respectively. In this stage, few PCs are solved. The main
purpose of the solution generated in this stage is to initialize
the generation of the solutions for the forthcoming Strategies
1 and 2. Columns nine and ten show the mean number of
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TABLE III
TOTAL # OF PCS SOLVED BY INSPECT, AS WELL AS THE # OF PCS SOLVED IN ITS INDIVIDUAL PHASES

# of PCs Solved in Five Runs Phase 1 Phase 2 Initial Phase 2 Strategy 1 Phase 2 Strategy 2
Subject Total Mean Var Mean Var Mean Var Mean Var Mean Var
tp300 90 (93%) 82 (85%) 3.36 39 (40%) 0.4 0.6 (0.6%) 0.2 30 (31%) 15.0 13 (13%) 16.4
tp600 115 (77%) 105 (70%) 3.44 56 (38%) 5.0 1 (0.7%) 1.2 35 (24%) 5.4 12 (8%) 4.8
tp1k 26 (76%) 21 (62%) 2.16 12 (34%) 1.4 0.2 (0.6%) 0.2 7 (21%) 1.6 2 (7%) 1.8
tp2k 102 (96%) 96 (91%) 0.64 46 (43%) 7.8 1.6 (1.5%) 0.6 39 (37%) 9.4 10 (10%) 4.2
tp5k 102 (96%) 99 (94%) 2.24 61 (58%) 1.8 0.8 (0.8%) 0.6 26 (25%) 7.0 11 (10%) 12.4
tp7k 96 (95%) 93 (92%) 0.56 56 (55%) 3.2 0.4 (0.4%) 0.2 26 (26%) 10.8 10 (10%) 6.2

tp10k 132 (87%) 119 (79%) 4.56 79 (53%) 9.0 0.4 (0.3%) 0.6 31 (21%) 11.0 8 (5%) 7.4
tp50k 176 (97%) 170 (94%) 3.44 85 (46%) 1.0 0.8 (0.4%) 0.6 46 (25%) 8.2 39 (22%) 3.4
tp80k 149 (81%) 142 (77%) 0.96 84 (45%) 3.0 0.4 (0.2%) 0.2 38 (20%) 12.2 19 (10%) 2.6

sp500k 116 (85%) 112 (82%) 1.04 43 (32%) 1.0 0.4 (0.3%) 0.6 40 (29%) 8.6 26 (19%) 10.6
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Fig. 2. # of PCs solvable/unsolvable by InSPeCT, MLB & Z3

PCs solved by Strategy 1 of the Improvement Phase and its
variance amongst the five runs respectively, whereas columns
eleven and twelve show the mean number of PCs solved by
Strategy 2 of the Improvement Phase and its variance among
the five runs respectively. We observe that Strategy 1 is able
to solve on average another 26% of the PCs and Strategy 2
is able to solve on average another 11% of the PCs.

We compare the set of PCs solved by InSPeCT and those
solved by the state-of-the-art solvers, MLB and Z3. MLB
has been shown [11] to outperform other techniques such as
Concolic Walk [25], SPF-CORAL [27], SPF-Mixed [28] and
jCute [29]. Z3 is a robust SMT solver used to solve PCs and
has been reported to be able to solve more PCs than other
SMT solvers such as CVC3 [22] and Yices [23].

Fig. 2 shows the relation between the PCs solved by
InSPeCT, MLB and Z3. InSPeCT solves 16% more PCs than
MLB and 41% more PCs than Z3. 47.2% of the PCs can be
solved by all three approaches. Furthermore, InSPeCT is able
to solve 27.3% of the PCs that are solved by MLB but not
Z3, and 8.5% of the PCs that are solved by Z3 but not MLB.
5.6% of the PCs can only be solved by InSPeCT and another
5.6% can only be solved by Z3. Only 0.2% of the PCs can
be solved by MLB only. When compared with each of the
state-of-the-art solvers individually, InSPeCT solves 12.5%
more PCs than MLB and 25.9% more PCs than Z3.

