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Abstract. Password authentication is widely used to validate users’ i-
dentities because it is convenient to use, easy for users to remember,
and simple to implement. The password authentication protocol trans-
mits passwords in plaintext, which makes the authentication vulnerable
to eavesdropping and replay attacks, and several protocols have been
proposed to protect against this. However, we find that secure password
authentication protocols are often implemented incorrectly in Android
applications (apps). To detect the implementation flaws in password au-
thentication code, we propose GLACIATE, a fully automated tool combin-
ing machine learning and program analysis. Instead of creating detection
templates/rules manually, GLACIATE automatically and accurately learns
the common authentication flaws from a relatively small training dataset,
and then identifies whether the authentication flaws exist in other apps.
We collected 16,387 apps from Google Play for evaluation. GLACIATE suc-
cessfully identified 4,105 of these with incorrect password authentication
implementations. Examining these results, we observed that a significant
proportion of them had multiple flaws in their authentication code. We
further compared GLACIATE with the state-of-the-art techniques to assess
its detection accuracy.

Keywords: Password Authentication Protocol; Mobile Application Se-
curity; Authentication Protocol Flaws; Vulnerability Detection; Auto-
mated Program Analysis

1 Introduction

Although a variety of authentication protocols are proposed, most Android ap-
plications (apps for short) with online services are still using password to au-
thenticate user’s identity because it is simple and inexpensive to create, use and
revoke [13]. To validate the identity in the password authentication protocol [18]
(named as BPAP in this paper), a user sends a combination of username and
password in plaintext to a server through a client app, and the server replies
with an authentication-acknowledgement if the received password is valid.



While using BPAP over an insecure communication channel, the transmission
and verification of password become vulnerable to many attacks, such as eaves-
dropping and replay attacks. In recent years, many cases of password leakage,
even from those large corporations (e.g., Facebook and Yahoo), are reported.
To regulate the use of password, some secure password authentication protocols
(PAP) are proposed to help developers validate users’ credential: 1) BPAP over
Secure Socket Layer / Transport Layer Security (SSL/TLS) [4], which validates
the identities of the client and the server by checking their certificates and host-
name to set up a secure channel between them [12], and then the client sends the
combination of username and password over the secure channel; and 2) nonce-
based PAP [30], which utilizes the user’s password as a secret key to compute a
cryptographic function on a nonce value.

Unfortunately, we found that app developers tend to implement those secure
password authentication protocols incorrectly even though the requirements for
a secure password authentication are well-defined. A secure protocol with in-
correct implementation makes the authentication process become vulnerable to
attack. Suppose for example that in an app, a timestamp (Hour/Minute/Second)
is generated for use in a password hash. An attacker could then launch replay
attacks by using the hashed password at the same time every day.

To detect implementation flaws of PAP in Android apps, several approach-
es are proposed: MalloDroid [10] detects SSL implementation errors by check-
ing network API calls and Internet permissions. SMV-Hunter [25] detects SSL
vulnerabilities by launching MITM attacks, using generated inputs to simulate
interactions between users and servers. Chen et al. [5] proposed an approach
that targets the host head of HTTP implementations and launched a new at-
tack “Host of Troubles” on those HTTP implementations, and analyzed their
behaviour in handling the host headers. However, these approaches are highly
implementation dependant (i.e., they rely on specific APIs and inputs that can
only recognize certain protocols). To the best of our knowledge, there exist no
approach that can analyze password authentication protocols in a more gener-
al scope (e.g., BPAP over SSL/TLS and nonce-based PAP). Moreover, most of
the detected flaws are summarized in a manual and ad-hoc way, and thus the
detection processes are neither automated nor general.

To address the limitations of previous approaches, i.e., implementation de-
pendant and high manual-effort, we propose a novel approach to extend state-
of-the-art insecure password authentication implementation detection. Our ap-
proach first uses a machine learning algorithm, agglomerative hierarchical clus-
tering, to summarize detection rules in a fully automated way, and then utilizes
a fine-grained program analysis to detect flaws in Android apps according to
the generated rules. We implemented GLACIATE6, an automated analysis tool
to support end-to-end automatic detection of insecure password authentication
implementations. Given only a small amount of training data, GLACIATE creates
detection rules automatically. It generates enriched call graphs for the apps and
groups similar enriched call graphs into different clusters, and mines the pat-

6 GLACIATE: proGram anaLysis And maChIne leArning To dEtect
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terns of flaws in each cluster to obtain templates of insecure implementation.
GLACIATE then uses a forward and backward program slicing to locate the code
part of password authentication in an Android app, and compares it with the
obtained templates to check whether the implementation is insecure.

