
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2019 

ObliDC: An SGX-based oblivious distributed computing framework ObliDC: An SGX-based oblivious distributed computing framework 

with formal proof with formal proof 

Pengfei WU 
Peking University 

Qingni SHEN 
Fuzhou University 

Robert H. DENG 
Singapore Management University, robertdeng@smu.edu.sg 

Ximeng LIU 
Fuzhou University 

Yinghui ZHANG 
Xi'an University of Posts and Telecommunications 

See next page for additional authors Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
WU, Pengfei; SHEN, Qingni; DENG, Robert H.; LIU, Ximeng; ZHANG, Yinghui; and WU, Zhonghai. ObliDC: An 
SGX-based oblivious distributed computing framework with formal proof. (2019). AsiaCCS '19: 
Proceedings of the ACM Asia Conference on Information, Computer and Communications Security, 
Auckland, New Zealand, July 9-12. 86-99. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4512 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Pengfei WU, Qingni SHEN, Robert H. DENG, Ximeng LIU, Yinghui ZHANG, and Zhonghai WU 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/4512 

https://ink.library.smu.edu.sg/sis_research/4512


ObliDC: An SGX-based Oblivious Distributed Computing
Framework with Formal Proof

Pengfei Wu

Peking University

wpf9808@pku.edu.cn

Qingni Shen
∗

Peking University

qingnishen@ss.pku.edu.cn

Robert. H. Deng

Singapore Management University

robertdeng@smu.edu.sg

Ximeng Liu

Fuzhou University

snbnix@gmail.com

Yinghui Zhang

Xi’an University of Posts and

Telecommunications

yhzhaang@163.com

Zhonghai Wu
∗

Peking University

wuzh@ss.pku.edu.cn

ABSTRACT

Data privacy is becoming one of the most critical concerns in cloud

computing. Several proposals based on Intel SGX such as VC3 [1]

andM2R [2] have been introduced in the literature to protect data

privacy during job execution in the cloud. However, a comprehen-

sive formal proof of their security guarantees is still lacking. In

this paper, we propose ObliDC, a general UC-secure SGX-based

oblivious distributed computing framework. First, we model the

life-cycle of a distributed computing job as data-flow graphs. Under

the assumption of malicious, adaptive adversaries in the cloud, we

then formally define data privacy of a distributed computing job

by introducing a notion named ODC-privacy, which encompasses

both semantic security (to protect data confidentiality during com-

putation and transmission) and oblivious traffic (to prevent data

leakage from traffic analysis). ObliDC is composed of four two-party

protocols — job deployment, job initialization, job execution, and

results return, which allow for modular construction of concrete

privacy-preserving job protocols in different distributed computing

frameworks. Finally, inspired by a formal abstraction for trusted

processors proposed by R. Pass et al. [3], we formally prove the

security of ObliDC under the universal composability (UC) frame-

work.

CCS CONCEPTS

• Security and privacy → Distributed systems security.

KEYWORDS

oblivious computation, Intel SGX, distributed computing systems,

formal proof

ACM Reference Format:

Pengfei Wu, Qingni Shen, Robert. H. Deng, Ximeng Liu, Yinghui Zhang,

and Zhonghai Wu. 2019. ObliDC: An SGX-based Oblivious Distributed

∗
Both are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIACCS ’19, July 9–12, 2019, Auckland, New Zealand

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6752-3/19/07. . . $15.00

https://doi.org/10.1145/3321705.3329822

Computing Framework with Formal Proof. In ACM Asia Conference on Com-

puter and Communications Security (AsiaCCS ’19), July 9–12, 2019, Auckland,

New Zealand. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3321705.3329822

1 INTRODUCTION

Cloud computing is the most popular platform for distributed com-

puting nowadays. Users can deploy various distributed computing

frameworks, e.g., MapReduce [4], Spark [5] and Storm [6], by rent-

ing virtual and scalable resources from cloud service providers. It is

unsurprising that cloud computing has drawn much attention from

the governments to industries. For example, the cloud computing

market of the U.S Federal Government has grown at a rate of 16.2%

annually from 2015-2020 and will grow up to $10 billion by 2020

[7]. Cisco forecasts that the cloud network traffic will grow from

3.9ZB in 2015 to more than 14.1ZB in 2020 [8]. Moreover, some

research institutions have been set up to devote to cloud computing

research, such as [9] and [10].

Distributed computing frameworks, deployed in a master-slave

architecture, aremost commonly used in processingmassive amount

of data in the cloud. A distributed job can be usually split into dif-

ferent tasks in phases. Upon a user providing a job request and

tasks being scheduled, networked servers (also known as worker

nodes) work cooperatively on this job. However, job-dependent data

provided by the user can be highly sensitive, and a curious cloud

service provider or a third party may try to obtain or infer user’s

privacy as follows: (1) Data exposure during task execution. After a

task being scheduled in a server, the server works on the input data

and generates task results. Even if the input data is in ciphertext

form to protect confidentiality over the network (i.e., encrypted

in AES [11] or RSA [12]), it has to be decrypted before processing,

and the decrypted data will be exposed to the server directly. (2)

Privacy inference through traffic analysis. Previous work shows that

although the content of data is encrypted, the access pattern of data

traffic can still leak sensitive information from user’s data to the

adversary [13]. For example, in the shuffle process of MapReduce,

an adversary can infer whether two key-value pairs have the same

key by observing the data traffic between a mapper and a reducer

[2]. What’s worse, if the adversary has some background knowl-

edge about the input data, it may obtain a user’s data in plaintext

by statistical inference [14].

One approach to protect data privacy in task execution is using

homomorphic encryption [15], which allows direct computation on

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

86

https://doi.org/10.1145/3321705.3329822
https://doi.org/10.1145/3321705.3329822
https://doi.org/10.1145/3321705.3329822


ciphertexts. During task execution, the cloud is unable to learn the

underlying plaintext since data stays in encrypted form throughout

the entire task execution in servers. However, homomorphic encryp-

tion has serious limitations. Though fully homomorphic encryption

can handle arbitrary computations, it suffers from extremely high

computational and storage overhead, while semi homomorphic en-

cryption incurs much lower computational complexity, it can only

perform very limited computations [16].

Another approach for realizing secure computation is using

trusted computing technology such as Software Guard Extensions

in Intel processors (Intel SGX) [1],[2],[14],[17],[18], which allows

a program to be executed in a secure manner such that the data

and inner states of execution cannot be observed and tampered

with directly. The SGX-enabled processor creates an isolated area

in memory, called enclave, which cannot be accessed from the op-

erating system and hypervisor. SGX also provides a mechanism,

named remote attestation, to enable users to verify whether the code

has been loaded into the enclave securely and correctly. Compared

with homomorphic encryption, there are two apparent advantages

for realizing secure computation with Intel SGX processor: (1) high

performance. Previous efforts have validated that no remarkable

difference in performance between privacy preserving job execu-

tion in SGX-enabled processors and normal job execution without

any privacy protection [1]; (2) arbitrary tasks supported. Users

only need to define the sensitive code to be run in an enclave in C
language to support arbitrary computations.

Among existing SGX-based solutions, VC3 [1] is a secure dis-

tributed computing framework for MapReduce [4], which protects

data confidentiality by executing map and reduce tasks in enclaves

and by encrypting data transmitted over the network using an

IND-CPA encryption scheme [19]. Recent studies [2],[14] find that

VC3 is vulnerable to traffic analysis, wherein data privacy can be

leaked from the network-level access pattern. However, all these

existing efforts only adopt heuristic proof and semi-formal reason-

ing in their security analysis [3], and a rigorous formal security

analysis of privacy-preserving distributed computing remains an

open problem.

1.1 Our Contributions

Our goal is to bridge the gap between the design and provable

security in SGX-based secure distributed computing protocol by

presenting an Oblivious Distributed Computing (ObliDC) frame-

work which follows the paradigm of MapReduce [4] and Spark [5].

Main contributions of the paper are summarized below.

• Modular Construction of Job Protocols: Given that a job process

in distributed computing framework can be affected bymany factors

including programming paradigm [20] and system parameters (i.e.,

the input size and file block size), we need a general model which

hides the underlying factors in order to facilitate our generic design

and analysis. Hence, in ObliDC, we model the life-cycle of a job

as directed job data-flow graphs (in Section 4.1) and decompose

the life-cycle of a job in a distributed framework into four phases:

(1) Job Deployment, a user sets up a secret key with servers and

then submits job codes; (2) Job Initialization, the user uploads input

data and servers read them from the distributed storage system,

then work on it; (3) Job Execution, servers perform job codes and

transfer intermediate results with each other; and (4) Results Return,

upon completion of the tasks, the user downloads the job outputs

from the servers. Formally, ObliDC consists of four fined-grained

two-party protocols, which cover the four phases of the life-cycle

of jobs in distributed computing frameworks. Any concrete job

protocols can be instantiated based on these basic protocols.

• Resistant to Traffic Analysis: Combined with the graph model,

we identify privacy leakage due to the network-level access patterns.

Taking semantically secure encryption into consideration as well,

we summarize two security properties required in job protocols

in an indistinguishability-based security notion named Oblivious

Distributed Computation - privacy (ODC-privacy) (in Section 4.3).

Specifically, ODC-privacy encompasses both semantic security to

protect data confidentiality during computation and transmission

and oblivious traffic to prevent privacy leakage from traffic analysis.

ObliDC is designed to provide ODC-privacy and this is achieved by

proposing two privacy-enhancing preconditions: oblivious traffic

direction (by enabling the same number of data blocks to be trans-

ferred between tasks during shuffle) and oblivious traffic size (by

padding the size of each transferred block to the same length) (in

Section 4.2). Any concrete job protocols as instances of ObliDC

will inherit its security property and be able to provide semantic

security and oblivious traffic.

• Formal Description of Code Execution in Intel SGX : ObliDC splits

a job code into the sensitive code and the non-sensitive code. The

former is specific for a job while the latter is code shared among

various jobs for common functionalities such as key generation,

encryption, and decryption. Code execution process in SGX enclave

is formally defined and described in ObliDC, including code instal-

lation, remote attestation, and function invocation (see Section 5

for details).

