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ABSTRACT

Face authentication is vulnerable to media-based virtual face
forgery (MVFF) where adversaries display photos/videos or
3D virtual face models of victims to spoof face authentication
systems. In this paper, we propose a liveness detection mech-
anism, called FaceCloseup, to protect the face authentication
on mobile devices. FaceCloseup detects MVFF-based attacks
by analyzing the distortion of face regions in a user’s closeup
facial videos captured by built-in camera on mobile device. It
can detect MVFF-based attacks with an accuracy of 99.48%.

CCS CONCEPTS

• Security and privacy → Biometrics; Usability in secu-
rity and privacy .
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1 INTRODUCTION

Most of existing face authentication systems are vulnerable to
media-based virtual face forgery (MVFF) where an adversary
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displays a photo/video or a 3D virtual face model of a victim.
Liveness detection has been proposed to counter MVFF-
based attacks. Some liveness detection thwarts photo-based
attacks based on users’ facial motions or expressions, such as
eye blink and head rotation [6]. But such liveness detection
approaches are still vulnerable to video-based attacks where
an adversary replays a pre-recorded face video.

Two recent liveness detection approaches were proposed
to defeat MVFF-based attacks, which are FaceLive and Face
Flashing. FaceLive performs liveness detection by examining
the consistency between a captured face video and device
movement data [8]. FaceLive can detect photo-based attacks
and video-based attacks but is still subject to 3D virtual face
model-based attacks. Face Flashing [12] analyzes reflection
light from a face to detect MVFF-based attacks. However,
Face Flashing incurs significant network traffic and raise
privacy concern because it requires cloud computing.

In this work, we propose FaceCloseup, a facial distortion-
based liveness detection mechanism to protect face authenti-
cation on mobile devices against MVFF-based attacks. Face-
Closeup can detect not only photo/video based attacks, but
also 3D virtual face model-based attacks. FaceCloseup only
requires a generic front-facing camera on mobile devices but
no specific usage settings such as controlled lighting and
sending facial videos to remote server. FaceCloseup is thus
suitable for on-device liveness detection and can be deployed
on commodity mobile phones. Empowered with a CNN-based
classification algorithm, FaceCloseup determines the liveness
of a face based on facial distortion changes in a facial video.

To thwart MVFF-based attacks, FaceCloseup detects 3D
characteristics of a live user’s face by analyzing the changes of
distortion in facial video frames. The distortion of the user’s
face in the video is a common phenomenon in photography
especially when the camera is close to the face. The distortion
is mainly caused by the uneven 3D surface of the face. Facial
regions in the video frames are displayed in different scales.

We collect real-world facial photo and video data from
legitimate authentication requests and MVFF-based attacks.
We mimic the 3D virtual face model-based attack using the

Session 3B: Learning and Authentication AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

241

https://doi.org/10.1145/3321705.3329850
https://doi.org/10.1145/3321705.3329850
https://doi.org/10.1145/3321705.3329850


state-of-the-art 3D face reconstruction technique [5] which
synthesizes facial photos with facial distortion. Our results
show that FaceCloseup can detect MVFF-based attacks with
an accuracy of 99.48%.

2 THREAT MODEL

The media-based virtual face forgery (MVFF) enables an
adversary to forge users’ face biometrics based on their facial
photos or videos. The adversary may display the forged face
to spoof face authentication and therefore pose a serious
threat against face authentication systems.

In the photo-based attack and video-based attack, an
adversary replays a user’s pre-recorded facial photos and
videos which the adversary may obtain from online, such
as online social networks. The 3D virtual face model-based
attack is more complicated and powerful where an adversary
builds up a 3D virtual face model for a user based on the
user’s facial photos and videos. The adversary can synthesize
facial videos with facial motions and/or expressions so as to
spoof face authentication system.

The effectiveness of the photo/video based attacks usu-
ally depends on the quality and availability of the victim’s
facial photos/videos, which may be mitigated by extra facial
motions and expressions. The 3D virtual face model-based
attack poses significant risks to face authentication systems
because the adversary can display a 3D virtual face model
of the victim and synthesize the required facial motions and
expressions in real time. The 3D virtual face model can be
estimated by the adversary based on the victim’s face photos
and videos regardless of facial movements and expressions [1].
It is important for liveness detection to defend against the
3D virtual face model-based attack.

