
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2017

Flexible online task assignment in real-time spatial data Flexible online task assignment in real-time spatial data

Yongxin TONG

Libin WANG

Zimu ZHOU
Singapore Management University, zimuzhou@smu.edu.sg

Bolin DING

Lei CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TONG, Yongxin; WANG, Libin; ZHOU, Zimu; DING, Bolin; CHEN, Lei; YE, Jieping; and XU, Ke. Flexible online
task assignment in real-time spatial data. (2017). Proceedings of the VLDB Endowment. 10, (11),
1334-1345.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4509

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yongxin TONG, Libin WANG, Zimu ZHOU, Bolin DING, Lei CHEN, Jieping YE, and Ke XU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4509

https://ink.library.smu.edu.sg/sis_research/4509

Flexible Online Task Assignment in Real-Time Spatial Data

Yongxin Tong† Libin Wang† Zimu Zhou∗ Bolin Ding§ Lei Chen‡ Jieping Ye¶ Ke Xu†
† SKLSDE Lab and IRI, Beihang University, Beijing, China, ∗ ETH Zurich, Zurich, Switzerland

‡ The Hong Kong University of Science and Technology, Hong Kong SAR, China
§ Microsoft Research, Redmond, WA, USA

¶Didi Research Institute, Didi Chuxing, Beijing, China
†{yxtong,lbwang,kexu}@buaa.edu.cn, ∗zimu.zhou@tik.ee.ethz.ch, §leichen@cse.ust.hk,

‡bolind@microsoft.com, ¶yejieping@didichuxing.com

ABSTRACT
The popularity of Online To Offline (O2O) service platforms
has spurred the need for online task assignment in real-time
spatial data, where streams of spatially distributed tasks
and workers are matched in real time such that the total
number of assigned pairs is maximized. Existing online task
assignment models assume that each worker is either assig-
ned a task immediately or waits for a subsequent task at
a fixed location once she/he appears on the platform. Yet
in practice a worker may actively move around rather than
passively wait in place if no task is assigned. In this pa-
per, we define a new problem Flexible Two-sided Online task
Assignment (FTOA). FTOA aims to guide idle workers ba-
sed on the prediction of tasks and workers so as to increase
the total number of assigned worker-task pairs. To address
the FTOA problem, we face two challenges: (i) How to ge-
nerate guidance for idle workers based on the prediction of
the spatiotemporal distribution of tasks and workers? (ii)
How to leverage the guidance of workers’ movements to op-
timize the online task assignment? To this end, we pro-
pose a novel two-step framework, which integrates offline
prediction and online task assignment. Specifically, we es-
timate the distributions of tasks and workers per time slot
and per unit area, and design an online task assignment algo-
rithm, Prediction-oriented Online task Assignment in Real-
time spatial data (POLAR-OP). It yields a 0.47-competitive
ratio, which is nearly twice better than that of the state-of-
the-art. POLAR-OP also reduces the time complexity to
process each newly-arrived task/worker to O(1). We va-
lidate the effectiveness and efficiency of our methods via
extensive experiments on both synthetic datasets and real-
world datasets from a large-scale taxi-calling platform.

1. INTRODUCTION
With the rapid development of mobile Internet and sharing

economy, Online To Offline (O2O) service platforms are gai-
ning increasing popularity, which demands for new massive

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

real-time spatial data processing techniques. Representa-
tive O2O platforms include real-time taxi-calling services,
e.g., Uber [4] and Didi [1], product placement checking ser-
vices in supermarkets, e.g., Gigwalk [2], and on-wheel meal-
ordering services, e.g., GrubHub [3]. Large numbers of tasks
appear on these platforms dynamically and need be assigned
to certain workers in real time based on the spatial informa-
tion provided by the workers’ mobile devices. That is, these
O2O platforms perform online task assignment for real-time
spatial data with the aim to maximize the number of total
assigned pairs [26].

Previous studies usually reduce the problem of online task
assignment for real-time spatial data to the online maximum
cardinality bipartite matching problem [26, 28] in dynamic
online scenarios, where the spatiotemporal information of
tasks and workers are unknown before they appear on the
platforms. Although existing online task assignment mo-
dels (online models for short) can deal with dynamic online
scenarios, they make a strict assumption on the workers.
Once a worker appears on the platform, she/he is immedi-
ately assigned a task or waits at her/his initial location for
a task till her/his deadline [25, 26]. This assumption has
two shortcomings. (i) In real-world O2O applications, it is
impractical for a worker to passively stay in place. Instead,
she/he tends to actively move around in the hope for suit-
able tasks elsewhere. (ii) The wait-in-place restriction on
workers ignores the potential number of assigned pairs (i.e.,
edges in the online bipartite graph). More task-worker pairs
can be assigned if an idle worker can be guided in advance
to the location where a new task may arrive.

Imagine the following scenario. David is a part-time Uber
taxi driver (worker). When he logs in the Uber platform, he
finds no taxi-calling tasks nearby. After waiting for 20 mi-
nutes without task assignment, he faces a dilemma whether
to keep on waiting in place or try his luck elsewhere. Howe-
ver, existing online models can neither tell David whether
he should stay or not, nor provide guidance on where he
should go to get a task. Such a dilemma is common for
workers on many O2O platforms, which raises a problem
that most online models face: how to integrate the mobility
of workers as a new decision option in a flexible model and
guide workers to other locations such that the cardinality of
the online assignment is maximized? To further illustrate
this motivation, we go through the following toy example.

Example 1. Assume a real-time taxi-calling platform has
six taxi-calling tasks (r1 − r6) by six requesters, and seven
workers (w1 −w7), i.e., seven taxis. The initial locations of
the tasks and the workers are labeled in the 2D space (X,Y)

1334

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

w4

w5

w7

r6

r4

r3

r5

w6

r1

(3,6)r2

(2,5)

w1 (1,6)

w2 (1,8) w3 (3,7)
(5,6)

(6,5)

(6,7)
(7,6)

(5,3)

(4,1)
(8,2)

(6,1)

(a) Initial locations of
the tasks and the wor-
kers

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

w4

w5

w7

r6

r4

r3

r5

w6

r1

(3,6)r2

(2,5)

w1 (1,6)

w2 (1,8) w3 (3,7)
(5,6)

(6,5)

(6,7)
(7,6)

(5,3)

(4,1)
(8,2)

(6,1)

(b) The online optimal
result without workers’
movement

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

w4

w5

w7

r6

r4

r3

r5

w6

r1

(3,6)r2

(2,5)

w1 (1,6)

w2 (1,8) w3 (3,7)
(5,6)

(6,5)

(6,7)
(7,6)

(5,3)

(4,1)
(8,2)

(6,1)

(c) The offline opti-
mal assignment allowing
workers’ movement

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8
Area0 Area1

Area2 Area3

Slot0(9:00-9:05)
a00=2,b00=1 a01=0,b01=0

a10=0,b10=0 a11=0,b11=3

a02=0,b02=0 a03=3,b03=0

a12=0,b12=1 a13=0,b13=0

Slot0(9:00-9:05)

Slot1(9:05-9:10) Slot1(9:05-9:10)

Slot0(9:00-9:05) Slot0(9:00-9:05)

Slot1(9:05-9:10) Slot1(9:05-9:10)

(d) A predictive number
of the tasks/workers in
each area and time slot

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

w4

w5

w7

r6

r4

r3

r5

w6

r1

(3,6)r2

(2,5)

w1 (1,6)

w2 (1,8) w3 (3,7)
(5,6)

(6,5)

(6,7)
(7,6)

(5,3)

(4,1)
(8,2)

(6,1)

(e) The workers’ mo-
vement based on the
guide in Figure 1d

Figure 1: The results of different online models based on time in Table 1

Table 1: Arrival time of real-time taxi-calling tasks and workers (taxis)

9:00 9:00 9:01 9:01 9:02 9:03 9:03 9:03 9:04 9:05 9:06 9:07 9:08
w1 r1 w2 w3 r2 w4 w5 w6 w7 r3 r4 r5 r6

in Figure 1a. The goal of the platform is to maximize the
total number of valid assigned pairs (tasks and taxis) such
that the assigned taxis can arrive at the locations of the re-
questers before their deadlines. Table 1 shows the arrival
time of each task and worker. We assume the deadlines for
tasks and workers are 2 minutes and 30 minutes, respecti-
vely, and the speed of workers is one unit per minute. If
workers can only wait in place as in the existing online mo-
dels, the online optimal result is shown by the red arrows in
Figure 1b, where workers w1 and w3 are assigned to tasks r1
and r2, respectively, and the cardinality of the online optimal
assignment is 2. If the platform assigns tasks offline, where
the full spatiotemporal information of the tasks/workers is
known in advance, then it can ask each worker to move to
the location of the task assigned to her/him once the worker
appears on the platform. Figure 1c shows the offline optimal
assignment result and the movement of workers (green ar-
rows). For example, worker w6 appears on the platform at
9:03 and is guided to the location of task r3 because the plat-
form knows that r3 will appear there at 9:05. Consequently,
the cardinality of the offline optimal assignment is 6. Alt-
hough it is impossible to achieve the offline optimal assign-
ment without the full knowledge of the future tasks/workers,
we observe the potential benefits by allowing workers to move
around, which motivates us to predict future tasks/workers
and guide workers to potential tasks in advance.