• Formal Security Analysis in UC Framework: Previous work

demonstrates that data confidentiality in distributed computing

frameworks can be proved in games [21]. However, this proof tech-

nique is only suitable for a complete and specific protocol and is

hard to be adapted to our modular and genetic framework. Hence,

in ObliDC, we follow the universal composability (UC) framework

[22],[23], a simulation-based proof technique, in security proof.

Inspired by a formal abstraction for Intel SGX proposed by R. Pass

et al. [3], we take an SGX-enabled processor as a black-box Gatt .

To prove the security of job protocols in the UC framework, we first

provide the ideal functionality for the oblivious distributed com-

puting and demonstrate the security equivalence between the ideal

functionality and ODC-privacy (in Section 6.1). Then, we propose

the ideal functionality for each subroutine in ObliDC framework

and prove their security in the UC framework, respectively (in Sec-

tion 6.2). At last, we show a protocol instance of our framework can

be UC-secure in the hybrid model of these four ideal functionalities.

• Formal Analysis of VC3 andM2R: We apply ObliDC to formally

analyze VC3 [1] and M2R [2]. We show why a job in a secure-

shuffled VC3 andM2R can be secure in the sense of ODC-privacy.

To keep the paper compact, we leave the analysis in Appendix D.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we

introduce some necessary background knowledge. In Section 3, we

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

87



Table 1: Summary of Notations

Notations Descriptions

Gatt a formal abstraction of a secure processor

c = Enc{k ,m } encryption of plaintextm with key k
m = Dec{k , c } decryption of ciphertext c with key k
G = (V , E) a directed graph G with vertex set V and edge set E

Gs (X )(Gs (Y ))
the disjoint subset partitioned from the

vertex set in a complete bipartite graph Gs
ℓ(vi , vj ) a directed edge from vi to vj

d+
G
(v) (d−

G
(v)) the inner (outer) degree of vertex v in graph G

C a constant for the traffic size

define the system model and the adversary model. In Section 4,

we discuss the job data-flow graphs model, propose preconditions

against traffic analysis and define ODC-privacy. In Section 5, we

introduce the detailed design of the ObliDC framework. We provide

formal security proof of ObliDC in the UC framework in Section 6

and evaluate the performances of ObliDC in Section 7. We survey

related work in Section 8. Finally, we conclude and discuss possible

future research directions in Section 9.

2 PRELIMINARY

In Table 1, we summarize some helpful notations used in ObliDC.

2.1 Intel SGX

Intel SGX is a CPU extension scheme for executing code security in

Intel processors [24]. To prevent from accessing and tampering with

other applications by operating system and hypervisor, Intel SGX

creates an isolated area in memory, named enclave. All messages

transmitted between CPU cache and the enclave are in an encrypted

form. Hence, the trusted computing base (TCB) only contains the

processor itself and programs defined in the enclave. After the

code having been submitted, a user can verify whether the code

is loaded securely and correctly by remote attestation. A secure

channel is then established between the user and enclave to protect

their subsequent communications.

When programming enclave applications, a user can define his

sensitive code in the .edl file. The running application is divided

into two parts: the trusted and the untrusted. The routine outside

the enclave invokes the function inside is called ECALL and the

function inside invokes the routine outside is called OCALL. For a
more detailed description about Intel SGX, the reader is referred to

[25],[26].

2.2 Universal Composability

The universal composability (UC) framework allows for modular

security analysis of complicated protocols [22]. Subroutines of a

protocol can be analyzed separately. UC ensures that a protocol

composed of UC-secure subroutines is UC-secure as well. Generally

speaking, a complicated protocol ρ calls an ideal functionality F ,

and the security properties of ρ will be retained, if replacing F by an

actual sub-protocol π realizing it. In the UC framework, a protocol is

represented as a system of probabilistic Interactive TuringMachines

(ITMs) [22],[23], where each ITM represents the program to be run

within a protocol party P. The process of executing a protocol in

the presence of an adversary A is called the real world. The ideal

world defines an ideal functionality F , which plays a role of the

Gatt [Σ,reg]

init(): //init ialization

(mpk ,msk ):=Σ.KeyGen(1λ )

T = ∅

getpk() from P: //public inter f ace

returnmpk to P

install(idx , prog) from P ∈ reg: //local inter f ace − installat ion

if P is honest, assert idx = sid

generate eid ∈ {0, 1}λ

T [eid , P] := (idx , prog, ®0)

return eid to P

resume(eid , inp) from P ∈ reg: //local inter f ace − r esume

(idx , prog,mem) := T [eid , P], abort if not found

(outp,mem) := prog(inp,mem)

T [eid , P] := (idx , prog,mem)

σ := Σ.Sigmsk (idx , eid , prog, outp)

return (outp, σ ) to P

Figure 1: The formal abstraction of secure processors Gatt

“trusted party”, and a simulator S, which operates by simulating an

execution of A. All protocol participants in the ideal world cannot

communicate with each other. The environment outside the given

protocol is defined by an environment machineZ, which provides

protocol inputs to all parties and sees their outputs. We say that a

protocol π UC-realizes F , if for any probabilistic polynomial time

(PPT ) adversariesA, there exists a PPT simulator S, such that none

PPT environmentZ is able to tell whether it contacts with π and

A in the real world or S in the ideal world. If we use

c
≡ to denote

the computational indistinguishability, we then have

REALπ ,A,Z
c
≡ IDEALF,S,Z

2.3 Formal Abstraction for Secure Processors

R. Pass et al. [3] proposed a formal model, denoted by Gatt , for

attested execution secure processors. This allows one to study high-

level cryptographic protocol design based on secure processors.

Under the assumption that more than one program is executed in

one processor, Gatt is modeled as a global shared trusted setup

functionality in the Generalized UC (GUC) model [27], which pro-

vides a formal abstraction for common trusted processors (see Fig.

1), including

• Initialization. Upon initializing a processor, the manufacturer

M selects a signature scheme Σ, which parameterizes a pair of

secret keys (mpk ,msk) for the processor. The private keymsk is kept
in the enclave and used to sign an attestation. While the public key

mpk can be revealed to prove the identity. After parameterization,

M empties a data structure T , which is used for recording enclave

information.

•Registration. During registration of a newmachineP equipped

with a trusted processor, the registry reg records P’s identity and

some other information (i.e.,mpk of the processor in P). Machines

only in the list of reg can call enclave programs and produce attes-

tations usingmsk .

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

88



• Public Interface. Gatt allows any parties to send requests for

the public keympk of the trusted processor. This models the process

that a processor distributes its public key to arbitrary parties during

attestation verification.

• Local Interface. Local interfaces model interactions of the

trusted processor with the local host machine P. (1) install. If
P sends an install instruction to the Gatt , a new enclave is es-

tablished binding with some identifier idx . If P is honest, idx is

identical to the session identifier of the current protocol provided

by P. Gatt then generates a unique enclave identifier eid , and
stores it with the program prog into the enclave together. Finally,

Gatt returns eid to caller P. (2) resume. Upon receiving resume
instruction, Gatt checks whether the enclave ID eid exists in data

structure T . It will abort the protocol if eid is not found. Gatt then

executes the program prog on user’s input inp, and updates the

inner state of the memorymem. The attestation σ is produced by

signing the output outp and prog usingmsk under the signature

scheme Σ. Later, outp and σ are returned to the caller P.

3 SYSTEM SETUP AND ADVERSARY MODEL

3.1 System Setup

In ObliDC, we mainly focus on how a distributed job is performed

in a privacy-preserving manner. As depicted in Fig. 2(a), the system

comprises a user and a distributed computing framework consisting

of multi servers:

• User U: The user is responsible for sending a job request and

provides inputs for servers. Before job execution, a user encrypts

the job code with a temporary key and distributes the key to the

enclave of each server over the secure channel established by the

remote attestation. After that,U encrypts the job inputs with the

temporary key again and delivers them to servers performing tasks.

After the job terminates, U downloads the results from the dis-

tributed computing framework and decrypts the results with the

temporary key.

• Distributed Computing Framework: The distributed computing

framework is deployed on a cluster of servers which are network-

connected in a specific topology. In ObliDC, each server P is

equipped with an SGX-enabled processor for securely perform-

ing a task. Moreover, P is allowed to store some job-dependent

data in local storage (i.e., disk or memory), including task inputs

and intermediate results. After a task being scheduled, P installs

user-provided code into the enclave and decrypts task inputs with

the temporary key. Before the task results leave the enclave, they

will be encrypted again and sent to other servers for further pro-

cessing
1
.

3.2 Adversary Model

We consider a malicious and adaptive insider adversary A (i.e.,

cloud service provider or cloud administrator), which can arbitrar-

ily deviate from the protocol specification to learn user’s sensitive

data during job execution [28]. Moreover,A can be adaptive in the

sense that it can corrupt any servers at any time. The choice of

whom and when to corrupt can be arbitrarily decided by A, and it

1
Especially, if two tasks are continuously performing in the same server, a part of

intermediate results generated by the parent task will then be kept as the input for the

child task without being sent out.

depends on its view of execution [28]. A can monitor the network

communication between a user and a server, as well as between

servers. AfterA corrupting a server P, any information in software

stack outside the TCB can be accessed directly, including data on

disk or in the memory. The adversary can launch several passive

attacks to infer user’s privacy, such as ciphertext analysis to extract

input data in plaintext and traffic analysis by observing whether

two key-value pairs are shuffled to the same task [2]. What’s worse,

if A has some background knowledge about the job input such as

data distribution or frequency, it can infer more sensitive informa-

tion. The adversary can perform correlation analysis on what it

observes and the background knowledge. Previous work has shown

that A can successfully infer some individual attributes from a

census database using background knowledge [14]. For the active

attacks, we allow the adversary to abort the job protocol at any time.

Firstly, in MapReduce, the adversary can simply drop the output

of a mapper to count the value of the final output reduced, which

exposes the output of this dropped mapper. Secondly, the adversary

also can reorder or misroute intermediate results of a mapper from

an intended reducer to another, which will leak the outputs of this

mapper as well [2].

In ObliDC, we assume that the user is honest, and all tasks

are performed inside the SGX enclave as in VC3 [1] andM2R [2].