Our proposed liveness detection mechanism, FaceCloseup,
aims to prevent MVFF-based attacks including the pho-
to/video based attacks and the 3D virtual face model-based
attacks. In MVFF-based attacks, it is assumed that an adver-
sary cannot obtain a user’s pre-recorded facial photos/videos
taken within 30cm from the user’s face. It is difficult for an
adversary to directly capture the users closeup facial photo-
s/videos without the users’ awareness. In comparison, the
user is more likely to leak his/her facial photos and videos
taken no shorter than 30cm from the face by online sharing
such as sharing selfie photos and videos in online social net-
works and video calls such as video chat or video conference.
The adversary may access these facial photos and videos.

3 DESIGN

FaceCloseup includes three modules which are Video Frame
Selector (VFS), Distortion Feature Extractor (DFE), and
Liveness Classifier (LC). The VFS module takes facial video
as input and selects multiple frames from the facial video
based on the size of the face in the frames. With the extracted
frames, the DFE module detects a number of facial landmarks
in each frame and calculate features about the facial distortion
changes among different frames. At last, the LC module

utilizes a classification algorithm to distinguish a real face
from a forged face in MVFF-based attacks.

As a mobile device moves towards or away from a user’s
face, the camera on the device firstly captures a video which
includes a number of frames about the user’s face taken at
different distances between the camera and the face. The size
of the faces in the video frames changes due to the movement.
Using Viola-Jones face detection algorithm [13], the Video
Frame Selector (VFS) extracts and selects a sequence of 𝐾
frames (𝑓1, 𝑓2, ..., 𝑓𝐾) in the video based on the detected face
size (𝑠𝑧1, 𝑠𝑧2, ..., 𝑠𝑧𝐾) where 𝑠𝑧𝑖 ∈ (𝑛𝑝𝑖𝑙, 𝑛𝑝𝑖𝑢).

Secondly, with (𝑓1, 𝑓2, ..., 𝑓𝐾) as input, DFE calculates the
geometric distances between different facial landmarks in
each frame and uses them as features for detecting distortion
changes in the facial video. We use the supervised descent
method (SDM) to detect 66 facial landmarks from each
frame [15]. The 66 facial landmarks are located at various
regions of a face, including chin (17), eyebrows (10), nose
stem (4), below nose (5), eyes (12), and lips (18), which
are shown in Figure 1. The facial landmarks are denoted as
(𝑝1, 𝑝2, ..., 𝑝66) where 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) is the coordinate.

Figure 1: 66 facial landmarks

In order to capture facial distortion, we calculate the
distance between any two facial landmarks 𝑝𝑠 and 𝑝𝑡 as
𝑑 =

√︀
(𝑥𝑠 − 𝑥𝑡)2 + (𝑦𝑠 − 𝑦𝑡)2, where 𝑠, 𝑡 ∈ {1, 2, ..., 66} and

𝑠 ̸= 𝑡. The 66 facial landmarks in each frame yield 2145
pairwise distances 𝑑1, 𝑑2, ..., 𝑑2145. Assuming the size of a
detected face in a frame is 𝑤 in width and ℎ in height,
a geometric vector about the detected face is formed as
𝑔𝑒𝑜 = (𝑑1, 𝑑2, ..., 𝑑2145, 𝑤, ℎ). Then we calculate relative dis-
tances by normalizing the geometric vector of each frame
according to a base facial image, which is registered by a user
in a registration phase. The geometric vector for the base
image is calculated as 𝑔𝑒𝑜𝑏 = (𝑑𝑏1, 𝑑𝑏2, ..., 𝑑𝑏2145, 𝑤𝑏, ℎ𝑏). For
each selected frame 𝑓𝑖, we calculate a relative geometric vector
𝑟𝑖𝑜𝑖 = (𝑟𝑖,1, 𝑟𝑖,2, ..., 𝑟𝑖,2145, 𝑟𝑖,𝑤, 𝑟𝑖,ℎ), where 𝑟𝑖,𝑗 = 𝑑𝑖,𝑗/𝑑𝑏𝑗 for
𝑗 = 1, 2, ..., 2145, 𝑟𝑖,𝑤 = 𝑤𝑖/𝑤𝑏, and 𝑟𝑖,ℎ = ℎ𝑖/ℎ𝑏. The facial
distortion in 𝐾 selected frames is represented by a 𝐾 × 2147
matrix 𝐹𝐷.
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Thirdly, LC module takes 𝐹𝐷 as input and uses a classifi-
cation algorithm to determine whether 𝐹𝐷 is taken from a
real face or a forged face from MVFF-based attacks. Due to
high dimension of matrix 𝐹𝐷, convolutional neural network
(CNN) is customized in the LC module including 2 convolu-
tion layers, 2 pooling layers, 2 fully connected layers, and
1 output layer. Given a 𝐾 × 2147 feature matrix 𝐹𝐷, the
convolution layer 𝐶𝑜𝑛𝑣1 computes a tensor matrix 𝑇𝑀 ′