Motivated by the above example, we propose a flexible
online model that takes the mobility of workers as a new
decision option. Specifically, we formulate a new problem
called Flexible Two-sided Online task Assignment (FTOA).
FTOA allows workers to either wait in place or be guided
to other locations if she/he is not assigned a task on ar-
riving at the platform. To address the FTOA problem, a
natural idea is to first predict the spatiotemporal distribu-
tions of subsequent tasks and workers and then utilize the
predications to guide workers’ movement and online task as-
signment. To achieve this goal, two challenges need to be
addressed. (i) How to effectively generate the guide for idle
workers by predicting the spatiotemporal distribution of tasks
and workers? (ii) How to leverage the guide of the workers’
movement to optimize the online task assignment? To the
best of our knowledge, this is the first work that studies the
FTOA problem. The main contributions of this work are
summarized as follows.

• We propose and formulate FTOA, a new problem of
online task assignment in real-time spatial data that
is fit for practical O2O applications where workers are
allowed to move around if no task is assigned.

• To address the FTOA problem, we develop a novel
two-step framework, which integrates offline prediction
and online task assignment.

• We devise a prediction-based online task assignment
algorithm which achieves a 0.47-constant competitive
ratio and includes a series of optimization techniques
to improve its efficiency and effectiveness. In parti-
cular, it not only improves the competitive ratio by
nearly two times than that of the state-of-the-art but
also reduces the time complexity of processing each
newly-arrived task/worker to O(1).

• We verify the effectiveness and efficiency of our met-
hods on both synthetic datasets and datasets from a
large-scale taxi-calling platform.

In the rest of this paper, we formulate the FTOA pro-
blem in Section 2 and provide an overview of the two-step
framework in Section 3. Then we detail the new two-sided
online task assignment algorithms and its optimizations in
Section 4 and Section 5. Section 6 presents the performance
evaluations, Section 7 reviews related work and Section 8
concludes this paper.

2. PROBLEM STATEMENT
In this section, we first introduce the basic concepts, and

then formally define the FTOA problem. We also present
a baseline approach called SimpleGreedy, which is extended
from a state-of-the-art online task assignment model [26].

2.1 Preliminaries and Definitions

Definition 1 (Worker). A worker, denoted by w =<
Lw, Sw, Dw >, appears on the platform with an initial loca-
tion Lw in the 2D space at time Sw and waiting time Dw.
In other words, the worker w no longer provides services on
the platform after the deadline Sw +Dw.

Definition 2 (Task). A task, denoted by r =< Lr, Sr,
Dr >, is released on the platform at time Sr and at location

1335

Table 2: Summary of symbol notations

Notation Description

Ŵ ,R̂ The set of predicted workers and tasks

m = |Ŵ | The cardinality of the set of predicted workers

n = |R̂| The cardinality of the set of predicted tasks
W ,R The set of workers and tasks in real scenario

Lw, Lr The locations of a worker and a task
Sw, Sr Start times of a worker and a task
Dw, Dr Deadlines of a worker and a task

aij ,bij
The predicted numbers of workers
and tasks in time Sloti and Areaj

d(Lw, Lr) Travel time from Lw to Lr

OPT The optimal solution and also its value

Lr in the 2D space, and it needs to be served within Dr time.
In other words, the task r will disappear from the platform
if it is not assigned to a worker or the assigned worker fails
to arrive at the location Lr before the time Sr +Dr.

Definition 3 (Travel Cost). The travel cost, deno-
ted by d(w, r), is the time cost to travel from Lw to Lr.

Notice that each worker has a velocity. Thus the travel
cost from the location of a worker w to the location of a task
r is the ratio of the Euclidean distance between w and r over
the velocity. For simplicity, we assume the same velocity for
all workers. Different velocities can be transformed into the
same velocity by adjusting the travel costs.

Definition 4 (FTOA Problem). Given a set of wor-
kers W and a set of tasks R, where workers and tasks can
dynamically appear on the platform one by one at any time,
the FTOA problem finds an assignment M among W and R
to maximize the number of assigned pairs MaxSum(M) =∑

w∈W,r∈R I(w, r), where I(w, r) = 1 if the pair (w, r) is

matched in the assignment M , and otherwise I(w, r) = 0,
such that the following constraints are satisfied:

• Deadline constraint: For any worker-task pair (w, r),
it should satisfy the following two deadline conditions.
(1) The task should appear before the worker leaves the
platform (i.e., Sr < Sw +Dw). (2) The worker should
be able to arrive at the location of the assigned task
before the deadline of the task (i.e., Dr − (Sw − Sr)−
d(Lw, Lr) ≥ 0).

• Worker’s decision constraint: Once a new worker ap-
pears, she/he has the following three options: (i) She/He
is assigned a task by the platform before her/his dead-
line; (ii) She/He stays in place and waits for a subse-
quent task before her/his deadline; (iii) She/He moves
to a specific region instructed by the platform.

• Task’s decision constraint: Once a new task is relea-
sed, its location is fixed. The task is either assigned to
a worker currently on the platform with the above dead-
line constraint satisfied or waits for one future worker
who can meet the above deadline constraint.

• Invariable constraint: Once a task r is assigned to a
worker w, the assignment of (w, r) cannot be revoked.

Table 2 lists the notations used throughout the paper.

2.2 A Baseline Approach
The FTOA problem is hard because it needs to maximize

the number of assigned pairs without knowing the future

locations of tasks and workers. In this subsection, we first
introduce a baseline solution called SimpleGreedy. The main
idea of SimpleGreedy is that for any new object (a worker
or a task), it picks those objects (tasks or workers) in the
other set with the deadline constraint satisfied, and select
one with the shortest distance.

Example 2. Back to Example 1 in Figure 1, suppose all
the tasks have Dr = 2 minutes and the workers move one
unit per minute. SimpleGreedy will achieve a matching size
2, since every worker will stay in place and wait for new
tasks. Only r1 and r2 will be finished before deadline.

However, the optimal solution which knows the locations
of future tasks can dispatch workers w2, w4, w5 and w6 in
advance when they appear on the platform. The workers will
move to the top right area to finish the four tasks. Finally,
the OPT algorithm achieves a matching size of 6.

3. OVERVIEW OF OUR APPROACH
In this section, we introduce an overview of our solution

framework and the evaluation metrics to assess the effecti-
veness of different online task assignment algorithms.

3.1 Overview of the Two-Step Framework
Our framework consists of two steps: offline prediction

and online task assignment.

3.1.1 Offline Prediction
As it is hard to predict the exact spatiotemporal infor-

mation of each task/worker, a reasonable relaxation is to
predict the number of the tasks/workers in a specific spatio-
temporal range. We use two concepts, “grid area” (a specific
spatial range) and “time slot” (a specific temporal range), to
partition the spatial and temporal dimensions, respectively.
We illustrate the two concepts by the following example.

Example 3. Back to Example 1 in Figure 1, the 2D space
in Figure 1a is divided into four grid areas (Area 0 - Area 3),
and the whole timeline in Table 1a is partitioned to two time
slots (Slot 1 [9:00-9:05] and Slot 2 [9:06-9:10]). Figure 1d
shows an illustrative prediction of the numbers of tasks and
workers for each grid area and each time slot, where aij and
bij denote the predicted number of workers and tasks in time
slot i and grid area j, respectively. For example, the number
of predicted tasks and workers in Area 3 and Slot 0 are 0
and 3, respectively.

