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Inferring abnormal glucose events such as hyperglycemia and hypoglycemia is crucial for the health of both diabetic patients

and non-diabetic people. However, regular blood glucose monitoring can be invasive and inconvenient in everyday life. We

present SugarMate, a !rst smartphone-based blood glucose inference system as a temporary alternative to continuous blood

glucose monitors (CGM) when they are uncomfortable or inconvenient to wear. In addition to the records of food, drug

and insulin intake, it leverages smartphone sensors to measure physical activities and sleep quality automatically. Provided

with the imbalanced and often limited measurements, a challenge of SugarMate is the inference of blood glucose levels at a

!ne-grained time resolution. We propose Md3RNN, an e"cient learning paradigm to make full use of the available blood

glucose information. Speci!cally, the newly designed grouped input layers, together with the adoption of a deep RNN model,

o#er an opportunity to build blood glucose models for the general public based on limited personal measurements from

single-user and grouped-users perspectives. Evaluations on 112 users demonstrate that Md3RNN yields an average accuracy

of 82.14%, signi!cantly outperforming previous learning methods those are either shallow, generically structured, or oblivious

to grouped behaviors. Also, a user study with the 112 participants shows that SugarMate is acceptable for practical usage.
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1 INTRODUCTION

Blood glucose concentration plays an important role in personal health. Hyperglycemia (high blood glucose level)
results in diabetes, leading to health risks such as pancreatic function failure, immunity reduction and ocular
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fundus diseases [27]. Meanwhile, hypoglycemia (low blood glucose level) also brings complications such as
confusion, shakiness, anxiety, and even coma or death if not treated in time [20]. People with diabetes need tight
control of their blood glucose concentration to avoid both short-term and long-term physiological complications.
While non-diabetic people normally have adequate self-regulation of blood glucose concentration, they are still
exposed to the risk of hypoglycemia when taking prolonged exercises, drinking excess amounts of alcohol, having
eating disorders, taking certain medicines (e.g., certain painkiller and antibiotic), or having pre-diabetes [11] [13].
Although continuous blood glucose monitoring is crucial for blood glucose management and bene!cial for

hyper- and hypoglycemia warnings, it can be invasive and inconvenient, especially during daily life. A standard
blood glucose measurement is to collect and analyze a drop of blood by !nger pricking, which requires a new prick
on the !nger for every observation. Alternatively, non-invasive (without penetrating the skin) continuous glucose
monitoring (CGM) has attracted extensive research leveraging techniques such as thermal infrared spectroscopy,
raman spectroscopy and impedance spectroscopy [51]. However, most CGM devices are expensive, cumbersome
to wear for extended time, and complicated in terms of operation/maintenance, making them unattractive for
both diabetic patients and non-diabetic people.

Towards more ubiquitous blood glucose monitoring when traditional CGM devices are unavailable or inconve-
nient to wear, researchers have proposed exploring the increasingly rich sensors embedded in commercial !tness
wearables and smartphones as a complement. In addition to the inherent glucose metabolism, blood glucose
also correlates to easily measurable physiological activities such as food and drug intake, energy expenditure,
sleep quality and emotional states [24]. Pioneer works [37] [50] have proposed preliminary systems adopting
bio-sensors (e.g., ECG electrodes) and !tness bands (e.g., accelerometer and galvanic skin response sensors) to
predict blood glucose concentrations and alarm abnormal blood glucose events. Nevertheless, they are validated
with a limited number of measurements and for short-term (e.g., 3 hours without the need of CGM devices [50])
or still require complex multi-sensory platforms [37] [50].
We design SugarMate, a personalized smartphone-based non-invasive blood glucose monitoring system that

detects abnormal blood glucose events by jointly tracking meal, drug and insulin intake, as well as physical
activity and sleep quality. SugarMate is designed as a temporary alternative for CGM devices when they are
uncomfortable or inconvenient to wear. It monitors blood glucose level every 3 minutes and can be used for
three weeks before re-calibration by the CGM devices 1. The blood glucose levels tracked by SugarMate help
both diabetic patients and non-diabetic people who want to track their blood glucose to adjust their lifestyle as
needed (e.g., exercise more and take less carbohydrate) and take other precaution measures when an abnormal
blood glucose level is detected. SugarMate considers generic, grouped and user-speci!c correlations between blood
glucose levels and the measurable external factors, which are largely overlooked in previous works.

The key challenge in designing SugarMate is to learn e#ective, accurate and personalized blood glucose models.
While there have been general blood glucose models characterizing universal trends between blood glucose
concentration and various external factors [41], they have to be adjusted based on user-speci!c data to account
for inter-user di#erences [3]. Yet it is often di"cult to collect su"cient data to directly build up personalized
models [35]: (i) A disposable enzyme of glucose sensor embedded in the CGM device is only capable of a few
days [55] [34], and most users are unwilling to wear CGM devices frequently due to discomfort. (ii) Despite
their importance, measurements of hyper- and hypoglycemia events are rare compared to normal blood glucose
concentrations, making it di"cult to accurately detect abnormal blood glucose events.
To take full advantages of the sparse, imbalanced measurements to build personalized blood glucose level

models, we !rst conduct feature extraction from both physiological and temporal perspectives. We propose
Md3RNN (multi-division deep dynamic recurrent neural network), an e"cient learning paradigm that extracts
general blood glucose level relevant features and preserves user-speci!c characteristics. Md3RNN advances

1A one time CGM calibration usually lasts six days, which is a normal disposable usage duration of the enzyme in the sensor of the CGM.
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previous personalized recurrent neural network (RNN) structures via a group-shared input layer to extract
distinctive feature representations within the same group (i.e., non-diabetic, type I and type II diabetic). In short,
Md3RNN can be regarded as a deep hierarchical RNN architecture, which is a combination of single user division
and grouped user division learning. Evaluations on the blood glucose dataset composed of 112 users collected
for 6 to 30 days show that Md3RNN outperforms both generic learning (i.e., ignoring inter-user di#erences) and
personalized learning (due to lack of measurements), and also achieves notably higher inference accuracy than
conventional shallow learning algorithms.
The key contributions of this work are summarized as follows.

• To the best of our knowledge, SugarMate is the !rst smartphone-based personalized blood glucose
monitor that works without CGM devices for an extended duration of time. It automatically collects
daily exercise and sleep quality, and infers the current blood glucose level of users, together with manual
records of food, drug and insulin intake. It only needs re-calibration using CGM devices once every three
weeks.

• We propose Md3RNN, an e"cient multi-division deep dynamic RNN framework for blood glucose level
inference. The newly designed grouped input layers, together with the adoption of a deep RNN model,
o#er an opportunity to build blood glucose models for the general public based on limited personal
measurements from single-user and grouped-users views.

• We conduct extensive evaluations and user studies on both diabetic patients and non-diabetic people.
Experimental results from a dataset of 35 non-diabetic people, and 38 type I and 39 type II diabetic
patients collected for at least 6 days per person demonstrate that SugarMate yields an average accuracy
of 82.14%, and outperforms traditional general learning, group-level learning, personalized learning
and shallow/deep learning algorithms in precision and recall. The user study conducted with these 112
participants shows that most participants are willing to adopt SugarMate as a temporary alternative to
CGM for the blood glucose monitoring, and they can also get instructions on their blood glucose control.

In the rest of this paper, we review related works in Sec. 2 and present an overview of SugarMate in Sec. 3.
The design and evaluation of SugarMate are detailed in Sec. 4 and Sec. 5, respectively. We conduct a user study in
Sec. 6. Finally, we conclude in Sec. 7.

2 RELATED WORK

SugarMate is related to the following categories of research.