To assess the effectiveness of GLACIATE, we compared GLACIATE with two
state-of-the-art tools, MalloDroid [10] and SMV-Hunter [25]. We found that
GLACIATE successfully identified 686 authentication flaws that are related to SS-
L/TLS, achieving precision, recall, and F1 metrics of 91.3%, 93.5%, and 92.4%,
respectively. In the mean time, MalloDroid and SMV-Hunter only detected 201
and 572 flawed apps, respectively. Additionally, we downloaded 16,387 apps from
Google Play and utilized GLACIATE for a large scale analysis. GLACIATE identi-
fied 5,667 apps that implemented password authentication protocols, and found
that only 28% of them were implemented securely. Among the vulnerable app-
s detected, 65% suffered from authentication flaws related to SSL/TLS. While
analyzing the transmitted passwords, 20% of them transmit passwords with in-
secure hash, or even in plaintext. Moreover, 15 apps violate all the requirements
of establishing PAP.

Contributions: Overall, our contributions are as follows:

– We proposed a novel end-to-end approach to identify authentication flaws
from the implementation code of secure password authentication protocols.
By analyzing the authentication code of client apps, our approach locates
all the authentication flaws accurately.

– We designed a fully automated detection tool, GLACIATE. With only limited
training data, it uses both intra- and inter-procedural analyses to construct
enriched call graphs which represent the call relationships and data depen-
dencies in an app. GLACIATE then applies a clustering algorithm to construct
rule templates automatically. GLACIATE subsequently uses program analysis
to match an input app with those rule templates and so identify authenti-
cation flaws.

– We compared GLACIATE and state-of-the-art tools to assess its detection ef-
fectiveness. We also applied GLACIATE on a large dataset of Android apps to
analyze the implementation code of secure password authentication proto-
cols.

Organization: The rest of this paper is organized as follows. Section 2 provides
background information on authentication protocols used in Android apps and
their correct implementation. In Section 3, we give an overview of GLACIATE

design and each component of GLACIATE in details. In Section 4, we evaluate the
detection effectiveness of GLACIATE against our dataset and compare it with the
accuracy of MalloDroid and SMV-Hunter. We discuss related work in Section 5
and Section 6 concludes the paper and outlines future work.
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2 Common Violations of Password Authentication
Protocols

In this section, we give an overview of the most commonly used secure password
authentication protocols (SPAP) in Android. In Section 2.1, we describe security
properties to establish secure password authentication protocols. and then we list
four types of violations that are commonly existed in the password authentication
implementation and describe how they can be exploited by attackers in Section
2.2.

2.1 Secure Password Authentication Protocol

The basic password authentication protocol (BPAP) is intended for users requir-
ing authentication by a local computer or a remote server over a closed network,
because BPAP is very simple, and only one message from the client to the server
is required, without the need for any cryptographic operations. To establish a
secure password authentication protocol (SPAP) over an opened network, the
following authentication protocols are commonly used.

BPAP over SSL/TLS. A common mitigation of the BPAP vulnerabilities
is using BPAP over SSL/TLS, where SSL/TLS is executed first to establish a
secure communication channel between the client and the server and then the
username and password are sent over the secure channel.

In SSL/TLS, the server is configured with a pair of public and private keys.
The public key is certified by a Certification Authority (CA) which issues a public
key certificate to the server. There are over 100 trusted CAs7 to support Android
apps. During the execution of the SSL/TLS protocol, it is crucial that the client
correctly performs a number of verifications on the public key certificate received
from the server. The verification steps are described as follows.

Step 1: Certificate Validation. The client verifies the server’s certificate by
performing three different checks [10, 1]: (1) whether the certificate is signed
by a trusted CA; (2) whether the certificate is self-signed; and (3) whether
the certificate has expired.

Step 2: Hostname Verification. The client checks whether the hostname in
the subjectAltname field of the certificate matches the host portion of the
server’s URL in order to make sure that the certificate indeed belongs to the
server that the client is communicating with.

Nonce-based password authentication protocols. Another approach to
counter password eavesdropping and replay attacks is the use of nonce-based
password authentication protocols [14]. A nonce is a number used only once in
the execution of a protocol. Depending on whether the nonce is a random number
or a timestamp, nonce-based protocols can be classified into either challenge-
response or timestamp-based password authentication protocols. In the former,

7 https://developer.android.com/training/articles/security-ssl
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the server sends a random number as a challenge to the client, and the client uses
the user’s password as a secret key to compute a cryptographic function on the
nonce (i.e., either by encryption of the nonce or a keyed hash of the nonce), and
sends the result to the server. In the latter, the client uses the user’s password
as a secret key to compute a cryptographic function on a timestamp and sends
the result to the server. Due to the use of a nonce, both protocols prevent replay
attacks in the sense that any replayed protocol message can be detected as such
by the server.

