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ABSTRACT

Indoor localization is of great importance to a wide range of
applications in shopping malls, office buildings and public
places. The maturity of computer vision (CV) techniques and
the ubiquity of smartphone cameras hold promise for offer-
ing sub-meter accuracy localization services. However, pure
CV-based solutions usually involve hundreds of photos and
pre-calibration to construct image database, a labor-intensive
overhead for practical deployment. We present ClickLoc, an
accurate, easy-to-deploy, sensor-enriched, image-based in-
door localization system. With core techniques rooted in
semantic information extraction and optimization-based sen-
sor data fusion, ClickLoc is able to bootstrap with few im-
ages. Leveraging sensor-enriched photos, ClickLoc also en-
ables user localization with a single photo of the surrounding
place of interest (POI) with high accuracy and short delay.
Incorporating multi-modal localization with Manifold Align-
ment and Trapezoid Representation, ClickLoc not only local-
izes efficiently, but also provides image-assisted navigation.
Extensive experiments in various environments show that the
80-percentile error is within 0.26m for POIs on the floor plan,
which sheds light on sub-meter level indoor localization.

Author Keywords
Indoor Localization; Smart Phone; Multi-Modal Data

ACM Classification Keywords
H.3.4. Information Storage and Retrieval: Systems and Soft-
ware

INTRODUCTION

Accurate indoor localization on unmodified smartphones is
a key enabler for near-future commercial location-based ser-
vices such as customer navigation in supermarkets, targeted
advertisements in shopping malls, and augmented reality in
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public places. Towards this envision, we need localization
technologies that achieve high accuracy (e.g. sub-meter) and
are easily deployable at scale.

Crowdsourced WiFi-based fingerprinting [11, 35] and
inertial-based pedestrian dead-reckoning [15, 22] are two
mainstream easy-to-use approaches, which usually yield
meter-level accuracy. While meter-level accuracy is sufficient
to localize or navigate a customer within a shopping mall,
sub-meter level accuracy is helpful to determine which aisle
a customer is facing within a particular grocery store, to guide
a user to the shelf to fetch a desired book in the library, and to
provide detailed information when a customer stands in front
of a painting in an art gallery [25]. As a promising alternative,
image-based localization, primarily adopted in robotics, usu-
ally offers sub-meter or even centimeter level accuracy [19],
at the cost of sophisticated image database construction [20]
or dedicated infrastructure [31].

We observe an opportunity for an easy-to-deploy image-
based smartphone indoor localization system, that preserves
the sub-meter accuracy, yet dramatically reduce the over-
head involved in pure CV-based image database construc-
tion. The key idea is to leverage minimal sensor-enriched
photos to map the image-generated POI model into the phys-
ical space, a major overhead for image database construction,
which conventionally involves hundreds of photos for a sin-
gle POI [6]. Moreover, the POI-based (as opposed to inte-
rior structure-based [1]) image database construction facili-
tates incremental database construction and updating, an in-
dispensable feature for crowdsourcing the labor of database
construction to unprofessional users. The sensor enriched
photos also hold potential to speeds up the localization pro-
cess by exploiting the inherent geometric constraints derived
from sensor measurements.

Based on the above intuition, we propose ClickLoc (indoor
localization with a single click), an easily deployable and
highly accurate image-based indoor localization system with
sensor fusion. In designing ClickLoc into a practical localiza-
tion system, two main challenges need to be addressed: (1)
How to robustly map the relative point cloud generated by
images into physical coordinates during the training stage?
(2) How to maximally ease user localization during the oper-
ating stage? To robustly construct the image database in real



indoor environments with minimal number of photos, we uti-
lize the semantic information via Indoor Geometry Reasoning
[14], and design a set of optimization techniques to derive ac-
curate transformation (scaling, rotation, and translation) from
multi-sensor data. The lightweight mapping mechanism re-
quires as few as two photos to add one POI into the database
(10-20 are suggested in practice). To speed up the localization
procedure, we first estimate a rough location with sensor data
(WiFi and inertial measurements) using manifold alignment
[8] and trapezoid overlapping, which dramatically reduce the
search space for image matching afterwards. The images of
the candidate POIs are then matched with the query image
to return the estimated location, which requires only a single
photo taken from the user.

We fully prototype ClickLoc on Android platforms and con-
duct extensive experiments in two large complex indoor en-
vironments including a shopping mall and a railway sta-
tion. Evaluations demonstrate that ClickLoc achieves a 50-
percentile error of 0.17m and a 80-percentile error of 0.26m
for POIs on the floorplan, and a 50-percentile error of 0.7m
and a 80-percentile error of 1.0m for arbitrary POIs, which
preserves the accuracy of image-based localization schemes,
yet incurs far less overhead during image database construc-
tion.

The key contributions are summarized as follows.

e Bootstrap Database Construction with Few Images: By
exploiting both semantic information (from floorplan and
photos) and geometric constraints (from inertial sensors),
we estimate the transformation from the image space to
the physical space without pre-calibrated images. Hence
we significantly mitigate the cost of database construction,
a primary overhead for image-based localization system.

o Fasten Image-based Localization Process: By imple-
menting multi-modal localization incorporating Manifold
Alignment (WiFi and floorplan) and Trapezoid Representa-
tion, we fasten the localization running time by x1 (fewer
than 9s per query in our evaluation).

e Sub-meter Level Accuracy with One Click: Evalua-
tions in two large complex indoor environments show that
ClickLoc achieves sub-meter localization accuracy (a 50-
percentile error of 0.7m for arbitrary tested POIs), which
only requires the user to take and upload one photo to op-
erate, which sets a new level for accurate, easy-to-use, and
user-friendly indoor localization system.