2.1 Physiological Models and Blood Glucose Prediction

Physiological models [8] [23] mathematically formulate the whole process of glucose metabolism and are widely
used for simulations and studies for blood glucose prediction. Research on blood glucose prediction often feeds
the current CGM readings and other factors into the physiological models to predict the short-term blood glucose
levels (e.g., in 30 minutes) to allow for precautionary measures. One major drawback of physiological models is
the requirement for prior knowledge to adjust the physiological parameters. To eliminate the need for acquiring
physiological parameters, Plis et al. [44] apply a generic physiological model of blood glucose dynamics to extract
features and adopt support vector regression to directly predict blood glucose levels. Reymann et al. [48] replace
the physiological model by an online simulator to pre-calculate and validate the parameters for blood glucose
prediction on mobile platforms.
In addition to the generic physiological models, various personalized external factors such as meals, insulin

intake, exercises, and sleep quality, etc., can also lead to blood glucose changes [24]. METABO [17] is a client-
server architecture based system that records dietary, physical activity, medication and medical information

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 1. Publication date: September 2017.
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for hypoglycemic and hyperglycemic event prediction. Marling et al. [35] improve hypoglycemia detection by
combining CGM data with heart rate, galvanic skin response and skin temperature collected from a !tness band.
The feature engineering of SugarMate is built upon the general physiological models and the user-speci!c

external factors. However, instead of feeding CGM measurements as input for every prediction, SugarMate
explores to infer the current blood glucose level using historical blood glucose records and the current external
factors. SugarMate o#ers the opportunity for users to temporarily take o# the CGM devices and only rely on
smartphones for blood glucose level monitoring.

2.2 Blood Glucose Monitoring with Alternative Sensors

As most CGM devices are inconvenient to wear for an extended duration of time and require complicated mainte-
nance, there has been attempt at non-invasive blood glucose monitoring with pervasive wearable and mobile
devices. Nguyen et al. [37] observe distinct patterns in ECG signals during hypoglycemia and hyperglycemia
in Type I diabetic patients. Sobel et al. [50] integrate !ve types of sensory data from two accelerometers, a
heat-&ux sensor, a thermistor, two ECG electrodes and a galvanic skin response sensor to predict blood glucose
concentration.

Our work is inspired by this body of research. SugarMate takes one step further by using smartphones rather
than complex multi-sensory platforms [37] [50] and conducts evaluations with both diabetic and non-diabetic
participants. In addition, SugarMate investigates the feasibility of blood glucose monitoring without CGM devices
for a longer time (e.g., re-calibration every three weeks), while previous works only show a possibility of 3
hours [50].

2.3 Machine Learning for Blood Glucose Monitoring

Despite extensive research on mobile sensing [31] [22] [26] [57], most works on blood glucose monitoring
leverage simple machine learning techniques such as Support Vector Machines (SVMs) [44]. In SugarMate, we
apply Recurrent Neural Networks (RNN) [42], which are e#ective for sequential inference. RNNs have been
widely adopted in applications such as handwriting recognition [18] and speech recognition [19]. Another crucial
factor in blood glucose monitoring is the need for personalized learning, so as to re&ect user-speci!c factors,
such as age, weight and insulin-to-carbohydrates ratio [41]. Nevertheless, a primary impediment to build up
such models is the lack of su"cient personalized blood glucose data [35]. In this work, we propose Md3RNN, a
multi-division RNN framework for blood glucose level monitoring. It shares blood glucose information among
groups of users, but preserves user-speci!c blood glucose characteristics via personalized learning. Although
many successful RNN architectures have utilized a shared feature extraction method (e.g., auto encoding) as input
to a personalized output [30], Md3RNN not only shares personalities, but also encodes grouped and embedded
features into a share layer, which comprehensively captures the characteristics of di#erent diabetic types.

3 OVERVIEW

SugarMate is a smartphone-based blood glucose level tracking system that (i) non-intrusively collects important
external impacting factors and conducts feature engineering, (ii) e"ciently trains a personalized blood glucose
level model, and (iii) automatically provides reminders to users of abnormal blood glucose levels. Fig. 1 shows
the architecture of SugarMate, which consists of three modules.

The external factor collection and feature engineeringmodule records external factors that are important
to infer blood glucose levels. A user records daily meal, drug and insulin intake. Meanwhile, SugarMate
automatically measures physical activities and sleep quality via embedded sensors (i.e., accelerometer, microphone
and light sensor). After collecting data from multiple users, SugarMate conducts feature engineering from
physiological and temporal perspectives, and feeds them intoMd3RNN, a multi-division deep learning framework
speci!c designed for blood glucose inference. Md3RNN !rst learns feature representations from users in the same
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Fig. 1. Architecture of SugarMate.

group (non-diabetic, Type I and Type II diabetic), and then adopts a deep RNN layer to learn a general blood
glucose level model on the dataset of all users. Finally, it outputs a personalized blood glucose level model for
each individual via a personality layer. The inference results are eventually shown in the blood glucose level

tracking module at a !ne grained time resolution (every 3 minutes by default). In SugarMate, we consider 4
blood glucose levels as in Table 1.

Table 1. Normal and abnormal blood glucose levels [56].

Blood Glucose Value (mmol/L) Glocose Level Explanation

(0, 4.4] Level 1 Low blood glucose (hypoglycemia)

(4.4, 6.1] Level 2 Normal level of fasting blood glucose

(6.1, 7.8] Level 3 Normal level of postprandial blood glucose

(7.8, +∞) Level 4 High blood glucose (hyperglycemia)

4 DESIGN

This section presents the detailed design of SugarMate.

4.1 External Factor Sensing

It is neither possible nor necessary to exhaust a complete list of in&uential factors on blood glucose concentration.
In SugarMate, !ve major external factors are measured, including food, drug and insulin intake, physical activities
and sleep quality.

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 1. Publication date: September 2017.
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Food Intake. SugarMate provides a food menu for users to keep track of their meals. Based on the carbohydrate
food list [40], meals are categorized into !ve types, including grains, vegetables, milk and egg, fruits, and meat.
Users are asked to enter the food types and amounts of their meals, based on which SugarMate calculatesUC , the
carbohydrate of a meal.

Drug Intake. Oral diabetic drugs enhance the secretion of insulin into the blood and are usually used by Type II
diabetic patients. In SugarMate, a menu of 11 common oral medicines is presented for users based on [5]. Users
are required to select the drug name and record the dosage.

Insulin Injection. Inulin injection is widely used for blood glucose control for Type I and Type II patients.
SugarMate provides an insulin type list based on [4] for users to record the usage and dosage of their insulin
injection. SugarMate automatically transforms drug intake and insulin injection into the amount of acting insulin
UI via bolus and basal rate information [44].

Physical Activity. Daily activities e.g., exercises, consume the carbohydrate and a#ect blood glucose levels.
In SugarMate, we adopt an e"cient activity recognition scheme [29], which leverages the accelerometer to
automatically record six common physical activities (walking, running, going upstairs, going downstairs, sitting
and standing) along with the corresponding durations. SugarMate then calculates the caloric expenditure using a
calorie calculator [36].

CalorieBurn = (BMR/24) ×MET ×T , (1)

where BMR (Basal Metabolic Rate) is the amount of energy required to simply sit or lie quietly, andMET (Metabolic
Equivalent) is the ratio of the work metabolic rate to the resting metabolic rate. T is the activity duration time (in
hours). SugarMate leverages the calorie expenditureUE as input for physiological feature extraction.

Sleep Quality. Sleep quality has a long-term in&uence on the blood glucose level [24]. SugarMate automatically
measures sleep quality using [21], which invokes the accelerometer, microphone and light sensor for sleep quality
inference. The output sleep quality scoreUS is used for physiological feature extraction.
In summary, the !ve external factors are transformed into four categories of measurements including the

carbohydrate of a meal (UC ), the amount of acting insulin (UI ), calorie expenditure (UE ) and sleep quality score
(US ), which are then used as inputs to extract important features for blood glucose level inference.

4.2 Feature Engineering

We extract features X = {XP ,XT } from external sensory data U = {UC ,UI ,UE ,US } from both the physiological
view (XP , 10-dimension) and the temporal view (XT , 51-dimension) to infer blood glucose levels.