It is a well-studied topic to predict the number of moving
objects per grid area and per time slot based on histori-
cal data such as demand-supply prediction of taxicabs [19,
31] and rents-returns prediction of sharing bikes [17]. In
this work, we evaluate representative prediction methods on
real-world datasets and select the most accurate one for our
offline prediction (see Section 6.3).

3.1.2 Online Task Assignment
Based on the offline prediction results, we first generate

an offline guide (Section 4). The offline guide transforms
the predicted numbers of tasks and workers in each grid
over multiple (future) time slots into pre-computed matched
pairs of tasks and workers for the entire region. The offline
guide serves as the basis for dispatching workers to other
locations where tasks are likely to occur in the future, and

1336

saves the time to process a newly-arrived worker or task,
because a pseudo assignment is already computed.

With the offline guide, the platform refers to the pseudo
assignment of a new object (a task or a worker), and makes
the corresponding decisions. In case the actual workers and
tasks deviate from the predictions, we propose a set of opti-
mizations that can still ensure the theoretical guarantee on
the total number of assigned worker-task pairs of the online
task assignment (Section 5).

3.2 Evaluation Metrics of Online Algorithms
Online task assignment algorithms are the core in large-

scale O2O service platforms, and it is essential to select the
algorithms with the best theoretical guarantees on the to-
tal number of assigned worker-task pairs. The theoretical
guarantees of different online algorithms are usually asses-
sed by competitive ratio (CR), which measures the diffe-
rences between the outputs of an online algorithm and the
optimal results under the assumption of knowing all the fu-
ture locations of tasks and workers. Depending on the as-
sumptions of the arrival of tasks and workers, the competi-
tive ratio needs to be analyzed using different online input
models [18]. Since our framework is built upon an offline
prediction model that assumes independently and identi-
cally distributed (i.i.d) tasks and workers, we also adopt
the i.i.d input model [7] to calculate the competitive ra-
tio. Specifically, given α time slots and β grid areas, the
spatiotemporal distribution of workers (tasks), DW (DR),

is defined by Pra[i][j] =
aij∑

i

∑
j aij

(Prb[i][j] =
bij∑

i

∑
j bij

),

where 1 ≤ i ≤ α, 1 ≤ j ≤ β, and aij (bij) means the
predicted number of workers (tasks) in time slot i and grid
area j. There will be m =

∑
i

∑
j aij trials for workers and

n =
∑

i

∑
j bij trials for tasks. The i.i.d model assumes that

the dynamically arrived workers and tasks follow the afore-
mentioned spatiotemporal distributions and the competitive
ratio under the i.i.d model is defined as follows.

Definition 5 (CR in the i.i.d Model[7]). The com-
petitive ratio in the i.i.d model of an online algorithm for
the FTOA problem is the minimum ratio of the result of the
online algorithm over the optimal result under all possible
arrival orders generated by the spatiotemporal distributions
of the tasks and the workers DR and DW ,

CRi.i.d = min∀v∈V follows DR and DW
MaxSum(M)

MaxSum(OPT)

where V is the set of all possible input orders of tasks and the
workers, v is one order in V , MaxSum(M) is the cardina-
lity of assignment by the online algorithm, and MaxSum(OPT)
is the optimal cardinality of the offline scenario.

To sum up, as discussed in Section 3.1, the offline pre-
diction results can be used to guide and optimize the online
task assignment. As next, we present a novel prediction-
oriented online task assignment approach, which consists of
two parts: offline guide generation in Section 4 and online
task assignment in Section 5.

4. OFFLINE GUIDE GENERATION
The offline guide generation component takes the pre-

dicted number of tasks and workers per grid area and per
time slot as input, and outputs a pseudo assignment among

Algorithm 1: Offline Guide Generation Algorithm

input : Ŵ , R̂

output: The offline guide Ĝf

1 Create source node s, sink node t;

2 foreach node w ∈ Ŵ do
3 add edge(s,w,1);

4 foreach node r ∈ R̂ do
5 add edge(r,t,1);

6 foreach node w ∈ Ŵ do

7 foreach node r ∈ R̂ do
8 if Dr − (Sw − Sr)− d(Lw, Lr) ≥ 0 and

Sr < Sw +Dw then
9 add edge(w,r,1)

10 Ĝf ← Maxflow(s, t);

11 return Ĝf

these predicted tasks and workers in the form of a maxi-
mum bipartite matching. Based on the predicted number
of tasks and workers, the offline generation component first
instantiates the same number of nodes on the left (workers)
and right (tasks) of a bipartite graph. The set of nodes on

the left (right) is denoted by Ŵ (R̂). The nodes from the
prediction in the same grid area and time slot are labeled
with the same type. Then we add an edge between a pair

of nodes in the bipartite graph, i.e., (w, r) (w ∈ Ŵ , r ∈ R̂),
if the pair satisfies the deadline constraint in Definition 4.
Finally, we adopt the classical maximum bipartite matching
algorithm on the above bipartite graph to generate a maxi-
mum bipartite matching, i.e., the offline guide.
Algorithm 1 illustrates the generation of the offline guide.

All predicted numbers of workers are instantiated to the set

of left nodes, Ŵ , in a bipartite graph, while all predicted
numbers of tasks are instantiated to the set of right nodes,

R̂, in the same graph. In lines 1-5, we create one addi-
tional source node and one additional sink node, and add
edges between the source node and each left node, as well
as between the sink node and each right node, respectively.
Then in lines 6-9, we add an edge between a pair of nodes
if the corresponding predicted worker can complete the cor-
responding predicted task on time. In line 10, we apply the
Ford-Fulkerson algorithm [5] to obtain a maximum cardina-

lity bipartite matching, i.e., the offline guide Ĝf , which is
returned in line 11.

We make two notes here. (1) Any other max-flow algo-
rithm is applicable to generate the offline guide. (2) We can
further add a cost representing the travel cost between a
worker and a task to the corresponding edge and apply any
mincost-maxflow algorithm to derive a maximum cardina-
lity bipartite matching with minimum travel cost.

Example 4. Back to Example 3, Algorithm 1 will create
nodes as depicted in Figure 2a. For instance, a00 = 2 means
that the predicted number of workers in Slot 0 and Area 0 is

2, and there will be two nodes (Ŵ 001 and Ŵ 002) created on

the left side representing the two predicted workers. Ŵ ijk

(R̂ijk) represents the k-th predicted worker (task) in Slot i
and Area j. Since the worker in Slot 0, Area 0 can serve the

1337

(a) Network construction (b) Maxflow result (c) Final guide

Figure 2: Illustrated example of offline guide generation

task in Slot 0 and Area 0, two edges with R̂001 will be added.
After running a max flow algorithm, the maximum bipartite

matching Ĝf is created and the red edges in Figure 2b repre-
sent the edges carrying one unit of flow. Based on the max
flow result, the final offline guide is presented in Figure 2c.

Complexity Analysis. The time complexity of offline
guide generation depends on the implementation of line 10.
An implementation such as the Ford-Fulkerson algorithm
takes O(min(m,n)|E|) (m =

∑
i

∑
j aij , n =

∑
i

∑
j bij)

time, where searching a new augmenting path takes O(|E|)
time and there are at most min(m,n) augmenting paths.
Note that the guide is generated offline and thus it does not
affect the efficiency of the online task assignment.

5. ONLINE ASSIGNMENT ALGORITHMS
In this section, we elaborate on our online task assign-

ment algorithms based on the offline guide. We first present
prediction-oriented on-line task assignment in real-time spa-
tial data (POLAR), which has a competitive ratio of 0.4.
We further propose POLAR-OPtimization (POLAR-OP),
which has a better competitive ratio of 0.47. In the fol-
lowing, we distinguish a node, which is instantiated by a
predicted worker (task) and refers to a node in the bipar-
tite graph, and an object, which is an actual worker (task)
during online task assignment.

5.1 POLAR Algorithm
POLAR is inspired by the solution to the one-sided online

matching problem [7]. The main idea is that when a new
object (an actual worker/task in the online task assignment
process) appears, we let the object occupy a corresponding

node in the offline guide Ĝf and perform matching based

on Ĝf . Here “corresponding” means that the object and
the node it occupies are the same type. We use “occupy” to

represent that each node in Ĝf can only be used by at most
one object.