Moreover, the adversary A cannot break into the TCB, as well as

performing a denial-of-service attack, hardware attack and other

side-channel attacks (i.e., time-channel attack [2] or from memory-

level access pattern [29]) on SGX. Concretely, we consider the

provable security of the following two requirements in ObliDC:

(1) Confidentiality: All inputs and intermediate data are in en-

crypted form during transmission over the network. The

adversary is unable to extract the plaintext of these data in

polynomial time.

(2) Oblivious Traffic: The malicious adversary is unable to infer

user’s sensitive data by observing traffic pattern or taking

some active attacks (i.e., dropping tuples or misrouting data

blocks as above).

4 FORMAL COMPUTING MODEL AND

DEFINITION OF DATA PRIVACY

In this section, we first formalize the definition of the life-cycle of

a job in a distributed computing framework (Section 4.1). Before

formally define the data privacy ODC-privacy, we introduce con-

cepts of oblivious traffic direction and oblivious traffic size as two

necessary preconditions for oblivious traffic against passive and

active traffic analyses mentioned in Section 3.2.

4.1 Formal Computing Model

In ObliDC,Wemodel the life-cycle of a job in distributed computing

framework by a pair of directed graphs GI (for job deployment) and

GII (for job initialization, job execution and results return) as job

data-flow graphs based on observing a data flow exists between

two parties (including the user and servers). The graph model is

defined as follows:

Definition 1 (Job Data-flow Graphs). We assume that there

are n servers participating in a job execution. The life-cycle of a job

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

89



1. Job Deployment

4 Results Return 

(I). User: Trusted, provides input data for the job;

(a) The life-cycle of a MapReduce Job in Cloud

(II). Adversary: Inside the cloud, takes passive attacks (i.e., ciphertext analysis, traffic analysis with 
and without background knowledge) and active attacks (i.e., tuple tampering and misrouting tuples). 
It is able to corrupt any servers at any time;
(III). Server: Equipped with trusted processors for securely performing map and reduce tasks. 
The area outside the TCB is Untrusted. After receiving task inputs from a user or other servers, 
the server executes tasks and forwards outputs to the user or other servers ;

(II). Adversary: Malicious, adaptive adversary;

(I). User: Trusted, provides input data for job protocol;

(b) Job Data-flow Graphs

FORMAL

MODELING

(III). Servers:  Have access to       , calling job code in the secure region. The output is sent back to 
user or as input for next tasks; All messages outside the TCB can be received by adversary directly.         

att

2. Job Initialization    3. Job Execution 4. Results Return 

2. Job Initialization

1. Job Deployment

3. Job Execution

Adversary

mapper reducer

𝓟𝟏 

𝓟𝟐 

𝓟𝟑 

𝓟𝟏 

𝓟𝟑 User 𝓤 

𝓤 

𝓟𝟑 

𝓟𝟐 

𝓟𝟏 

𝓤 𝓟𝟐 

𝓟𝟏 

𝓟𝟑 

𝓟𝟑 

𝓟𝟏 

𝓤 

Map Phase Reduce Phase

𝒜 

𝔾𝐈𝐈 𝔾𝐈 

Figure 2: An overview of the formal model for the life-cycle of a MapReduce job as job data-flow graphs

in distributed computing framework forms a two-tuple of directed

graphs G = {GI,GII}:
• GI = (VI, EI), where VI is a set of the user U and the enclave

on each server Pi , i ∈ {1, 2, . . . ,n}. A directed edge ℓ(U,Pi ) ∈ EI
denotes a user securely delivers job codes to Pi ’s enclave.

• GII = (VII, EII), where VII is a set of the user U and the task

performed on Pi , i ∈ {1, 2, . . . ,n}. A directed edge ℓ(vi ,vj ) ∈ EII
represents job-dependent data (i.e., job inputs, intermediate results

and job outputs) are transferred from vertex vi to vj . Both source and

sink points of GII are userU, which imply the user uploads inputs

and downloads outputs from the distributed computing framework.

Fig. 2(b) shows an example of job data-flow graphsG = {GI,GII}
formally modeling a real-world MapReduce job involving three

servers. Before performing the job, a user submits codes to enclaves

of these three servers as depicted in GI. The transmission of job-

dependent data during job initialization (from the user to three

mappers), job execution (from three mappers to two reducers) and

results return (from two reducers to the user) are depicted in GII.
We remark that in the job data-flow graphs, data is stored in either

the distributed storage system or local storage before loading into

enclaves, we combine this data storage/retrieval process with data

transmission and denote them as an edge in the graph.

4.2 Preconditions Against Traffic Analysis

In Section 3.2, we have discussed the privacy leakage due to traffic

analysis with and without background knowledge as well as some

active attacks. We now propose two preconditions based on the job

data-flow graphsG, namely oblivious traffic direction and oblivious

traffic size, to thwart these traffic analyses.

Oblivious Traffic Direction. During the shuffle process in a dis-

tributed computing framework, tasks in the parent phase generate

a series of key-value pairs ⟨key,value⟩. The results with the same

key are shuffled to the same child task for further processing. Due

to the fact in some jobs, some tasks in the parent phase may have

no appropriate key-value pairs as the inputs for some specific child

tasks. An adversary may infer whether some tasks performed in

the parent phase generate intermediate results with the same key.
Hence, as in some privacy-preserving solutions like Melbourne

shuffle [14] and cascaded mix network [2], tasks in the parent

phase have to send output blocks to all tasks in the child phase. In

this way, it makes the traffic direction oblivious.

Definition 2 (Oblivious Traffic Direction). In the directed

graph GII = (VII, EII) of job data-flow graphs, the shuffle process

forms a directed subgraph Gs = (Vs , Es ),Gs ⊆ GII, where Vs =
Gs (X )

⋃
Gs (Y ). If the traffic direction is oblivious, for allvi ∈ X ,vj ∈

Y , ℓ(vi ,vj ) ∈ Es , we then have ∀vi ∈ Gs (X ), d
−
Gs
(vi ) = |Gs (Y )| as

well as ∀vj ∈ Y , d+
Gs
(vj ) = |Gs (X )|. That is to say, Gs satisfying

oblivious traffic direction is a complete bipartite graph.

Oblivious Traffic Size. Oblivious traffic direction alone is not

sufficient to completely prevent privacy leakage in the distributed

computing framework. If the adversary A has some background

knowledge on the input data, it can still infer sensitive information

by correlating actual traffic size with the background knowledge,

such as the size distribution. It is necessary that the traffic size

has to be identical for the entire process of job processing (i.e., by

padding dummy data); otherwise, A is able to distinguish two jobs

in polynomial time, as having been observed in [2] and [14]. We

hence define the oblivious traffic size in G as follows.

Definition 3 (Oblivious Traffic Size). In the directed graph

GII = (VII, EII) of job data-flow graphs, we denote the weight of an

edge ℓ(vi ,vj ) aswi , j , which represents the size of traffic from vertex

vi to vj , where vi ,vj ∈ VII. The graph GII satisfies oblivious traffic

size, if for all e ∈ EII, we havewe = C , where C is a constant.

Note that the size of a transmitted data block may depend on

system parameters. To keep all traffic size to be the same, we need

to set the constant C sufficiently large to accommodate all possible

data traffic.

4.3 Oblivious Distributed Computing - privacy

In this section, we propose Oblivious Distributed Computing - pri-

vacy (ODC-privacy), a definition of data privacy in distributed

computing frameworks. Before giving the formal definition, we

first show a security game for the oblivious traffic, which is per-

formed by a malicious, adaptive adversary A and a challenger C.

Given, A initially chooses two input datasets inp0, inp1 with equal

size. The game proceeds as follows:

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

90



• Setup: In initialization, the challenger C fixes some frame-

work and job parameters. It randomly generates a secret key dk =

KeyGen(1λ) for encrypting the traffic data.

• Challenge: The challenger C flips a coin and samples a random

challenge bit b
$

← {0, 1}. It encrypts the input set inpb with the

secret key dk and stores the ciphertext in the distributed computing

framework. When the job starts to perform, the distributed comput-

ing framework ensures that traffic pattern in the entire job satisfies

the requirements of oblivious traffic direction and oblivious traffic

size by adding dummy messages and padding where necessary.

• Query: During performing the job, A is allowed to adaptively

query C in the following three issues: (1) how many servers par-

ticipate in the job; (2) what the phase of tasks server P performs;

(3) what the size of traffic transmitted between two servers and

between a user and a server. These three issues can be observed by

an inner cloud adversary, which imply some passive attacks. More-

over, A can direct C to perform the following two operations: (1)

arbitrarily drop intermediate tuples when necessary, which implies

an active drop tuple attack; (2) exchange the output traffic of two

tasks in the shuffle, which implies a data block misrouting attack;

• Guess: When the job terminates, A constructs job data-flow

graphs Gb based on C’s replies and outputs a bit b ′ to guess b. If
b ′ = b, we say that the game outputs true, and otherwise it outputs
false.

Now we propose the definition of ODC-privacy:

Definition 4 (ODC-privacy). The life-cycle of a job in distributed

computing framework as defined in Section 4 is ODC-privacy, if the

following two properties are satisfied for any negligible function negl(),
and all large enough values of the security parameter λ:
• Semantic security: For any two messages m0,m1 of equal

length, randomly choose one bit b from {0, 1}, c = Enc{k,mb }. The

advantage of a PPT adversary A successfully guess which message is

encrypted is less than negl(λ).
• Oblivious traffic: For all PPT adversaries, the advantage of

winning the oblivious traffic game defined above, |Pr[b ′ = b] − 1/2|
is less than negl(λ).

5 OBLIDC: SGX-BASED OBLIVIOUS

DISTRIBUTED COMPUTING FRAMEWORK

5.1 Design Details of ObliDC

In this section, we propose the oblivious distributed computing

(ObliDC) framework based on Intel SGX (in Fig. 3). The framework

consists of four subroutines π JD , π J I , π JE , πRR , and each of them

is described as a two-party protocol. π JD enables a user U to

communicate with each server P to deploy the job code. π J I allows
the user U to upload input blocks to each task in the first phase.