4.2.1 Features from Physiological View XP . Physiological features describe the dynamics of glucose related
variables [9] [44]. We extract physiological features based on the physiological model in [9], which characterizes
carbohydrate dynamics, insulin dynamics, exercise dynamics, and glucose dynamics. We further include sleep
dynamics, another important external factor that a#ects blood glucose levels [24]. Speci!cally, the following
physiological features are extracted to represent blood glucose relevant dynamics.

• Features from carbohydrate dynamics: carbohydrate consumption Cд1 and carbohydrate digestion Cд2 .
• Features from insulin dynamics: subcutaneous insulin absorption Ia , insulin secretion by pancreas Is ,
insulin mass Im and active plasma insulin level I .

• Features from exercise dynamics: long-term e#ect of exercises on insulin E.
• Features from sleep dynamics: long-term e#ect of sleep quality on insulin S .
• Features from glucose dynamics: glucose mass Gm and glucose concentration G.

The features are inter-dependent and are also related to the external factors. Fig. 2 illustrates the dependencies
among variables and the corresponding transition equations to calculate the physiological features at time k + 1
using external factor measurements at time k + 1 and historical physiological features at time k . We brie&y
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summarize the transition relationships among these dynamics and refer interested readers to [9] for detailed
derivation of the equations.

UIUSUEUC Cg1 Cg2 E S

IaImIIsGGm UIUSUEUC Cg1 Cg2 E S

IaImIIsGGmk

k+1

time

External factor Physiological feature Dependency

Xp(k)

Xp(k+1)

Fig. 2. An illustration of dependencies of physiological features XP = {Cд1 ,Cд2 , Ia , Im , Is , I ,E, S,Gm ,G} and of external

factorsU = {UC ,UI ,UE ,US }.

Carbohydrate dynamics: Carbohydrate dynamics refer to the transitions of carbohydrate consumption Cд1 and
the carbohydrate digestion Cд2 (see Eq.2 and Eq.3). UC stands for the carbohydrate of meals.

Cд1(k + 1) = Cд1(k) − αc1 ×Cд1(k) +UC (k) (2)

Cд2(k + 1) = Cд2(k) + α
c
1 ×Cд1(k) − αc2 ×Cд2(k) (3)

We choose carbohydrate consumption Cд1 and carbohydrate digestion Cд2 as part of the feature vector.
Insulin dynamics: Insulin dynamics indicates the transitions of subcutaneous insulin absorption Ia , the insulin

secretion by pancreas Is , the insulin mass Im , and the level of active plasma insulin I (see Eq.4, Eq.5, Eq.6 and
Eq.7). UI is the amount of insulin injected or simulated by the diabetes drugs, and S I and bm refer to the insulin
sensitivity and body mass.

Ia(k + 1) = Ia(k) − α I
f ,r,m × Ia(k) +UI (k) (4)

Is (k + 1) =

{

Is (k) +min[α I
1(α

I
2(Gk −G0)) + α

I
3 ×G0,△I

s
max ] Type II

Is (k) + 0 Type I
(5)

Im(k + 1) = Im(k) + α
I
f ,r,m × Ia(k) + α

I
a × Ia(k) − α I

c × Im(k) (6)

I (k) = (Im(k) × S I )/(142 × bm) (7)

We choose subcutaneous insulin absorption Ia , insulin secretion by pancreas Is , insulin mass Im and active plasma
insulin level I as part of the feature vector.

Exercise dynamics: Exercise dynamics E denotes the exercise e#ect on insulin over the past time window. This
long-term in&uence can be expressed by a cumulative moving average as Eq.8.

E(k − k0 + 1) = (k − k0) × E(k − k0) +UE (k − k0) (8)

where k and k0 are the current and beginning time points in the past time window. In SugarMate, the window
size of exercise is set to 24 hours, which optimizes the experimental results. UE denotes the calories cost of the
exercise. We choose the long-term e#ect of exercises on insulin E as part of the feature vector.

Sleep dynamics: Sleep dynamics S represents the sleeping quality e#ect on insulin. Sleep has a constant e#ect
on blood glucose for each day. Eq.9 shows its transition.

S(k − k0 + 1) = (k − k0) × S(k − k0) +US (k − k0) (9)
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where k and k0 are the current and beginning time points in the past time window. In SugarMate, the window
size of sleep lasts for 7 days, which optimizes the experimental results and matches the conclusion of clinical
studies. US is the sleep quality score. We choose the long-term e#ect of sleep quality on insulin S as part of the
feature vector.
Glucose dynamics: Blood glucose dynamic refers to the &uctuation of glucose mass Gm in Eq.10 and glucose

concentration G in Eq.11.

Gm(k + 1) = Gm(k) + δabs + δeдp − δind − δdep − δclr (10)

G(k) = Gm(k)/(2.2 × bm) (11)

δabs is the impact of carbohydrate absorption and δeдp is the hepatic glucose production from the liver. These
two factors increase the blood glucose level and their calculation methods are listed in Eq.12 and Eq.13

δabs = αc3 × αc2 ×Cд2 (12)

δeдp = α
eдp
2

× exp(−I (k)/α
eдp
3

) − α
eдp
1

×G(k) (13)

δind describes the result of insulin independent uptake, which is consumed by the central nervous system and the
red blood cells. δdep indicates the impact of insulin dependent uptake. It re&ects the e#ects of insulin promoting
muscle cells and fat cells to absorb glucose, including the in&uence of sleeping and exercise factors. δclr stands
for the in&uence of renal clearance on blood glucose. Once the blood glucose concentration exceeds the renal
clearance threshold τ , the kidneys begin to remove excess glucose from the blood. These three factors decrease
the blood glucose level, and their calculation methods are listed in Eq.14, Eq.15 and Eq.16.

δind = α ind1 /
√

G(k) (14)

δdep = α
dep
1

× E(k) × S(k) × I (k)/(G(k) + α
dep
2

) (15)

δclr = αclr1 × (G(k) − τ ) (16)

Note that the above transition equations involve a set of parameters α ’s, e.g., the insulin sensitivity S I and the
body mass bm. These parameters are user-speci!c parameters that need to be tuned per-person. The default
values of parameters in the physiological model are set based on [9] and are further tuned for each person via
10-cross validations.

In summary, we extract a 10-dimension physiological feature vector XP .

4.2.2 Features from Temporal View XT . As blood glucose level naturally varies over time, we extract two
temporal features for blood glucose level inference.

• Historical blood glucose concentration XT1 at time k : Since people usually tend to lead a regular lifestyle,
e.g., having meals in the morning, at noon and in the evening and taking drugs at certain times, the
blood glucose concentration also exhibits rough daily cycles. Fig. 3 plots the daily blood glucose traces
of a volunteer for !ve successive days measured by a CGM device. As shown, the blood glucose traces
always grow up signi!cantly in the durations of 8:40 to 9:40, 12:30 to 14:00 due to the breakfast and
lunch, but increase moderately from 18:00 to 20:00 because of taking the drugs before the dinner. This
motivates us to adopt the historical blood glucose concentrations at time stamp k (averaged over D days)
as one temporal feature to infer the blood glucose level at time k . In SugarMate, we set D = 5 and infer
blood glucose level at a time resolution of 3 minutes, which is in accordance with the time resolution of
commercial CGM devices [34].
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• Most recent physiological features XT2 : As shown in the physiological models, the current blood glucose
concentration is relevant to the recent blood glucose concentration and physiological features. However,
in the physiological features XP , only the physiological features at the last time stamp are considered. To
account for more short-term temporal dependencies, we propose to include the l most recent physiological
features XT2 (k) = {XP (k),XP (k − 1), . . . ,XP (k − l + 1)}, where l = 5 in our implementation. That is,
instead of considering the physiological features in the last 3 minutes, we infer the current blood glucose
level by leveraging features in the last 15 minutes.

In summary, we extract a 51-dimension (1 + 10 × 5) temporal feature vector XT .