2.2 Authentication Flaws

A password authentication protocol is designed to meet specified security objec-
tives, but its security can be undermined if the implementation is incorrect. We
examine the authentication code in real-world apps and compare the implemen-
tations with the authentication primitives provided by the developer’s guides8.
Three types of authentication flaws listed below are discovered in Android apps.

Flaw 1: Insecure Password Transmission. Passwords are required to be
encrypted and hashed by the client app before transmission. An app without
encrypting passwords makes the authentication protocol become vulnerable to
eavesdropping and replay attacks. Consider the situation of transmitting an en-
crypted password without being hashed, the password is easily to be leaked at
the server-side.

Flaw 2: Insecure Server Connection. To establish a secure channel between
apps and their servers, each app should follow two verification steps mentioned
in Section 2.1 to validate a server. However, we observe that some apps incor-
rectly implement these two steps by simply accepting either all certificates or all
hostnames.

Accepting all certificates represents that invalid certificates, including cer-
tificates signed by untrusted CAs, self-signed certificates, or expired certificates,
are also acceptable. It makes an app become vulnerable to several attacks, such
as MITM attacks, phishing attacks, and impersonation attacks. An attacker can
use a forged certificate to connect with the app to steal users’ usernames and
passwords.

Only checking the certificate from a server is not enough. An app should also
check if the hostname in the certificate matches that in the server’s URL. A
mismatch in hostname indicates that the server is using someone else’s (prob-
ably valid) certificate in the SSL/TLS handshake. Any app with this flaw is
potentially vulnerable to be connected to a malicious counterfeit server.

Flaw 3: Repeatable Timestamp Timestamps must be used with great cau-
tion in any authentication protocol. For the timestamp-based password authen-
tication protocol, a timestamp in the format of Minute/Second results in the
protocol message being replayed every hour at the same minute and second
without being detectable by the server. A prudent practice is to have the times-
tamp in the format of Year/Month/Day/Hour/Minute/Second. This ensures the

8 Android Developers: https://developer.android.com/
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uniqueness of the timestamp and hence the protocol message in any foreseeable
future.

Another potential authentication flaw is use of a repeatable challenge in the
challenge-response password authentication protocol. However, without access
to the source code of the authentication server, we are not aware of any efficient
techniques to determine the randomness of the challenge generated by the server.
Hence, we leave the analysis of this implementation flaw in Android apps as part
of our future work.

3 GLACIATE

In this section, we describe how GLACIATE detects authentication flaws automat-
ically (i.e. without manual predefined rules). Figure 1 illustrates the workflow of
GLACIATE, which contains two phases, Rules Creation and Flaws Detection. We
provide details of each phase below.

3.1 Rules Creation

The rules creation phase generates rule templates by processing labeled app-
s in three steps - flow sequence construction, learning cluster generation, and
detection rules mining.

Flow Sequence Construction GLACIATE extracts enriched call graphs by an-
alyzing the Jimple code of each app and traverses each enriched call graph to
construct flow sequences. Details to construct flow sequences are listed below.

Flow Sequence Construction

Detection Rules Mining

Learning Cluster Generation

Rules Creation

Authentication Identification

Rules Matching

Flaws Detection

Rules ReportReport

Unlabeled

Labeled

Fig. 1: Workflow of GLACIATE

Enriched Call Graphs Generation. GLACIATE applies Soot [27] to trans-
late low-level Android bytecode into its intermediate representation (IR) (i.e.,
Jimple code in this paper) and generates enriched call graphs. Each node in an
enriched call graph represents either a local function or an external method9,

9 A local method is a method designed by developers, and an external method is a
system or library call.
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which can be represented by a 4-tuple: (ClassName, ReturnType, MethodName,
ParameterTypes[]). An edge connecting two nodes has three types: Call Edge,
Control Flow Edge and Data flow Edge that represent a method invocation, flow
of control and flow of data, respectively. The enriched call graph is generated in
the following steps:

1. GLACIATE first performs an intra-procedural analysis [3] to extract method
calls in each method and control flow relationships among those calls. At
the end of this process, for every method, we have a graph that captures the
control flow relationships among method calls made in the method.

2. Next, for each graph constructed in Step 1, GLACIATE examines the declared
arguments and variables to extract data dependencies. According to each
data dependency, a data flow edge is created between two nodes, and the
data flow edge is labeled with the corresponding argument/variable through
which the data dependency occurs.

3. Finally, we combine the graphs extracted in Steps 1 and 2, across all methods
by adding edges corresponding to method invocations.

Each enriched call graph may have redundant methods. GLACIATE performs
local distortions [21] to alter the graph topology (i.e., remove redundant meth-
ods), without changing the code’s functionality. To remove redundant functions,
GLACIATE first splits an enriched call graph into smaller pieces based on the
local method <init>. It then removes the <init> method which has only one
connected local method.