π JE carries out a job execution, to allow one task (vi ) sending its
outputs to another task (vj ) for further processing, denoted by an

edge ℓ(vi ,vj ) ∈ GII. πRR , after the last phase tasks are finished,

allowsU to download the job outputs from the servers.

The ObliDC framework is designed to resist against passive and

active attacks mentioned in Section 3.2. To counter ciphertext anal-

ysis, ObliDC uses either asymmetric or symmetric IND-CPA encryp-

tion schemes [19],[30]. Moreover, before data encryption, a hash

value is appended to the plaintext to thwart malicious tampering by

progπ [job , U, P1, . . . , Pn ]

code+ : On input (“PKGen”): (pk , sk) ← PKE.GEN(1λ ); return pk

On input (“Encrypt”, pt , k ): ct = Enc{k , pt }; return ct

On input (“Decrypt”, ct , k ): pt = Dec{k , ct }; return pt

code− : On input (“Compute”, d , y): if y , ⊥, return y ; else d = d − dummy ,

outp = f (d ), outp = outp + dummy ; return outp

Protπ [job , G = {GI, GII }, U, P1, . . . , Pn ,C]

Job Deployment π JD : for each ℓ(U, Pi ) ∈ GI, i ∈ {1, 2, . . . , n }:

C: dk = KeyGen(1λ );

Ccode = Enc{dk , code− };

sends the Ccode and code+ to P;

P: eid = install(sid , code+);

henceforth let Gatt .resume(·) = Gatt .resume(eid , ·);

(pk , σ ) = Gatt .resume(“PKGen”);

sends the (pk , σ ) to C;

C: assert Σ.Vermpk {σ };

Ckey = Enc{pk , dk };

sends the Ckey to P;

P: dk = Gatt .resume(“Decrypt”, Ckey , sk);

code− = Gatt .resume(“Decrypt”, Ccode , dk );

sends “okay” to C;

Job Initialization π J I : for each ℓ(U, v) ∈ GII, v ∈ {P1, . . . , Pn }:

C: If the size of d is less than C , d = d + dummy, d ∈ inp ;

Cd = Enc{dk , d };

sends Cd to v ;

v : d = Gatt .resume(“Decrypt”,Cd , dk );

({outpk }k∈[ψ ]) = Gatt .resume(“Compute”, d , ⊥), whereψ = d−
G
II

(v);

Job Execution π J E : for each ℓ(vi , vj ) ∈ GII , vi , vj ∈ {P1, . . . , Pn }:

If ℓ(vi , vj ) ∈ Gs , Gs ⊆ GII , we must have d−
Gs
(vi ) = |Gs (Y ) | and d+Gs (vj )

= |Gs (X ) |.

vi : Cd = Gatt .resume(“Encrypt”, d , dk );

sends the Cd to vj ;

vj : await φ input data Cdi , i ∈ [φ], where φ = d
+
G
II

(vj );

di = Gatt .resume(“Decrypt”,Cdi , dk );

({outpk }k∈[ψ ]) = Gatt .resume(“Compute”, {di }i∈[φ ], ⊥), where

ψ = d−
G
II

(vj );

Results Return πRR : for each ℓ(v , U) ∈ GII, v ∈ {P1, . . . , Pn }:

v : Cd = Gatt .resume(“Encrypt”, d , dk );

sends the Cd to C;

C: d = Dec{dk ,Cd }, d ∈ outp ;

Figure 3: Oblivious distributed computing (ObliDC) frame-

work

the adversary over the network. To against traffic analyses, ObliDC

ensures its data shuffle satisfies both oblivious traffic direction and

oblivious traffic size. That is, the framework guarantees that the

outer degree of vertexes in Gs (X ) is identical to |Gs (Y )|, and the

inner degree of vertexes in Gs (Y ) is identical to |Gs (X )|. Before job

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

91



Job Deployment Job Initialization Job Execution Results Return

Job Data-flow Graphs3 instances

3 instances

ObliDC Framework
An Instance of ObliDC framework (Real-world 

Privacy-preserving Job Protocol in MapReduce)



JI

JE

RR
d

𝓤 𝓟 

d
𝓟 

d
𝓤 𝓟 

code
𝓤 𝓟 

JD

𝓤 

𝓟𝟑 

𝓟𝟐 

𝓟𝟏 

𝓟𝟐 

𝓟𝟏 

𝓟𝟑 

𝓟𝟑 

𝓟𝟏 

𝓤 𝓤 
𝓟 

Figure 4: Modular construction for a real-world privacy-

preservingMapReduce job protocol with threemappers and

two reducers using ObliDC framework

execution, a constantC is chosen, and all data blocks in the network

are padded to lengthC . If we encrypt these blocks in a semantically

secure encryption scheme, the adversary can only distinguish two

blocks from their ciphertexts with negligible probability.

A job code in ObliDC is divided into two parts: code− and code+.
The former is the sensitive job code without being exposed, while

the latter is the public shared code for each job including the public

key generation PKE.GEN(·), encryption and decryption scheme

Enc{k, ·},Dec{k, ·}. Functions of the four subroutines are described
as follows:

• Job Deployment π JD : For each server P participating in a

job, the userU generates a symmetric key dk for encrypting the

sensitive data and code in authenticated encryption scheme (i.e.,

AES-GCM [31]). The code− in ciphertext and the public code code+

are then sent to P. After receiving codes fromU, P first installs

code+ into the enclave and calls the PKGen(·) function to generate

a pair of public and private keys (pk, sk) for securely delivering dk .
The private key sk is kept in the isolated area, and the public key

pk as well as the signature σ signed with Gatt ’s private keymsk
are returned toU as a remote attestation (see Fig. 1 in detail).U

verifies the correctness of σ using the Gatt ’s public keympk . If it
succeed,U encrypts the symmetric key dk with pk and sends the

Ckey to P’s enclave. P decrypts the ciphertext with sk first to get

the symmetric key dk , and then decrypts Ccode with dk to get the

sensitive job code code−.
• Job Initialization π J I : For each taskv in the first phase, the data

block d as input is padded to the constant size C byU if necessary.

d is then encrypted with dk and sent to P’s enclave. v decrypts the

data block by calling Gatt . It removes any dummy data and then

executes a function f on this input. After finishing the task, the

enclave pads each output block of f to the constant size C for all

tasks in the next phase.

• Job Execution π JE : Recall that an edge ℓ(vi ,vj ) in the graph

GII represents the existence of a traffic transmission from vi to vj
in which vi encrypts one of vj ’s input blocks d (the outp of vi ) in
the enclave and delivers it to vj , and vj decrypts it and calls the

sensitive code code− as in job initialization. Note that a complicated

job may consist of many phases of tasks; hence the process that

intermediate results generated by tasks are sent to other tasks for

further processing may repeat multiple times. From this point of

view, a complicated execution process can be divided into multiple

π JE protocols.

• Results Return πRR : For each task performed in the last phase,

after the job is finished, the userU downloads the job outputs from

the server P where task v is performed and decrypts it with the

symmetric key dk .

Design of Backdoors in ObliDC. In ObliDC, we adopt two proof

techniques in the UC framework. The first is extraction. In an at-

tested execution secure processor, we plant a backdoor in the en-

clave program to allow S to extract the real inputs of corrupted

servers. We assume that each server has a special “label”. When

S provides the correct label of a server, the enclave program will

leak the real inputs of this server. However, this technique is not

harmful to the security of honest servers, because no one learns

honest parties’ labels, including the honest parties themselves. The

second is named equivocation, which plants a backdoor in Gatt to

enable the simulator S to sign on any data it needs during simu-

lation. Recall that in the UC framework, the simulator S has no

idea about the inputs of an honest server. It has to choose a canon-

ical one and send to Gatt on behalf of this server. While in the

real world, the environment Z provides honest servers the real

inputs. After the simulation terminates, the ideal functionality F

evaluates on the canonical input provided by S and generates a

false output, which can be different from the correct output outp
in the real world. Moreover, S is unable to sign and modify Gatt ’s

signature because the private keymsk is never revealed in public.

This can be dangerous because it helpsZ to distinguish the ideal

world from the real world. To make the simulation successful, we

enable the simulator S to program messages between a corrupt

server andGatt by planting a trapdoory inside the enclave program
(“compute”,d,y). If the trapdoor is ⊥, it will compute on the input

block d and generate a real output outp. Otherwise, Gatt signs on
y and returns y directly. This allows S to sign on any data it needs

during simulation. Similar to the extraction technique, equivoca-

tion will not do harm to an honest server’s security, because the

trapdoor y is always ⊥ in functions called by honest servers.

5.2 Modular constructions for concrete job

protocols

The basic two-party protocols provided by ObliDC can be used to

construct concrete privacy-preserving job protocols in distributed

computing frameworks. For example, Fig. 4 shows a protocol in-

stance of ObliDC. In this instance, three servers participate in per-

forming a job. In job deployment,U communicates with all servers

to distribute the job code and the symmetric key, which performs

π JD three times. That is, the real-world privacy-preserving job

deployment protocol consists of three instances of π JD . Similarly,

in job initialization,U communicates with three tasks to be per-

formed in the first phase, which means it has three instances of π J I .
During the shuffle process, because ObliDC framework is required

to satisfy oblivious traffic direction, all tasks in the parent phase

send data blocks to all tasks in the child phase. Hence, the real-

world protocol has 3 × 2 = 6 instances of π JE . For results return, it
is obvious that the protocol contains two instances of πRR .