0 3 6 9 12 15 18 21 24
0

3

6

9

12

15

Fig. 3. Daily blood glucose traces of a volunteer. We only plot 10 measurements every 3 hours for ease of illustration.

4.3 Blood Glucose Level Inference

Given the features extracted based on the physiological process, it seems plausible to perform any classi!cation
algorithm for blood glucose level inference. Nonetheless, this plug-and-play approach will neglect important
information from (1) dynamics of the process, and (2) inter-user similarity among the same group of participants.
Traditionally, various sequential methods, e.g., hidden Markov models (HMM), recurrent neural networks (RNN)
and time series models, are used to capture the temporal correlation of the input feature. The inter process
correlations are often times incorporated with a co-regularized approache like [12], which learns processes in
parallel to improve classi!cation or to reduce the data sample requirement.
In this paper, a novel machine learning paradigm, namely Multi-division deep-dynamic RNN (Md3RNN), is

proposed. To include the the aforementioned information sources in an uni!ed framework, we develop two
key ideas that extend the classical RNN. Firstly, the single hidden layer in RNN is replaced with several deep
stacked layers. The deep structure in the new model is able to describe complex, multi-scale dynamics that
would otherwise be ignored (or averaged out) by prior “shallow” models. Secondly, the correlations among users,
being quite signi!cant within user groups (divisions), are encoded by group-shared input layer and common
hidden layers, whereas the distinct characteristics of individual users are modeled with di#erent output layers
for personalized prediction. Within a larger scope of machine learning, the proposed Md3RNN aims to leverage
recent advancements of deep learning and structured representation learning [59], to model group-interacted
time series data having complex temporal dynamics. It can be viewed as both a deep extension of RNN, and an
imporved version of generic learning method for data with a multi-division structure, hence the name. Although
we develop Md3RNN for the speci!c use case of SugarMate, it is worth pointing out that it can be readily applied
to many other applications dealing with grouped dynamic data. The overall con!guration of the proposed model
is summarized in Fig. 4. Detailed construction of each component is given in the sequel.

4.3.1 Model construction by layers. The inputs of the Md3RNN model are the features extracted following the

discussion in the previous section. The labeled data sequences for user number j at time i are denoted by (x
j
i ,y

j
i ).
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Fig. 4. Illustration of Md3RNN structure.

We also adopt an index set convention, that (xBA ,y
B
A) represents the data set

{

(x
j
i ,y

j
i )|i ∈ A, j ∈ B

}

given index

sets A and B.

Grouped Input Layer. In the context of blood glucose prediction, available inputs are naturally divided into
three groups according to the health condition of the participant from whom the data was generated. Notation-
wise, we utilize H , I and I I to indicate the the group of non-diabetic user (healthy), user with type I diabetes and
those having type II diabetes, respectively. Since the extracted features are essentially physiological indexes and
temporally correlated variables, they must go though di#erent transformations to represent useful information of
three distinct groups. This consideration motivates the design of the input layer (bottom of Fig. 4) - it is divided
into three units that performs di#erent linear and non-linear transformations according to user groups. For

instance, a data sample x
Ij
t , generated at time t from the jth user of type I, undergoes the following processing:

x̃
Ij
t = σ

(

W Ix
Ij
t

)

(17)

whereW I is the coe"cients of the a"ne transformation 2, σ is the sigmoid activation function, and x̃
Ij
t is the

output of the input layer for that data sample. Similar operations are conducted for data samples from group H
and I I , but with di#erent transformation coe"cients. Intuitively, the shared transformation within groups would
improve the learning of parameters (vs. single task learning), as information from all data in a homogeneous group
is used. Also, the transformation can be stacked into several (say P ) layers, for better information representation.

Deep Dynamic Layer. A common hidden layer is designated to capture the dynamics of the blood glucose
evolution process. The underlying assumption is that, the physiological reactions governing blood glucose
variation are similar for all people, despite grouped behaviors in the representation of physiological indexes
(input layer), or individual characteristics in exhibited glucose level. This assumption could be justi!ed by a series

2We assume that the interception is included inW . This can be done by simply adding a constant feature vector of 1.
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of medical related research [32] [8] [23] [9]. Moreover, since all users share the same hidden layer, all collected
data samples are eventually helping the estimation of its parameters. The availability of rich information for
the hidden layer makes the learning of a deep structure possible. In SugarMate, a number of Long Short Term
Memory (LSTM) networks are stacked together (middle of Fig. 4), to increase the overall model &exibility. It
has been justi!ed in both theory and practice that stacked LSTMs are able to capture dynamics occurring at
di#erent time scales [10], which in the current application would enable the modeling of both slow and rapid
biological/chemical reactions. Although a wide variety of LSTM con!gurations exist in literature, in this work
we adopt the one recently proposed by [28], which combines the forget/input gate and merges cell/hidden state
for simplicity and better generalization performance. Mathematically, given the output from the grouped input
layer, the deep dynamic layer performs

zdt = σd
(

W d
z [h

d
t−1,h

d−1
t ]

)

rdt = σd
(

W d
r [h

d
t−1,h

d−1
t ]

)

h̃dt = tanh
(

W d
h [r

d
t ∗ hdt−1,h

d−1
t ]

)

hdt = (1 − zdt ) ∗ h
d
t−1 + z

d
t ∗ h̃dt

(18)

for hidden layer numbered d = 1, 2, · · · ,D. At the !rst dynamic layer with d = 1, the input hd−1t is set to be the

output from the grouped input layer, and the output of the last dynamic layer, hDt , will be used as the input of the
last component of Md3RNN.

Personalized Output Layer. Finally, each user is assigned a personalized output layer, parameterized by

W
j
o , j = 1, · · · , l , which performs a single linear and softmax transformation on the results of the deep dynamic

layer. The particular con!guration of the output layer compensates for the individual characteristics in the
exhibited blood glucose (i.e., measured blood glucose level). Because only data generated by a speci!c participant

j will have an e#ect on the parametersW
j
o , the personalized output layer is set to have a “shallow structure”, i.e.,

it only performs the transformation once. More speci!cally, given hDt from user j, it computes

ŷ
j
t = softmax

(

W
j
oh

D
t

)

(19)

4.3.2 Cost Sensitive Learning and Hyperparamter (Model) Selection. Similar to other deep neural network
learning, Md3RNN is trained by minimizing the sum of losses over all the time steps. The de!nition of the loss
function has much bearing on the generalization performance of the method [58]. In particular, for the current
application, simply minimizing a general error rate seems inappropriate, because the costs of di#erent types of
misclassi!cation errors can di#er a lot. For example, missing the detection of high blood glucose (type I or II) is
more costly than misclassifying normal condition to an alarm for high glucose. Moreover, in the collected data
set from real people, the training data is inherently imbalanced - the available samples labeled Level 1 and Level 4
are much fewer (only 30.6% in training dataset) compared to samples in the other categories (Level 2 and Level 3).

The above concerns motivate the cost sensitive learning of Md3RNN. Instead of directly minimizing a surrogate
of error rate, we propose to optimize over a weighted version of classi!cation losses. More speci!cally, the
following total loss function L is considered:

L =
∑

j ∈H

T
∑

t=1

∑

yt ∈Y

lH (yt , ŷt )Cyt +

∑

j ∈I

T
∑

t=1

∑

yt ∈Y

l I (yt , ŷt )Cyt +

∑

j ∈I I

T
∑

t=1

∑

yt ∈Y

l I I (yt , ŷt )Cyt

+ λH ‖W H ‖2,1 + λ
I ‖W I ‖2,1 + λ

I I ‖W I I ‖2,1 + λ
d (‖Wz ‖F + ‖Wr ‖F + ‖Wh ‖F ) + λ

o ‖Wo ‖F

(20)
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whereY is the label set, and ŷ
j
t s are prediction outputs at time stamp t . Our implementation uses cross entropy

as individual loss function l(y
j
t , ŷ

j
t ), but generally the “base” loss can be any surrogate of the error function.

