
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2019

Practical and effective sandboxing for Linux containers Practical and effective sandboxing for Linux containers

Zhiyuan WAN

David LO
Singapore Management University, davidlo@smu.edu.sg

Xin XIA

Liang CAI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
WAN, Zhiyuan; LO, David; XIA, Xin; and CAI, Liang. Practical and effective sandboxing for Linux containers.
(2019). Empirical Software Engineering. 24, 4034-4070.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4502

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4502&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09737-2

Practical and effective sandboxing for Linux containers

ZhiyuanWan1,2,3 ·David Lo4 ·Xin Xia5 · Liang Cai1,3

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A container is a group of processes isolated from other groups via distinct kernel names-
paces and resource allocation quota. Attacks against containers often leverage kernel
exploits through the system call interface. In this paper, we present an approach that mines
sandboxes and enables fine-grained sandbox enforcement for containers. We first explore
the behavior of a container by running test cases and monitor the accessed system calls
including types and arguments during testing. We then characterize the types and arguments
of system call invocations and translate them into sandbox rules for the container. The mined
sandbox restricts the container’s access to system calls which are not seen during testing and
thus reduces the attack surface. In the experiment, our approach requires less than eleven
minutes to mine a sandbox for each of the containers. The estimation of system call cover-
age of sandbox mining ranges from 96.4% to 99.8% across the containers under the limiting
assumptions that the test cases are complete and only static system/application paths are
used. The enforcement of mined sandboxes incurs low performance overhead. The mined
sandboxes effectively reduce the attack surface of containers and can prevent the containers
from security breaches in reality.

Keywords Container · System call · Sandbox · Testing · Monitoring · Cloud computing ·
Docker · Seccomp

Communicated by: Antonia Bertolino

� Xin Xia
xin.xia@monash.edu

Zhiyuan Wan
wanzhiyuan@zju.edu.cn

David Lo
davidlo@smu.edu.sg

Liang Cai
leoncai@zju.edu.cn

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 Department of Computer Science, University of British Columbia, Vancouver, Canada
3 Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China
4 School of Information Systems, Singapore Management University, Singapore, Singapore
5 Faculty of Information Technology, Monash University, Melbourne, Australia

Empirical Software Engineering

1 Introduction

Platform-as-a-Service (PaaS) cloud is a fast-growing segment of the cloud market, projected
to reach $7.5 billion by 2020 (GlobalIndustryAnalystsInc 2015). A PaaS cloud permits
tenants to deploy applications in the form of application executables or interpreted source
code (e.g. PHP, Ruby, Node.js, Java). The deployed applications execute in a provider-
managed host OS, which is shared with applications of other tenants. Thus a PaaS cloud
often leverages OS-based techniques, such as Linux containers, to isolate applications and
tenants.

Containers provide a lightweight operating system level virtualization, which groups
resources like processes, files, and devices into isolated namespaces. The operating system
level virtualization gives users the appearance of having their own operating system with
near-native performance and no additional virtualization overhead. Container technologies,
such as Docker (Merkel 2014), enable easy packaging and rapid deployment of applications.

A number of security mechanisms have been proposed or adopted to enhance container
security, e.g., CGroup (Menage 2004), Seccomp (Corbet 2009), Capabilities (Hallyn and
Morgan 2008), AppArmor (Cowan 2007) and SELinux (McCarty 2005). Related works
leverage these security mechanisms and propose an extension to enhance container secu-
rity. For example, Mattetti et al. (2015) propose a LiCShield framework which traces the
operations of a container, and constructs an AppArmor profile for the container.

The primary source of security problems in containers is system calls that are not
namespace-aware (Felter et al. 2015). Non-namespace-aware system call interface facili-
tates the adversary to compromise applications running in containers and further exploit
kernel vulnerabilities to elevate privileges, bypass access control policy enforcement, and
escape isolation mechanisms. For instance, a compromised container can exploit a bug in
the underlying kernel that allows privilege escalation and arbitrary code execution on the
host (CVE-2016-0728 2016).

How can cloud providers protect clouds from exploitable containers? One straightfor-
ward way is to place each of the containers in a sandbox to restrain its access to system
calls. By restricting system calls, we could also limit the impact that an adversary can make
if a container is compromised. System call interposition is a powerful approach to restrict
the power of a program by intercepting its system calls (Garfinkel et al. 2003). Sandboxing
techniques based on system call interposition have been developed in the past (Goldberg
et al. 1996; Provos 2003; Acharya and Raje 2000; Fraser et al. 1999; Ko et al. 2000; Kim and
Zeldovich 2013). Most of them focus on implementing sandboxing techniques and ensur-
ing secure system call interposition. However, generating accurate sandbox policies for a
program is always challenging (Provos 2003). We are inspired by a recent work BOXMATE
(Jamrozik et al. 2016), which learns and enforces sandbox policies for Android applications.
BOXMATE first explores Android application behavior and extracts the set of resources
accessed during testing. This set is then used as a sandbox, which blocks access to resources
not used during testing. We intend to port the idea of sandbox mining in BOXMATE to be
able to confine Linux containers.