Some security solutions for MapReduce (i.e., [2],[14]) also con-

sider privacy leakage in network-level access pattern. In these pre-

vious works, all data blocks transmitted in the network are padded

to the same size. For example, in [14], all mappers deliver interme-

diate results to all reducers to achieve oblivious traffic direction. In

[2], similarly, all mappers send intermediate results to all mixers

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

92



Fπ [sid , G = {GI, GII }, U, P1, . . . , Pn ,C]

Job Deployment: for each ℓ(U, Pi ) ∈ GI, i ∈ {1, 2, . . . , n }

Upon receiving code− from U:

notify S, A of |code− | and store code− ;

send code− to P;

send a public delayed output “okay” to U;

Job Initialization: for each ℓ(U, v) ∈ GII, v ∈ {P1, . . . , Pn }

Upon receiving d from C:

notify S, A of C ;

compute on d , ({outpk }k∈[ψ ]) = f (d ), whereψ = d−G
II

(v);

send {outpk }k∈[ψ ] toψ subsequent tasks, respectively;

Job Execution: for each ℓ(vi , vj ) ∈ GII, vi , vj ∈ {P1, . . . , Pn }

Upon receiving d from vi :

await {di }i∈[φ−1] from vj , where d+G
II

(vj ) = φ ;

if receive the number of input from vj less than φ − 1 then

abort execution;

notify S, A of C ;

compute on φ input blocks, ({outpk }k∈[ψ ]) = f (d , {di }i∈[φ−1]), where

ψ = d−
G
II

(vj );

send {outpk }k∈[ψ ] toψ subsequent tasks, respectively;

Results Return: for each ℓ(v , U) ∈ GII, v ∈ {P1, . . . , Pn }

Upon receiving d from v :

notify S, A of C ;

send a delayed output d to C;

FJD [sid , U, P]

Upon receiving code− from U:

notify S, A of |code− |;

send code− to P;

send a public delayed output “okay” to U;

FJ I [sid , U, v]

Upon receiving d from C:

notify S, A of |d |;

compute on d , ({outpk }k∈[r ]) = f (d ), where r is the number of blocks sent by

v in total in the real world;

send {outpk }k∈[r ] to r subsequent tasks, respectively;

FJ E [sid , vi , vj ]

Upon receiving d from vi , vi ∈ {P1, . . . , Pn }:

await {di }i∈[t−1] from vj , where t is the number of blocks received by vj in

total in the real world;

notify S, A of |d |;

compute on t input blocks, ({outpk }k∈[r ]) = f (d , {di }i∈[t−1]), where r is the

number of blocks sent by vj in total in the real world;

send {outpk }k∈[r ] to r subsequent tasks, respectively;

FRR [sid , U, v]

Upon receiving d from v , v ∈ {P1, . . . , Pn }:

notify S, A of |d |;

send a delayed output d to U;

Figure 5: Ideal functionalities of oblivious distributed computing and four subroutines in the ObliDC framework

first, and mixers then send permuted results to all reducers, which

satisfies oblivious traffic direction as well. ObliDC is motivated by

these previous efforts and can be regarded as a generic privacy-

preserving distributed computing framework based on Intel SGX.

Following this idea, more security solutions can be proposed in

other frameworks, such as Microsoft Dryad [32] and Apache Tez

[33].

5.3 Correctness of ObliDC

Theorem 1. Assuming that both code+ and code− are programmed

correctly, and Gatt properly performs these codes, then a protocol in-

stance of the ObliDC framework, π generates a correct output under

the passive attacks.

Proof. Based on the observation that an adversary performing

passive attacks who does not disrupt the operation of the ObliDC

framework in any way, the proof is trivial, and we omitted here. �

6 FORMAL PROOF OF OBLIDC IN THE UC

FRAMEWORK

In this section, we formally prove the security of a protocol in-

stance π of the ObliDC framework. We first introduce the ideal

functionality Fπ for oblivious distributed computing and prove the

security equivalence of Fπ andODC-privacy (Section 6.1). We then

present ideal functionalities of four subroutines in ObliDC, denoted

as FJD , FJ I , FJE , FRR , and prove each of them can be UC-realized

by the corresponding subroutine, respectively (Section 6.2). Finally,

we demonstrate that the protocol π is able to UC-realize Fπ in

(FJD , FJ I , FJE , FRR )-hybrid model
2
.

6.1 Security Equivalence of Fπ and

ODC-privacy

The ideal functionality Fπ for oblivious distributed computation

is shown in Fig. 5, which is partitioned into four phases. In job

deployment, for each server P, upon receiving code− from the user

U, Fπ notifies the size of code to S and A. After that, it stores

the job code and returns “okay” toU. In job initialization, for each

task v in the first phase, after receiving one input block d fromU,

Fπ sends S and A the fake size of d — the constant C to satisfy

oblivious traffic size. Output blocks outp1, . . . ,outpψ are later sent

to otherψ units respectively, whereψ is equal to the outer degree

2
We note that in some distributed computing frameworks, it is possible for some

protocols to have tasks in only one phase. Hence, these protocols can only be

composed by π JD , π J I , πRR three subroutines, and the security will be proved in

(FJD , FJ I , FRR )-hybrid model. In this case, Fπ will be re-designed as well. In this

paper, for the generality, we choose more complicated protocols with tasks in more

than one phase.

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

93



of v in GII. In job execution, for each data traffic between two tasks

vi and vj , upon receiving an input block from vi , Fπ needs to wait

for other φ − 1 input blocks from vj , where φ is the inner degree

of vj in GII. If the number of input blocks Fπ receiving from vj is
less than φ − 1, Fπ will abort execution, which is directed by the

oblivious traffic direction. Otherwise, Fπ continues to compute on

total φ input blocks and it notifies A and S the constant C . The
same-sized output blocks will later be sent to tasks in the next

phase, which number is identical to the outer degree of vj . Finally,
in the result return, upon receiving an input block d from the task

v , Fπ simply notifies S andA the constantC as the block size and

delivers d toU. We have

Theorem 2. A job protocol π in the distributed computing frame-

work UC-realizes Fπ if and only if π is ODC-privacy.

The proof of Theorem 2 is given in Appendix A.

6.2 Security of Subroutines in ObliDC

The four ideal functionalities FJD , FJ I , FJE , FRR for the four sub-

routines of ObliDC are shown in Fig. 5. After receiving the job code

code− fromU, FJD directly delivers it to P, notifies S and A the

code size, and returns “okay” toU. For FJ I , upon receiving a input

block d from the user, it tells S and A of the size of d and per-

forms the task on d . The output blocks are later sent to r following
tasks respectively. Note that a real-world job protocol always can

be executed regardless of whether it is oblivious traffic direction.

Hence, r here can be flexible and acceptable for a different number

of input blocks in the real world without the restriction ofψ blocks

in oblivious traffic direction. That is to say, r is possible to be any

numbers less thanψ . For the ideal functionality of the job execution
FJE , upon receiving an input block d from vi , it has to wait other

t − 1 blocks fromvj . Similarly, t is also dependent on the real-world

execution and can be less than φ in Fπ . FJE then works on these t
input blocks and transfers r output blocks to r units respectively.
For the last ideal functionality FRR , upon receiving an input block

d , FRR simply tells S and A the size of the block and delivers d
to U. In the following, we demonstrate that each subroutine is

UC-secure in their corresponding ideal functionality. We have

Theorem 3. Assuming all data transmission outside the TCB is

encrypted in an authenticated encryption scheme, and the scheme

is semantically secure, then the protocol πα ∈ {π JD , π J I , π JE , πRR }
UC-realizes Fα in the presence of a malicious, adaptive adversary A.

The proof of Theorem 3 is given in Appendix B.

6.3 Security of Protocol Instance of ObliDC

In this section, we demonstrate the security of a real-world privacy-

preserving job protocol π in distributed computing framework.

First, we have

Theorem 4. Let π = (π JD , π J I , π JE , πRR ) be a protocol instance
of ObliDC framework. Each subroutine ξ inside π UC-realizes its

corresponding ideal functionality Fξ . We say that if π UC-realizes

Fπ , the composed protocol π ξ /Fξ UC-realizes Fπ as well, where

π ξ /Fξ represents replacing an ideal functionality Fξ called by Fπ
with a real protocol ξ UC-realizing Fξ .

Table 2: Summary of applications used in evaluatingObliDC

Application LOC (code−)
Size of enclave

(mapper + reducer)

Matrix Calculation 75 325KB + 331KB

K-means 117 375KB + 330KB

Monte Carlo Simulation 133 374KB + 330KB

WordCount 173 330KB + 331KB

RandomWriter 167 325KB + 331KB

Float-point Calculation 85 325KB + 330KB

Proof. This theorem can be demonstrated from universal com-

posability directly. �

we now prove the distributed job protocol π UC-realizes Fπ in

(FJD , FJ I , FJE , FRR )-hybrid model.

Theorem 5. If all data transmission outside the TCB is encrypted

in an authenticated encryption scheme, and the scheme is semantically

secure, then the protocol π as an instance of ObliDC framework UC-

realizes Fπ in (FJD , FJ I , FJE , FRR )-hybrid model with the presence

of a malicious, adaptive adversary A. That is,

REALπ ,A,Z
c
≡ IDEALFπ ,S,Z

The proof of Theorem 5 is given in Appendix C.

7 EXPERIMENTS AND EVALUATION

To assess the efficiency of ObliDC, we realize the framework in

MapReduce and compare its performance with the original MapRe-

duce in several applications. These applications are listed in Table

2.

ObliDC inMapReduce andApplications. To be compatiblewith

the SGX code in C language, wemeasure the performance of ObliDC

on Hadoop Streaming. We choose six real-world applications and

realize them using version 2.1 Intel SGX SDK [26]. For applications

realized in Intel SGX, we define sensitive job code code− in the

.edl file, and all data blocks in the network are encrypted using

AES-GCM (we use AES-NI instructions to implement the encryp-

tion scheme). Before showing our results, we first briefly introduce

each application:

(1) Matrix Calculation: Randomly choose two large matrices

with the same dimension and calculate their product. Each

element in both matrices ranges from 100 to 1000.

(2) K-means: Randomly choose a series of points (x,y) as sam-

ples in the Cartesian coordinate system. Given the number

of clusters and iterations, make clusters for these points. We

use Euclidean distance in the calculation.

(3) Monte Carlo Simulation: Randomly choose a series of points

(x,y) as samples in a 2×2 square in the Cartesian coordinate

system. Count the number of points resident in the unit

circle and statistically estimate the value of Pi.

(4) WordCount: Count the number of occurrences for each word

in a text set.

(5) RandomWriter: Randomly generate a sequence of strings

with a predefined length.

(6) Float-point Calculation: For each sample, randomly generate

two decimal numbers with four places and perform their

addition and multiplication once respectively.