The additional coe"cient Cy weights the misclassi!cation error for category y. In the current application,
Y = {1, 2, 3, 4}, associated with four coe"cients C1 to C4. Those cost weighting coe"cients are treated as
hyperparameters of the proposed model, but in other applications of Md3RNN, they can also be determined
with prior knowledge about the misclassi!cation cost and the class imbalance. The other terms in Eq.20 are
regularizations for model parameters, which in the current implementation is substantiated with the L2,1 norm
on the parameters of the input layer for better information extraction [39], and the frobenius norm on the
parameters of the dynamic and output layer to penalize model complexity. The coe"cients λs are left as model
hyper-parameters, whose selection procedure will be discussed later.
With the technique of back-propagation, computing the gradient of Md3RNN is not so di#erent from the

gradient calculation of classical RNN. In this work, we accomplish those computation using Tensor&ow [1], and
proceed to learn Md3RNN model by stochastic gradient descent for overall loss minimization.
Last but not least, the construction of the Md3RNN model involves choosing 15 hyperparameters, e.g., cost

coe"cients Cy , depth D of the stacked dynamic layer, learning rate, number of hidden unit in the input layer, etc.
Direct application of cross validation (CV) for hyperparameter tuning, even with the help of parallel computing,
seems intractable as the number of required CVs scales exponentially to the number of hyperparameters. In this
regards, we adopt Bayesian optimization (BO), a recent tool developed for blackbox function optimization with
limited evaluations. The decision variables of BO are those hyperparameters, and the objective is the F-score of
the precision and recall on some testing data set. Note that BO has been used recently for the hyperparameter
(model) selection of many deep learning paradigms [49].

5 EVALUATION

5.1 Experimental Se!ings

Fig. 5. User interfaces for food, drug and insulin intake recording.

Datasets. We validate SugarMate on a dataset of 112 participants (35 non-diabetes, 38 type I diabetic patients
and 39 type II diabetic patients) collected from July 2016 to January 2017. Each participant is equipped with
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Fig. 6. An illustration of the equipments for data collection. Each participant wears a CGM device to record blood glucose

concentration and uses a smartphone to collect external factors.

(1) a WAVEGUIDER U-Tang CGM device [34] to record blood glucose concentration every 3 minutes and (2) a
smartphone with SugarMate installed to collect external factors either automatically (activities and sleep quality)
or manually (food, drug, and insulin intake). Fig. 5 shows the user interfaces for manual recording of food, drug
and insulin intake. All participants agree to take measurements (i.e., wear the CGM device and use SugarMate
to record external factors) at least 6 days, which is a normal disposable usage duration of the enzyme in the
sensor of the CGM. Fig. 6 illustrates an example of data collection from a user. We record measurements for
each participant from 6 to 30 days. In total we obtain 762639 samples of blood glucose concentration and the
corresponding external factors covering around 38132 hours. In brief, we collect the following categories of data:

• Meta information. We record basic personal data including gender, age, weight and health status to
cover a wide range of users. Table 2 summarizes the basic information of the participants.

• Blood glucosemeasurements. We collect blood glucose measurements using commercial CGM devices
for 6 to 30 days as labeled data. Table 3 summarizes the blood glucose measurements in our evaluation.

• External factormeasurements. Duringmeasurements of blood glucose concentration, each participant
manually inputs the times of their daily meal, drug and insulin intake. SugarMate automatically records
activity levels and sleep quality as in Sec. 4.1. Fig. 6 shows the user interfaces to record external factors.

Ground Truth. We use the blood glucose concentrations collected by the CGM device as ground truth 3.
Metrics. We mainly adopt precision, recall and accuracy to quantify the performance of SugarMate.

5.2 Inference Accuracy

5.2.1 Overall Inference Accuracy. Since all participants collected both measurements of CGM and external
factors for at least 6 days, we use measurements during the former 5 days for training and the rest for testing.
Table 4 shows the overall performance of SugarMate. All results are averaged over the testing data. As shown, the
recalls and the precisions for all the 4 blood glucose levels are above 79% and 73%, respectively. In particular, the

3While clinical studies report that the precision and accuracy of commercial CGM devices still need improving [51], they are su"cient as

ground truth for the four normal and abnormal blood glucose levels.
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Table 2. Summary of participant information.

(a)

Age (year) # User

15-24 8
25-34 17
35-44 24
45-54 29
55-64 34

(b)

Weight BMI (kд/m2) # User

Underweight (0, 18.5) 18
Normal weight [18.5, 25) 31
Overweight [25, 30) 41

Obese [30, +∞) 22

(c)

Gender # User

Male 57
Female 55

Table 3. Summary of blood glucose measurements.

(a)

Duration (days) # User

6-10 48
11-15 24
16-20 20
21-25 13
26-30 7

(b)

Blood Glucose # Sample

Level 1 75369
Level 2 293530
Level 3 235686
Level 4 158054
Total 762639

recalls for Level 1 (low blood glucose) and Level 4 (high blood glucose) are 83.13% and 85.23%, even though the
training data for Level 1 and Level 4 only take up around 10% and 20% of the entire training set. This result shows
that SugarMate can accurately infer low/high blood levels even with an imbalanced training dataset. Overall,
SugarMate yields an accuracy of 82.14%, showing a promising performance to track blood glucose levels. Note
that SugarMate is not designed to substitute CGM devices or medical measurements (e.g., direct !nger sticker).
However, the precisions and recalls in low and high blood glucose level inference make SugarMate suitable to
remind users of abnormal blood glucose levels so that they can double-check by !nger stickers and take the
corresponding treatments.

Table 4. Confusion matrix of SugarMate.

Ground

Truth

Inference

Level 1 Level 2 Level 3 Level 4

Level 1 62657 5521 3672 3519 83.13%

R
e
ca
ll

Level 2 16346 240584 27563 9037 81.96%
Level 3 2660 30905 188472 13649 79.97%
Level 4 3443 5620 14278 134713 85.23%

73.62% 85.12% 80.55% 83.72% Accuracy:
82.14%Precision

5.2.2 Inference Result Analysis. To understand the inference accuracy and the risks of di#erent types of errors
in the context of blood glucose management, we classify the inference results based on the principles of Clarke
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Error Grid Analysis (CEGA) [7]. The analysis classi!es the inference results into correct event (Type A) and
di#erent types of errors (Type B to Type E) with increasing levels of severity. For instance, Type B errors are
those that will not lead to inappropriate treatments, while Type E errors can lead to wrong treatment. Table 5
summarizes the percentages of each type of results. As shown, SugarMate will not cause inappropriate treatment
(Type A and B) in almost 90% of the cases. It may lead to unnecessary worries or treatment (Type C) in 5.47%
of the cases. In fewer than 5% of the cases, SugarMate will miss an abnormal blood glucose event (Type D)
or confuse treatment (Type E). Therefore, SugarMate is suitable as an temporary alternative for CGM devices.
However, we do not recommend SugarMate to those serious diabetic patients, who need professional clinic blood
glucose managements.

Table 5. Clarke error grid analysis

Type of Result Explanation of Result Percentage

Type A
The inference value is consistent with the true value.

(i.e., the inference blood glucose level is correct.)
82.14%

Type B
The inference result would not lead to inappropriate treatment.

(i.e., Level 2 is predicted as Level 3, or vice-versa.)
7.67%

Type C
The inference result will lead to unnecessary treatment.

(i.e., Level 2 is predicted as Level 1/4,or Level 3 is predicted as Level 1/4.)
5.47%

Type D
Fail to detect hypoglycemia or hyperglycemia.

(i.e., Level 1/4 are predicted as Level 2/3.)
3.81%

Type E

The predicted results that would confuse treatment by mistaking hypoglycemia

for hyperglycemia or vice-versa.