1. In
order to achieve nonlinear properties without affecting the
receptive fields in the convolution layer 𝐶𝑜𝑛𝑣1, a rectified
linear unit (ReLU) is used as activation function over 𝑇𝑀 ′

1

and outputs a tensor matrix 𝑇𝑀1. The ReLU is formed as
𝑓(𝑥) = max(0, 𝑥). The pooling layer 𝑃𝑜𝑜𝑙1 performs a non-
linear downsampling on 𝑇𝑀1. The convolution layer 𝐶𝑜𝑛𝑣2
and the pooling layer 𝑃𝑜𝑜𝑙2 perform the same operations as
𝐶𝑜𝑛𝑣1 and 𝑃𝑜𝑜𝑙1 in the third and fourth steps, respective-
ly. Next, the fully connected layers 𝐹𝐶1 and 𝐹𝐶2 perform
high-level reasoning. Assuming 𝐹𝐶2 consists of 𝑀 neurons,
a vector 𝑓𝑐 = (𝑒1, 𝑒2, ..., 𝑒𝑀 )𝑇 is produced by 𝐹𝐶2 and it is
passed to the output layer 𝑂𝑈𝑇 . The output layer estimates
the probabilities for 𝐶 classes. The probability of each class
𝑐 is estimated using the following multinomial distribution

𝑃 (𝑦 = 𝑐) = 𝑆𝑐 =
exp(𝑉 𝑦

𝑐 · 𝑓𝑐+ 𝑏𝑦𝑐 )∑︀𝐶
𝑐=1 exp(𝑉

𝑦
𝑐 · 𝑓𝑐+ 𝑏𝑦𝑐 )

(1)

where 𝐶 is number of classes, 𝑉 𝑦
𝑐 is the 𝑐-th row of a learnable

weighting matrix 𝑉 𝑦, and 𝑏𝑦𝑐 is a bias. Since liveness detection
is used to distinguish between a real face and a forged face,
𝐶 is set to 2.

4 DATA COLLECTION AND DATASET
GENERATION

An IRB-approved user study is conducted to collect users’
data for both legitimate requests and MVFF-based attacks
which include the photo-based attacks, video-based attacks,
and 3D virtual face model-based attacks.

4.1 Data Collection

Our user study consists of two parts and involves 43 males
and 28 females with the age range between 18 and 35.

In the first part, we collect the participants’ multiple selfie
facial videos at controlled device positions. Each participant
is asked to hold a mobile phone and to take 3 selfie frontal
facial video clips over a controlled distance 𝐷𝐹𝐷 between
his/her face and mobile phone. The mobile phone in our
experiments is a Google Nexus 6P smartphone with an 8-
megapixel front-facing camera and Android 7.1.1 operating
system. The front-facing camera is used to take 1080p HD
video recording at 30 fps. Each resulting video clip lasts for
3 seconds where each frame is 1920 × 1080 pixels in size
with the face in the middle of the frame. The range of the
controlled distance 𝐷𝐹𝐷 between the face and smartphone
includes 20cm, 30cm, 40cm, and 50cm. We collected 12 selfie
frontal facial video clips from each participant.