Flow Sequence Conversion. A flow sequence consists of a sequence of
vectors, each of which has four elements (Sfrom, Sto, Vin, Vout), indicating that
method Sfrom is the caller of method Sto, values Vin are input parameters of
method Sto, and values Vout are returned parameters of method Sto. Note that
Vin and Vout can be null to specify a method without any input parameters or
return values.

Given an enriched call graph, GLACIATE extracts the corresponding flow se-
quences in three steps:

1. Following call edges, GLACIATE collects method invocations from the enriched
call graph and constructs pairs in the form of (Sfrom, Sto).

2. Following data flow edges, GLACIATE inserts input values Vin and returned
values Vout of each callee into the corresponding pair to construct a vector
(Sfrom, Sto, Vin, Vout).

3. Following control flow edges, GLACIATE extracts the sequence of vectors.
Note that we generate a flow sequence for each condition while processing
the decision making statements (e.g., if-else, switch, break).

Learning Cluster Generation GLACIATE computes the similarity between
each enriched call graph and the other enriched call graphs, and groups the
similar enriched call graphs to produce learning clusters. Details are shown as
below.
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Similarity Computation. Based on the app labels, GLACIATE first classifies
enriched call graphs into five groups (Secure Group, Group 1, Group 2, Group 3,
and Group 4), which correspond to secure authentication, authentication with
flaw 1, authentication with flaw 2, authentication with flaw 3, and authentication
with flaw 4, respectively.

Within each group, GLACIATE compares enriched call graphs mutually, and
computes similarity scores by applying pairwise comparison [2]. Two enriched
call graphs are deemed to be similar only if their flow sequences are similar. To
check for this similarity, GLACIATE proceeds in the following steps:

1. GLACIATE constructs a pairwise comparison matrix to find the highest simi-
larity score between two enriched call graphs. The flow sequences FS of an
enriched call graph ECGi are listed on top row of the pairwise comparison
matrix, and the flow sequences FS′ of another enriched call graph ECGj

are listed on the left hand column of the pairwise comparison matrix.
2. GLACIATE compares flow sequences of two enriched call graphs by extracting

the longest common substring (LCS) [23] and fills the corresponding blank
matrix cell with the LCS length L of two flow sequences.

3. From each column, GLACIATE extracts the cell with the highest value Lmax.
The column and row of each cell should be unique.
If two cells from the same row are picked, GLACIATE then selects the next
highest value Lnext in each column and computes Lmax + Lnext interlaced.
GLACIATE chooses the pair (Lmax, Lnext) with the highest sum value.

4. Finally, GLACIATE computes the similarity score as SSim(ECGi, ECGj) =∑
Lmax.

Group Clustering. Given the similarity scores, GLACIATE performs agglom-
erative hierarchical clustering [15], which works by measuring pairwise distances
between data points and grouping the data points one by one on the basis of
selecting nearest neighbours. GLACIATE uses the ECGs as a set of data points
and then applies the following steps to cluster them. We use the reciprocal of
the similarity score as the distance between two ECGs.

1. Given the ECGs, GLACIATE first labels each ECG as a single cluster C(ECG).
2. For two enriched call graphs ECG1 and ECG2, GLACIATE uses the reciprocal

of the similarity score to denote the distance between them as dist(1, 2).
3. Next, GLACIATE finds the closest pair of clusters C(ECG)m and C(ECG)n

from those single clusters, according to dist(m,n) = distmin(i, j), where the
minimum is over all pairs of clusters in the current clustering.

4. GLACIATE merges clusters C(ECG)m and C(ECG)n to form a new cluster,
and repeats from Step 2 until all the data points are merged into a single
cluster.

5. GLACIATE finally picks a distance threshold Tdist to cut the single cluster
into several different clusters, each of which is a learning cluster, used to
generate rule templates.

8



Table 1: Indicator Instructions

Secure
Protocols

Instruction
#

Indicator Instructions

BPAP
1 java.net.PasswordAuthentication char[] getPassword
2 java.net.Authenticator java.net.PasswordAuthentication

requestPasswordAuthentication

SSL

3 javax.net.ssl.SSLSocketFactory java.net.Socket create-
Socket

4 javax.net.ssl.SSLContext javax.net.ssl.SSLConext
getInstance

5 javax.net.ssl.SSLSession java.security.cert.Certificate[]
getLocalCertificates

6 javax.net.ssl.TrustManagerFactory
javax.net.ssl.TrustManagerFactory getInstance

7 java.Security.cert.X509Certificate void verify
8 java.security.cert.X509Certificate: void checkValidity
9 javax.net.ssl.HostnameVerifier boolean verify

Timestamp 10 java.lang.System long currentTimeMillis

3.2 Detection Rules Mining

GLACIATE learns a rule template from each learning cluster. A rule template con-
sists of a set of indicator instructions, which specifies methods that are invoked
by all enriched call graphs, and a rule sequence, which specifies a subsequence
of vectors that is executed by all enriched call graphs.