(i.e., Level 1 is predicted as Level 4, and vice-versa.)
0.91%

5.2.3 Temporal View of Inference Results. Fig. 7 plots the inference results of SugarMate of three participants
(one non-diabetic, one Type I diabetic patient, and one Type II diabetic patient) throughout a day. The errors are
depicted at the bottom of each !gure. As shown, the true blood glucose levels vary during the day after important
daily activities such as food intake (5:50, 11:20 and 19:00 for the non-diabetic user; 6:00 and 16:50 for the Type I
diabetic user; 6:00, 12:50 and 17:45 for the Type II user), insulin injection (7:40 for the Type I diabetic user), drug
intake (15:10 for the Type II user) and exercises (15:30 for the Type II user), indicating the importance of external
factors. The blood glucose levels inferred by SugarMate match the true blood glucose levels most of the time.
Most errors mistake Level 2 and Level 3, and the errors often occur during the transition of two levels (e.g., from
6:10 to 6:30 for the Type II diabetic user), or in case of sudden change of blood glucose concentration (e.g., at 2:30
for the non-diabetic user and at 0:30 for the Type I diabetic user). Nevertheless, these errors belong to the Type B
errors in Sec. 5.2.2, which will not lead to inappropriate treatment.
Table 6 shows the average false positives (FP) and false negatives (FN) per day and per hour for each user.

Given an inference every 3 minutes or 480 inferences per day, the number of FPs and FNs per hour is no greater
than two. Since only FPs for Level 1 and 4 will cause annoying noti!cations, such situations occur at an even
lower rate. To further reduce the unnecessary noti!cations, SugarMate only reminds the user when there are
three consecutive inferences of Level 1 or Level 4. This mechanism is acceptable because (a) most errors occur
during transition of blood glucose levels or when there is a sudden change of blood glucose concentration, and
(b) the 9-minute delay usually will still save su"cient time for proper treatment [16] [54].

5.3 Model Comparison

5.3.1 E!ectiveness of Md3RNN Framework. To demonstrate the e#ectiveness of the multi-division framework
in making full use of the dataset, we evaluate Md3RNN by 10-fold cross validation from two perspectives.
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Fig. 7. Traces of blood glucose level inference results throughout a day.

Table 6. Summary of average false positives and false negative per user.

Level FP (Day) FP (Hour) FPR FN (Day) FN (Hour) FNR

Level 1 14.12 0.59 2.94% 8.00 0.33 1.67%

Level 2 26.46 1.10 5.51% 33.32 1.39 6.94%

Level 3 28.64 1.19 5.97% 29.71 1.24 6.19%

Level 4 16.49 0.69 3.44% 14.69 0.61 3.06%

Layer contribution analysis. To evaluate the e#ect of di#erent layers, we conduct blood glucose level inference
with three combinations of layers.

• Deep dynamic layer. Training without considering di#erences in groups and persons, and only output a
general model.

• Deep dynamic layer + Grouped input layer. Learn group-speci!c feature representations but ignore
per-person characteristics in the output.

• Deep dynamic layer + Grouped input layer + personalized output layer (Md3RNN). E"ciently learn features
from di#erent groups and output personalized inference results.

Fig. 8 plots the comparison results of the three combinations. As shown, both the precisions and recalls increase
with more layers, with an improvement of 21.13% in average precision and 18.57% in average recall, respectively.
Moreover, the standard deviations (error bars) drop remarkably from 17.25% to 10.25% of average precision, and
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from 20.75% to 10.75% of average recall. The results demonstrate the e#ectiveness of Md3RNN, which learns
representative features from the same groups and considers individual di#erences in blood glucose level inference.
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Fig. 8. Performance of layer combinations. The error bars denote the standard deviations on 10-fold cross-validation.

Comparison of data sharing schemes. To demonstrate the bene!ts of sharing data and knowledge among
groups and users, we compare Md3RNN with other learning frameworks with di#erent data sharing schemes.

• General Learning. All the training data are directly fed into the model (i.e., deep RNN) for training
indi#erently. General learning results in a generic model that assumes universal correlations between all
inputs and the blood glucose levels.

• Group Learning. The data of users belonging to a same group are fed into a model (i.e., deep RNN)
for training. Three separate models are obtained for three groups (i.e., non-diabetic, type I and type II
diabetic). The group learning results in a group model that shares the general characteristics of users
within the same group but without data sharing among users in di#erent groups.

• Single Learning. We train a di#erent model (i.e., deep RNN) for each individual participant by feeding
his/her own measurements into the model. Single learning results in a personalized model without
sharing data and learning knowledge from measurements of other participants.

Fig. 9 shows the overall precisions and recalls of our Md3RNN as well as General learning, Group learning and
Single learning. As shown, our multi-divisional learning framework (Md3RNN) performs best among the four
learning approaches with an average precision of 80.75% and an average recall of 82.57%. It also yields the lowest
standard deviations (17.18% of average precision and 17% of average recall). The results show that Md3RNN is
both e#ective and stable in blood glucose level inference.
General learning treats each sample of training data equally, and ignores the individual di#erences, so it

performs poorly in most cases. Conversely, single learning encodes the individual characteristics but su#ers
from the lack of user-speci!c training data. It may require a very large personalized training set to achieve
satisfactory performance. Even though group learning learns the similarities of users within the same group,
it ignores inter-person physiological di#erences. Md3RNN combines the advantages of these three learning
approaches, which makes better use of the limited individual training data by sharing measurements among
users and preserves user-speci!c characteristics via the personal learning layer.

5.3.2 E!ectiveness of Md3RNN Learning Algorithm. To demonstrate the e#ectiveness of the Md3RNN learning
algorithm, we compare it with several typical algorithms from following two aspects.

Typical classi!ers that do not share features from users. This group contains classical machine learning
methods that are commonly used for standard learning applications. Note that in these traditional frameworks,
the learning of each user’s model is treated independently and the transferable similarities among users are
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Fig. 9. Performance of data sharing schemes. The error bars denote the standard deviations on 10-fold cross-validation.

simply ignored. The following baselines, each with a very di#erent modeling assumption, are included to justify
the e#ort of information sharing proposed in our method.

• Support Vector Machines (SVMs) [52] . Support vector machines (SVM)s are supervised learning
models with e"cient convex learning algorithms that are widely used for classi!cation and regression
analysis. The idea is to construct optimal separating hyperplane that maximizes the separation margin
of two data groups (classes). Due to this geometric property, it usually generalizes well, and its dual
form is a quadratic programming that can be easily incorporated with kernels, which allows an implicit
transformation of the examples from the original space to a non-linear high dimensional Hilbert space
for better separation. We adopt the implementation of SVM in [43] for classi!cation.

• Gaussian Processes (GP) [47]. Instead of directly parameterizing a latent function for classi!cation,
GP [47] models it with a generic Gaussian process, i.e., a distribution over the functional space of the
classi!er or regressor. The posterior of the process is updated with training data set, and is “squashed”
through a logistic function for classi!cation. The covariance matrix used in GP also allows the utilization
of the "kernel trick" to capture similarities in some nonlinear space. The Gaussian process classi!er
utilized in this paper is provided by [43].

• Hidden Markov model (HMM) [46]. A hidden Markov model (HMM) is a statistical Markov model in
which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. It
can be presented as the simplest dynamic Bayesian network. Simple as it is, HMM has been widely used
in signal processing and time series analysis due to its interpretability and tractability.

• Random Forest (RF) [33]. As an ensemble method, RF combines many simple decision trees together
and output the mode of classes for prediction. To avoid the correlation among base trees, random set of
features are selected in the splitting process when constructing each decision tree.

• Gradient Boosting (GB) [14]. GB generates a prediction model by combining many weak classi!ers
into a stronger classi!cation committee. We use the implementation of the fastAdaboost [25] to combine
basic tree classi!ers for ensemble learning.