A container comprises multiple processes of different functionalities that access distinct
system calls. Thus different containers may present different behaviors on a system call
level. A common sandbox for all the containers is too coarse. In this paper, we present
an approach to automatically mine sandbox rules and enable fine-grained sandbox policy
enforcement for a given container. The approach is composed of two phases shown in Fig. 1:

Empirical Software Engineering

Testing Container Monitor System call accessed

Production

User

Process

Control

File

Management

Device

Management

Information

Maintenance

Communication

� � � � �

Process

Control

File

Management

Device

Management

Information

Maintenance

Communication

Container Sandbox System call denied

1. Sandbox mining

2. Sandbox enforcing

Fig. 1 Our approach in a nutshell. Mining phase monitors accessed system calls when testing. These system
calls make up a sandbox for the container, which later prohibits access to system calls not accessed during
testing

– Sandboxmining. In the first phase, we mine sandbox rules for a container. Specifically,
we use automatic testing to explore behaviors of a container, monitor all accesses to
system calls, and capture types and arguments of the system calls.

– Sandbox enforcing. In the second phase, we assume system call behavior that does
not appear during the mining phase should not appear in production either. Conse-
quently, during sandbox enforcing, if the container requires access to system calls in an
unexpected way, the sandbox will prohibit the access.

To the best of our knowledge, our approach is the first technique that leverages automatic
testing to mine sandbox rules for Linux containers. While our approach is applicable to any
Linux container management service, we selected Docker as a concrete example because of
its popularity. Our approach has a number of compelling features:

– Reducing attack surface. The mined sandbox detects system calls that cannot be seen
during the mining phase, which reduces the attack surface by confining the adversary
and limiting the damage he/she could cause.

– Guarantees from sandboxing. Our approach runs test suites to explore “normal”
container behaviors. The testing may be incomplete, and other (in particular malicious)
behaviors are still possible. However, the testing covers a safe subset of all possible
container behaviors. Sandboxing is then used to guarantee that no unknown system
calls aside from those used in the testing phase are permitted.

We evaluate our approach by applying it to eight Docker containers and focus on three
research questions:

RQ1. How efficiently can our approach mine sandboxes?

We automatically run test suites on the Docker containers and check the system call conver-
gence. It takes less than two minutes for the set of accessed system calls to saturate for the
selected static test cases. Also, we compare our mined sandboxes with the default sandbox

Empirical Software Engineering

provided by Docker. The default sandbox allows more than 300 system calls (DockerDocs
2017) and is thus too coarse. On the contrary, our mined sandboxes allow 66–105 system
calls for eight containers in the experiment, which significantly reduce the attack surface.

RQ2. How sufficient does sandbox mining cover system call behaviors?

We estimate the system call coverage for sandbox mining by using 10-fold cross-validation.
If a system call S is not accessed during the mining phase, later non-malicious access to
S would trigger a false alarm. We further run use cases that cover the basic functionality
of containers to check whether the enforcing mined sandboxes would trigger alarms. The
result shows that the estimation of system call coverage for sandbox mining ranges from
96.4% to 99.8% across the container, and the use cases end with no false alarms. A limiting
assumption is that the use cases only tested static system/application paths and included test
cases during sandbox mining.

RQ3. What is the performance overhead of sandbox enforcement?

We evaluate the performance overhead of enforcing mined sandboxes on a set of containers.
The result shows that sandbox enforcement incurs a low end-to-end performance overhead.
Our mined sandboxes also provide a slightly lower performance overhead than that of the
default sandbox.

RQ4. Can the mined sandboxes effectively protect an exploitable application running
in a container?

We analyze how our mined sandboxes can protect an exploitable application by reducing the
attack surface. In addition, we conduct a case study by considering a security vulnerability
in reality (CVE-2013-2028 in Nginx 1.3.9-1.4.0). We attempt to understand if enforcing
mined sandboxes could prevent exploits of the vulnerability. The result shows that our mined
sandboxes can effectively protect an exploitable application running in a container, and
prevent security breaches in reality. A threat to validity is that the automatic test cases for
the Nginx container only achieve code coverage of 13.7%, so there might be a significant
number of false alarms in practice.

This paper extends our preliminary work which appears as a research paper of ICST 2017
(Wan et al. 2017). In particular, we extend our preliminary work in several directions: (1)
In addition to system call types, we characterize the arguments of system calls and translate
the characteristics into fined-grained sandbox rules; (2) To enable fine-grained sandbox
enforcement, we leverage seccomp-BPF to intercept system calls and ptrace interface to
examine the arguments of system call invocations; (3) We have repeated experiments for our
mined fine-grained sandboxes to answer three research questions in our ICST 2017 paper;
(4) We further address RQ4 to evaluate the effectiveness of our mined sandboxes to protect
exploitable containers.

The remainder of this paper is organized as follows. After discussing background and
related work in Section 2, Section 3 specifies the threat model and motivation of our work.
Sections 4 and 5 detail two phases of our approach. We evaluate our approach in Section 6
and discuss threats to validity and limitations in Section 7. Finally, Section 8 closes with
conclusion and future work.

Empirical Software Engineering

Fig. 2 A snippet of Docker
Seccomp profile, expressed in
JavaScript Object Notation
(JSON)

2 Background and RelatedWork

2.1 System Call Interposition

System calls allow virtually all of a program’s interactions with the network, filesystem, and
other sensitive system resources. System call interposition is a powerful approach to restrict
the power of a program (Garfinkel et al. 2003).