To create a rule template from a learning cluster, GLACIATE executes an iter-
ative pattern mining which captures higher-order features from flow sequences.
A vector in a flow sequence, corresponding to a method invocation and a data
flow, can be treated as a feature. We apply an algorithm to mine closed unique
iterative patterns [22], which can capture all frequent iterative patterns without
any loss of information. In each learning cluster, GLACIATE compares enriched
call graphs and proceeds in the following steps:

1. GLACIATE observes the frequent vectors appeared in all enriched call graphs
and creates a set of indicator instructions. We manually selected nine indica-
tor instructions from the document provided by Android 10, which are listed
in Table 1.

2. Starting from a frequent vector, GLACIATE creates a rule sequence. GLACIATE
searches for the following vector that appears in every enriched call graph,
and if found, includes it in the rule sequence. The rule sequence is created
successfully only if its length is longer than a threshold minrule. Step (2) is
executed recursively until the rule sequence is closed (i.e., does not grow).

3. For each rule sequence, GLACIATE finally replaces all concrete identifier values
(i.e., variables) with placeholders.

10 Android Doc: https://developer.android.com/training/articles/security-ssl#java
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3.3 Flaws Detection

GLACIATE detects authentication flaws by selecting the most suitable template
in two steps as follows. These two steps are iterated until no further vulnerable
code segments are detected.

Authentication Identification To detect whether there is any implemented
password authentication protocols, GLACIATE checks for matches with the sets
of indicator instructions. It compares flow sequences with each set of indicator
instructions and computes how many indicator instructions in the set match.
However, “noise” or unrelated vectors are present among the indicator instruc-
tions. The “noise” can correspond to unrelated method invocations, such as
toString(), <init>, etc. In view of this, we decide that a flow sequence matches
a set of indicator instructions if at least 80% of the indicator instructions are
matched.

Rules Matching There are likely to be multiple rule templates which match
an enriched call graph. Instead of analyzing all the flow sequences of an enriched
call graph, GLACIATE applies program slicing [28] to compare flow sequences with
the corresponding matched rule templates one by one and in the following three
steps.

1. GLACIATE first identifies where the indicator instructions are located.
2. Beginning with each indicator instruction, GLACIATE compares the vectors in

the flow sequence FS with the vectors in the rule sequence RS by performing
forward program slicing. If sequences in FS can be matched with sequences
in RS, this enriched call graph will be labeled the same as RS, that is, secure,
flaw 1, flaw 2, flaw 3, or flaw 4. Noting that FS may include some redundant
vectors (i.e., redundant method invocations), FS and RS are matched if RS
is a subsequence of FS.

3. GLACIATE proceeds to the next detection template which matched, and exe-
cutes Step (2) until all matched rule templates have been analyzed.

4 Evaluation

In this section, we report the results of two experiments. The first experiment
assesses the performance of GLACIATE and compares it with MalloDroid [10] and
SMV-Hunter [25], state-of-the-art tools for identifying flaws in the implementa-
tion of SSL/TLS validation in Android apps. MalloDroid is a semi-automated
detection tool, which requires manually-defined templates. SMV-Hunter is an au-
tomatic detection tool that requires the manually generated inputs are accurate
enough to trigger vulnerabilities accurately. Differently, GLACIATE is designed
to detect violations in authentication code automatically, and as far as we are
aware, there are no other tools that can learn rules and detect authentication
flaws in this way. The second experiment demonstrates how GLACIATE automat-
ically analyze a large collection of Android apps to gain further insights on the
prevalence of authentication implementation flaws in these apps.
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4.1 Assessment of GLACIATE

Dataset. We randomly collected 1,200 free apps from Google Play. In order to
ensure that our dataset has a wide coverage and does not have a bias towards any
particular type of app, we included apps from six categories: Communication,
Dating, Finance, Health & Fitness, Shopping, and Social Networking, and 200
apps from each category.

Due to the lack of an open source labeled dataset of apps with identified
authentication flaws, we created our own. As most implementations of password
authentication protocols follow the same structure, we believed that the struc-
tures are generalizable enough for our purpose.

For creating this ground-truth dataset, we asked a team of annotators (1
PhD student and 2 postdoctoral research fellows), all with more than 7 years of
programming experience in Java, to check whether implementations of password
authentication protocols in apps followed the rules that we created. We first
required team members to label apps independently. Then all members went
through the labels together and discussed any apps that were labeled differently.
The team had to come to an agreement before an app could be included in the
dataset. To evaluate whether the agreement was good enough, we computed the
Fleiss’s Kappa score [11]. The kappa score of the agreement is 0.901, which means
there was almost perfect agreement. Ultimately this procedure found a total of
1,205 implementations of password authentication protocols in 742 Android apps
(since some apps implement multiple protocols), and 1,087 authentication flaws
were identified in 695 apps (Flaw 1: 284, Flaw 2: 736, Flaw 3: 67).