In the rest of the paper, we first review the related work and

preliminaries, followed by an overview and detailed design

of ClickLoc. We then describe the evaluation of ClickLoc and
discuss on the limitations before concluding this work.

RELATED WORK

The rich embedded sensors in smartphones have attracted ex-
tensive indoor localization research with one or multiple sens-
ing modalities. Popular approaches including wireless [16],
inertial sensors [9] and cameras [19]. As a sensor-enriched
image-based smartphone indoor localization system, Click-
Loc is closely related to the following threads of research.

Image-based Indoor Localization. Compared with its coun-
terpart (e.g. wireless and inertial-based), image-based local-
ization can easily yield sub-meter accuracy [19]. The key ad-
vantage is that the geometric relationships of indoor objects
extracted from images using computer vision techniques are
usually orders more accurate than those inferred by wireless
or inertial based methods. The high accuracy makes image-
based approaches a fit for robot localization and navigation
[2]. Adopting pure image-based localization to smartphones
incurs two limitations. (1) Hundreds of photos are required to
extract geometric relationships of objects using e.g. Structure
from Motion [28]. (2) The derived geometric relationships
are relative. Therefore an accurate mapping between the im-
age space and the physical space is indispensable. This is no
problem with robots, which have precise control of their loca-
tions, yet a challenge for unprofessional users, who are often
unaware of the location of their phone cameras. ClickLoc
aims to overcome these limitations, and enables easy-to-use
image-based localization on unmodified smartphones.

Sensor Fusion for Image-based Floorplan Construction.
Project Tango [1] reconstructs 3D indoor structure in real-
time by integrating extra depth sensing cameras and motion
capture sensors, which significantly mitigates the computa-
tion and amount of images required for 3D modelling. Jig-
saw [6] brings 2D indoor floorplan construction to commod-
ity smartphones. Relative geometry of landmarks is derived
by SfM and vanishing line detection, while mapping into
the physical space is achieved by carefully designed ’Click-
Walk-Click’ micro tasks. IndoorCrowd2D [3] jointly fusion
images captured by back camera and inertial sensory mea-
surements along walking trajectory to construct building in-
terior skeleton. ClickLoc is inspired by this thread of research
that utilizes inertial sensors to correlate image-generated rel-
ative models to physical coordinates. Instead of construct-
ing the whole building structure, ClickLoc aims to reduce
the overhead of image database construction for localiza-
tion. Therefore ClickLoc focuses on discrete POIs and tries to
eliminate obtrusive interactions (e.g.’ Click-Walk-Click’ [6]).

Sensor Fusion for Image-based Location-based Services.
OPS [18] combines GPS, inertial sensors and photos of the
same object from multiple views to provide an outdoor ob-
ject localization service. CamLoc [26] further reduces the
effort into two photos at the same angle during arm stretch-
ing. iSee [21] aggregates direction-annotated images from
multiple users to cluster the locations of the events in the
photos. ClickLoc adopts the same principle to fusion inertial
measurements and photos, but targets at localizing the user
(camera) rather than the objects in the photo. iMoon [4] pro-
vides an image-based indoor navigation service by integrating
photo-generated mesh with inertial-recognized user trajecto-
ries. While iMoon also enables user localization, the 3D nav-
igation mesh is constructed relying on images and floorplan
data only. Thus it requires orders more photos to bootstrap.
Complimentarily, ClickLoc provides accurate user localiza-
tion while reducing the overhead of image database construc-
tion, which can be integrated with [4]. Sextant [30] extracts
the direction of pre-deployed physical features (images) from
inertial sensors and localizes users by triangulation with at
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Figure 1. System overview of ClickLoc.

least three photos. ClickLoc advances Sextant by localizing
users using a single photo.

SYSTEM OVERVIEW

Workflow from the user’s perspective

When a user activates ClickLoc, the phone camera is auto-
matically turned on, along with the WiFi and MEMS sensors
(accelerometer, gyroscope, and magnetometer for device at-
titude estimation, denoted as compass for simplicity). Then
the user takes a photo of a nearby POI at the center of his/her
viewfinder. Afterwards, ClickLoc will send the photo and the
sensor data to the ClickLoc server and a location tag will be
returned and displayed to the user.

Workflow from the server’s perspective

In the training stage (Figure 1), crowdsourced photos are in-
put to the CV modules to extract visual features of POlIs.
Meanwhile, sensor readings (WiFi, compass bearings, and
arm spans) are used to extract geometrical parameters. Both
images and sensor data, together with the floorplan, constitute
the database of POls.

In the operating stage, a user sends a location query (includ-
ing image, compass bearing, and WiFi) to ClickLoc server.
Firstly, a rough location is estimated by Manifold Alignment
[8] and trapezoid representation to reduce the search space
of image matching. Then ClickLoc queries the database for
the candidate point clouds (w.r.t. candidate POlIs), and the
correct POI will be identified by a fast image matching algo-
rithm [24]. Finally the Optimization Module fusions vision
and sensor data and outputs a fine-grained location estimate.
Additionally, the Navigation Module can compute the route
based on user’s location queries and the destination.