There exists a significant body of related work in the domain of system call interposi-
tion. Implementing system call interposition tools securely can be quite subtle (Garfinkel
et al. 2003). Garfinkel studies the common mistakes and pitfalls, and uses the system call
interposition technique to enforce security policies in the Ostia tool (Garfinkel et al. 2004).
System call interposition tools, such as Janus (Goldberg et al. 1996; Wagner 1999), Systrace
(Provos 2003), and ETrace (Jain and Sekar 2000), can enforce fine-grained policies at gran-
ularity of the operating system’s system call infrastructure. System call interposition is also
used for sandboxing (Goldberg et al. 1996; Provos 2003; Acharya and Raje 2000; Fraser
et al. 1999; Ko et al. 2000; Kim and Zeldovich 2013) and intrusion detection (Hofmeyr et al.
1998; Forrest et al. 1996; Wagner and Dean 2001; Bhatkar et al. 2006; Kiriansky et al. 2002;
Warrender et al. 1999; Somayaji and Forrest 2000; Sekar et al. 2001; Mutz et al. 2006).

Seccomp-BPF framework (Corbet 2012) is a system call interposition implementation
for Linux Kernel introduced in Linux 3.5. It is an extension to Seccomp (Corbet 2009),
which is a mechanism to isolate a third-party application by disallowing all system calls
except for reading and writing of already-opened files. Seccomp-BPF generalizes Sec-
comp by accepting Berkeley Packet Filter (BPF) programs to filter system calls and their
arguments. For example, the BPF program can decide whether a program can invoke the
reboot() system call.

In Docker, the host can assign a Seccomp BPF program for a container. Docker uses a Sec-
comp profile to capture a BPF program for readability (DockerDocs 2017). Figure 2 shows
a snippet of Seccomp profile used by Docker, written in the JSON (JSON 2017) format.

By default, Docker disallows 44 system calls out of 300+ for all of the containers to
provide wide application compatibility (DockerDocs 2017). However, the principle of least

Empirical Software Engineering

privilege (Saltzer and Schroeder 1975) requires that a program must only access the infor-
mation and resources necessary to complete its operation. In our experiment, we notice
that top-downloaded Docker containers access less than 34% of the system calls which are
whitelisted in the default Seccomp profile.

Containers are granted more privileges than they require.

2.2 System Call Policy Generation

Generating an accurate system call policy for an existing program has always been chal-
lenging (Provos 2003). It is difficult and impossible to generate an accurate policy without
knowing all possible behaviors of a program. The question “what does a program do?” is
the general problem of program analysis. Program analysis falls into two categories: static
analysis and dynamic analysis.

Static analysis checks the code without actually executing programs. It sets an upper
bound to what a program can do. If the static analysis determines some behavior is impos-
sible, the behavior can be safely excluded. Janus (Goldberg et al. 1996) recognizes a list
of dangerous system calls statically. Wagner and Dean (2001) derive system call sequences
from program source code.

The limitation of the static analysis is over-approximation. The analysis often assumes
that more behaviors are possible than actually would be. Static analysis is also undecidable
in all generality due to the halting problem.

Static analysis produces over-approximation.

Dynamic analysis analyzes actual executions of a running program. It sets a lower bound
of a program’s behaviors. Any (benign) behavior seen in past executions should be allowed
in the future as well. Given a set of executions, one can learn benign program behaviors to
infer system call policies. There is a rich set of articles about system call policy generation
through dynamic analysis. Some studies look at a sequence of system calls to detect devi-
ations to normal behaviors (Forrest et al. 1996; Hofmeyr et al. 1998; Somayaji and Forrest
2000). Instead of analyzing system call sequences, some studies take into account the argu-
ments of system calls. Sekar et al. (2001) uses finite state automata (FSA) techniques to
capture temporal relationships among system calls (Mutz et al. 2006; Kruegel et al. 2003).
Some studies keep track of data flow between system calls (Bhatkar et al. 2006; Fetzer
and Süßkraut 2008). Other researchers also take advantage of machine learning techniques,
such as Hidden Markov Models (HMM) (Warrender et al. 1999; Gao et al. 2006), Neural
Networks (Endler 1998), and k-Nearest Neighbors (Liao and Vemuri 2002).

The fundamental limitation of the dynamic analysis is incompleteness. If some behav-
ior has not been observed so far, there is no guarantee that it may not occur in the
future. Given the high cost of false alarms, a sufficient set of executions must be avail-
able to cover all of the normal behaviors. The set of executions can either derive from
testing, or from production (a training phase is required) (Jamrozik et al. 2016; Le et al.
2018; Bao et al. 2018). The dynamic analysis would profit from an abundance of test
cases. A great amount of research effort has been put on automatic test case generation
(Anand et al. 2013). As a result, a significant number of different techniques for test case
generation have been advanced and investigated, e.g., symbolic execution and program
structural coverage testing (Cadar and Sen 2013; Wan and Zhou 2011), model-based test
case generation (Utting and Legeard 2010), combinatorial testing (Nie and Leung 2011),
adaptive random testing (Chen et al. 2010; Ciupa et al. 2008) and search-based testing

Empirical Software Engineering

(Harman and McMinn 2010). Notably, a SQL test generator1 could achieve much higher
coverage in MySQL or PostgreSQL, whereas a test generator for Web pages (e.g.,
CrawlJax2) could do the same for Web servers.

Dynamic analysis requires sufficient “normal” executions to be trained with, and would
profit from automatic test case generation.