Typical classi!ers that allow sharing features among users. To evaluate the e#ectiveness of sharing features
of Md3RNN, we compared it with several common and advanced machine learning frameworks, known as transfer
or multi-task learning methods, that allow information sharing among multiple data sources or learning tasks. In
the current scenario, a “learning task” refers to the blood glucose modeling of a particular user. The learning
methods in this group attempt to improve the classi!cation performance by incorporating similarities among
users’ models. Specially, we consider the following:
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• Co-regularized Support Vector Machine (mSVM). As a modi!ed version of the classical SVM clas-
si!er, the authors of [12] proposed to incorporate the relation among tasks through a task-coupled
kernel function. This consideration was then translated into a large margin learning framework with
an additional co-regularization. Fortunately, the learning problem is still convex and the dual form still
allows the the usage of kernels. We include this method also because its idea of co-regularization is the
foundation of many other transfer learning or muti-task learning methods.

• Hierarchical Gaussian Processes (mGP). The information sharing of GP can be achieved by aug-
menting the kernel matrix to include side information among similar learning procedures. Since the
augmentation step amounts to creating another layer of “similarity metric”, this approach is referred to
as the hierarchical Gaussian Processes. In this exmperimetn, we adopt the version proposed in [2], and
also implement several approximation algorithms for acceleration [6].

• Nested Hidden Markov model (nDP-iHMM). Classical HMM focus on the modeling of a signal
random process. To further improve the &exibility of the model, the authors of [38] proposed the so-called
Nested Dirichlet Process in!nite Hidden Markov model (nDP-iHMM) based on a non-parametric method
for possibly undetermined state space, and imposing a nested Dirichlet process prior to share information
among tasks.

• Hierarchical arti!cial neural network (hANN). We also implement a hierarchical ANN based on
classic ANN [53] as a baseline, simply to justify the bene!t of “temporal structure engineering” of RNNs
in Md3RNN. The ANN under comparison also contains "three divisions": a grouped input layer, three
stacked time-independent hidden layers, and an output personal layer. The training of the hierarchical
ANN is done by using the stochastic gradient descend algorithm implemented in Tensor&ow [1].

Fig. 10 illustrates the results. Apparently, Md3RNN achieves best performance on both precisions and recalls.
More speci!cally, the models that share features yield better performance than their corresponding models
that do not share features (i.e., mSVM vs. SVMs; mGP vs. GP; nDP-iHMM vs. HMM ), which demonstrates the
e#ectiveness of the methods that allow information sharing among tasks. Among those baselines, it appears
that no method could dominate the others, except that hANN performs slightly better in terms of recall score.
However, compared to Md3RNN, which is able to describe temporal dynamics by RNN, hANN is still worse in
general. The dominating performance of Md3RNN is somewhat expected, as those baselines either ignore the
multi-scale dynamics of the observed data, or can not allow information sharing among available data from
users. The above observation further justi!es the e#orts of designing the multi-division deep dynamic RNN for
SugarMate, which e"ciently transfers valuable knowledge between groups and individuals.
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Fig. 10. Performance comparison with the di"erent learning algorithms.
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5.4 Micro-benchmarks

5.4.1 E!ectiveness of Features. Table 7 shows the average precisions and recalls using di#erent combinations
of features. By combining physiological features (XP ) with temporal features (XT ), the average precision and
recall of the 4 blood glucose levels improve by 31.38% and 41.48% respectively. The precision and recall increase
by about 10% to 30% with physiological and short-term temporal features (XP + XT2 ) over physiological features
alone. However, the historical trends XT1 prove to be more e#ective than the short-term temporal features XT2

(see the second and the third rows of Table 7). The necessity to include historical trends indicates the need for
re-calibration, as will be discussed in Sec. 5.4.3.

Table 7. E"ectiveness of features.

Level 1 Level 2 Level 3 Level 4

Features Precision Recall Precision Recall Precision Recall Precision Recall

XP 43.37% 32.82% 46.03% 39.10% 51.79% 48.95% 56.30% 43.49%

XP+XT1 58.29% 63.60% 72.15% 60.17% 68.84% 61.49% 73.23% 66.74%

XP+XT2 54.48% 49.11% 50.81% 69.43% 67.21% 70.20% 61.24% 64.10%

XP+XT1+XT2 73.62% 83.13% 85.12% 81.96% 80.55% 79.97% 83.72% 85.23%

5.4.2 Necessary Training Data. In this experiment, we evaluate the performance of SugarMate with increasing
numbers of training samples. Since the duration of measurements for each participant varies from 6 to 30 days,
we use measurements of 5 to 25 days for training, and the rest for testing. Note that we keep the measurements for
training but exclude them for testing if the duration of certain user’s measurements is insu"cient. For example, if
the user’s measurements last for 7 days, we use his measurement to evaluate the performance of using 5 days of
training data, and test on the measurements of the remaining 2 days. However, when evaluating the performance
with 10 days of training data, we only use his 7 days of measurements for training, but not for testing.
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Fig. 11. Impact of increasing amount of training samples.

Fig. 11 illustrates the results for all 4 blood glucose levels. The results are averaged over all testing samples as
in previous evaluations. As expected, the precisions and recalls of all 4 blood glucose levels improve smoothly
with the increase of training samples. The results verify that the challenge (and our motivation to adopt a
multi-division deep learning framework) is the lack of training data. Note that SugarMate is not a replacement to
the current CGM devices, but rather a complement when CGM devices are uncomfortable or inconvenient to
wear. Therefore, we envision the training dataset will grow gradually after wearing the CGM device multiple
times (at least for diabetes patients), and the overall accuracy will also improve over time as a result.
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5.4.3 Impact of Temporal Gaps. The blood glucose concentration is correlated with the previous blood glucose
levels because of the control loop of the glucose metabolism [8, 23, 41]. Since SugarMate does not rely on the
previous blood glucose value measured by CGM as an input, it is natural that the accuracy of SugarMate will
degrade if there is a long gap between the training and the testing datasets.
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Fig. 12. Impact of temporal gaps between the training and testing datasets.

Fig. 12 plots the overall performance of training using the same 5 days of measurements, and testing on
measurements collected on the 6-10th, 11-15th, 16-20th, 21-25th, and 26-30th days, respectively. As expected,
both the precisions and recalls drop moderately with the increase of temporal gaps between the training and the
testing datasets, with a maximum decrease of 6.73% and 7.02% in average precision and recall after 21-25 days.
Note that SugarMate is not designed as a replacement to the commercial CGM devices, but rather a temporary
alternative when CGM devices are uncomfortable or inconvenient to wear. From the results, we recommend
users to put on the CGM devices to monitor the blood glucose at least once every three weeks. The data sampled
by the CGM devices will automatically feed into SugarMate for model retraining. Although SugarMate still
requires periodic re-calibration, it does not require users to continuously wear CGM devices.

5.4.4 Costs of Training Models. The resource cost of model learning in the learning phase is another important
factor. We measure the CPU and memory costs of Md3RNN on our server ( Inter(R) Core(TM) i7−4510U CPU @

2.00 GHZ 2.60 GHZ; RAM: 8GB) and compare it with other baseline models in 5.3.2. Table 8 illustrates the results
of 1000 iterative training.

Table 8. Resource costs of training models

Method RF GB SVM GP HMM mSVM mGP nDP-iHMM hANN Md3RNN

CPU(s) 19.5 9.5 20.1 26.4 29.5 165.8 216.2 319.1 208.6 259.9

RAM(MB) 84.2 84.0 188.4 213.9 112.1 1033.8 1428.5 1263.0 1181.4 1235.2

As is shown, the CPU and memory costs of share schemes are larger than those of the single learning algorithms.
It meets our intuition that the share schemes are trained on the data from all users, while the single learning
methods are only trained on the data of single person.
Since the personal blood glucose data is limited, the size of the learning data used by Md3RNN is not large.