In the second part, participants are asked to perform
trials of FaceCloseup with the controlled device movement

distances using the provided smartphone. Each participant
holds and moves the smartphone away from his/her face from
the distance 20𝑐𝑚 to the distance 50𝑐𝑚, from the distance
30𝑐𝑚 to the distance 50𝑐𝑚, and from the distance 40𝑐𝑚 to
the distance 50𝑐𝑚, respectively. 10 trials are performed by
each participant under each controlled movement setting. In
total, facial video data from 30 trials by each participant.

4.2 Dataset Generation

To mimic legitimate requests and MVFF-based attacks, we
generate a legitimate dataset, a photo-based attack dataset, a
video-based attack dataset, and a 3D virtual face model-based
attack dataset based on the collected facial videos.

4.2.1 Legitimate Dataset. The legitimate dataset includes
the closeup facial videos taken during trials of FaceCloseup
with the smartphone movement from the distance 𝐷𝐹𝐷 =
20𝑐𝑚 to the distance 𝐷𝐹𝐷 = 50𝑐𝑚 which is presented in
Section 4.1. Thus the legitimate dataset includes 710 trials.

4.2.2 Photo-Based Attack Dataset. We firstly manually ex-
tract 10 facial frames from the selfie frontal facial video clips
taken by each participant at each fixed distance 𝐷𝐹𝐷 includ-
ing 30cm, 40cm, and 50cm. The majority of the participants
never reveal selfie facial photos/videos taken at the distance
shorter than 30cm due to the obvious facial distortion.

Secondly, we display each extracted facial frame on an
iPad Retina screen to mimic the photo-based attacks. The
scale of face region in the frame is adjusted to be displayed in
full screen so that the size of the face displayed on the screen
is close to the size of a real face. While the smartphone
is fixed on the table with the front-facing camera always
shooting at the iPad screen, we move the iPad away from the
smartphone from the distance 𝐷𝐹𝐷 = 20𝑐𝑚 to the distance
𝐷𝐹𝐷 = 50𝑐𝑚. During the movement, the front-facing camera
on the smartphone records video about the face on the screen.
In total, the photo-based attack dataset includes 1420 videos.

4.2.3 Video-Based Attack Dataset. We use the videos of the
trials taken by each participant who moves the smartphone
from the distance 𝐷𝐹𝐷 = 30𝑐𝑚 to the distance 𝐷𝐹𝐷 = 50𝑐𝑚
and from the distance 𝐷𝐹𝐷 = 40𝑐𝑚 to the distance 𝐷𝐹𝐷 =
50𝑐𝑚. Each of the video is displayed on the iPad screen while
the smartphone is fixed on the table with the front-facing
camera always recording the screen. The scales of the video
frames are adjusted accordingly so that the face region in the
first frame of the video is displayed in full screen. The distance
between the iPad and the smartphone is fixed to 20cm since
the displayed video includes the movements similar to the
legitimate request. Thus we have 1420 attacking videos in
the video-based attacks in total.

4.2.4 3D Virtual Face Model-Based Attack Dataset. There
exists a variety of 3D face reconstruction algorithms [2, 10,
11, 16]. Most of the 3D face reconstruction algorithms take
a single or multiple regular facial photos of the victim as
input. Based on the detected facial landmarks, a 3D virtual
face model for the victim is estimated by optimizing the
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geometry of a 3D morphable face model in order to match
the observed 2D landmarks. Note that the optimization of
the 3D morphable face model is based on an important
assumption that a virtual camera is shooting at the face
with a pre-defined distance between the virtual camera and
the face (usually assumed to be infinite). Then, image-based
texturing and gaze correction techniques are applied to adjust
the 3D face model. At last, the textured 3D face model of
the victim can be used to produce different facial expressions
and head rotation in real time.

FaceCloseup determines the liveness of a face based on
the change of facial distortion as the distance between the
camera and the face changes. The above 3D virtual face
model cannot defeat FaceCloseup because the 3D virtual face
model cannot generate the facial distortion when the camera
is close to the face.