2.3 Consequences

Sandboxing, program analysis, and testing are mature technologies. However, each of them
has limitations: sandboxing needs policy, dynamic analysis needs executions, and testing
cannot guarantee the absence of malicious behavior (Jamrozik et al. 2016). Nonetheless,
Zeller et al. argue that combining the three not only mitigates the limitations but also turns
the incompleteness of dynamic analysis into a guarantee (Zeller 2015). In our case, system
call interposition-based sandboxing can guarantee that anything not seen yet will not hap-
pen. Note that our approach does not aim to provide ideal sandboxing, i.e., no false positives
or false negatives. To provide ideal sandboxing, testing must cover all and only legitimate
executions; but as noted in Forrest et al. (1997), it is theoretically impossible to get perfect
discrimination between legitimate and illegitimate activities. We attempted to propose a
sandboxing approach with low rates of false positives and few false negatives. Nevertheless, the
system call interface is dangerously wide; less-exercised system calls are a major source of kernel
exploits. To limit the impact an adversary canmake, it is straightforward to sandbox a container
and restrict the system calls it is permitted to access. We notice that the default sandbox
provided by Docker disallows only 44 system calls – the default sandbox is too coarse.
Containers are granted more privileges than they require. To follow the principle of least
privilege, our approach automatically mines sandbox rules for containers during testing; and
later enforces the policy by restricting system call invocations through sandboxing.

3 Threat Model andMotivation

Most applications that run in the containers, e.g., Web server, database systems, and cus-
tomized applications, are too complicated to trust. Even with access to the source code
of these applications, it is difficult to reason about their security. An exploitable container
might be compromised by carefully craft inputs that exploit vulnerabilities, and further
do harm in many ways. For instance, a compromised container can exploit a bug in the
underlying kernel that allows privilege escalation and arbitrary code execution on the host
(CVE-2016-0728 2016); it can also acquire packet of another container via ARP spoofing
(Whalen 2001). We assume the existence of vulnerabilities to the adversary that he/she can
use to gain unauthorized access to the underlying operating system and further compromise
other containers in the cloud.

We observe that the system call interface is the only gateway to make persistent
changes to the underlying systems (Provos 2003). Nevertheless, the system call interface
is dangerously wide; less-exercised system calls are a major source of kernel exploits.

1https://mattjibson.com/random-sql/
2https://github.com/crawljax/crawljax/

Empirical Software Engineering

To limit the impact an adversary can make, it is straightforward to sandbox a container
and restrict the system calls it is permitted to access. We notice that the default sand-
box provided by Docker disallows only 44 system calls – the default sandbox is too
coarse. Containers are granted more privileges than they require. To follow the principle
of least privilege, our approach automatically mines sandbox rules for containers dur-
ing testing; and later enforces the policy by restricting system call invocations through
sandboxing.

4 SandboxMining

4.1 Overview

During the mining phase, we automatically explored container behaviors, monitored its
system call invocations, and characterized system call behavior for all seen system calls.
This section illustrates three fundamental steps of our approach during the mining phase as
shown in Fig. 3.

4.2 Enabling Tracing

The first step is to prepare the kernel to enable tracing. We used container-aware monitoring
tool sysdig (DraisInc 2017) to record system calls that are accessed by a container at run
time. The monitoring tool sysdig logs:

– an enter entry for a system call, including timestamp, the process that executes the sys-
tem call, thread ID (which corresponds to the process ID for single-threaded processes),
and list of system call arguments;

– an exit entry for a system call, with the properties mentioned above, except that
replacing the list of arguments with the return value of the system call.

4.3 Automatic Testing

In this step, we selected a test suite that covers the functionality of a container. Then we ran
the test suite on the targeted container. During testing, we automatically copied the tracing
logs at constant time intervals. This allowed us to compare at what time the system call was
accessed. Therefore, we can monitor the growth of the sandbox rules over time based on
these snapshots.

4.4 Characterizing System Call Behavior

We characterized two types of system call behavior of a container: system call types and
arguments. We first characterized the system call types of accessed system calls for each
container. We then characterized the system call arguments of top 20 frequently accessed
system calls for each container. Finally, we obtained models of system call name for all
accessed system calls, as well as models of system call name and argument(s) for most
frequently (top 20) accessed system calls. The details of how we characterize system call
behavior are discussed below.

Empirical Software Engineering

Characterize system call behavior

Enable tracing

Automa�c tes�ng
a target container

System call
tracing logs

Characterize system
call types

All system call
invoca�ons

System call invoca�ons of the
top 20 most frequently accessed
system call types (Account for
over 95% system call invoca�ons)

Characterize system call arguments

Accessed system
call types

Extract arguments
for each system call type

Model pathname
arguments

Model discrete
Numeric arguments

Filename
frequency

below
threshold

Set of
directories

Set of filenames
+ directories

Set of discrete
numeric values

Three sets for each modeled system call type

Cluster system call invoca�ons
based on numeric values, and

divide pathname set into subsets

Models of “System
call type”

Models of “System call type +
argument(s)”

Top 20 most frequently accessed system call types Other system call types

Fig. 3 Process to mine sandbox rules for a container

4.4.1 Characterizing System Call Types

We extracted the set of system call types accessed by a container from the tracing logs. As an
example of how our approach characterizes system call types, let us consider the hello-world
container (DockerHub 2017b). This container employs a Docker image which simply prints
out a message and does not accept inputs. We discovered 24 system calls during testing. The
Docker init process (OpenContainerInitiative 2017) and the hello-world container invoke
the system calls as follows (Note that functions in [] are that first trigger the system calls):

Empirical Software Engineering

[github.com/opencontainers/runc/libcontainer/utils/utils_unix.go:
CloseExecFrom]

1 openat()
2 getdents64()
3 lstat()
4 close()
5 fcntl()

– Right after the Seccomp profile is applied, the Docker init process closes all
unnecessary file descriptors that are accidentally inherited by accessing openat(),
getdents64(), lstat(), close(), and fcntl().

[github.com/opencontainers/runc/libcontainer/capabilities_linux.go:
newCapWhitelist]

6 getpid()
7 capget()

– Then the Docker init process creates a whitelist of capabilities with the process
information by accessing getpid() and capget().