Algorithm 2 summarizes the procedure of POLAR. In li-
nes 2-4, when a new object o arrives, which could be either
a worker or a task, POLAR makes the object occupy an
unoccupied node w (or r) of its type (i.e., the same indices

of grids and time slots) in Ĝf . If no node can be occupied,
the object is ignored. This situation occurs when the offline
prediction underestimates the number of objects. Also note
that in POLAR, each node can be occupied by one object
at most. In lines 5-13, POLAR refers to the offline guide to
perform the assignment for the object. Specifically, in line
6, POLAR checks whether the paired node r (or w) of node

w (or r) in Ĝf has been occupied by an object. If yes, it

Algorithm 2: POLAR Algorithm

input : W,R, Ĝf (the offline guide from Algorithm 1)
output: A feasible assignment M

1 M ← ∅; Mark all the nodes in Ĝf unoccupied;
2 foreach new arrival object o do

3 w(or r)← an unoccupied node of o’s type in Ĝf ;
4 mark w(or r) occupied;

5 find the edge (w, r) in Ĝf ;
6 if r(or w) is occupied then
7 assign o to the corresponding object of r(or w);
8 update M ;

9 else
10 if o is a worker then
11 dispatch o to go to the area of r;

12 else
13 let o wait until its deadline;

14 return M

immediately assigns the newly arrived object o to the ob-
ject occupying the paired node and updates the assignment.
Otherwise in lines 9-13, POLAR dispatchs o in advance if it
is a worker or lets o wait until its deadline if it is a task.

Example 5. We continue to use Example 1 to illustrate
POLAR in Figure 3a and refer to the guide in Figure 2c. In

Slot0 and Area0, the worker w1 who occupies Ŵ 001 arrives
on the platform and is assigned to the task r1 which occu-

pies R̂001 in Slot 0 and Area 0. The second worker w2 who

occupies Ŵ 002 is dispatched to area 1 since she/he matches

the node R̂111 in the guide, and she/he will serve the task
r3 in Slot1 and Area1. When the third worker w3 in Slot
0 and Area 0 arrives, because there is no unoccupied node,
POLAR just ignores it. In Slot 0 and Area 3, two workers

(who occupy Ŵ 031 and Ŵ 032) will move to Area 1 and serve

two tasks r4 and r5 (which occupy R̂112 and R̂113) in Slot 1

and Area 1. The worker w6 who occupies Ŵ 033 in Area 3 is
dispatched to Area 2 but fails to get a task because of the in-
accurate prediction. The last worker appears in Area3 fails
to occupy a node. The POLAR algorithm finally achieves a
matching size of 4.

Next we derive the competitive ratio of POLAR by giving
the lower bound of the matching size and the upper bound
of the OPT . We assume each pair matched based on the
offline guide can be matched in reality. The assumption is
reasonable because the offline guide complies with all the

1338

constraints in Definition 4. Although the use of discrete
time slots and areas in Algorithm 1 may affect slightly the
inequalities, such differences can be ignored.

Lemma 1. We define E as the set of edges added in line
9 of Algorithm 1, which are also the edges in the bipartite
graph, and E∗ = {e ∈ E : fe = 1}, which is the set of
edges that carry the flow of one unit. With a probability
of at least 1 − 2e−Ω(m+n), for any ε ≥ 0, the matching size
returned by POLAR is at least (1− 1

e
)2|E∗|−ε(m+n), where

m =
∑

i

∑
j aij and n =

∑
i

∑
j bij .

Proof. For any edge e ∈ E∗, it is chosen by the algo-
rithm if and only if the two nodes, w and r, on this edge
are occupied in the real online scenario. For a type of wor-
ker in some Sloti and in some Areaj, the new worker of
this type comes with the probability of

aij

m
, and the new

worker occupies one node with probability of 1
aij

. In the

analysis, we assume the algorithm selects one node from all
nodes of this type uniformly at random and lets the new
object occupy in this node. The assumption only reduces
the probability of occupying a node and does not affect the
correctness of the analysis. Then the new worker occupies
one node with probability of 1

m
. The probability that a node

w is not occupied by any worker is (1 − 1
m
)m. Hence the

probability that the node w is occupied by a worker is at
least 1− 1

e
. Similarly, the probability that a node r is occu-

pied by a task is 1 − (1 − 1
n
)n ≥ 1 − 1

e
. Note in the i.i.d.

model the arrival of one type of nodes is independent from
the other. We conclude that the probability that the edge e
is chosen by the algorithm is at least (1 − 1

e
)2. Let ALG

be the random variable denoting the matching size output
by POLAR. We will have E[ALG] ≥ (1 − 1

e
)2|E∗|. Note

that ALG is a function of all the coming nodes. Let Xi

be the node that the ith arrived object occupies. The se-
ries Zi = E[ALG|X1, ...Xi] will form a Doob martingale.
Here Z0 is the expectation of ALG and Zm+n is the final
output from the algorithm. We also claim that ALG is a
function of m+n random variables, which satisfies the Lip-
schitz condition with bound 1. Formally, for any two series
{X ′

1, ..., X
′
i, ..., X

′
m+n} and {X ′

1, ..., X
′′
i , ..., X

′
m+n} different

in only one position X ′
i and X ′′

i , |ALG(X ′
1, ..., X

′
i, ..., X

′
m+n)

−ALG(X ′
1, ..., X

′′
i , ..., X

′
m+n)| ≤ 1. Therefore by Azuma-

Hoeffding inequality, we obtain Pr(|Zm+n − Z0| ≥ ε(m +

n)) ≤ 2e−
ε2(m+n)

2 . After we replace E[ALG] and ALG
with Z0 and Zm+n, respectively,

Pr(ALG ≤ E[ALG]− ε(m+ n)) ≤ 2e−
ε2(m+n)

2 . (1)

Taking the opposite, we conclude that with a probability of
at least 1−2e−Ω(m+n), for any ε ≥ 0, the POLAR algorithm
achieves its matching size at least (1− 1

e
)2|E∗|−ε(m+n).

We next derive the upper bound of OPT .

Lemma 2. Let OPT be the optimal matching size. With
a probability of at least 1−e−Ω(m+n), for any ε > 0, OPT ≤
|E∗|+ ε(m+ n).

Proof. In a network graph, the size of any cut is always
an upper bound of any maxflow. We obtain the bound of
OPT in the real online scenario by constructing a cut which
uses the offline guide.

In Algorithm 1, we get a residual network Gf where we
could construct a mincut using the canonical “reachability”

()[Stays in area0]

()[Matches w1]

()[Goes to area1]

[Fails to occupy]

()[Goes to area 1]

()[Goes to area 1]

()[Goes to area 2]

[Fails to occupy]

()[Matches w2]

()[Matches w4]

()[Matches w5]

[Fails to occupy]

[Fails to occupy]

(a) POLAR (Size=4)

()[Stays in area 0]

()[Matches w1]

()[Goes to area 1]

()[Stays in area 0]

()[Matches w3]

()[Goes to area 1]

()[Goes to area 1]

()[Goes to area 2]

()[Goes to area 1]

()[Matches w2]

()[Matches w4]

()[Matches w5]

()[Matches w7]

(b) POLAR-OP (Size=6)

Figure 3: Illustrated examples of POLAR and POLAR-OP

feasible flow [5]. Specifically, s with all the nodes s can reach
Gf forms the set S, and the set T contains the remaining
nodes. (S, T) forms the mincut of G.

We define ŴS = Ŵ ∩ S, ŴT = Ŵ ∩ T , R̂S = R̂ ∩ S and

R̂T = R̂∩T . By contradiction, there is no edge between WS

and RT . Hence, there are only edges in s to ŴT and R̂S to
t in the mincut. Also note that mincut equals maxflow indi-

cates that |E∗| = |ŴT |+ |R̂S |. We will use this observation
in the following proof.

The real online scenario (W,R) can achieve its OPT by
constructing a network and using a maxflow algorithm. Af-
ter a maxflow algorithm, we get Gf . Any cut in the residual
network Gf is an upper bound on OPT . For a worker w ∈
Ŵ , we define D(w) as the online workers that try to occupy
the node w and WS = ∪w∈ŴS

D(w), similarly WT , RS , RT .