SYSTEM ESTABLISHMENT AND UPDATE
ClickLoc relies on a database of POIs to operate. This section
presents how ClickLoc constructs and updates the database.

Figure 2. Illustration of how to add a POI into database.

Database Establishment

ClickLoc does not require dedicated user calibration to regis-
ter a new POI into the database. For POIs with the desired
properties (on the floorplan and has flat facade), ClickLoc al-
lows users to take photos from any position, as long as the
majority of the POI facade is included in the viewfinder. For
POIs without the desired properties (e.g. a sculpture which
does not appear on the floorplan, or a shop with round fa-
cade), ClickLoc instructs the user to stretch his/her left arm
to take a photo, and take another photo with his/her straight-
ened right arm (Figure 2). As few as two photos (and the
distance of arm span) are adequate in theory, while the more
photos, the better localization accuracy. Lastly, ClickLoc asks
the user to pinpoint the POI on the digital floorplan. Given the
above information, a POI can be registered.

Database Update

Usually hundreds of overlapping images are needed for SfM
to compute an accurate dense point cloud [6, 28]. However,
ClickLoc uses only a few images to bootstrap and can evolve
by learning from user queries. Although ClickLoc might be
inaccurate with only a few images, it is sufficient to identify
the POI and estimate a rough location. Then the query image
can be absorbed into the 3D model of the POI, such that, a
more accurate point cloud can be generated (Detailed in Sys-
tem Establishment Evaluation).

FROM 3D POINT CLOUD TO PHYSICAL LOCATION
This section describes solutions to mapping the image-
generated relative 3D point cloud to the physical location.

Preliminaries

Structure from Motion.

StM is a classic CV technology to derive a 3D model of ob-
jects in the visible scene [13]. Its input is multiple photos of
an object from different locations and orientations (or from
different cameras). For each photo, SfM runs a feature de-
tection algorithm (e.g., SIFT [17]) and identifies various key-
points. By matching multiple sets of keypoints, SfM recon-
structs: 1) a sparse 3D point cloud of the geometry captured
by those keypoints; 2) the relative positions and orientations
of the cameras when the original photographs were taken
[13]. However, pure SfM has two limitations: 1) Hundreds
of overlapping images are required for SfM to compute an
accurate dense point cloud [6, 28]; 2) Unknown relative scal-
ing, rotation, and translation requires a separate solution to
transform the image space into the physical space [18].

Indoor Geometric Reasoning.

Indoor Geometric Reasoning [14] assumes that indoor envi-
ronments satisfy the Manhattan World assumption. Specif-
ically, most planes lie in one of three mutually orthogonal
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orientations. In addition, indoor environments usually have a
floor plane and a single ceiling plane with a constant height.
Under these assumptions, projections of buildings are geo-
metrically constrained by a small set of rules defined on the
connection of walls. Then the orientations of line segments
can be determined by the building hypotheses (Figure 3b).

Estimation of Scaling

Indoor Geometric Reasoning, Utilizing Floor Plan

The scaling factor A\ proportionally shrinks or expands the
point-to-point distances in the SfM point cloud to match the
corresponding real world distances in meters. Given the dis-
tance between two points in both the image and physical
spaces, we can obtain A by division. To find such correspon-
dence, ClickLoc estimates A\ by extracting the width of the
POI’s facade using Indoor Geometric Reasoning [14].

However, the line segments generated by [14] are intermittent
due to clutter of various objects in complex indoor scenarios
(Figure 3b), and many are inconsistent with the POI’s con-
tour. Thus we first merge or filter the short line segments via
a threshold (Figure 3c). Then the height of the POI equals the
distance between the ceiling plane and the floor plane, which
is the distance between the longest parallel lines in the image.
Finally, the length of these parallel lines are regarded as the
width of the POI. By projecting the parallels back into the 3D
model, we can obtain their end point coordinates in the im-
age space [6] and physical space (Figure 3d). We assume the
physical width of a POI is known via the floorplan.

Minimization of Arm Span Error, Considering Sensor Data

The above scaling estimation relies on the floorplan, and it
assumes that the POI has a flat facade or planar shape. To
estimate A\ of POIs without these desired properties, Click-
Loc utilizes the distance between each pair of images. Ide-
ally, the distance between each pair of images is similar to
the user’s arm span (Figure 2). However, in practice, the
user may not know his/her arm span. And it is often diffi-
cult to straighten the arm while taking photos. To overcome
these problems, we first minimize the arm span error using vi-
sion information. Let (L¥, LY)/(R¥, RY) be the coordinates
of left/right camera centers for the i‘" pair of photos in point
cloud (obtained by SfM). Then the arm span s equals the dis-
tances between any pair of camera centers in vision coordi-

nates \/(Lf — R*)? + (LY

v — RY)? after multiplying the vi-
sion distance by the scaling factor . Since the arm span may

contain error relative to each pair of images, we introduce er-
ror terms for the arm span E;. Then the optimization is to

Object
position

/C\(a.b)

Compass

bearing
v/

Figure 4. Illustration of compass-based trilateration.

minimize on the sum of |E?| as follows:

Minimize ) |E;| (1)
Vi
Subject to
Vi : |s+ B = /\\/(Lj? — R*)> 4 (LY — RY)®

To reduce the impact of human errors, we introduce an-
other mechanism to calibrate A\ using the compass. The ra-
tionale is that, an alternative type of compass-based trilat-
eration can be achieved as in Figure 4. Specifically, let
d'/d% be the real world distance between left/right camera
center (L¥,LY)/(R¥,RY) and the object position (a,b).
Let 6/67 be the compass bearing for left/right camera. If
we regard the object position as the origin, the coordi-
nates of left and right camera centers can be represented
by (—sinfldl, —cosbldl) and (—sinf!d;, —cosfrd;). The
arm span s; obtained from the previous optimization then
equals the distance between the two camera centers s;

} ) 2 e 2
\/(—smﬂédé + sindrd;)” + (—cosQﬁdé + cost] d;)
sidering compass noise, we introduce error terms E! and E7
for each pair of images With these error terms, we aim

to find A that minimizes the sum of compass bearing error
|E! + E7|. The whole optimization is as follows:

. Con-

Minimize Y |E! + Ef|
Vi
Subject to
Vi : s =[-sin (0. + E!)d. + sin (0 + E}) df
+ [~cos (6} + EL) d\ + cos (07 + ET) d]”
Vi si=s+E;
Vi = /\\/ L* —a)® + (LY —b)*
Vi d—)\\/R“’ + (RY —b)°

2

}2
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It is worth mentioning that although compass readings are

noisy and may have non-zero bias due to indoor magnetic in-

terferences [23], we dramatically mitigate the error. The first

constraint can be transformed into the following equation,
2

s; =di +dj* — 2cos (0} — 0] + E} — E]) did;

K2

(©))

Since the compass bearing differences are used instead of the
absolute bearings, the inherent bias can be eliminated.

Estimation of Rotation

Find the Entrance, Extended Vision Method

The result of Indoor Geometric Reasoning further contributes
to our rotation estimation solution. If we look at the top view
of the 3D point cloud as in Figure 5a, the facade of a POI
forms a dense line and we denote it as an entrance line. Fur-
thermore, the projection of the longest pair of parallels ob-
tained by scaling estimation naturally coincide with the en-
trance line. Once the slope of the entrance line in the 3D
point cloud is calculated, the rotation can be determined by
referring to the floorplan. Not only the entrance lines, but
also the wall lines on the top view can be identified and re-
constructed (e.g., Figure 5b). We also propose “K-Edges” to
find them in the point cloud. Similar to the classical k-means
algorithm, “K-Edges” uses an iterative refinement technique.
Given a point cloud with n feature points ( f1, fa, ..., f) and
an initial set of k lines {agl)x + bz(»l)y + cgl) =0,i € [1,k]}
from Indoor Geometry Reasoning (by identifying and filter-
ing line segments on the floor plane, similar to Figure 3c), and
the number of k can be estimated by referring to the floorplan
(typically POIs are polygons on the floorplan). Then it runs
by alternating between the Assignment Step (Equation 4) and
the Update Step (Equation 5) as in Algorithm 1.

al

{fp: :

t)xp + bz('t)yp + Cgt)

07 4 0

(t) (t) (t)

a;’'T,+ by, + c; ) '

T | LS <
a; —|—bj

s —

< “

where the p!” feature point has f, = (,,y,), and is assigned
to exactly one line.

(agt—H)7 bng), cEHl)) = LeastSquareFitting(Sft)) ®)
The algorithm converges when the assignments no longer
change. The line constructed by the most feature points is

(b) 4 edges found by “K-Edges” (a) Rays emit from camera centers
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Algorithm 1: Heuristic K-Edges

Input  : Point cloud from a given POL, (f1, f2, ..., fn)
Initial lines,{al(.w.t + bgl)y + c§1> =0,: € [1,k]}
Output : Corresponding entrance line for the POI

Iteration t = 1

while 1 < Maximum number of iterations do

Assignment Step:

for each feature point f; in (f1, f2, ..., fn) do
Assign f; to its nearest line. The point to line distance is
measured in Euclidean distance.

for each line agt)x + bgt)y + cgt) =0do

L Obtain its feature point set, Si(t). (see Eqn. 4)
Update Step:

for each feature point set S; ®) do
L Calculate its new fitting line. (see Eqn. 5)

it { (ai0,6:0,:0) i€ (1,6} =
ai<t+1>,bi(t+1)7ci<t+l>) i €1, k]} then
| End while
t=t+1

Return the line (ai(t) L b; (D) ci(t)) with largest

Sl.m)

assumed to be the entrance line, because it is the facade of
the POI users are shooting for and it has the most images.

Utilize Compass Bearing, Amortized Method

To estimate the rotation of POIs without flat facade or exis-
tence on the floorplan, we utilize the noisy compass bearing
with a device attitude estimation algorithm A3 [40] (yielding
a 90-percentile error of 10°). Then for each image, it has a
compass bearing 6 in physical world and an orientation 07
in the 3D point cloud. Ideally, the difference between these
two angles |65 — 07| is the same among all images for the
same POI (denoted by constant ). By introducing error term
EY relative to each compass reading, the rotation can be esti-
mated by minimizing the sum of compass bearing errors.