[github.com/opencontainers/runc/libcontainer/system/linux.go:
SetKeepCaps]

8 prctl()

– The Docker init process preserves the existing capabilities by accessing prctl()
before changing user of the process.

[github.com/opencontainers/runc/libcontainer/init_linux.go: setupUser]
9 getuid()
10 getgid()
11 read()

– The Docker init process obtains the user ID and group ID by accessing getuid()
and getgid(); Later it reads the groups and password information from configuration
file by accessing read().

[github.com/opencontainers/runc/libcontainer/init_linux.go:
fixStdioPermissions]

12 stat()
13 fstat()
14 fchown()

– TheDockerinit process fixes the permissions of standard I/O file descriptors by accessing
stat(), fstat(), and fchown(). Since these file descriptors are created outside
of the container, their ownership should be fixed and match the one inside the container.

[github.com/opencontainers/runc/libcontainer/init_linux.go: setupUser]
15 setgroups()
[github.com/opencontainers/runc/libcontainer/system/syscall_linux_64.go:

Segid]
16 setgid()
[github.com/opencontainers/runc/libcontainer/system/syscall_linux_64.go:

Seuid]
17 futex()
18 setuid()

– The Docker init process changes groups, group ID, and user ID for current process
by accessing setgroups(), setgid(), futex() and setuid().

[github.com/opencontainers/runc/libcontainer/capabilities_linux.go: drop
]

19 capset()

Empirical Software Engineering

– The Docker init process drops all capabilities for current process except those
specified in the whitelist by accessing capset().

[github.com/opencontainers/runc/libcontainer/init_linux.go:
finalizeNamespace]

20 chdir()

– The Docker init process changes current working directory to the one specified in
the configuration file by accessing chdir().

[github.com/opencontainers/runc/libcontainer/standard_init_linux.go:
Init]

21 getppid()

– The Docker init process then compares the parent process with the one from the start
by accessing getppid() to make sure that the parent process is still alive.

[github.com/opencontainers/runc/libcontainer/system/linux.go: Execv]
22 execve()

– The final step of the Docker init process is accessing execve() to execute the
initial command of the hello-world container.

[github.com/docker-library/hello-world/hello.c: _start()]
23 write()
24 exit()

– The initial command of the hello-world container executes hello program. The
hello program writes a message to standard output (file descriptor 1) by accessing
write() and finally exits by accessing exit().

Ideally, we expected to capture the set of system calls accessed only by the container.
However, the captured set included some system calls that are accessed by the Docker init
process. This is because applying sandbox rules is a privileged operation; the Docker init
process should apply sandbox rules before dropping capabilities. We noticed that the Docker
init process invokes 22 system calls to prepare runtime environment before the container
starts. If the Docker init process accesses fewer system calls before the container starts,
our mined sandboxes could be more fine-grained.

The system calls characterize the resources that the hello-world container accesses in
our run. Since the container does not accept any inputs, we find the 24 system calls are
an exhausted list. The testing would be more complicated if a container accepts inputs to
determine its behavior.

4.4.2 Characterizing System Call Arguments

– Extraction phase:We extracted system call arguments of each container from the trac-
ing logs. We found that the top 20 accessed system call types account for over 95%
system call invocations for each container. To provide the reliability of characterization
models, we only modeled the arguments of top 20 accessed system call types invoked
by each container.

– Modeling phase: During the modeling phase, we create separate models for differ-
ent types of system call arguments. According to previous study (Maggi et al. 2010),
four types of arguments are passed to system call: pathnames and filenames, discrete
numeric values, arguments passed to programs for execution, user and group identifiers
(UIDs and GIDs). For each type of argument, we designed a representative model. In

Empirical Software Engineering

Table 1 Association of models to syscall arguments

Syscall Models used for the arguments

access pathname → Path Name mode → Discrete Numeric

epoll wait maxevents → Discrete Numeric

exit status → Discrete Numeric

fcntl cmd → Discrete Numeric

futex futex op → Discrete Numeric

lstat pathname → Path Name

mmap prot, flags → Discrete Numeric

open pathname → Path Name flags → Discrete Numeric

openat pathname → Path Name flags → Discrete Numeric

poll timeout → Discrete Numeric

recvfrom len → Discrete Numeric

semop nsops → Discrete Numeric

sendto len → Discrete Numeric

shutdown how → Discrete Numeric

socket domain, type, protocol → Discrete Numeric

socketpair domain, type, protocol → Discrete Numeric

stat pathname → Path Name

Table 1, we summarize the association of the models with the arguments of each system
call type we take into account.

Pathnames are frequently used in system calls. They are difficult to model prop-
erly because of their complex structure. Pathnames are comprised of directory names
and file names. File names are usually too variable to allow a meaningful model to
be always created. Thus we set up a system-wide threshold below which we believe
the file names are not so regular to form a significant model. For the pathnames with
a frequency below the threshold, we represented the pathnames using their directo-
ries to be a learned set. For those pathnames with a frequency above the threshold, we
considered the file names along with the corresponding directory to be a learned set.
During sandbox enforcing, the argument of pathname was compared against the two
types of learned sets. Obviously, this solution is effective only if the argument values
are limited in number, static and not deployment dependent (e.g., file system calls, SQL
administrative commands, etc.). For containers that violate these requirements, e.g.,
an OS container, a Web server container with dynamically generated pages with PHP,
or distributed system containers like Cassandra, our system may need to be trained in
production as it might introduce false alerts in unknown numbers.