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

94



10

12

14

16

18

20

22

24

26

28

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(s
)

Matrix Dimension (power of 2)

ObliDC Original MapReduce

(a) Matrix Calculation

15

16

17

18

19

20

21

22

23

24

25

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(s
)

# of Samples (power of 2)

ObliDC Original MapReduce

(b) K-means

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(s
)

# of Samples (power of 2)

ObliDC Original MapReduce

(c) Monte Carlo Simulation

15

20

25

30

35

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(s
)

Input Size (x10 MB)

ObliDC Original MapReduce

(d) WordCount

15

25

35

45

55

65

75

85

95

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(s
)

Output Size (x10 MB)

ObliDC Original MapReduce

(e) RandomWriter

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(s
)

# of Samples (power of 2)

ObliDC Original MapReduce

(f) Float-point Calculation

Figure 6: Comparison of execution time of applications run-

ning in ObliDC and in the original MapReduce

Experimental Setup. We perform our experiments on a server

equipped with 3.00GHz Intel Xeon E3-1220 v6 CPU, 16GB RAM

and, 100GB disk. We create a cluster with ten virtual machines

as worker nodes, and each of them is under Ubuntu 16.04 LTS

operation system. The Hadoop version we use is 2.7.2.

Comparison in Different Applications. As shown in Fig. 6, in

these six applications, jobs performed in ObliDC have stable run-

ning time, with overheads between 33%-110% over the original

MapReduce. The overhead is mainly due to three factors: (1) En-

cryption and decryption in the enclave. After reading task input

into the secure region, mappers and reducers have to decrypt first.

Before task results leaving from the enclave, they are encrypted

again to keep confidentiality. Moreover, all data in the enclave are

also encrypted by Memory Encryption Engine (MEE). Before exe-

cuting CPU instructions and accessing the encrypted memory in

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 r
u

n
n

in
g 

ti
m

e

map+reduce shuffle hadoop

Matrix
Calculation

K-means
Monte Carlo
Simulation

WordCount RandomWriter
Float-point
Calculation

Figure 7: Normalized running time in phases of job for ap-

plications realized in ObliDC and original MapReduce (for

each application, the left bar shows the normalized time in

ObliDC and the right bar is in original MapReduce)

an enclave, the processor has to decrypt these data first; (2) Context

switching and enclave transitions. During entering and exiting an

enclave (performing ECALL and OCALL functions), CPU has to load

contents from memory into the cache, and it will lead to a perfor-

mance impact. Similarly, the system interrupt is another reason

leading to a performance reduction. If it happens, OS has to store

all program states at the breakpoint and recover these states before

performing the program again; (3) Oblivious shuffle for a large

number of intermediate results. To hide the traffic access pattern of

the shuffle, ObliDC produces extra dummy messages and the size of

intermediate results are larger than in original MapReduce, both of

which will bring more overheads because the real mapper outputs

have to take a long time before been transferred to the reducer.

From the entire job running time, it also can be seen that the

overheads in some IO-intensive applications (i.e., WordCount and

RandomWriter) are more apparent than other CPU-intensive ap-

plications. In WordCount and RandomWriter, massive interme-

diate results have to be encrypted and padded to the same size.

Before performing reduce tasks, all dummy data has to be removed

again, which takes a long time (e.g., about 27s in WordCount and

44s in RandomWriter). While in CPU-intensive applications, the

overheads can be much lower because these applications normally

generate fewer intermediate results (e.g., mappers in Monte Carlo

Simulation only output several numbers, which bring 4s overheads

merely).

Overheads in Job Phases. As depicted in Fig. 7, we observe that

the oblivious shuffle (including oblivious traffic direction and obliv-

ious traffic size) using in ObliDC is significant, especially in IO-

intensive jobs. The overhead is up to 40.4% inWordCount and 50.1%

in RandomWriter. The cost primarily due to the privacy-preserving

shuffle of a large amount of data. We have to choose a significant

large constant number as the traffic size to accommodate all net-

work traffic. While in some CPU-intensive jobs, such as K-means,

Monte Carlo Simulation and Float-point Calculation, the overheads

in shuffle are much lower because of their few map task outputs,

which only between 23.7%-27.6% over the entire running time.More-

over, in these CPU-intensive applications, the costs of mappers and

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

95



Table 3: Comparison of distributed computing security so-

lutions

Security Solutions

Against network-level

access pattern

Genetic

framework

Formally Proved

in ObliDC

Haven [18] × X ×

VC3 [1] × × X

M2R [2] X × X
Ohrimenko et al. [14] X × X

Opaque [17] X × ×

ObliDC X X X

reducers in enclave are relatively larger than that of the oblivious

shuffle. The second observation is that compared with applications

realized in original MapReduce, shuffle processes of ones realized

in ObliDC take more time, which ranges from 1.03× to 1.51× as the

insecure shuffle. As having analyzed before, oblivious shuffle used

in ObliDC generates a large amount of dummy data to hide the

network traffic access pattern. Both traffic direction and traffic size

are oblivious under the conditions of traffic padding. Thus, it takes

more time to shuffle intermediate results than original MapReduce.

8 RELATEDWORK

Haven [18] is the first to propose combining Intel SGX with the

untrusted cloud. Before executing the program, Haven has to load

the whole Windows 8 OS library into an enclave, which makes a

large TCB. Moreover, the system cannot guarantee data integrity

during computation in the cloud. VC3 [1] is another SGX-based

secure system designed on Hadoop MapReduce. Instead of loading

the whole OS library into the enclave as Haven, VC3 only keeps

sensitive code and data in the TCB. Verifiers in VC3 guarantee all

outputs from the tasks (or users) are not modified in the network,

which protects data integrity. However, although all messages are

encrypted in the network, VC3 is unable to protect against pri-

vacy leakage from network-level access patterns [13]. M2R is a

privacy-enhanced system based on VC3, which modifies the shuffle

process in cascaded mix network [34]. Ohrimenko et al.[14] also

find VC3 insecure during shuffling and improves its security by

Melbourne shuffle [35]. However, bothM2R and VC3 only focus on

the MapReduce framework and the shuffle process instead of the

genetic framework and the life-cycle of the job in ObliDC. Opaque

[17] is a security system based on Spark SQL. It protects data pri-

vacy from both network and memory level access pattern. The

system rewrites some operators in Spark SQL to make access pat-

tern oblivious during enclave computing. All these existing efforts

have not provided rigorous formal security proofs for their systems.

A comparison of previous distributed computing security solutions

and ObliDC is given in Table 3.

Some other works are devoted to formalizing trusted processor.

Considering trusted processors like Intel SGX are hard to prevent

from side-channel attacks, Tramèr et al. [36] propose a new model

for trusted processors, named transparent enclave, in which all se-

crets and states of the application in the enclave are revealed to

the adversary during execution. They also show that some security

protocols such as commitment schemes and zero-knowledge proofs

can be realized with transplant enclave. Similarly, Pass et al. [3]

propose a formal abstraction for genetic trusted processor Gatt . In-

stead of revealing inner states to adversary like transplant enclave,

Gatt keeps all sensitive information inside the enclave such as se-

cret keymsk . During formal proofs in GUC framework, Gatt works

as a global trusted setup functionality, which makes it sharable by

many protocols. While in transplant enclave, the setup is assumed

to be “local” and some enclave information like master keys cannot

be reused in protocols. ObliDC allows enclave to create attestations

for more jobs with a single private key, hence we choose Gatt in

our proofs. Unlike our work, both of these previous work study

some common secure computation protocols instead of focusing on

a specific application framework, such as distributed computation.

We take Gatt as a primitive during formal proofs, and further pro-

pose a model of distributed computing framework and a general

privacy-preserving framework. Subramanyan et al. [37] propose a

formal verification method for trusted hardware platforms. Instead

of proving the security of protocols as mentioned above, they focus

on program execution inside the enclave. They show how to prove

the security of remote attestation and how a trusted hardware plat-

form satisfies integrity, confidentiality, and secure measurement.

The differences are that they focus on trusted hardware platforms

instead of distributed computing frameworks, and they only care

about inner-enclave security and some security mechanisms of the

trusted processor, while the security of job protocols takes center

stage in our work.

9 CONCLUSION AND FUTUREWORK

In this paper, we proposed an oblivious distributed computing

framework, named ObliDC, which allows for modular construc-

tion of job protocols in distributed computing based on Intel SGX

with provable security in the UC framework. We first modeled the

life-cycle of a job as job data-flow graphs by the data transmission

between a user and a task as well as between tasks. In this graph

model, to prevent traffic analysis, we proposed two preconditions:

oblivious traffic direction and oblivious traffic size, as countermea-

sures. We further formally defined the notion of data privacy in

distributed computation, named ODC-privacy. Operations of the

life-cycle of a job are specified by four subroutines in the ObliDC

framework, which are designed to satisfy ODC-privacy. Inspired

by Gatt [3], a formal abstraction for the trusted processor, we for-

mally proved the security of the four subroutines and that of the

job protocol π composed of the four subroutines in the presence of

adaptive adversaries. As applications of ObliDC, we provided for-

mal security proofs of VC3 [1] andM2R [2]. In ObliDC, we mainly

considered the scenarios in distributed computation. While in other

fields like anonymous communications, some systems are proposed

with the help of Intel SGX as well, such as SGX-Tor [38]. It will

be interesting to adapt our ObliDC framework to other fields and

formally prove their security.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation

of China under Grant No.61672062, 61232005, U1804263, 61702105

and AXA Research Fund in Singapore.

REFERENCES

[1] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. Vc3: Trustworthy data

analytics in the cloud using sgx. In IEEE S&P, pages 38–54. IEEE, 2015.

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

96



[2] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and

Chunwang Zhang. M2r: Enabling stronger privacy in mapreduce computation.

In USENIX Security, pages 447–462, 2015.

[3] Rafael Pass, Elaine Shi, and Florian Tramer. Formal abstractions for attested

execution secure processors. In EuroCrypt, pages 260–289. Springer, 2017.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster computing with working sets. USENIX HotCloud,

10(10-10):95, 2010.

[6] Apache storm, 2018. https://storm.apache.org/index.html.