In order to simulate a powerful adversary in the 3D vir-
tual face model-based attack, we use the state-of-the-art
perspective-aware 3D face reconstruction algorithm, by Fried
et al. [5] published in SIGGRAPH’2016, which can generate
both the facial distortion according to the changes of a vir-
tual camera position and any changes of facial expressions
and head poses. To reconstruct a perspective-aware 3D face
model for a victim, the perspective-aware 3D face reconstruc-
tion algorithm [5] firstly extracts 69 facial landmarks from a
given facial photo of the victim. Among the extracted facial
landmarks, 66 facial landmarks are automatically detected
by the SDM-based landmark detection algorithm [15]. The
other 3 facial landmarks on top of head and ears are manual-
ly labelled for higher accuracy. Because the 3D face model
is correlated with an identity vector 𝛽 ∈ R1×50, an expres-
sion vector 𝛾 ∈ R1×25, an upper-triangular intrinsic matrix
𝑈 ∈ R3×3, a rotation matrix 𝑅 ∈ R3×3, and a translation
matrix 𝑇 ∈ R3×4, the facial photo and the 69 facial landmark
locations are used to fit a 3D head model by finding the
best parameters 𝛽, 𝛾, 𝑈,𝑅, 𝑇 such that the Euclidean dis-
tance between the facial landmarks and the projection of the
landmarks on the 3D head model is minimized. After a good
fit is made between the input facial photo and the 3D head
model, the 3D head model is manipulated for a new project-
ed head shape by changing the virtual camera distance and
head poses. In particular, one can move the virtual camera
towards/away from the face by adjusting the translation 𝑇
and rotate head by adjusting both the translation 𝑇 and the
rotation 𝑅. At last, the manipulated 3D head model produces
a 2D facial photo with the distortion corresponding to the
changes of camera position. Due to the space limit, we refer
readers to [5] for the details of this perspective-aware 3D face
reconstruction algorithm.

To perform the 3D virtual face model-based attack, for
each participant, we extract 10 facial photos from the selfie fa-
cial video taken at each controlled distance 𝐷𝐹𝐷 between the
participant’s face and smartphone which are collected in the
first part of the user study as explained in Section 4.1. The
range of 𝐷𝐹𝐷 includes 30cm, 40cm, and 50cm. Given each
facial photo as an input, we use the perspective-aware 3D face
reconstruction algorithm to generate the facial photos with

facial distortion by manually changing the virtual camera
distance in the algorithm. The values of the virtual camer-
a distance include 20cm, 25cm, 30cm, 35cm, 40cm, 45cm,
and 50cm. We manually adjust the scale of the resulting
manipulated facial photos in compliance with the size of face
region in the original facial photos extracted from the selfie
facial video taken over the same/similar distances. There-
fore, we generate a sequence of 7 manipulated facial photos
from each extracted facial photo. In total, the 3D virtual
face model-based attack dataset consists of 2130 sequences
of manipulated facial photos.

5 EVALUATION AND
EXPERIMENTAL RESULTS

In this section, we present the settings of our experiments.
Then we evaluate the performance of FaceCloseup in terms
of security, effectiveness and practicality.

5.1 Experiment Settings

To determine the liveness of a face, the VFS of FaceCloseup
firstly selects 𝐾 frames from an input facial video based on
the size ranges (𝑠𝑧1, 𝑠𝑧2, ..., 𝑠𝑧𝐾) of the face region detected
in the video frames as presented in Section 3. Since the size of
the face region detected in the frame mainly depends on the
distance between a participant’s face and the smartphone,
the size ranges (𝑠𝑧1, 𝑠𝑧2, ..., 𝑠𝑧𝐾) are determined based on the
distribution of the size of the detected faces in the facial videos
taken at the distance 𝐷𝐹𝐷 = 20𝑐𝑚, 30𝑐𝑚, 40𝑐𝑚, 50𝑐𝑚. These
facial videos with the different distance 𝐷𝐹𝐷 are collected in
the user study as described in Section 4.1. We set 𝐾 = 7 and
choose a base facial photo of each user with the size of face
region in 𝑠𝑧1 for best performance and better coverage of the
video frames taken at different distances in our experiments.
The size ranges of the detected faces are shown in Table 1.
For a given facial video, we select a sequence of the frames
by randomly choosing a frame among the frames containing
a face with size in 𝑠𝑧𝑖 where 𝑖 ∈ {1, 2, ..., 7}. We repeat the
selection for 20 times and extract 20 sequences of frames as
samples from the given facial video. Therefore, 20× 710 =
14200 samples are generated based on the legitimate dataset.
20× 1420 = 28400 samples are generated based on the photo-
based attack dataset and the video-based attack dataset,
respectively. And 2130 samples are generated based on the
3D virtual face model-based attack dataset.