Discrete numeric values such as flags and opening modes are usually chosen from
a limited set for a system call type. Therefore, we can store all the discrete numeric
values of a system call type that appear during testing to be a finite set. During sandbox
enforcing, the argument of the discrete numeric value is compared against the stored
value list.

– Clustering phase: During the clustering phase, we built correlations among the mod-
els for different arguments of a system call type. We divided the invocations of a single
system call into subsets. The invocations in a subset have arguments with higher sim-
ilarity. We were interested in creating models on these subsets, and not on the general

Empirical Software Engineering

system calls. This facilitated to capture the normality and deviation. For instance, the
common top 20 accessed system call open of the eight containers in our experiment
has two parameters pathname and mode. The parameter flags represents a set
of flags indicating the type of open operation (e.g., O RDONLY read-only, O CREAT
create if nonexisting, O RDWR read-write). We first aggregated system call invocations
of open() over the argument flags of discrete numeric values. We then built mod-
els over the argument pathname for each cluster with same flags. Through the
clustering, we divided each “polyfunctional” system call into “subgroups” that are spe-
cific to a single functionality. Consider the system call open() in the Nginx container
as an example. We divided the invocations into 5 subgroups over the flags includ-
ing O APPEND | O CREAT | O WRONLY, O RDONLY, O TRUNC | O CREAT |
O RDWR, O RDONLY | O CLOEXEC, and O NONBLOCK | O RDONLY. The result-
ing model is shown in Fig. 4.

5 Sandbox Enforcing

5.1 Overview

The second phase of our approach is sandbox enforcing, which monitors and possibly pre-
vents container behavior. We need a technique that conveniently allows the user to sandbox
any container. To this end, we leveraged Seccomp-BPF (Corbet 2012) for sandbox policy
enforcement. Docker uses operating system virtualization techniques, such as namespaces,
for container-based privilege separation. Seccomp-BPF further establishes a restricted envi-
ronment for containers, where more fine-grained security policy enforcement takes place.
During sandbox enforcement, the applied BPF program checks whether an accessed sys-
tem call is allowed by corresponding sandbox rules. If not, the system call will return an
error number; or the process which invokes that system call will be killed; or a ptrace event
(Vlasenko 2017) is generated and sent to the tracer if there exists one. Whenever the applied
BPF program generates a ptrace event during the target container execution, the kernel
stops the execution of the container and transfers control to our tracer. Our tracer intercepts
the event and examines the target’s internal state of system call arguments via ptrace()
interface. This section illustrates the two steps of our approach during the sandboxing phase.

5.2 Generate Sandbox Rules

This step translates the models of system call behavior discovered in mining phase into
sandbox rules. We derived two types of system call models during sandbox mining as shown
in Fig. 3, i.e., models of system call types, and models of system call types + arguments.
We further divided system calls into three types based on their derived models:

– System calls with models of string type arguments;
– System calls only with models of non-string type arguments;
– System calls only with models of system call types.

We then generated sandbox rules for the three kinds of system call types by following the
three sequential steps as follows:

System Calls with Models of String Type Arguments Translating models of string type
arguments into sandbox rules is comprised of two steps:

Empirical Software Engineering

Step 1: Generating rules in Seccomp profile.We use the awk tool to translate each system
call that has models with string type arguments into a sandbox rule with action
SCMP ACT TRACE. Specifically, we write a script which automatically generates
a snippet in the JSON format for each system call. We take the the system call
open() of the container Nginx as an example, whose model is shown in Fig. 4.
The generated sandbox rule for open() in Seccomp profile is as follows:

{
"name": "open",
"action": "SCMP_ACT_TRACE",
"args":[]

}

By enforcing above sandbox rule, once the system call open() is accessed by the container
during sandboxing, a ptrace event is generated and sent to the tracer of the container. The
tracer further checks the arguments for each system call invocation.
Step 2: Implementing models for string type arguments.We wrote a Python program (388

lines) which translated the system call models of string type arguments into a
module in C programming language. The module implements the argument check-
ing process of distinct system calls for a particular container. For example, the
argument checking snippet for system call open() in Nginx is as follows:

if (regp->orig_rax == __NR_open) {
int len = read_arg_str(buf, MAX_PATH, pid, (char*)regp->rdi)

;
char* arg0 = buf;
int arg1 = regp->rsi;
int allow = 0;
switch (arg1) {
case O_APPEND|O_CREAT|O_WRONLY:

allow = compare_str_argument(0, arg0,
open_allowed_flags_14);

break;
case O_RDONLY:

allow = compare_str_argument(0, arg0,
open_allowed_flags_1);

break;
case O_TRUNC|O_CREAT|O_RDWR:

allow = compare_str_argument(0, arg0,
open_allowed_flags_263);

break;
case O_RDONLY|O_CLOEXEC:

allow = compare_str_argument(0, arg0,
open_allowed_flags_4097);

break;
case O_NONBLOCK|O_RDONLY:

allow = compare_str_argument(1, arg0,
open_allowed_flags_65);

break;
}
if (!allow) {

fprintf(false_alarm, "NGINX > open(pathname=
}
return allow;

}

Empirical Software Engineering

To check the arguments for each system call invocation of open(), the tracer invokes the
module that implements the argument models. The module then reads accessed pathname
from memory by following the pointer specified by the system call argument pathname,
and check if the argument pathname is allowed by the argument models. Each prohibited
system call invocation will be recorded in a log file.