The s− t cut we define in Gf is (WS ∪RS ,WT ∪RT). Since
there is no edge between WS and RT , there will be no edge
between WS and RT . The cut size equals |WT |+ |RS |. For
any worker w, it occupies a node in WT with a probability of∑

w∈ŴT
aSwLw

m
, independent of other workers. Using a Cher-

noff bound, for any ε > 0, with a probability of 1 − e−Ω(m),

|WT | ≤ |ŴT |+ εm. Together with the observation above, we
have OPT ≤ |E∗|+ ε(m+ n).

Theorem 1. The POLAR algorithm achieves its compe-
titive ratio (1− 1

e
)2 ≈ 0.4 with high probability.

Proof. According to Lemma 1, with high probability, for
any ε > 0, we have ALG >= (1 − 1

e
)2|E∗| − ε(m + n).

In Lemma 2, with high probability, for any ε > 0, we have
OPT ≤ |E∗| + ε(m + n). Combining the two results, the
theorem holds.

Complexity Analysis. It takes O(1) time to process
each newly arrived object by referring to the offline guide.

5.2 Optimizing the POLAR Algorithm
Note that the workers and tasks that are not predicted by

the offline prediction component are simply ignored by PO-
LAR. In this subsection, we propose POLAR-OPtimization
(POLAR-OP), which enhances the POLAR algorithm to
handle such unexpected workers/tasks and has a better com-
petitive ratio of 0.47. The main idea of POLAR-OP is that
when an new object (an actual worker/task) appears, the
platform lets the object associate a corresponding node in

the offline guide Ĝf and perform an online matching based

1339

Algorithm 3: POLAR-OP Algorithm

input : W,R, Ĝf (the offline guide from Algorithm 1)
output: A feasible assignment M

1 M ← ∅;
2 foreach new arrival object o do

3 w(or r)← a node of o’s type in Ĝf ;

4 find the edge (w, r) in Ĝf ;
5 if r(or w) is associated then
6 assign o to any object associated to r(or w);
7 update M ;

8 else
9 if o is a worker then

10 dispatch o to go to the area of r;

11 else
12 let o wait until its deadline;

13 return M ;

on Ĝf . Note that “associate” means that each node in Ĝf

can be reused by multiple objects.
Algorithm 3 illustrates the main procedure of POLAR-

OP. The main difference between POLAR-OP and POLAR
is that POLAR-OP allows objects to reuse the nodes in Ĝf .
Specifically, in line 3 POLAR-OP tries to associate the ob-
ject to a node w (or r) of its type. In contrast to POLAR,
where one node can only be occupied by one object, a node
in POLAR-OP can be associated to multiple objects. We
only ignore the object when there is no node of its type.
The rest of POLAR-OP is similar to POLAR. In line 4, we

find the paired node r (or w) of the node w (or r) in Ĝf .
In lines 5-12, if there are objects associated to the paired
node, we immediately assign the newly arrived object o to
any object associated to the paired node. Otherwise, we
dispatch o based on the offline guide if it is a worker or let
it wait in place if it is a task.

Example 6. Back to our running example in Example
1. Figure 3b illustrates the process of the POLAR-OP Algo-
rithm that can reuse the matched edges in the offline guide.
In Slot 0 and Area 0, the third worker w3 who is associa-

ted to Ŵ 001 again can be matched to the second task r2 that

is associated to R̂001 in Area 0. The fourth worker w7 who

appears in Slot 0 and Area 3 will be associated to Ŵ 031’s po-
sition again, and will then go to Area 1 and serve the fourth
task r6 that could not be associated to a node at first. Finally
the algorithm achieves a matching size of 6, which is equal
to the optimal solution.

Similar to previous theorems, we first derive the lower
bound of the matching size with the following lemma and
then the upper bound of OPT .

Lemma 3. The POLAR-OP achieves a matching size of
at least 0.47|E∗| − ε(m+ n) with high probability.

Proof. Due to the symmetry of two sides’ nodes, we
focus on the worker set nodes. For any worker w, it se-
lects a certain node to occupy with probability of 1/m =
1/

∑
i

∑
j aij . So for any node, in the whole procedure there

are k tasks trying to occupy the same node with probability(
m
k

)
1
m

k
(1 − 1

m
)m−k ≈ 1

ek!
. When k is small compared with

Table 3: Real dataset

City |W | |R| Dw Dr t g
Beijing 50637 54129

2 [0.5,0.75,1,1.25,1.5] 12 600
Hangzhou 49324 48507

Table 4: Synthetic dataset

Factor Setting
|W | 5000, 10k, 20k, 30k, 40k
|R| 5000, 10k, 20k, 30k, 40k
Dr 1.0, 1.5, 2.0, 2.5, 3.0

g = x × y(The number of grids)
20×20,30×30

50×50,100×100,200×200
t(The number of time slots) 12, 24, 48, 96, 144

μ(Mean of temporal distribution
0.25, 0.375, 0.5, 0.625, 0.75

obeying normal distribution)
σ(Variance of temporal distribution

0.25, 0.375, 0.5, 0.625, 0.75
obeying normal distribution)

mean(Mean of spatial distribution
0.25, 0.375, 0.5, 0.625, 0.75

obeying normal distribution)
cov(Covariance of spatial distribution

0.25, 0.375, 0.5, 0.625, 0.75
obeying normal distribution)

Scalability
|W | = |R| = 200k,400k,

600k,800k,1000k

m, the random variable follows the Poisson distribution with
μ = 1, and we can use Poisson distribution to approximate
the real distribution based on the widely studied balls into
bins problem. Now we have two such random variables We

and Re which represent the number of two sides’ balls into
the edge e in E∗, respectively. The number of pairs mat-
ched in this edge equals the smaller one. Let Me indicate
the number of pairs matched in one edge e. We have

E[ALG] =
∑
e∈E∗

∑
i

iPr[Me = i]

=|E∗|
∑
i

i(2Pr[Re = i]

min(m,n)∑
j=i

Pr[We = j]

− Pr[Re = i] Pr[We = i])

=|E∗|
∑
i

i[2
1

ei!

min(m,n)∑
j=i

1

ej!
− 1

(ei!)2
].

(2)

Notice the general term of i is decreasing quickly and we
only take the first three terms and the result turns out to be
E[ALG] ≥ 0.47|E∗|. Also using the Azuma-Hoeffding ine-
quality about Doob martingale we have, with high probability,
ALG ≥ 0.47|E∗| − ε(m+ n).

Theorem 2. The POLAR-OP algorithm achieves a com-
petitive ratio of approximately 0.47.

Proof. Since the concentration result about OPT still
holds, the theorem follows straightaway.

Complexity Analysis. Similarly, the time complexity
of POLAR-OP is still O(1).

6. EXPERIMENTAL STUDY

6.1 Experiment Setup
Synthetic Datasets. We generate 20000 workers and

20000 tasks on a 50 × 50 2D grid. We vary the number of
workers, tasks, grid areas, and time slots to mimic a wide
scale of real-world application scenarios. One slot repre-
sents 15 minutes and one grid represents a 0.01 (longitude)
× 0.01 (latitude) square, and we set the global velocity of a

1340

|W|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

M
at

ch
in

g
S

iz
e

×104

0

0.5

1

1.5

2
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(a) Matching size of varying |W |
|R|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

M
at

ch
in

g
S

iz
e

×104

0

0.5

1

1.5

2
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(b) Matching size of varying |R|
Dr

1 1.
5 2 2.
5 3

M
at

ch
in

g
S

iz
e

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(c) Matching size of varying Dr

Grid

20 30 50 10
0

20
0

M
at

ch
in

g
S

iz
e

0

5000

10000

15000
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(d) Matching size of varying g

|W|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

T
im

e(
se

cs
)

0

5

10

15

20

25

30
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(e) Time of varying |W |
|R|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

T
im

e(
se

cs
)

0

5

10

15

20
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(f) Time of varying |R|
Dr

1 1.
5 2 2.
5 3

T
im

e(
se

cs
)

0

2

4

6

8

10

12

14

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(g) Time of varying Dr

Grid

20 30 50 10
0

20
0

T
im

e(
se

cs
)

0

2

4

6

8

10

12

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(h) Time of varying g

|W|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

M
em

or
y(

M
B

)