Table 1: Size ranges of the face region for frame se-
lection

Size range in mega-pixels

𝑠𝑧1 (0.75, 0.85)

𝑠𝑧2 (0.65, 0.75)

𝑠𝑧3 (0.55, 0.65)

𝑠𝑧4 (0.45, 0.55)

𝑠𝑧5 (0.35, 0.45)

𝑠𝑧6 (0.25, 0.35)

𝑠𝑧7 (0.15, 0.25)
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The LC of FaceCloseup is empowered with a CNN-based
classification algorithm. The structure and parameters of
the CNN model are shown in Table 2. We use 5-fold cross
validation method to evaluate FaceCloseup. Thus 80% of
the samples are used to train the CNN model on a desktop
equipped with a 12GB TITAN X graphics card, 60GB mem-
ory, and 20 Intel Core-i7 CPUs. The learning rate is set to
0.1, weight decay is 0.0001, and the max iteration is 1000
accordingly.

Table 2: The structure and parameters of the CNN
model

Layer Size Stride Padding

𝐶𝑜𝑛𝑣1 32 5 × 5 filters 1 1

𝑃𝑜𝑜𝑙1 3 × 3 2 1

𝐶𝑜𝑛𝑣2 32 3 × 3 filters 1 1

𝑃𝑜𝑜𝑙2 3 × 3 2 1

𝐹𝐶1 1 × 1024 0 0

𝐹𝐶2 1 × 192 0 0

𝑂𝑈𝑇 1 × 2 0 0

5.2 Experimental Results

5.2.1 Detecting MVFF-based Attacks. FaceCloseup is accu-
rate in detecting MVFF-based attacks, including photo/video
based attacks and 3D virtual face model-based attacks.

In the photo-based attacks, the facial photos taken at the
distance 𝐷𝐹𝐷 = 30𝑐𝑚, 40𝑐𝑚, 50𝑚 are displayed to generate
the attack videos as explained in Section 4.2. Figure 2 shows
that FaceCloseup can effectively detect the photo-based at-
tacks. In particular, FaceCloseup achieves the accuracy of
99.23%, 99.28%, and 99.31% against photo-based attacks
with photos taken at 30cm, 40cm, and 50cm away, respective-
ly. Because FaceCloseup determine the liveness of a face by
analyzing the facial distortion changes correlated to the 3D
depth information of the real 3D face and the changes of the
camera distance, it is difficult for the adversary to generate
the correct facial distortion by displaying a 2D facial photo
on a 2D surface and moving the facial photo.
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Figure 2: Accuracy of FaceCloseup against the photo-
based attacks

In the video-based attacks, the facial videos are displayed
to FaceCloseup. The attacking facial videos are taken when

the smartphone moves from the distance 𝐷𝐹𝐷 = 30𝑐𝑚 to the
distance 𝐷𝐹𝐷 = 50𝑐𝑚 and from the distance 𝐷𝐹𝐷 = 40𝑐𝑚 to
the distance 𝐷𝐹𝐷 = 50𝑐𝑚, respectively. FaceCloseup achieves
the accuracy of 99.24% and 99.27% against the two types of
attack videos, as shown in Figure 3. FaceCloseup requires
closeup videos containing obvious changes of the facial dis-
tortion while the rate of the facial distortion changes become
lower as the camera move away from the face. Therefore,
the two types of the attacking facial videos do not include
obvious and sufficient changes of the facial distortion because
the camera is not close to the face enough.
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Figure 3: Accuracy of FaceCloseup against the video-
based attacks

The 3D virtual face model-based attack is a powerful
attack. The synthesized facial photos are produced which
include the estimated facial distortion based on the changes
of the camera distance. FaceCloseup successfully detects this
attack with an accuracy of 99.48%. An important reason is
that it is still challenging for the existing 3D virtual face
model to synthesize the closeup facial photos with significant
facial distortion due to the complex and uneven 3D surface
of the faces and occlusion of partial facial regions [5].