System Calls Only with Models of Non-String Type Arguments We wrote a Python script
(107 lines) to translate the models of non-string type arguments for each system call into
sandbox rules in Seccomp profile. Consider the system call socketpair() in Nginx
as an example. The system call socketpair() has a model which has constraints on
three non-string type arguments: arg0: domain = 1, arg1: type = 1 and arg2:
protocol = 0. We translate this model into a sandbox rule in Seccomp profile as follows:

{
"names":[

"socketpair"
],
"action": "SCMP_ACT_ALLOW",
"args": [

{
"index": 0,
"value": 1,
"valueTwo": 0,
"op": "SCMP_CMP_EQ"

},
{

"index": 1,
"value": 1,
"valueTwo": 0,
"op": "SCMP_CMP_EQ"

},
{

"index": 2,
"value": 0,
"valueTwo": 0,
"op": "SCMP_CMP_EQ"

}
]

}

By enforcing this sandbox rule, once the system call socketpair() is invoked with
arguments that satisfy those constraints during sandboxing, the invocation will be permitted
according to the specified action, i.e., SCMP ACT ALLOW.

syscall open()

arg1 flags = 1

arg1 flags = 14

arg1 flags = 65

arg1 flags = 263

arg1 flags = 4097

arg0 pathname = {accessed pathnames | flags = 1}

arg0 pathname = {accessed pathnames | flags = 14}

arg0 pathname = {accessed pathnames | flags = 65}

arg0 pathname = {accessed pathnames | flags = 263}

arg0 pathname = {accessed pathnames | flags = 4097}

Fig. 4 Argument model of the system call open() for the container Nginx

Empirical Software Engineering

init process with PID 1

child process child process

Container (Tracee)

docker-containerd

docker-containerd-shim

libcontainer (runC)

Spawned a�er a container is booted

④ Apply seccomp/BPF program to container

③ Pass PID of init process to Tracer

② Boot container with Seccomp profile

- A�ach to the container (tracee) using
ptrace(PTRACE_ATTACH …)

- Setup ptrace and wait for ptrace
event from tracee

① Create a Tracer process

Tracer

ptrace Seccomp/BPF

⑤ System calls enter

⑥ Run BPF

User space

Kernel

System calls exit

⑦ Send ptrace event (EVENT_SECCOMP)

⑩ ptrace(PTRACE_CONT …)

⑧ waitpid()⑨ ptrace(PTRACE_GETREGS/
PTRACE_PEEKDATA)

esahp putratS
esahp tne

mecrofnE

Fig. 5 Process to enforce sandbox rules for a container

System Calls Only with Models of System Call Types For those system calls only with
models of system call types, we translated those system call types into sandbox rules using
awk tool. For instance, write() is one of the discovered system call during sandbox min-
ing for the hello-world container. We generated a sandbox rule with name write, action
SCMP ACT ALLOW, and no constraint applied to the arguments (args) as below:

{
"name": "write",
"action": "SCMP_ACT_ALLOW",
"args": []

}

By enforcing this rule, once the system call write() is accessed during sandboxing, the
invocation would be allowed according to the specified action, i.e., SCMP ACT ALLOW.

After translating all system call models for each container, the resulting Seccomp profile
and parameter checking module constituted a sandbox for that container. We defined the
default action of the sandbox as follows:

"defaultAction": "SCMP_ACT_ERRNO"

The default action indicates that the generated sandbox rules constitute a whitelist of sys-
tem calls that are allowed by the sandbox. For the system call behavior that is not included
in the whitelist, the sandbox will deny the behavior during sandboxing and make the sys-
tem call invocation return an error number (SCMP ACT ERRNO). In particular, the system
call invocation fails and its function will not be executed; the container will receive an error
number for this system call invocation.

5.3 Enforcing Sandbox Rules

Figure 5 illustrates the process that we incorporate seccomp/BPF and ptrace to enforce
generated sandbox rules. The process includes two phases, the startup phase and the
enforcement phase.

At the startup phase, we first created a Tracer process (1), which executes with the
privileges of an isolated process. The Tracer process builds a named pipe for receiving

Empirical Software Engineering

tracee’s PID. Next, we started the target container with corresponding Seccomp pro-
file using docker run --security-opt seccomp (2). The docker-containerd
process then spawns a docker-containerd-shim process that issues command to a con-
tainer runtime (runC). Before namespacing the PID of target container’s init process,
runC sends the PID to the Tracer (3) through the established pipe. The Tracer pro-
cess receives PID of the container and attaches to the target process by calling ptrace
(PTRACE ATTACH ...). Then the Tracer invokes waitpid() to wait for ptrace
event generated by tracee. Lastly, runC loads the seccomp/BPF program specified in the
Seccomp profile into kernel (4) and calls execve() to run the initial command of the
target container. At this point, the target container starts execution.

At the enforcement phase, the seccomp/BPF program runs and decides whether to inter-
cept or not system call invocations (5). A sandbox rule with action SCMP ACT ALLOW
will allow the system call invocations that satisfy the constraints specified by the
rule without intercepting them (6). A sandbox rule with action SCMP ACT TRACE
will generate a ptrace event if the system call name matches (7). The ptrace
event (EVENT SECCOMP) is sent to the Tracer waiting for a ptrace event (8).
Then the Tracer queries the states of the tracee via the ptrace interface, e.g.,
ptrace(PTRACE GETREGS and ptrace(PTRACE PEEKDATA) (9). After examin-
ing the system call arguments, the Tracer continues the tracee by invoking ptrace with
PTRACE CONT (10).