Minimize ) |E]| 6)
Vi
Subject to
Vi oo 05+ E] 0] =~

Estimation of Translation

Find the Corners, Extended Vision Method

The key of estimating a translation is to find a point with
known locations in both the point cloud and the physical
world. Here we exploit the corners of a POI (e.g., Figure 5b).
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We first obtain the entrance line and wall lines of the POI via
“K-Edges”. Then the corners can be found by intersecting
the entrance line with two wall lines. Finally we establish the
mapping between the corners in the top view and the corners
in the floor plan (e.g., Figure 3d).

Find the Intersection of Views, DBSCAN-based Method

For POIs without the desired properties, we identify a ref-
erence point by analyzing user behavior. When a user takes
a photo, he/she usually puts the POI at the viewfinder cen-
ter. If we regard an image as a ray from the camera’s center
with the same orientation as the camera, the ray will traverse
the POI (Figure 6a). Given n images for one POI, we have
n rays from different locations. These rays result in up to
(Z) intersections (Figure 6b). The intersections are densely
distributed around the object, and DBSCAN [5] can be used.
Once the densest cluster is obtained, its center can be treated
as the reference point in the image space. The reference point
in physical space is assumed to be the center of the facade for
POIs without planar shape. For POIs that do not appear on
the floorplan, the location pinpointed by the users is selected.

MULTI-MODAL LOCALIZATION AND NAVIGATION
This section details ClickLoc’s multi-modal localization and
image-assisted navigation mechanism (Figure 7).

Multi-modal Localization
Pure CV-based localization could be both time and energy
consuming, which leads us to the following solution.

Rough Location Estimation by Manifold Alignment

ClickLoc only possesses fingerprints uploaded together with
query images. These fingerprints mainly concentrate on ar-
eas near POIs and distribute highly unevenly throughout the
floorplan. We solve the above problem via Manifold Align-
ment [8] utilizing two observations: one is that the neigh-
bouring grids in the physical space are likely to have similar
WiFi fingerprints in signal space as well; the other one is that
ClickLoc localizes users with considerable accuracy (detailed
in the experiments), and the WiFi fingerprints uploaded with
query images can be regarded as calibrated data to some ex-
tent. Then we divide the floor plan into grids, of which the

Figure 8. Trapezoid Representation of an Image.
grids’ physical coordinates consist of the source dataset. The
corresponding WiFi fingerprints of the grids consist of the
target dataset. The above two observations provide Strong
neighborhood Correlation and Common Lower Dimen-
sional Correlation among source dataset and target dataset,
which builds the theoretical basis of Manifold Alignment [8].
Then it further learns the mappings between two datasets
characterized by the same underlying manifold via a dimen-
sionality reduction based transfer learning scheme.

To preserve the neighborhood correlation, we adopt the same
locally linear embedding technique in [29]. For each higher
dimensional data point p;, the N data points having the
smallest distances to it form its neighbor set N (7). Let
N(1) N(N)
|:pi PRRRS pi
The neighborhood weights of p; are calculated by:

} be its set of N neighbouring data points.

Minimize ~ [p; — > Wyp,” (7
JEN(%)
Subject to Z Wi =1
JEN(4)

where W;; is the neighborhood weight of data point p; to p;.
Consider the source dataset X and the target dataset Y, with
X; € R™ and Y; € R™. The projection functions from two
higher spaces to the lower space are denoted by ¢ x and ¢y-.
We also have an indicative function I, where I;; = 1 if the
j fingerprint is in the " grid or I;; = 0 otherwise. Then
the loss function of this manifold alignment problem is:

Y lox (X0) = ox (X)IP W+

arg min
& Ox,Py

n_lloy () = oy GIFWE + @)
(L= ) D llox (X:) = dv (%) P15 }

Minimizing the first term guarantees that the larger Wé{ ,
the smaller the ||¢x (X;) — ¢x (X;)||, which maintains the
neighborhood relations of X within the elements of ¢ x. The
rationale is the same for the second term. The third term pe-
nalizes the discrepancies among correspondences, and g is

used to adjust the weight of different components.

Then during rough localization, when a query WiFi finger-
print comes, we map it into a low-dimensional space via Man-
ifold Alignment and return its nearest neighbor in that space.
The corresponding physical location of the nearest neighbor
will be regarded as the rough location estimation.
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Figure 9. Match Correction

Candidate POI Selection by Trapezoid Overlapping

After obtaining the rough location estimation of a query im-
age, we select candidate POIs by checking the overlapped
area between the image’s trapezoid representation (Figure 8)
and the floorplan. Ideally, if we take a photo from O, the
effective area covered by the photo can be represented by a
sector (Figure 8), where € is the field-of-view of the cam-
era lens, d is the orientation of the camera when the photo
is taken and \Lﬂ is the scene depth. However, the location
estimation is coarse-grained, the orientation obtained from
mobile phone compass is highly error-prone, and the actual
scene depth is unknown. Thus we use a trapezoid to bound
the effective area to account for these errors and uncertainties.
Here r is the error of rough location estimation, 5 = 6/2 + «

Table 1. Image Match Accuracy

with compass error «, and |d'| is the largest possible scene

depth, where: |d’| ~ focal length (mm) * POI height (mm) *
image height (pixels) / (POI height (pixels) * CMOS height
(mm)). Focal length can be obtained when taking the photo,
POI height in pixels can be estimated by indoor geometry
reasoning (distance between ceiling plane and floor plane),
physical POI height can be determined by previously intro-
duced Estimation of Scaling, while image height and CMOS
height is known via smartphone. Then 6 can be calculated
correspondingly and any POI that overlaps with the trapezoid
will be double checked by image match.