0

50

100

150

200

250

300

350
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(i) Memory of varying |W |
|R|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

M
em

or
y(

M
B

)

0

50

100

150

200

250

300

350
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(j) Memory of varying |R|
Dr

1 1.
5 2 2.
5 3

M
em

or
y(

M
B

)

0

50

100

150

200

250

300

350

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(k) Memory of varying Dr

Grid

20 30 50 10
0

20
0

M
em

or
y(

M
B

)

0

50

100

150

200

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(l) Memory of varying g

Figure 4: Results on varying |W |, |R|, Dr and the number of grids g

worker as 5 grids per slot, which is about 40 km/h. The
tasks are usually urgent and hence we set the range Dr

from 1 to 3. We simulate the temporal distribution and
spatial distribution by Normal distribution, which is veri-
fied by recent studies [13]. The parameter μ in the temporal
distribution is the value in the table times t, and σ can be
computed in a similar way. By default, μ = 0.5 × 48 = 24
and σ = 0.5 × 48 = 24. Since the spatial distribution has
two dimensions, we use a multivariate normal distribution.
Specifically, the mean is the value in the table times (x, y),
and the covariance is the value in the table times the ma-

trix

(
x 0
0 y

)
. Since there is no correlation between x and

y, we set the values along the diagonal of the matrix to be
the square of their variance and the remaining positions as
0. Table 4 illustrates the configuration in detail and the
default settings are marked in bold. The experiments using
the synthetic datasets are performed on a machine with Intel
(R) Core (TM) i7 3.80GHz CPU and 4GB main memory.

Real Datasets. We collected the taxi-calling data sam-
pled in proportion from July 2016 to December 2016 in two
cities, Beijing and Hangzhou, by a large-scale online taxi-
calling platform in China [1]. Table 3 summarizes the de-
fault configurations. Notice that |W | represents the number
of the occurrence of workers. That is, a taxi that appears
multiple times on the platform is counted as the number of
times it occurs rather than 1. We test different values of
Dr, since the parameter determines whether an assignment
is feasible or not. We test the performance of the algo-
rithms on each day. Thus, if one slot lasts for 15 minutes,
there are 96 slots in total per day. We use 20 × 30 = 600
grids to cover the cities and one grid represents a 0.01 (lon-

gitude) × 0.01 (latitude) square. We ignore the data points
beyond the scope of the rectangle. The experiments with
the real datasets are conducted on a server with 32 Intel
Xeon E5 2.4GHz processors with Hyper-Threading enabled
and 128GB memory.

Compared Algorithms. We compare POLAR, POLAR-
OP with two baselines, SimpleGreedy and GR [24], and
OPT in terms of total matching size, running time and me-
mory cost, and study the effect of varying parameters. GR
[24] is one of the state-of-the-art dynamic task assignment
algorithms, which gathers all objects within a time window
and performs an assignment for the objects in each window.
We omit the running time of the offline preprocessing. Note
that OPT consumes time at the same level of the prepro-
cessing. The algorithms are implemented in C++.

6.2 Experiment Results on Synthetic Datasets
Effect of |W |. The first column of Figure 4 shows the

results of varying |W |. The matching size increases with the
increase of |W | for all the algorithms, because of more edges
in the bipartite graph. POLAR-OP performs best. Both
SimpleGreedy and GR perform worse than POLAR because
they do not take potential matching pairs into account. GR
marginally outperforms SimpleGreedy because GR assigns
tasks after collecting a batch of objects while SimpleGreedy
conducts task assignment on the arrival of each new object.
All the algorithms need more time when |W | increases. The
running times of POLAR and POLAR-OP are close to 0,
since they process an object in O(1) time. GR also runs
fast since it only needs to match limited amounts of objects
in each time window. SimpleGreedy takes notably longer

1341

Time Slot

12 24 48 96 14
4

M
at

ch
in

g
S

iz
e

4000

6000

8000

10000

12000

14000

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(a) Matching size of varying the
number of time slots

|W|(|R|)

2e
+0

5

4e
+0

5

6e
+0

5

8e
+0

5

1e
+0

6

M
at

ch
in

g
S

iz
e

×105

0

1

2

3

4

5

6

7
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(b) Matching size of scalability
test

Dr

0.
5

0.
75 1 1.
25 1.
5

M
at

ch
in

g
S

iz
e

×104

3.5

4

4.5

5

5.5
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(c) Matching size of varying the
deadline in Beijing Data

Dr

0.
5

0.
75 1 1.
25 1.
5

M
at

ch
in

g
S

iz
e

×104

3.5

4

4.5

5

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(d) Matching size of varying the
deadline in Hangzhou Data

Time Slot

12 24 48 96 14
4

T
im

e(
se

cs
)

0

2

4

6

8

10

12

14

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(e) Time of varying the number
of time slots

|W|(|R|)

2e
+0

5

4e
+0

5

6e
+0

5

8e
+0

5

1e
+0

6

T
im

e(
se

cs
)

×104

0

0.5

1

1.5

2

2.5
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(f) Time of scalability test

Dr

0.
5

0.
75 1 1.
25 1.
5

T
im

e(
se

cs
)

0

10

20

30

40

50

60

70

80

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(g) Time of varying the deadline
in Beijing Data

Dr

0.
5

0.
75 1 1.
25 1.
5

T
im

e(
se

cs
)

0

20

40

60

80

100

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(h) Time of varying the deadline
in Hangzhou Data

Time Slot

12 24 48 96 14
4

M
em

or
y(

M
B

)

0

100

200

300

400

500

600

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(i) Memory of varying the num-
ber of time slots

|W|(|R|)

2e
+0

5

4e
+0

5

6e
+0

5

8e
+0

5

1e
+0

6

M
em

or
y(

M
B

)

0

500

1000

1500

2000

2500

3000

3500
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(j) Memory of scalability test

Dr

0.
5

0.
75 1 1.
25 1.
5

M
em

or
y(

M
B

)

0

500

1000

1500

2000

2500

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(k) Memory of varying the dead-
line in Beijing Data

Dr

0.
5

0.
75 1 1.
25 1.
5

M
em

or
y(

M
B

)

0

500

1000

1500

2000

2500

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(l) Memory of varying the dead-
line in Hangzhou Data

Figure 5: Results on varying the number of time slots, scalability test and Real Data

time because it has to retrieve all the objects when starting
to process a new object. All except OPT have a low memory
cost. The memory cost does not increase with |W | because
the size of the data structure is fixed.

Effect of |R|. The second column in Figure 4 shows
the results of varying |R|. We observe similar performance
trends when varying |W |, indicating that the role of workers
and tasks are symmetrical in our FOTA problem.

Effect of deadline Dr. The third column in Figure 4
presents the results of varying Dr. Although we set a global
deadline for all the tasks, the impact of Dr on the perfor-
mances is the same as that of different deadlines for diffe-
rent tasks. The matching size of all the algorithms increases
with the increase of Dr. This is because Dr represents the
slackness of the inequality in the real-time constraint. The
increase of Dr leads to more edges in the graph, and thus
a larger matching size. POLAR-OP yields the largest mat-
ching size. All except OPT have constant running time and
memory cost, indicating that OPT is sensitive to Dr.

Effect of the number of grids g. The fourth column
in Figure 4 shows the results of different numbers of grids.
The x-axis is the number of grids in one dimension. The ma-
tching size decreases as the number of grids increases. This
is because by dividing the same region (and with the same
number of workers and tasks) into more grids, the number
of objects per grid will decrease. Consequently, the spatial
overlap between workers and tasks per grid also drops, which

leads to fewer edges in the graph. Nevertheless, POLAR-OP
still outperforms the other online algorithms. The running
time of all the algorithms remain relatively stable. The in-
flection point of OPT might be due to certain accidental
factors. Since we construct a model for each grid, the me-
mory cost increases with the increase of the number of grids.

Effect of the number of time slots t. The first co-
lumn in Figure 5 depicts the results with different numbers
of time slots. The impact of the number of time slots is
similar to that of the number of grids. The matching size
also decreases with the increase of time slots. The running
time of SimpleGreedy is still the longest in all the online al-
gorithms, and the memory cost of all the online algorithms
slightly increase with more time slots.