[7] U.s. federal cloud computing market forecast 2015–2020, 2015. http://www.mark

etresearchmedia.com/?p=145.

[8] Cisco global cloud statistic: Forcasting and methods, 2015–2020, 2015.

https://www.cisco.com/c/dam/m/zh_cn/solutions/service-provider/sp_gciwhit

epaper_whitepaper_cn.pdf.

[9] The cloud computing and distributed systems (clouds) laboratory, 2014.

http://www.cloudbus.org/.

[10] Mobile & cloud computing laboratory (mobile & cloud lab), 2014.

http://mc.cs.ut.ee/.

[11] Advanced encryption standard (aes), 2008. https://nvlpubs.nist.gov/nistpubs/FIP

S/NIST.FIPS.197.pdf.

[12] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[13] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern

disclosure on searchable encryption: Ramification, attack and mitigation. In

NDSS, 2012.

[14] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf

Kohlweiss, and Divya Sharma. Observing and preventing leakage in mapreduce.

In CCS, pages 1570–1581. ACM, 2015.

[15] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,

volume 9, pages 169–178, 2009.

[16] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with

relatively small key and ciphertext sizes. In PKC, pages 420–443. Springer, 2010.

[17] Wenting Zheng, Ankur Dave, Jethro Beekman, Raluca Ada Popa, Joseph Gonzalez,

and Ion Stoica. Opaque: A data analytics platformwith strong security. In USENIX

NSDI, 2017.

[18] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from

an untrusted cloud with haven. In USENIX OSDI, pages 267–283, 2015.

[19] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations

among notions of security for public-key encryption schemes. In CRYPTO, pages

26–45. Springer, 1998.

[20] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation

for mapreduce. In SODA, pages 938–948. SIAM, 2010.

[21] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. Vc3: Trustworthy data

analytics in the cloud. Technical Report, 2014.

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, pages 136–145. IEEE, 2001.

[23] Ran Canetti. Security and composition of multiparty cryptographic protocols.

Journal of Cryptology, 13(1):143–202, 2000.

[24] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative

technology for cpu based attestation and sealing. In International Workshop on

Hardware and Architectural Support for Security and Privacy, volume 13. ACM,

2013.

[25] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint

Archive, 2016(086):1–118, 2016.

[26] Intel software guard extensions sdk for linux os (version 2.1), 2018. https://down

load.01.org/intel-sgx/linux-2.1/docs/Intel_SGX_Developer_Reference_Linux_2.1

_Open_Source.pdf.

[27] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-

posable security with global setup. In TCC, pages 61–85. Springer, 2007.

[28] Yehida Lindell. Secure multiparty computation for privacy preserving data

mining. The Journal of Privacy and Confidentiality, 1(1):59–98, 2005.

[29] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:

Deterministic side channels for untrusted operating systems. In IEEE S&P, pages

640–656. IEEE, 2015.

[30] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations

among notions and analysis of the generic composition paradigm. In AsiaCrypt,

pages 531–545. Springer, 2000.

[31] David McGrew and John Viega. The galois/counter mode of operation (gcm).

Submission to NIST Modes of Operation Process, 20, 2004.

[32] Microsoft dryad, 2018. https://www.microsoft.com/en-us/research/project/dry

ad/.

[33] Apache tez, 2018. http://tez.apache.org/.

[34] Marek Klonowski and Miroslaw Kutylowski. Provable anonymity for networks

of mixes. In International Workshop on Information Hiding, pages 26–38. Springer,

2005.

[35] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. The

melbourne shuffle: Improving oblivious storage in the cloud. In International

Colloquium on Automata, Languages, and Programming (ICALP), pages 556–567.

Springer, 2014.

[36] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. Sealed-glass proofs: Using transparent enclaves to prove and sell knowledge.

In IEEE EuroS&P, pages 19–34. IEEE, 2017.

[37] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A

Seshia. A formal foundation for secure remote execution of enclaves. In CCS,

pages 2435–2450. ACM, 2017.

[38] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han.

Enhancing security and privacy of tor’s ecosystem by using trusted execution

environments. In USENIX NSDI, pages 145–161, 2017.

A PROOF OF THEOREM 2

Theorem 2 Revisited. A job protocol π in the distributed com-

puting framework UC-realizes Fπ if and only if π is ODC-privacy.

Proof. For the “only if” direction, assuming π is not ODC-

privacy, we show that it is unable to UC-realize Fπ . This can be

done by constructing an environment machineZ and an adversary

A in the real world. For any PPT simulator S,Z can distinguish

whether it is dealing with π and A in the real world or S and Fπ
in the ideal world. We discuss in the following two cases:

1) π is not semantically secure. Given the ciphertext of a mes-

sagem in the network, let |m | denote the message length. In the

ideal world, upon a receiving a message, Fπ sends the length of

the message to the simulator S, which is the only information ob-

tained by S about the message. Hence, |m | is a part of S’s view and

is written to S’s output tape. Formally, let IDEALFπ
S
(λ, inp) and

REALπ
A
(λ, inp) denote the view of S and A in the ideal and real

world, respectively, and we further have |m | ∈ IDEALFπ
S
(λ, inp).

However, in the real world, if a message in π is not encrypted by

a semantically secure encryption scheme, then a PPT adversary

A can exist who can extract more information aboutm, and we

denoted bym′. Then both |m | andm′ are written to the output tape

ofA, i.e., |m |,m′ ∈ REALπ
A
(λ, inp). Hence,Z is able to distinguish

the ideal world and the real world from the views of S andA with

a non-negligible probability.

2) π is not oblivious traffic. In this case, the adversary A is able

to distinguish whether Gb is G0 or G1 in the polynomial time as

follows:

• Difference in Graph Structure. For a given job and fixed system

parameters, assuming that sizes of two inputs inp0 and inp1 are
equal but π does not satisfy oblivious traffic direction, we then

have ∃Gs ⊆ Gb , where ∃vi ∈ Gs (X ), ∃vj ∈ Gs (Y ), ℓ(vi ,vj ) <
E. In other words, ∃vi ∈ Gs (X ),d

−
Gs
(vi ) < |Gs (Y )| and ∃vj ∈

Gs (Y ),d
+
Gs
(vj ) < |Gs (X )|. For a data flow ℓ(vi ,vj ) in the shuffle

process of π , if the taskvi makes output blocks less than |Gs (Y )|,vj
will receive input blocks less than |Gs (X )|. In the ideal world,S sim-

ulates the operation of the real world only if it providesφ = |Gs (X )|
input blocks to Fπ . Otherwise, the simulation won’t be continue.

However, in the real world, π always can execute regardless of

the number of input blocks, which makes a difference to the ideal

world and helpsZ distinguish these two worlds. Moreover, traffic

analysis in the real world can help A extract more information

than S. Thus, in this issue, Z can tell whether it is dealing with

the ideal world or the real world.

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

97



• Difference in Edge Weights. It is apparent that A will distin-

guish G0 and G1 based on weights of edges if π is not oblivious

traffic size. In the ideal world, the ideal functionality Fπ always

pads the size of data blocks to the constant C before transmit-

ting. While in the real world, if π is not oblivious traffic size,

the size of some block can be less than C . Therefore, we have

∃|m | ∈ IDEALFπ
S
(λ, inp), ∃|m′ | ∈ REALπ

A
(λ, inp), |m | , |m′ |. If A

has some background knowledge, it can infer more information

than S in the ideal world. This difference in output tapes of A and

S allowsZ to distinguish the ideal world and the real world.

For the “if” direction, assume that π does not UC-realize Fπ ,

then it is not ODC-privacy. In this case, a PPT Z exists, which can

distinguish transcripts of S and A generated in the ideal world

and the real world, respectively. During the simulation of π , S
only receives block size from Fπ in the ideal world, while A can

extract extra information in the following three ways. Firstly, after

intercepting an encrypted data block, if the encryption scheme is

not semantically secure, A can infer more information other than

the block size. Secondly, in the ideal world, Fπ can continue its

work only if it has received φ input blocks. If it fails, π will not

be UC-secure any more, which makes a chance for A to perform

traffic analyze to learn more privacy. Finally, if A can distinguish

G0 and G1 by observing the size of data traffic over the network,

then more information is written to the output tape of A if it has

some background knowledge about the input data, and π does not

satisfy oblivious traffic size required in oblivious traffic. �

B PROOF OF THEOREM 3

Theorem 3 Revisited. Assuming all data transmission outside

the TCB is encrypted in an authenticated encryption scheme, and the

scheme is semantically secure, then the protocol πα ∈ {π JD , π J I , π JE , πRR }
UC-realizes Fα in the presence of a malicious, adaptive adversary A.

Proof. Here, we demonstrate the subroutine π JE can UC-realize

FJE as an example. Proofs of other subroutines are similar, and we

omit here. We assume that any communication betweenZ and A

or between A and Gatt is simply forwarded to S. According to

the communication process between vi and vj , we discuss in the

following four cases and construct S for each of them:

• Case 1: vi is honest before sending Cd and vj is honest when
receives Cd . In this case, both of vi and vj are honest during π JE
execution and S will perform operations on behalf of them. First,

S generates a canonical data block d ′ for vi in the ideal world

and sends it to FJE as an input. After S calling (“Encrypt”,d ′,dk)
in the real world, vj is honest as well. S then generates other

φ − 1 canonical input blocks for vj and delivers all of them to FJE .

After all of the blocks having prepared, FJE works on φ blocks and

generates a result outp. The indistinguishability proof of this case is
trivial as all communication between vi and vj is assumed to occur

over secure channels. The eavesdropper only extracts the length of

a message transmitted in the channel. In this case, the simulated

operation of S is identically distributed as the real execution in

case 1.