Image Matching

Motivated by [24], we implement a direct 2D — 3D matching
framework using visual words for fast image matching. When
a query image comes, ClickLoc conducts a simple threshold-
based mechanism to judge whether the POI is correctly iden-
tified. If the image matching score exceeds the threshold,
ClickLoc executes the next step directly. However, the photos
could be in low quality (e.g., unclear, blurred, and lose focus),
or even not in our database. So we adopt an image match cor-
rection mechanism when the image matching score is below
the threshold. As illustrated in Figure 9, ClickLoc retrieves
the top 4 candidate POIs and ask the user to identify the cor-
rect one by tapping the thumbnail images. As summarized in
Table 1, the accuracy improves from 93.4% to 98.4% in the
mall and from 90.5% to 97.6% in the station by considering
the top 4 candidates (dataset will be detailed later).

Image-assisted Navigation
ClickLoc navigates users by offering instructive images along
the way. Since the crowd-sensed images are from different

East entrance

West entrance X Testing location

Figure 10. Shopping Mall. Figure 11. Railway Station
orientations, ClickLoc can provide the images with the ori-
entation the user is going to face. We implement a simple
image-assisted navigation mechanism. When a user types
his/her query destination, ClickLoc returns the shortest path
from his/her current location to the target location. Then we
divide the path into segments according to its length. For
each segment, we pick a POI with the most images, and the
image with the closest orientation towards the user’s coming
direction is selected as a guiding image (Figure 71).

PERFORMANCE EVALUATION

Experimental Settings

Implementation

We prototype the ClickLoc front-end on a Google Nexus 5
phone and a Samsung Note 10.1 tablet, as a Java extension to
the standard Android 4.4 camera program to ensure the valid-
ity and promptness of the sensor data. Photos and sensor data
(accelerometer, gyroscope, magnetometer, and WiFi) are up-
loaded to a MacBook Pro running Mac OS X 10.9.2 as server.
We use SIFT [17] for image feature keypoint extraction and
Bundler [28] for SfM. We also use VisualSFM [32] to vali-
date and visualize our results.

Data Collection.

We evaluate ClickLoc in a shopping mall (about 5, 200m? ac-
cessible area, denoted by Mall) and a railway station (about
23, 700m?2 accessible area, denoted by Station). In each sce-
nario, we choose 7 POIs and more than 300 test locations.
The number of photos taken for a POI range from 40 to 120,
and more than 1000 photos are taken. The test locations are
scattered as in Figure 10 and Figure 11. Two volunteers take
100 photos by randomly walking and taking photos of poten-
tial POIs inside the mall and station. The ground truth loca-
tions are recorded manually. We also evaluate ClickLoc on
another dataset from Argus [33], which includes a shopping
mall (50 POIs, denoted by Mall*) and a food plaza (41 POIs,
denoted by Plaza), of which 5 ~ 20 photos are taken for each
POI and 200 photos from volunteers.

Performance of Transformation

To evaluate our transformation mechanism, we use Absolute
Orientation [10] as the baseline. That is, given the test lo-
cations’ coordinates in the 3D point cloud and their ground
truth locations in the physical world, Absolute Orientation
gives us an optimal transformation between the two coor-
dinate systems. In other words, knowing the ground truth,
Absolute Orientation outputs the most accurate scaling factor
A, rotation matrix R, and transformation vector. All the 14
POIs (Mall and Station) have flat facades and we test different
transformation estimation methods on them for evaluation.
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Evaluation of Scaling

We propose two methods to estimate A. One estimates the
width of a POI by Indoor Geometry Reasoning (denoted as
Reasoning). The other minimizes the arm span error using vi-
sion coordinate constraints and compass bearing differences
(denoted as Vision+Sensor). According to Figure 12a, both
methods estimate \ precisely with an average error smaller
than 3%. This result demonstrates the effectiveness of In-
door Geometry Reasoning. Further, we can estimate A with
dedicated human participation (taking photos in pairs), which
enables scaling estimation for POIs without desired proper-
ties. Since the performance of Vision+Sensor is comparable
to Reasoning, A can thus be estimated accurately by jointly
minimizing human errors and sensor errors. The above eval-
uation is based on 20 random images (or 10 pairs detailed in
System Establishment) for each POL.

Evaluation of Rotation

Two methods are proposed to estimate the rotation. The first
finds the entrance line in the top view of point cloud (denoted
as Entrance) and the other calculates the rotation by mini-
mizing the compass error (denoted as Compass). As shown
in Figure 12b, Entrance is considerably accurate by aligning
the entrance line with the floor plan with an average error
of less than two degrees. However, results are disappointing
for Compass due to the error-prone compass bearings, even
we have adopt the newest strategy proposed in [40]. Here we
make two notes of “K-Edges” algorithm in practice: 1) While
K can be estimated accurately from floor plan, the K initial
edges are suggested to be parallel or orthogonal. 2) The fitted
edges may not strictly coincide with the physical walls due
to feature points inside the POIL. So we further filter out the
noise and distant points when running the algorithm.