Scalability. The second column in Figure 5 plots the
results by increasing |R| and |W | simultaneously at the same
scale. As OPT does not scale with the simultaneous increase
of |R| and |W |, we omit its time and memory results. For
the matching size, POLAR-OP performs almost the same
as OPT . SimpleGreedy performs the worst in running time,
because it takes a long time to find the nearest neighbours.
The running times of the other algorithms remain low and
only increase slightly as the scale of the data increases. All
algorithms are scalable in terms of memory.

Effect of the temporal distribution of tasks. The
first column in Figure 6 shows the results when varying μ
in the normal-distributed temporal distributions. μ reflects

1342

the distance between the dense part of workers and that
of tasks, since the temporal distribution of workers is fixed.
The intention is to change the scale of the overlap from small
to large. We observe that the matching size is insensitive to
the temporal distribution of tasks.

The second column in Figure 6 shows the results when
varying σ in the normal-distributed temporal distributions.
σ determines how long the dense part of the tasks spans in
time slots. We observe that when σ is greater than 0.25, the
matching size remains almost unchanged, because the tasks’
μ − σ can still reach the workers’ μ = 0.25. However, for
a smaller σ, such as 0.125, the overlap drops quickly, since
now μ−2∗0.125 is lower than the workers’ default μ = 0.25.
This will lead to a decrease in the matching size.

Effect of the spatial distribution of tasks. The third
and fourth columns in Figure 6 shows the effect of different
spatial distributions by varying the mean and covariance of
the normal-distributed spatial distributions. The mean of
the spatial distribution affects the matching size. As the
center of tasks gets farther from the center of workers, the
matching size decreases. However, when then mean of the
spatial distribution of tasks is (0.25x, 0.25y) = (12.5, 12.5),
which is the same as that of workers, SimpleGreedy and
GR seem to perform well. In this case, there is no need to
dispatch workers in advance, and workers only need to wait
in place for the tasks to appear in the same area. Similar
results can be observed when varying the covariance of the
normal distribution.

6.3 Experiment Results on Real Datasets
We first compare seven representative spatiotemporal pre-

diction methods and choose the best as the offline prediction
technique in our framework. We then evaluate the perfor-
mance of the proposed approaches. Both evaluations are
performed on a large-scale real-time taxi-calling platform.

6.3.1 Evaluation of Offline Prediction
Representative Prediction Approaches.
• Historical Average (HA): using the average of the his-

tory in the same time slot and the same grid area in
the same day of week.

• Auto-Regressive Integrated Moving Average (ARIMA):
using the well-known time-series model [31].

• Gradient Boosted Regression Tree (GBRT): using non-
parametric regression, which is one of the most ef-
fective statistical learning models for prediction [8].

• Predictive Aggregation Queries (PAQ): using aggrega-
tion queries with moving object trajectories in the 6
latest hours [11, 22].

• Linear Regression (LR): using a linear regression mo-
del with the the numbers of tasks and workers of the
15 most recent corresponding periods.

• Neural Network (NN): using a neural network with
the numbers of tasks and workers of the 15 most re-
cent corresponding periods and other features e.g., the
weather condition [31].

• HP-MSI: using the state-of-the-art method to predict
the number of bikes to be rent from or returned to each
bike station [17].

Evaluation Metrics. We use two common metrics: Er-
ror Rate (ER) and Root Mean Squared Logarithmic Error

(RMLSE) for evaluation, where ER = 1
t

∑t
i=1

∑g
j=1 |aij−ãij |∑g

j=1 aij

and RMLSE = 1
t

∑t
i=1

√
1
g

∑g
j=1(log(aij + 1)− log(ãij + 1))2.

Table 5: Prediction evaluation on real datasets

Customer (Task) Taxi (Worker)
Beijing Hangzhou Beijing Hangzhou

RMLSE ER RMLSE ER RMLSE ER RMLSE ER

HA 0.418 0.270 0.506 0.266 0.425 0.266 0.414 0.260

ARIMA 0.411 0.280 0.497 2.364 0.417 0.277 0.403 0.282

GBRT 0.399 0.251 0.493 0.225 0.405 0.245 0.395 0.255

PAQ 0.400 0.252 0.490 0.230 0.411 0.241 0.390 0.256

LR 0.403 0.253 0.489 0.245 0.414 0.250 0.400 0.253

NN 0.396 0.250 0.479 0.235 0.403 0.248 0.393 0.258

HP-MSI 0.399 0.248 0.489 0.217 0.400 0.239 0.386 0.242

Comparison of Offline Prediction Approaches. Ta-
ble 5 summarizes the results of the compared prediction met-
hods with respect to the two metrics using the two real da-
tasets. Note that smaller values of the two metrics indicate
more accurate prediction. From the results, we make the
following observations. The three simple prediction appro-
aches, HA, LR and ARIMA, perform poorly on both data-
sets. The reason may be that they cannot combine some
complicated features such as weather condition, or reflect
potential non-linear relationships between the features and
the predictions. The three non-linear prediction models,
NN, GBRT and PAQ, are competitive. A possible reason
is that they take more features into consideration and mo-
del complicated relationships. Finally, HP-MSI achieves the
best overall performance because it is tailored for spatio-
temporal prediction. Thus we choose HP-MSI for the offline
prediction component in our framework.

6.3.2 Evaluation of Online Task Assignment
We finally evaluate the performance of the online task as-

signment algorithms on the two datasets collected from a
large-scale taxi-calling platform in the last two columns of
Figure 5, where Dr is varied. We can observe that the per-
formance of both POLAR and POLAR-OP is better than
that of SimpleGreedy. In other words, the offline prediction
affects the final matching size. Using the same prediction
approach, the performances of the online task assignment
algorithms exhibit similar patterns to the results of varying
Dr on two real datasets. An interesting finding is that Sim-
pleGreedy performs better than POLAR (Figure 5(c)-(d)).
This may be explained by the supply-demand imbalance.
Specifically, when there are more supplies than demands, it
may not be beneficial to dispatch workers to certain areas in
advance. Furthermore, since POLAR relies solely on the off-
line guide to assign tasks, the prediction errors will decrease
the matching size and thus SimpleGreedy performs better.
The explanation is also supported by Figure 6c. POLAR-
OP performs the best on both the Beijing and the Hangzhou
real-world datasets.

6.4 Summary on Experiment Results
We finally summarize our findings.

• Both algorithms based on the two-step framework are
efficient in time and space, and they also visit more
edges of the bipartite graph due to prediction, which
results in a larger matching size.

• POLAR-OP is the most effective among all the algo-
rithms and is also efficient.

• Both algorithms based on the two-step framework are
scalable.

• The proposed prediction-based framework also works
in practice on real-world datasets.

1343

μ

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
at

ch
in

g
S

iz
e

4000

6000

8000

10000

12000

14000

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(a) Matching size of varying μ in
temporal distribution

σ

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
at

ch
in

g
S

iz
e

4000

6000

8000

10000

12000

14000

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(b) Matching size of varying σ in
temporal distribution

mean

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
at

ch
in

g
S

iz
e

×104

0

0.5

1

1.5

2
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(c) Matching size of varying mean
in spatial distribution

cov

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
at

ch
in

g
S

iz
e

2000

4000

6000

8000

10000

12000

14000

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(d) Matching size of varying cov
in spatial distribution

μ

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

T
im

e(
se

cs
)

0

2

4

6

8

10

12

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(e) Time of varying μ in temporal
distribution

σ

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

T
im

e(
se

cs
)

0

2

4

6

8

10

12

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(f) Time of varying σ in temporal
distribution

mean

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

T
im

e(
se

cs
)

0

5

10

15

20
SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(g) Time of varying mean in spa-
tial distribution

cov

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

T
im

e(
se

cs
)

0

2

4

6

8

10

12

14

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(h) Time of varying cov in spatial
distribution

μ

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
em

or
y(

M
B

)

0

50

100

150

200

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(i) Memory of varying μ in tem-
poral distribution

σ

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
em

or
y(

M
B

)

0

50

100

150

200

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(j) Memory of varying σ in tem-
poral distribution

mean

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
em

or
y(

M
B

)

0

200

400

600

800

1000

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(k) Memory of varying mean in
spatial distribution

cov

0.
25

0.
37

5

0.
5

0.
62

5

0.
75

M
em

or
y(

M
B

)

0

50

100

150

200

SimpleGreedy
GR
POLAR
POLAR-OP
OPT

(l) Memory of varying cov in spa-
tial distribution

Figure 6: Results on varying μ and σ in temporal distribution and mean and cov in spatial distribution

7. RELATED WORK
Our work is related to the research on task assignment in

spatial data and online maximum bipartite matching.