The training time of Md3RNN and the RAM cost are acceptable in practical usage, and its performance can be
further optimized by the GPU version of Tensor&ow.
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Table 9. Profiles of smartphone

Type CPU RAM ROM Power Capacity Operation System

Galaxy S6 8-cores 2.1 GHz 3 GB 32 GB 2550m Ah Android 5.0

HTC Desire A6 8-cores 1.7 GHz 2 GB 16 GB 2600m Ah Android 5.0

HUAWEI 4C 8-cores 1.2 GHz 2 GB 8 GB 3100m Ah Android 4.4

LenovoK80M 4-cores 1.8 GHz 4 GB 64 GB 4000m Ah Android 4.4

5.4.5 Energy Overhead. We evaluate the energy consumption of SugarMate on four popular types of smart-
phones used among our participants. Table 9 summarizes the smartphones used for evaluating the power
consumption. Since SugarMate is a background service, we lock the screen and only leave SugarMate and a
battery tracing application [45] running during the evaluation. The tracing application records the rest battery
storage every two hours. We run SugarMate on fully charged smartphones and plot the remaining power over
time in Fig. 13. In total, SugarMate and the Android OS consume about 10% energy of the battery every two
hours, where roughly 40% of the power is consumed by SugarMate (see Fig. 14). Therefore, SugarMate takes
about 4% of the total battery power every two hours given an inference rate of every 3 minutes. It is negligible
and a#ordable for the daily usage.
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Fig. 13. Traces of remaining ba!ery storage.

 

Fig. 14. Distribution of ba!ery consumption.

6 PRELIMINARY USER STUDY

In addition to validating the e#ectiveness of Md3RNN, this section presents the feedbacks of users on the design
and user experience of SugarMate.

6.1 Procedure

We distributed a semi-structured questionnaire to the 112 participants in Sec. 5. All of the participants answered
the surveys, and each of them was paid about 20 USD (in the local currency) after the survey. We present the
main results as follows4.

6.2 Results

6.2.1 Operability of SugarMate. In this part of the survey, the participants were asked to rate the overall
operability of SugarMate as well as the three manual operations (food, drug and insulin intake) with three levels
(Inconvenient, Normal and Convenient). The participants make comments on their practical operations. For
example, the non-diabetic users who do not need to record drugs and insulin only rate the operation of food

4Note that most participants are not pro!cient in English. The original questionnaire was in the mouth tongue of the participants. The

responses were carefully translated into English and presented in the results.
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input, and the diabetic users who do not inject insulin are only report their comments on the food and drug
inputs. They were also required to express their opinions on the overall operability.

83%

13%4%

74%

18%8%

87%

11%2%

Fig. 15. Distributions of user rating on the operability of food, drug and insulin intake recording interfaces.

Fig. 15 illustrates the distributions of the user ratings on the operability of food, drug and insulin intake
recording interfaces. The lowest rates are seen for manual recording of food intake (74% as Convenient). The
ratings for manual recording of drug and insulin intake are slightly better. Overall, 78%, 18% and 4% of the
participants rate SugarMate as Convenient, Normal and Inconvenient, respectively.
We select one representative comment for each level as follows:

• “This App is easy to learn and quick to use. The database of food, drugs and insulin is very comprehensive.”
[Convenient, Type II diabetic user]

• “What I would like to see is a way to !ll in the daily inputs by taking photos and speaking to. It would be
more convenient to operate.” [Normal, Type I diabetic user]

• “I don’t have much time to record what I had for each meal using a scrolling menu. The App should be more
personalized. For example, it should learn from my input history and provide search hints or automatic
records.” [Inconvenient, non-diabetic user]

As expected, the manual recording of food, drug and insulin intake tends to be a burden for SugarMate as
an intriguing application. Nevertheless, we have collected some constructive suggestions from the users. For
instance, speech input instead of a scrolling menu might be a more welcome input mechanism. Intelligent search
hints based on personal input history using recommendation algorithms [15] may help to improve the user
experience when recording food intake, which is highly diversi!ed and challenging to record automatically.

6.2.2 Benefits of SugarMate. In this part of the survey, each participant is asked to commentwhether SugarMate
is useful by rating SugarMate in three levels (Instructive, Normal and Non-instructive) and commenting in detail.

94% of the participants report SugarMate as Instructive and 6% report Normal. No participant rates SugarMate
as Non-instructive. We also list two representative comments below.

• “SugarMate guides me to control my blood glucose and helps to live a healthier lifestyle. For instance, I always
observe the blood glucose dynamics after meals. SugarMate helps to discover that my blood glucose rises a lot
after I eat noodles, breads and dumplings, but stays relatively stable after eating meats and vegetables. Also
I can learn about the impact of the drugs on my blood glucose. I’m happy to understand how my lifestyle
a"ects my blood glucose and learn to make some adjustments in time. I have recommended SugarMate to six
friends. They also care about their blood glucose levels.” [Instructive, Type II diabetic user]

• “I’m not diabetic but I feel I need to start tracking my blood glucose occasionally. This app has made it easy
but still has room to improve. It presents me a short-term impact of food intake. However, I still care about
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how to maintain a long-term healthy status. Speci!cally, it should provide some suggestions to help me
prevent developing into diabetes.” [Normal, non-diabetic user]

In summary, users expect more functionalities of SugarMate such as recommending intensity and time of exercises
and recommending food plans. In this regard, the personalized blood glucose dynamics records collected by
SugarMate can be sent to experts to recommend personalized precautionary measures.

6.2.3 Willingness to use SugarMate. Finally, we are interested in whether the participants are willing to
use SugarMate for blood glucose tracking despite the manual input of food, drug and insulin intake. In the
questionnaire, we ask the following question: “Are you willing to use SugarMate instead of the CGM device at cost
of manual recording of daily food, drug and insulin intake, as well as the periodic CGM re-calibration every three
weeks ?” We also collect free-response comments as before.

Non-diabetes Type I Type II
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
(%

)

 

 

Willingness

Unwillingness

Fig. 16. Willingness to use SugarMate.

Fig. 16 illustrates the results. Over 90% diabetic users (both Type I and Type II) are willing to use SugarMate
while non-diabetic users show a slightly lower willingness (85%). We also select two representative comments.

• “ Manual records seem much more convenient compared to wearing the CGM. I feel very uncomfortable when
wearing the CGM. It reminds me that I am a patient all the time. Wearing the CGM device for calibration
once a month is acceptable. At least 3/4 of the time I am free from the CGM device.” [Willing, Type II
diabetic user]

• “ I am OK with the periodic CGM calibration, but the daily food recording is a pain for me. I always eat
outside and easily forget what I have had after the meal. I’m not a patient. I don’t like to record everything I
did simply to track my blood glucose.” [Unwilling, non-diabetic user]

From the feedbacks, it seems that most participants feel that continuous wearing of CGM devices is more
uncomfortable. Even if periodic re-calibration is required, many diabetic users think it is acceptable. The manual
recording of food intake is again the major concern, especially among non-diabetic participants. We will optimize
the food recording function in our future work.

7 CONCLUSION

Inferring blood glucose levels is important to avoid health risks incurred by hyperglycemia and hypoglycemia.
Commercial continuous blood glucose monitoring devices can be invasive and inconvenient to wear, which
degrades the quality of life for diabetic patients and makes them inaccessible to non-diabetic people. We present
SugarMate, a ubiquitous blood glucose level monitoring system using commodity smartphones. It measures
important external factors that a#ect blood glucose concentration and adopts machine learning to infer blood
glucose levels at a !ne-grained time resolution. The core of SugarMate is an e"cient blood glucose learning
paradigm, Md3RNN, which (1) depicts complex glucose dynamics via a deep RNN model, (2) extracts generic
feature representations with a grouped multi-division framework, and (3) preserves individual di#erences using
personalized outputs. It tackles the sparsity and imbalance problem, which is the main hurdle of highly-accurate
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personalized blood glucose level tracking. We deployed SugarMate to 112 users and collect measurements at least
6 days from each person. Evaluations show that Md3RNN outperforms the state-of-the-art methods on the blood
glucose level inference. With fully automatic recording of external factors in the future, we envision SugarMate
as a user-friendly and reliable complement for continuous blood glucose monitoring in daily life.
Acknowledgements: This work is supported by TBSI-Waveguider Joint Lab on Bio-Sensor and Medical Big
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