Evaluation of Translation

We propose two methods for translation estimation. The first
finds the corresponding corners in image space and the floor-
plan (denoted as Corner). The second uses DBSCAN to find
the densest cluster center of view intersections (denoted as
DBSCAN). When the origin in the point cloud coordinate
system is projected to the physical world, we obtain a new
coordinate. The closer the new coordinate generated by Cor-
ner and DBSCAN to the one generated by Absolute Orien-
tation is, the more accurate the translation. Figure 12c il-
lustrates their performance. Corner outperforms DBSCAN in
most cases, since users may not put the target in the middle of
the viewfinder. The average distance between the two origins
projected by Corner is 12.78cm, and 27.16cm for DBSCAN.

Table 2. Multi-modal Localization Accuracy and Efficiency

Mall  Station Mall* Plaza

Rough Localization 11.45m N/A  5.37Tm 7.14m
Candidate POI# 1.25 3.38 1.47 1.71
Image Mismatch 1.6% 24%  23% 42%
Localization Latency ~ 8.64s  13.82s 8.59s  9.58s

Accuracy of User Localization

Multi-modal Localization Accuracy and Efficiency

Table 2 summarizes the performance of our multi-modal
strategy among four test locations. The experiments were
conducted by using the photos taken for POIs as the training
set (parameters were chosen optimally according to the train-
ing set). The photos taken by volunteers were regarded as the
testing set. Rough Localization measures the average error
of Manifold Alignment trained by sparse WiFi fingerprints
and floorplan. The sparse WiFi fingerprints collected dur-
ing image capture are enough for Manifold Alignment in the
Mall, Mall*, and Plaza, while it is inapplicable for rough lo-
calization in the station due to the POI sparseness (15% cov-
erage is suggested to provide comparable performance with
full-fingerprinting localization [29]). The result also indicates
that the rough localization accuracy increases with the more
coverage with POIs. Candidate POI# measures the number
of POIs needed to match before identifying a match or decid-
ing the corresponding POI is not in the dataset. In the Mall,
Mall*, and Plaza, the candidate POIs were selected by trape-
zoid overlapping as in Figure 8 with r = 8m,a = 20°. In
the station, we match candidate POIs in the descending order
of their WiFi fingerprint similarity between the query image’s
WiFi fingerprint and the WiFi fingerprints for each POI. Im-
age Mismatch shows the percentile of image match failure
(not among the top 4 candidates, Figure 9). By checking the
mismatch instances, 62.5% failures were caused by extreme
distances or angles, 25% were caused by similar appearances
and 12.5% was caused by obstructions. Localization La-
tency measures the time from taking the photo to showing
the user’s location on the phone screen. As we can see, the
full adoption of our proposed multi-modal strategy roughly
halve the candidate POI number and the localization latency.

Overall Localization Performance

To measure the overall localization performance, we use half
of the photos taken for POIs as the training set (Mall and
Station) and the other half as the testing set (together with
the matched photos from volunteers). We apply Reason-
ing, Entrance, and Corner methods to scaling, rotation, and
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translation respectively for POIs on the floorplan. We also
use Vision+Sensor, Compass, and DBSCAN for POIs with-
out the desired properties. Figure 13 presents the overall
localization performance. For POIs on the floorplan, the
50-percentile and 80-percentile errors are within 0.17m and
0.26m. The 50-percentile and 80-percentile errors for POIs
without the desired properties are about 0.7m and 1m, which
sheds lights on sub-meter level indoor localization. We then
conduct two case studies to evaluate ClickLoc with two state-
of-the-art of image-assisted localization and navigation.

Localization Case Study: ClickLoc v.s. Argus

Argus [33] is a recent work that enhances WiFi-based local-
ization with visual clues by extracting geometric constraints
from images and mapping the constraints jointly against the
fingerprint space. We evaluate ClickLoc, Argus, and a classic
RSS-based method Horus [36] on the same dataset [33]. As
shown in Figure 14, ClickLoc significantly outperforms Ar-
gus and Horus in terms of localization accuracy, at the cost of
a POI database instead of a WiFi fingerprint database.

Navigation Case Study: ClickLoc v.s. Travi-Navi

Travi-Navi[39] is a vision-assisted indoor navigation system
that collects high quality images and inertial readings during
a guider’s walk on the navigation paths. The followers track
the navigation trace, get visual instructions and tips, and re-
ceive alerts when they deviate from the correct paths. Differ-
ently, ClickLoc provides the navigation route on the floorplan
with guiding images (Figure 7i). For comparison, we collect
two navigation paths by traversing 7 POIs in Mall(Checkpoint
1 ~ 7) and Station (Checkpoint 8 ~ 14) respectively. We
manually record the locations when the 3 followers reach the
checkpoints along the recorded trace and ask the followers to
take a photo of the POI for evaluation. The averaged location
offsets estimated by ClickLoc and Travi-Navi among check-
points are shown in Figure 15. Both methods successfully
navigate the users to the destination. Travi-Navi provides sat-
isfactory accuracy at the cost of collection of a guider navi-
gation trace data, while ClickLoc provides more natural user
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interaction (displaying the route, and can start navigation any-
where) with the requirement of floorplan and POI database.

Influence Factors

Sensitivity to Quality of Photos

To emulate the impact of photo quality, we adjust the level
of photographic detail by changing the photo resolution, and
repeat the experiments for each resolution level. As shown in
Figure 16, ClickLoc is more accurate with more photographic
details, because StM suffers from fewer keypoints.