Fig. 3 shows the time (mean and total time of five runs)
in milliseconds used by InSPeCT, MLB and Z3 to evaluate
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Fig. 3. Time (ms) spent by InSPeCT, MLB & Z3

the PCs. We compare with the mean and total time taken to
evaluate the PCs of five runs amongst InSPeCT, MLB and
Z3. We observed that InSPeCT is many times faster than both
MLB and Z3. The mean time of InSPeCT is approximately
103 × faster than the mean time of Z3, and the total time
of InSPeCT is approximately 265x faster than the total time
of Z3. InSPeCT also runs faster than MLB in both the mean
and the total time of five runs (approximately 5 × faster).

We then compare the code coverage amongst InSPeCT,
MLB and Z3. Table IV displays the mean (of five runs)
line and branch coverage by InSPeCT, MLB and Z3. The
first column shows the subject program whereas the second
and third columns show the line and branch coverage by
InSPeCT. The fourth and fifth columns show the line and
branch coverage by MLB whereas the last two columns show
the line and branch coverage by Z3. InSPeCT consistently
achieves higher line coverage than MLB and Z3 in all the
subject programs. Similarly, InSPeCT has higher branch
coverage than MLB. Ccompared to Z3, InSPeCT achieves
higher branch coverage in all the subjects except for tp1k.

Although InSPeCT solves majority of the PCs, and has
the highest PC solving rate (88.5%), a small number of PCs
could not be solved by InSPeCT but are solvable by MLB
and Z3 (Fig. 2). MLB can solve 3 (0.2%) of the PCs that
InSPeCT and Z3 could not solve whereas Z3 can solve 70
(5.6%) of the PCs that InSPeCT and MLB could not solve.
Thus, this provides an opportunity to re-evaluate PCs that
could not be solved by InSPeCT with MLB and Z3. Since Z3
has a higher percentage (5.6%) of distinct PCs that can only
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TABLE IV
MEAN (FIVE RUNS) TEST COVERAGES BY INSPECT, MLB AND Z3.

InSPeCT MLB Z3
Subject Line Branch Line Branch Line Branch
tp300 80% 85% 76% 80% 78% 81%
tp600 81% 85% 79% 82% 79% 82%
tp1k 66% 63% 64% 60% 66% 64%
tp2k 74% 76% 71% 72% 72% 72%
tp5k 71% 72% 68% 67% 71% 70%
tp7k 70% 75% 67% 70% 69% 72%
tp10k 70% 73% 67% 70% 68% 71%
tp50k 77% 76% 73% 71% 73% 72%
tp80k 70% 67% 68% 65% 69% 66%

sp500k 73% 68% 71% 66% 70% 64%

be solved by Z3 itself, if a PC is unsolvable by InSPeCT, we
should pass the PC to Z3 for evaluation before trying MLB
(if the PC is unsolvable by Z3). By doing that and if there
are new PCs solved by MLB and Z3, but not InSPeCT, it
will increase the number of PCs that can only be solved by
InSPeCT.

VII. CONCLUSION

We proposed a novel path condition solving technique,
InSPeCT, that uses elements of Iterated Local Search and
Tabu List. InSPeCT is able to solve a total of 1,104 (88.5%)
PCs from ten Java benchmarking subject programs and it
is consistent in its solvability performance. When compared
to the existing state-of-the-art solvers, MLB and Z3, In-
SPeCT solves 16% and 41% more PCs than MLB and Z3
respectively. InSPeCT also achieves higher test coverage as
compared to MLB and Z3. It is 103 × faster than Z3 and
5× faster than MLB, on average.

We plan to investigate building new features to improve
InSPeCT’s performance, including the use of different data
types. The PCs generated by CarFast involve only integer
data types. When PCs compose of other data types such as
floating numbers, arrays or reference objects, new strategies
will need to be applied.
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solving complex constraints for symbolic pathfinder,” in NASA Formal
Methods Symposium. Springer, 2011, pp. 359–374.
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