• Case 2:vi is honest before sendingCd tovj andvj is corrupt when
receives Cd . Similar to the case 1 except that Z provides another

φ − 1 input blocks for vj instead of S. Moreover, in case 2, A calls

the function (“Decrypt”,Cd ,dk) to decrypt the input block forvj in

enclave instead of S. If A makes a call (“Compute”, {di }i ∈[φ],⊥),
S will extract all real inputs by the extract trapdoor in the enclave

program and delivers them to FJE . After the ideal functionality FJE
generating outp, S replaces the message (“Compute”, {di }i ∈[φ],⊥)
fromA to Gatt with (“Compute”, {di }i ∈[φ],outp) by equivocation
backdoor, and forwards the response (outp,σ ) toA. Because of the

restriction of oblivious traffic direction and oblivious traffic size,

the adversary A receives the identical number of messages as the

simulator S in the ideal world. Additionally, all data blocks are

encrypted in semantically secure encryption scheme, which leads

to bothA and S only know the constant block lengthC . Hence, the
views of A and S are indistinguishable for taking passive attacks.

For the active attacks, althoughA is able to exchange block traffics

from two tasks during shuffle, this will not help it extract more

information because π JE satisfies both two preconditions perfectly.

While in the ideal world, S forwards all extracted input blocks

to FJE , which outputs the same result outp as the real world. If

A arbitrarily drops one data block in shuffle, S will simply drops

the corresponding block in the ideal world, which makes the same

result as well. Based on these analyses, no matter A takes passive

or active attacks, S will perfectly simulate its operations, and views

of them are indistinguishable in polynomial time.

• For another two cases: Case 3:vi is corrupt before sendingCd to

vj and vj is honest when receives Cd as well as Case 4: vi is corrupt
before sendingCd tovj andvj is corrupt when receivesCd are similar

to the case 2 above. The security of π JE in both cases can be reduced

to the semantic security of encryption scheme and oblivious traffic

as well. We omit them for the brevity. �

C PROOF OF THEOREM 5

Theorem 5 Revisited. If all data transmission outside the TCB

is encrypted in an authenticated encryption scheme, and the scheme

is semantically secure, then the protocol π as an instance of ObliDC

framework UC-realizes Fπ in (FJD , FJ I , FJE , FRR )-hybrid model

with the presence of a malicious, adaptive adversary A. That is,

REALπ ,A,Z
c
≡ IDEALFπ ,S,Z

Proof. We construct a simulator S for Fπ in the ideal world. It

works as follows:

Simulating the communication withZ. All input data received

fromZ will be wrote to the input tape of A, and the output of A

is copied to the output tape of S as well. Moreover, S is able to

achieve all messages between A and Gatt .

Simulating four subroutines in π . See cases of simulator S con-

structions in Section 6.2.

Simulating corruptions of servers. This can be proved by dis-

cussing different cases of simulator S constructions in corrupting

different servers during job protocol. We can show the views of

A and S are indistinguishable for each case. Due to the space

limitation, we omit the proof here.

We have declared that the protocol π performed by a malicious,

adaptive adversary A and n servers P1, . . . ,Pn in the real world

generate identical-distribution transcripts with S and Fπ in the

ideal world. In other words, no PPT Z can distinguish whether

it contacts with the ideal world or the real world. S operates by

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

98



running a simulated copy of A. For proving the computational

indistinguishability, we put all cases above together and analyze in

the following four aspects: input, output, intermediate messages

of servers in the view of S and A as well as corrupting method in

two worlds.

(1) Input: In all cases above, if a server is corrupt, during Gatt
computing, S is able to extract the real input by the trapdoor inside

the enclave program and sends to Fπ . Due to the fact that all

messages are transmitted over the secure channel in the ideal world

and the encryption scheme in the real world is semantically secure,

it is obvious that inputs of corrupt servers are the same under both

of these two worlds.

(2) Output: For all subroutines in π , if outputs of some corrupt

servers are generated by sensitive code computation (“Compute”, ·,⊥)
(e.g., v in job initialization or vj in job execution), the simulator

S will replace the message by (“Compute”, ·,outp), where outp is

generated by Fπ in the ideal world. This equivocation will generate

identical outputs as the ideal world.

(3) Intermediate messages: A copy of A is maintained inside the

S. Hence, all messages sent by A during protocol perform are

copied to the output tape of S, and messages received by A are

copied to the input tape of S as well. Therefore, both distributions

of messages received by A and sent from A in the real world are

identical to the ideal world.

(4) Parties Corruption: All communication between Z and A

are forwarded to S. If Z requires A to corrupt a server in the

real world, S will “corrupt” the corresponding server in the ideal

world and communicate with Fπ on behalf of the server. For all

corruptions in the real world, S can also realize them in the ideal

world.

Based on analyses above, we can conclude that the protocol π
UC-realizes Fπ in (FJD , FJ I , FJE , FRR )-hybrid model. �

D FORMAL PROOFS FOR VC3 ANDM2R
Some previous works such as VC3 [1] and M2R [2] are security

solutions based on distributed computing framework. However,

both of them only adopts heuristic security proof and semi-formal

reasoning [3], lacking formal proofs of security. In this section,

based on the formal model and ideal functionalities before, we give

formal proofs for these previous works.

Theorem 6. We denote the life-cycle of a job in VC3 as a proto-

col πVC3 = (πVC3

JD , π
VC3

J I , π
VC3

JE , π
VC3

RR ). We say that if πVC3
UC-

realizes the ideal functionality Fπ if and only if VC3 has a secure

shuffling process.

Proof. We denote the job data-flow graphs formed by πVC3

as GVC3 = {GVC3

I
,GVC3

II
}. By analyzing job performing in VC3,

we find two differences between πVC3
and the privacy-preserving

protocol constructed by ObliDC framework in this paper: (1) For the

subroutine πVC3

JE in πVC3
, it does not consider the secure shuffle.

The adversary A can extract more information about the sensitive

data by traffic analysis. While other three subroutines are identical

to corresponding ones in π . (2) The size of messages in VC3 are

not identical at all. They lack some padding data, so the adversary

A may infer some privacy if it has some background knowledge.

Hence, GVC3

II
satisfies neither oblivious traffic direction nor obliv-

ious traffic size. Formally speaking, ∃GVC3

s ⊆ GVC3

II
,GVC3

s is not

a complete bipartite graph. Moreover, in GVC3

II
= (VVC3

II
, EVC3

II
),

∃e1, e2 ∈ EVC3

II
,we1 , we2 , if we denote the size of transmitted

message by the weight of edge in the graph.

Straightforwardly, we research on the transmitted messages in

the shuffle process. During job execution in VC3, the system only

protects the confidentiality of data by encrypting message contents

and putting tasks execution in the isolated area, while it ignores

network-level access pattern. In the shuffle process, one mapper

may not send data blocks to all reducers, which makes GVC3

s not a

complete bipartite graph. Furthermore, ∃vi ∈ Gs (X ),d
−

GVC3

s
(vi ) <

|Gs (Y )| and ∃vj ∈ Gs (Y ),d
+

GVC3

s
(vj ) < |Gs (X )|. One mapper gen-

erates output blocks less than |Gs (Y )| which results in one reducer

has less than |Gs (X )| input blocks. During S simulates operations

with Fπ in the ideal world, S will only choose less than |Gs (X )|
canonical data blocks for vj , if vj is honest; If vj is corrupt, S can

only extract less than |Gs (X )| data blocks from Gatt by the trap-

door within as well. In both of these cases, Fπ will not perform

and abort execution because it does not have enough input blocks.

The outp can be calculated only if Fπ has φ = |Gs (X )| data blocks.
For (2), in the ideal world, all messages are padded to the same

size C , while they can be any size less than C in the real world.

Therefore, it is obvious thatZ is able to distinguish the transcripts

from the real world and ideal world by the size of received messages

in them. According to the analysis above,Z has the capability to

tell whether it contacts with the real world or the ideal world with

non-negligible probability. �

Theorem 7. We denote the life-cycle of a job inM2R as a protocol

πM
2R = (πM

2R
JD , π

M2R
J I , π

M2R
JE , π

M2R
RR ). We say that πM

2R
is able to

UC-realize the ideal functionality Fπ .

Proof. We denote the job data-flow graph formed by πM
2R

as

GM
2R = {GM

2R
I
,GM

2R
II
}. In this security solution, all mappers’ out-

put blocks pass through several mixers, which randomly permutes

all received messages in the enclave. Combined with the formal

model before, we conclude that GM
2R

II
is identical to the graph

formed by ObliDC framework. For each instance of πM
2R

JE executed

in the ideal world, S is able to achieve enough data blocks from the

real world and send to Fπ . It will not abort execution as in VC3.

In further, all messages transmitted in the network are encrypted

using a semantically secure encryption scheme. The plaintext is

padded with dummy data to the same size. Hence, the only infor-

mation A extracts from the ciphertext is the constant size C . If A
performs some active attacks, such as drop tuple attack and data

block misrouting attack, they will not help the adversary obtain

more information because both oblivious traffic direction and obliv-

ious traffic size are satisfied in GM
2R

II
. According to analyses above,

the protocol πM
2R

can be perfectly simulated in the ideal world,

and none PPT Z can distinguish the ideal world and the real world.

Hence, we say that πM
2R

is secure in the UC framework. �

Session 2A: SGX-based Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

99


	ObliDC: An SGX-based oblivious distributed computing framework with formal proof
	Citation
	Author

	Abstract
	1 Introduction
	1.1  Our Contributions
	1.2  Organization

	2  Preliminary
	2.1  Intel SGX
	2.2  Universal Composability
	2.3  Formal Abstraction for Secure Processors

	3  System Setup and Adversary Model
	3.1  System Setup
	3.2  Adversary Model

	4  Formal Computing Model and Definition of Data Privacy
	4.1  Formal Computing Model
	4.2  Preconditions Against Traffic Analysis
	4.3  Oblivious Distributed Computing - privacy

	5  ObliDC: SGX-based Oblivious Distributed Computing Framework
	5.1  Design Details of ObliDC
	5.2  Modular constructions for concrete job protocols
	5.3  Correctness of ObliDC

	6  Formal Proof of ObliDC in the UC Framework
	6.1  Security Equivalence of F and ODC-privacy
	6.2  Security of Subroutines in ObliDC
	6.3  Security of Protocol Instance of ObliDC

	7  Experiments and Evaluation
	8  Related Work
	9  Conclusion and Future Work
	References
	A  Proof of Theorem 2
	B  Proof of Theorem 3
	C  Proof of Theorem 5
	D  Formal Proofs for VC3 and M2R