Sensitivity to lllumination Change

To evaluate the performance of image match under different
illumination conditions, we adjust the image brightness and
contrast (since the lighting is stable in shopping malls and
railway stations). As shown in Figure 17, ClickLoc is robust
to small illumination change (80% and 120%) and is promis-
ing under illumination dynamics.

Sensitivity to Human Existence

The 1000+ images for POIs and 200 images from volunteers
in Mall and Station were taken without considering human
existence, and some images may capture unwanted passen-
gers. To evaluate the effect of human presence, we first ap-
ply Fast-RCNN [7] to estimate the ratio of human occlusion.
Figure 19a shows the distribution of human occlusion among
photos of two scenarios, and Figure 19b reveals the relation-
ship between human occlusion ratio and localization error.
We conclude that human existence does have a negative im-
pact on the localization accuracy, since ClickLoc relies on im-
age features to function. However, the decrease is acceptable
as long as the majority of POI is clearly taken.

System Overhead

System Establishment

The user is required to take photos with the dedicated inten-
tion to add a POI into database. This is to estimate A via
Indoor Geometry Reasoning or arm span estimation. How-
ever, these operations are annoying, especially taking photos
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in pairs. To measure the minimum pairs required, we estimate
A for each POI using the Vision+Sensor method with 1, 5,
and 10 pairs. As in Figure 18, the estimated A is closer to the
Absolute Orientation estimation with more pairs of photos.
During the experiments, we assume that 10 pairs of photos
are enough for scaling factor estimation.

System Update

To emulate the procedure of system update, we choose the
POIs with more than 100 photos in our database (3 POIs in
Mall and 3 POIs in Station). Each POI has 20 images dur-
ing the system establishment (denoted by 20 images). Then
we randomly choose 20, 40, 60, and 80 additional photos for
each POI (denoted by 40, 60, 80, and 100 images). These
photos are treated as query images. As shown in Figure 20,
more photos contribute to higher localization accuracy, while
40 to 60 photos are enough for satisfactory results.

Energy Overhead

We evaluate ClickLoc’s energy overhead with the tools and
methodology proposed in [37]. We run ClickLoc on a Sam-
sung Note 10.1 tablet, and measure energy consumption of
running nothing, WiFi scanning only, and consecutively us-
ing ClickLoc. WiFi scanning frequency is set to 0.5H z, and
the screen is kept on to prevent the hibernating mode. The
power consumption for the first two scenarios are 565mW
and 578m WV, respectively. Then we consecutively use Click-
Loc in groups. Each group consists of 10 location queries. We
measured 10 groups (100 queries). The average elapsed time
for a group is 135s and a group consumes 102.5 Joules, or
at the power of 759mW. So ClickLoc consumes 194mW ad-
ditional power, which is only one third of the average power
when the screen is on (565mW). Considering that users only
activate ClickLoc when in need and most energy-consuming
operations (e.g. image match and SfM) are left to server, such
overhead has little impact on battery life.

DISCUSSION

Requirement of Floorplan. ClickLoc needs a floorplan to
extract physical constraints and estimates the transformation
from the image space to the physical space. We assume floor-
plans are available from indoor localization service providers.
In case they are unavailable, we leverage the research trend in
crowdsourced automatic floor plan construction [27, 6, 3].

Cold Start. ClickLoc requires a database of POIs to operate.
We assume the system establishment can be crowdsourced by
staff members in places like shopping malls, museums, and
airports. If an user encounters a POI that is not included in
the database, it degenerates into displaying the indoor floor
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Figure 20. System Update Evaluation

plan with narrowed area by rough location estimation. Click-
Loc also invites the user to add the POI into our database and
the registration operation is a one-time investment. Various
incentive mechanisms [34, 12, 38] can be applied to attract
customer to contribute their effort.

Obtrusive User Interaction. While ClickLoc enables one
click indoor localization, it may involve obtrusive user inter-
actions during database construction for POIs without the de-
sired properties. ClickLoc invites users to take photos in pairs
with stretched arms to estimate the scaling factor of the 3D
model. Here we plan to apply some inertial sensing tech-
niques [26] and more natural registration operation: taking
photos from different locations (e.g., a few steps away).

Physical Features. In ClickLoc, we assume that users under-
stand which POIs are likely to be selected by the system or
other users. During our evaluation, we select apparent phys-
ical features like logos, shop entrances where the practicality
has been validated in [30, 33]. ClickLoc may suffer signifi-
cant performance degradation when lacking imagery features
(i.e., boring rooms, hallways, and small offices), because it
relies on such features to distinguish POIs and extract geo-
metric constraints. When image match fails, ClickLoc degen-
erates to a Manifold Alignment based WiFi localization.

CONCLUSION

With the trends towards improved sensor accuracy, and adop-
tion of the cloud for low-cost, scalable computation, we en-
visage widespread user-friendly and augmented-reality in-
door location-based service. We propose ClickLoc, an easy-
to-use image-based indoor localization system with multi-
modal sensing. ClickLoc enables a user to localize himself
in sub-meter accuracy with a single click. Future directions
include optimizing image processing to reduce data commu-
nication and storage overhead. We also plan to deploy Click-
Loc at larger scale to evaluate its performance in more diverse
and dynamic environments, as well as a more comprehensive
comparison study with other sub-meter accuracy indoor lo-
calization systems.
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