Experiment Design We used 10-fold cross validation [17] to evaluate the effec-
tiveness of GLACIATE. Furthermore, we compare GLACIATE with MalloDroid [10]
and SMV-Hunter [25]. While detecting authentication flaws, we set Tdist = 1.3 to
ensure that enriched call graphs in each cluster would be highly similar to each
other, and minrule = 2.

To assess the performance of GLACIATE, we generated an evaluation matrix
of the precision, recall, and F1 metrics. Precision is for measuring how accurate
our tool performs, recall reflects how many vulnerabilities are actually detected,
and F1 is used to balance precision and recall.

Performance For comparison, we applied the MalloDroid, SMV-Hunter and
GLACIATE to the entire dataset. Since MalloDroid and SMV-Hunter only detect
SSL/TLS-related flaws (i.e., flaw 2 in this paper), we limited GLACIATE to detect
flaw 2 (736 flaws in total) in this test. From the results we computed the precision,
recall and F1 over the entire dataset for each tool.

Table 2 shows the assessment results. GLACIATE correctly detects 686 out
of 736 flaws, with precision, recall, and F1 values of 91.3%, 93.5%, and 92.4%,
respectively. On the other hand, MalloDroid can only detect 201 flaws, achieving
a recall of only 27.3%. SMV-Hunter successfully detects 572 SSL/TLS-related
flaws with precision, recall and F1 values of 91.2%, 77.7%, and 83.9%. Though
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Table 2: Detection Result: GLACIATE, MalloDroid, and SMV-Hunter

Flaw
GLACIATE MalloDroid SMV-Hunter

Detected Correct Detected Correct Detected Correct

Flaw 2 751 686 214 201 627 572

Precision 91.3% 93.9% 91.2%

Recall 93.5% 27.3% 77.7%

F1 92.4% 42.3% 83.9%

MalloDroid has fewer false positives, as evident from the marginally higher
precision (i.e., 93.9% against 91.3%), GLACIATE detects about 2.4 times more
flaw 2 than MalloDroid. Compared with SMV-Hunter, GLACIATE detects 20.2%
more flaws and has a 1.2% better precision. This means that GLACIATE generates
proportionally fewer false positives than SMV-Hunter.

TrustManagers are responsible for managing the trust material that is used
for deciding whether the received public key certificates should be accepted.
Besides the vulnerable TrustManagers detected by MalloDroid, GLACIATE also
finds three new types of vulnerable TrustManagers, namely BlindTrustManager,
InsecureTrustManager and AllTrustingTrustManager. Apps with these vulnerable
TrustManagers suffer from flaw 2.

GLACIATE: Further Analysis of Performance In comparing the detection
performance of GLACIATE and MalloDroid, we find that MalloDroid fails to
correctly analyze apps that implement authentications across different classes,
which means MalloDroid is unable to analyze method invocation relationship-
s and cannot extract inter-component communications in apps. Furthermore,
comparing the results for GLACIATE and SMV-Hunter, SMV-Hunter relies on user
inputs to trigger the recognition of authentication flaws. However, it is a chal-
lenging to generate accurate inputs to trigger the procedures.

GLACIATE did fail to analyze some apps. Since GLACIATE is built on top of
Soot, each app has to be decompiled using Soot. In total, Soot was unable
to decompile 184 apps, failing in “Soot.PackManager”. This method runs the
ThreadPoolExecutor multiple times, and the executor Runnable is unable to han-
dle those threads separately. These fail-to-decompile apps can be reconsidered
when Soot is next upgraded 11.

4.2 GLACIATE: Large Scale Analysis of Password Authentication

For this analysis, we downloaded 16,387 free apps at random from Google Play
and used our ground truth to build our detection model for further analysis. We

11 The exception, “ERROR heros.solver.CountingThreadPoolExecutor - Worker thread
execution failed: Dex file overflow”, was posted in March, 2018. Soot might solve this
problem in its next version.
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first checked whether our collected apps implemented any password authentica-
tion protocols. In total, 13,747 apps were successfully analyzed, and 5,667 (41%)
of them implemented BPAP. Further analyses were performed on those 5,667
apps. Apps failed to be analyzed by GLACIATE are unable to be decompiled by
Soot.