7.1 Task Assignment in Spatial Data
The problem of task assignment in spatial data is also cal-

led spatial matching problem [27, 30], which aims to match
two sets of objects based on their spatial locations, where
different optimization goals on the distance between the ma-
tched objects are proposed, e.g., total sum [27] and stable
marriage [30]. However, these studies cannot perform dyn-
amic task assignment in spatial data.

With the development of smartphones, the problem of
task assignment in spatial data becomes one of the core is-
sues in various applications in O2O services and spatial cro-
wdsourcing [6, 9, 15, 16, 20, 21, 23, 24]. For example, [15] is
the first work about task assignment on spatial crowdsour-
cing platforms, with the goal to maximize the number of
assigned tasks. Although the aforementioned works study
the problem of task assignment on spatial data, they mostly
focus on offline scenarios, where the spatiotemporal infor-
mation of all the tasks and workers is known in advance.

There are two closely related works [26, 28]. The main dif-
ference between our work and [28] is that this research only
considers the one-sided online task assignment and does not
support the two-sided online task assignment. The major
difference between our work and [26] lies in the online mo-
dels. In the online model of [26], a worker has to wait in
place instead of moving to other places if no task is assigned

to her/him immediately. Our work proposes a more flexible
online model, which not only provides a 0.47-competitive
ratio, twice better than that of [26], but also reduces the
time complexity of processing each task/worker to O(1).

7.2 Online Bipartite Matching
The classic online bipartite matching problem has been

widely studied [14]. The majority focuses on one-sided on-
line matching. Different assumptions on the input models
have been proposed to the following three categories:

Adversarial model. This model assumes that an ad-
versary plays against an online algorithm by specifying the
graph and the arrival order of nodes. The first work [14] is
proposed with a competitive ratio of 0.632. In the two-sided
online version, recent work [29] proposes an algorithm with
a ratio of 0.526. Our problem is more general in the way
that the workers are all flexible.

Random Order Model. In this model, the arriving or-
der of nodes is randomly chosen while the graph can still be
arbitrarily bad [10]. In the two-sided online version, recent
work [26] proposes the TGOA algorithm with a ratio of 0.25.
However, their problems are different from our FTOA and
their algorithms cannot solve our problem.

I.I.D Model. The I.I.D model, first proposed by [7], as-
sumes that there is an underlying distribution of the coming
objects. Given the distribution as prior, they design a com-
petitive algorithm with ratio of 0.729 [12]. However, these
studies are used to address one-sided online matching, which
is inapplicable to our problem.

1344

8. CONCLUSION
In this paper, we propose Flexible Two-sided Online task

Assignment (FTOA), a new problem of online task assign-
ment in real-time spatial data for practical O2O applicati-
ons, where workers are allowed to move around if no task is
assigned immediately. To address the FTOA problem, the
key insight is to leverage the big historical records on O2O
platforms to predict future spatiotemporal distributions of
tasks and workers, base on which we devise a novel two-step
framework, which integrates offline prediction with online
task assignment. Given predictions as an offline guide, we
develop the POLAR algorithm, which conducts online task
assignment based on the offline guide and yields a competi-
tive ratio of 0.4. To deal with the cases where the number
of the actual tasks/workers exceeds the predicted estima-
tes, we propose the POLAR-OP algorithm, which achieves
a competitive ratio of 0.47. We verify the effectiveness, ef-
ficiency and scalability of the proposed algorithms on both
synthetic datasets and datasets from a large-scale real-time
taxi-calling platform. We envision our work as a leap to-
wards more flexible and intelligent online task assignment
for a wide spectrum of practical O2O platforms.

Acknowledgment
Yongxin Tong’s work is supported in part by National Grand
Fundamental Research 973 Program of China under Grant
2014CB340300, NSFC Grant No. 61502021 and 71531001,
and SKLSDE Open Program SKLSDE-2016ZX-13.

Lei Chen’s work is supported in part by the Hong Kong
RGC Project 16202215, Science and Technology Planning
Project of Guangdong Province, China, No. 2015B010110006,
NSFC Grant No. 61328202 and 61300031, Microsoft Re-
search Asia Collaborative Grant and NSFC Guang Dong
Grant No. U1301253.

9. REFERENCES
[1] Didi chuxing.

https://en.wikipedia.org/wiki/Didi Chuxing.

[2] Gigwalk. http://www.gigwalk.com.

[3] Grubhub. https://www.grubhub.com/.

[4] Uber. https://www.uber.com/.

[5] R. Ahuya, T. Magnanti, and J. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall,
1993.

[6] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing
the number of worker’s self-selected tasks in spatial
crowdsourcing. In GIS 2013.

[7] J. Feldman, A. Mehta, V. Mirrokni, and
S. Muthukrishnan. Online stochastic matching:
Beating 1-1/e. In FOCS 2009.

[8] J. H. Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics.

[9] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and
K. Xu. Top-k teams recommendation in spatial
crowdsourcing. In WAIM 2016.

[10] G. Goel and A. Mehta. Online budgeted matching in
random input models with applications to adwords. In
SODA 2008.

[11] A. M. Hendawi and M. F. Mokbel. Predictive
spatio-temporal queries: a comprehensive survey and
future directions. In MobiGIS 2012.

[12] P. Jaillet and X. Lu. Online stochastic matching: New
algorithms with better bounds. Mathematics of
Operations Research, 2014.

[13] Z.-Q. Jiang, W.-J. Xie, M.-X. Li, B. Podobnik, W.-X.
Zhou, and H. E. Stanley. Calling patterns in human
communication dynamics. Proceedings of the National
Academy of Sciences, 2013.

[14] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
STOC 1990.

[15] L. Kazemi and C. Shahabi. Geocrowd: enabling query
answering with spatial crowdsourcing. In GIS 2012.

[16] L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd:
trustworthy query answering with spatial
crowdsourcing. In GIS 2013.

[17] Y. Li, Y. Zheng, H. Zhang, and L. Chen. Traffic
prediction in a bike-sharing system. In GIS 2015.

[18] A. Mehta. Online matching and ad allocation.
Theoretical Computer Science, 2012.

[19] L. Moreira-Matias, J. Gama, M. Ferreira,
J. Mendes-Moreira, and L. Damas. Predicting
taxi-passenger demand using streaming data. IEEE
Transactions on Intelligent Transportation Systems,
2013.

[20] L. Pournajaf, L. Xiong, V. Sunderam, and
S. Goryczka. Spatial task assignment for crowd
sensing with cloaked locations. In MDM 2014.

[21] J. She, Y. Tong, L. Chen, and C. C. Cao.
Conflict-aware event-participant arrangement and its
variant for online setting. IEEE Transactions on
Knowledge and Data Engineering, 2016.

[22] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying
about the past, the present, and the future in
spatio-temporal databases. In ICDE 2004.

[23] H. To, G. Ghinita, and C. Shahabi. A framework for
protecting worker location privacy in spatial
crowdsourcing. PVLDB 2014.

[24] H. To, C. Shahabi, and L. Kazemi. A server-assigned
spatial crowdsourcing framework. ACM Transactions
on Spatial Algorithms and Systems, 2015.

[25] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu.
Online minimum matching in real-time spatial data:
Experiments and analysis. PVLDB 2016.

[26] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen.
Online mobile micro-task allocation in spatial
crowdsourcing. In ICDE 2016.

[27] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis.
Capacity constrained assignment in spatial databases.
In SIGMOD 2008.

[28] U. ul Hassan and E. Curry. A multi-armed bandit
approach to online spatial task assignment. In UIC
2014.

[29] Y. Wang and S. C. Wong. Two-sided online bipartite
matching and vertex cover: Beating the greedy
algorithm. In ICALP 2015.

[30] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao.
On efficient spatial matching. In VLDB 2007.

[31] K. Zhao, D. Khryashchev, J. Freire, C. Silva, and
H. Vo. Predicting taxi demand at high spatial
resolution: approaching the limit of predictability. In
ICBD 2016.

1345

	Flexible online task assignment in real-time spatial data
	Citation
	Author

	prediction.pdf