6 RELATED WORK

We summarize the related work based on the liveness indica-
tors they use, including 3D face, texture pattern, real-time
response, and multimodal.

The 3D face liveness indicator is based on the clue that a
real face has 3D depth characteristics. The 3D face character-
istics detection is usually associated with optical flow analysis
and changes of face views. A 3D face has the characteristic
of optical flow that the motion speed of the central part of
face is higher than the outer face region [6]. Along this line,
Kollreider et al. proposed a liveness detection algorithm to
analyze the optical flow based on ears, nose, and mouth [7].
However, the optical flow based methods usually require high-
quality input videos with ideal lighting conditions, which may
be difficult to achieve in practice. Compared to these works,
FaceCloseup takes input video from a generic camera which
can be easily achieved in practice.

On the other hand, the 3D characteristics about a real face
can be detected in face movements. Chen et al. examined

Session 3B: Learning and Authentication AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

245



the 3D characteristics of nose in the liveness detection [4]
which compares the the direction changes of the mobile phone
measured by the accelerometer and the changes of nose edge
in the video. However, to produce the clear nose edge, a
controlled lighting is required. The controlled lighting may
not be possible in practice. Li et al. proposed FaceLive which
requires a user to move the mobile device in front of his/her
face and analyzes the consistency between the motion data
of the mobile device and head rotation in the facial video [8].
Unfortunately, although the above two liveness detection
algorithms can detect the photo-based attacks and the video-
based attacks, they are vulnerable to the 3D virtual face
model-based attacks as an adversary can synthesize the cor-
rect nose changes and head rotation video according to the
device movements in real time [16].FaceCloseup can detect
all MVFF-based attacks including the photo-based attack,
video-based attack, and 3D virtual face model-based attack.

The texture pattern based techniques examines detectable
texture patterns due to the printing process and the material
printed on. IDIAP team took a facial video as input and the
local binary patterns from each extracted frame in the video
in order to build a global histogram for the video. The liveness
of face is determined based on the global histogram [3]. Tang
et al. proposed Face Flashing which captures face videos
with strong enough random screen light shooting at a user’s
face and sends the video to a remote server such as cloud
services for analysis of the light reflection in the face videos for
liveness detection [12]. The texture pattern based techniques
usually require high-quality photos/videos captured in ideal
lighting conditions and significant computation power in the
analysis, which may be hard to achieve on mobile devices
in practice. Using computation power from remote server
or cloud services could incur the cost of significant network
traffic and privacy issues. In contrast, FaceCloseup takes
closeup facial videos as input and analyzes the input videos
locally on mobile devices.

The real-time response based approaches require interac-
tion with users in real time. Pan et al. required users to blink
their eyes in order to detect the liveness [9]. Unfortunately,
these approaches are subject to the video-based attacks and
the 3D virtual face model-based attacks. FaceCloseup can
detect such video-based attacks effectively.

Finally, multimodal based liveness detection approaches
take face biometrics and other biometrics into account in user
authentication. Wilder et al. took facial thermogram from an
inferred camera and face biometrics from a generic camera
in authentication process [14]. Unlike the above approaches,
which rely on the hardware sensors rarely deployed on mobile
devices, our approach requires a front-facing camera which
is pervasively available on most mobile devices.

7 CONCLUSION

In this paper, we proposed an effective and practical liveness
detection mechanism, FaceCloseup, for face authentication to
prevent MVFF-based attacks. FaceCloseup does not require
any additional hardware but a front-facing optical camera

which is widely available on mobile devices. FaceCloseup
detects 3D characteristics of a real face by using deep learn-
ing techniques to analyze and identify the changes of facial
distortion in a closeup facial video. FaceCloseup can detect
all MVFF-based attacks with an accuracy as high as 99.48%.
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