Table 3: Secure Password Authentication Protocols in Android Apps

# of Apps Secure Password Authentication Protocols

3,353 Only BPAP over SSL/TLS
804 Only Timestamp-based Password Authentication
385 Both BPAP over SSL/TLS and Timestamp-based Password Authenti-

cation

Based on the detection report generated by GLACIATE (see Table 3), we find
that 4,542 apps establish secure password authentication protocol by using at
least one protection protocol. Among the apps with at least one protection pro-
tocol, we observe that 3,738 implemented BPAP over SSL/TLS, which indi-
cates that SSL/TLS is the most common protection mechanism in practice. We
also identify 385 apps with both protections, i.e., BPAP over SSL/TLS and
timestamp-based password authentication protocols. By further analyzing those
apps with multiple password authentication protocols, we find that some apps
implement multiple login schemes (e.g., Facebook login, Wechat login, Tencent
login), and their developers import external authentication libraries directly to
implement those login schemes. The library providers offer a variety of password
authentication protocols12.

The password authentication protocol is suppose to be securely implement-
ed. To our surprise, A large portion of apps have flaws discussed in Section 2
in their authentication code (shown in Table 4). Only 1,562 apps in our dataset
implemented secure password authentication protocols. GLACIATE reports that
passwords in 1,125 apps are not been well-protected. For these apps with Flaw
1, we observe that some of them use MD5 hash functions with a constant salt,
which is easy for attackers to find collision. However, most passwords are trans-
mitted in plaintext over an insecure HTTP channel. As SSL/TLS is the most
common mechanism used to protect BPAP, SSL/TLS-related flaw is also the
most common one, i.e., flaw 2 (i.e., Insecure Server Connection). We also in-
vestigate whether apps have multiple flaws. In what follows we discuss further
insights gained from this analysis.

Flaw 2: Insecure Server Connection This is the most common implementa-
tion flaw presented in 2,684 apps; that is, nearly 47% of the apps with password
authentication meet this authentication flaw. This result indicates that devel-
opers are security conscious and understand that secure communication (e.g.,

12 BPAP with SSL/TLS is nevertheless most used.
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Table 4: Authentication Flaws in Android apps

# of Apps Authentication Flaws

1,125 Insecure Password Transmission (Flaw 1)
2,684 Insecure Server Connection (Flaw 2)
250 Repeatable Timestamp (Flaw 3)

1,562 No flaw

SSL/TLS) should be used for transmitting passwords. However, they seem to
be unaware of the importance of validating certificates and hostnames of the
server, and the consequences of accepting invalid certificates and mismatched
servers, or they decide not to validate certificates and hostnames with the aim
of improving the app’s run-time performance.

Certificate Validation. In total, GLACIATE identifies 2,417 apps suffers the
flaws of accepting invalid certificates. A certificate validation includes two as-
pects: signature validation and a certificate expiration check. The authentica-
tion code is insecure unless both checks are executed. Based on the trusted CAs
provided by Android13, we classify invalid certificates into certificates signed by
invalid CAs, self-signed certificates, and expired certificates. Table 5 lists the
number of apps with these types of certificate flaws. Those certificate validation-
s are incomplete in that 1,298 apps only verify whether certificates are signed by
valid CA but neglect to check whether they are self-signed or expired, and 185
apps only verify two of the necessary checks of certificate validity. Almost 35%
of the apps with flaw 2 do not have any certificate validation at all.

Table 5: Apps with Incomplete Certificate Validation

# of apps Certificate Validations Performed

1,298 Only implement one check, whether the certificates are signed by an
invalid CA

54 Only implement two checks, whether the certificates are self-signed or
signed by an invalid CA

131 Only implement two checks, whether the certificates are expired or
signed by an invalid CA

934 None of the above (e.g., they do not implement any certificate verifica-
tion)

Hostname Verification. 2,059 of apps with flaw 2 accept all hostnames.
Comparing this result with the result of certificate checking, a smaller number
of apps suffer from this, since more aspects are required to be checked when
validating certificates, i.e., expiry date and signature.

13 The list of trusted CAs can be found in https://www.digicert.com/blog/official-list-
trusted-root-certificates-android/.
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Flaw 3: Repeatable timestamp Most apps with timestamp-based password
authentication are securely implemented, but nevertheless 250 out of 804 apps
used a repeatable timestamp.

Multiple Flaws We also collected information about apps which were found
to have multiple violations. For the apps that used both protection mechanisms,
GLACIATE identified 37 apps suffering from two types of authentication flaws. Au-
thentication code in 29 apps accept all certificates and generate repeatable times-
tamps. 8 of them implement the authentication protocol as accepting all host
names and generating repeatable timestamps. Additionally, GLACIATE detected
15 apps that violates all the authentication requirements, that is, accepting all
certificates and all hostnames, and use repeatable timestamps. These results sug-
gest that the capability of analyzing multiple password authentication protocols
in the same app is essential for a complete identification of vulnerabilities.

5 Related Work

In the following, we first discuss detection techniques that are rule-based and
attack-based. We then discuss fully-automated approaches that use machine
learning algorithms.

5.1 Rule-based Techniques

Most existing techniques detect vulnerabilities by using pre-defined rules/tem-
plates [9], [10], [29], [24]. CRYPTOLINT [9] detects cryptographic misuses in An-
droid apps. According to the manually predefined cryptographic rules, CRYPTOLINT
computes a super control flow graph for each app and uses program slicing to
identify the violations. MalloDroid [10] is a detection tool for checking whether
the SSL/TLS code in Android apps are potentially vulnerable to MITM at-
tacks. By checking the network API calls and Internet permissions, MalloDroid
determine whether the code has vulnerabilities, including accepting all certifi-
cates, accepting all hostnames, trusting many CAs, and using mixed-mode/no
SSL. However, because it only analyzes the network API calls, MalloDroid is
unable to identify all the potential flaws due to its inability to extract the inter-
component communications. Instead of performing code analysis, HVLearn [24]
is a black-box learning approach that infers certificate templates from the certifi-
cates with certain common names by using an automata learning algorithm. It
further detects those invalid certificates that cannot be matched with certificate
templates. However, this approach can only be applied to the certificates with
specific common names.

Besides these static analysis techniques, some dynamic approaches have been
proposed without analyzing the code [26], [6]. Spinner [26] is a tool that uses a
dynamic black-box detection approach to check certificate pinning vulnerabili-
ties which may hide improper hostname verification and enable MITM attacks.
Without requiring access to the code, Spinner generates traffic that includes a
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certificate signed by the same CA, but with a different hostname. It then checks
whether the connection fails. A vulnerability is detected if the connection is es-
tablished and encrypted data is transmitted. However, some unnecessary input
will be generated while applying a fully automated approach.

To address the limitations of dynamic analysis, some approaches use a hybrid
analysis (i.e., static and dynamic analysis) [25], [16]. SMV-Hunter [25] simulates
user interactions and launches MITM attacks to detect SSL vulnerabilities. How-
ever, its detection performance relies on how well user inputs were created, and
some vulnerabilities cannot be identified since they are not triggered by the
MITM attacks.

Compared to these techniques, GLACIATE is a fully automated tool that does
not require any manual effort. Instead of summarizing detection rules manually,
we use machine learning to learn those rules automatically.

5.2 Attack-based Techniques

Instead of using any rules/templates, some approaches launch attacks to locate
vulnerabilities [31], [8], [7] [5]. AUTHScope [31] targets the vulnerabilities at the
server side. Since it is difficult to extract the source code running on the remote
servers, AUTHScope sends various network requests to the server and applies
differential traffic analysis to identify when the server does not provide proper
token verification. Instead of launching one attack, six different attack scenarios
are launched by AndroSSL [7], which provides an environment for developers
to test their apps against connection security flaws. The environment has an
actual server that accepts authentication requests and static and dynamic URLs
without verifying the hostnames and certificates.

5.3 Machine Learning Techniques

Manual effort involving is tedious, inefficient, and expensive. To address this
drawback, machine learning is proposed to construct a fully automated detection
approach.

VulDeePecker [20] and SySeVr [19] detect vulnerabilities by using deep learn-
ing, which can replace human expert effort while learning. By extracting li-
brary/API function calls, VulDeePecker generates training vectors to represent
the invocations of these function calls. It then trains a BLSTM neural network
model with the training vectors. To improve the detection accuracy, SySeVr

collects more features, including function calls, array usage, pointer usage, and
arithmetic expressions for training. Although VulDeePecker and SySeVr can
detect many types of vulnerabilities without any manual effort, one important
requirement for the training dataset is that each code segment may include only
one vulnerability.

The above detection approaches that use machine learning algorithms have
the desirable property of working automatically and we investigated their ap-
plication to our problem. We extracted control flow graphs and used different
machine learning algorithms (i.e., CNN, decision tree, naive Bayes, SVM, and
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logistic regression) to build detection models. However the detection results were
found to be poor.

6 Conclusion

In this paper, we proposed a novel end-to-end approach for the automatic de-
tection of flaws in the implementation of authentication in mobile apps. The
detection tool, GLACIATE, analyzes whether the secure password authentication
protocols are correctly implemented in apps. GLACIATE first uses clustering and
pattern mining techniques to learn rules automatically from a small training
dataset, followed by a program analysis technique which uses these rules to de-
tect flaws. GLACIATE automates the whole process so that it only needs few
manual efforts to build a small labeled dataset and achieves a better detection
accuracy. We assessed the detection accuracy of GLACIATE on a dataset of 16,387
real world Android apps. GLACIATE identifies 5,667 apps with secure password
authentication protocols, but only 28% of them implemented the protocols cor-
rectly. We intend to make GLACIATE available as an open source tool that can
contribute to the development of secure Android apps.
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