6 Experiments

6.1 Overview

In this section, we evaluated our approach on eight containers. The eight containers are
among the most popular application containers in Docker Hub (2017a) and have a large
number of downloads. The details of them are shown in Table 2. The eight application
containers can be used in PaaS, and provide domain-specific functions. We deliberately
eliminated all OS containers (e.g.,Ubuntu container) which provide basic functions, and can
potentially access all system calls. We also eliminated containers for distributed applications
(e.g., Cassandra) or containers for dynamic file systems/path (e.g., PHP) that are outside
the ability of our approach (see Section 7 for the threat to validity). Note that Python as
a programming language provides a wide range of functionality, and a Python container
can potentially access all system calls. Mining a sandbox for the Python container will be
useless because the mined sandbox will be too coarse. Thus we set up a Web framework
Django (DjangoSoftwareFoundation 2015) on top of the Python container. This makes the
Python container have specific functionality.

We would like to answer three research questions as follows:

RQ1. How efficiently can our approach mine sandboxes?

We evaluated how fast the sets of system calls are saturated for eight containers. Notice that
the eight containers are the most popular containers in Docker Hub (2017a) and have a large
number of downloads. The details of them are shown in Table 2. The eight containers can be
used in PaaS, and provide domain-specific functions rather than basic functions provided by
OS containers (e.g. Ubuntu container). Note that Python as a programming language pro-
vides a wide range of functionality, and a Python container can potentially access all system

Empirical Software Engineering

Table 2 Experiment subjects

Name Version Description Stars Pulls Identifier (links to Web page)

Nginx 1.11.1 Web server 3.8K 10M+ nginx

Redis 3.2.3 key-value database 2.5K 10M+ redis

MongoDB 3.2.8 document-oriented database 2.2K 10M+ mongo

MySQL 5.7.13 relational database 2.9K 10M+ mysql

PostgreSQL 9.5.4 object-relational database 2.5K 10M+ postgres

Node.js 6.3.1 Web server 2.6K 10M+ node

Apache 2.4.23 Web server 606 10M+ httpd

Python 3.5.2 programming language 1.1K 5M+ python

Open https://hub.docker.com/ /<identifier> for details

calls. Mining sandbox for the Python container will be useless because the mined sandbox
will be too coarse. Thus we set up a Web framework Django (DjangoSoftwareFoundation
2015) on top of the Python container. This makes the Python container have specific func-
tionality. In addition, we compared the mined sandboxes with the default one provided by
Docker to see if the attack surface is reduced.

RQ2. How sufficient does sandbox mining cover system call behaviors?

Any non-malicious system call behavior not explored during testing implies a false alarm
during production.We evaluated the risk of false alarms: how likely is it that sandboxmining
misses system call behavior, and how frequently will containers encounter false alarms. We
estimated the system call coverage for sandbox mining by using 10-fold cross-validation.
In addition, we checked the mined sandboxes of the eight containers against the use cases.
We carefully read the documentation of the containers to make sure the use cases reflect the
containers’ typical usage.

RQ3. What is the performance overhead of sandbox enforcement?

As a security mechanism, the performance overhead of sandbox enforcement should be
small. Instead of CPU time, we measured the end-to-end performance of containers – trans-
actions per second. We compared the end-to-end performance of a container running in four
environments: 1) natively without sandbox, 2) with syscall “type” sandbox mined by our
approach, 3) with syscall “type+argument” sandbox mined by our approach, and 4) with
default Docker sandbox.

RQ4. Can the mined sandboxes effectively protect an exploitable application running
in a container?

We analyzed how our mined sandboxes can protect an exploitable application by reducing
the attack surface. We further conducted a case study by considering a security vulnera-
bility in reality (CVE-2013-2028 in Nginx 1.3.9-1.4.0). While running a Nginx container
with syscall “type+argument” sandbox mined by our approach, we exploited the security
vulnerability and attempted to attack the container.

Empirical Software Engineering

6.2 Setup

The containers in the experiments ran on a 64-bit Ubuntu 16.04 operating system inside
VirtualBox 5.2.0 (4GB base memory, two processors). The physical machine is with an Intel
Core i5-6300 processor and 8GB memory.

6.2.1 Sandbox Mining: Automatic Testing

We describe the test suites that we run for automatic testing during sandbox mining in
the experiment as follows. The automatic testing generates the “training set” for sandbox
mining. Note that sandbox mining is conducting during the pre-production phase in practice.

Web Server (Nginx, Apache, Node.js, and Python Django) After executing docker
run, each container experiences a warm-up phase which lasts for 30 seconds. After the
warm-up phase, the Web server gets ready to serve requests. We remotely start with a simple
HTTP request using wget tool from another virtual machine. The request fetches a file from
the server right after the warm-up phase. It is followed by a number of runs of httperf tool
(Mosberger and Jin 1998) also from that the virtual machine. httperf continuously accesses
the static pages hosted by the container. The workload starts from 5 requests per second,
increases the number of requests by 5 for every run, and ends at 50 requests per second.

Redis. The warm-up phase of Redis container lasts for 30 seconds. After the warm-up
phase, we locally connect to the Redis container via docker exec. Then we run the built-
in benchmark test redis-benchmark (redislabs 2017) with the default configuration, i.e., 50
parallel connections, totally 100,000 requests, 2 bytes of SET/GET value, and no pipeline.
The test cases cover the commands as follows:

– PING: checks the bandwidth and latency.
– MSET: replaces multiple existing values with new values.
– SET: sets a key to hold the string value.
– GET: gets the value of some key.
– INCR: increments the number stored at some key by one.
– LPUSH: inserts all the specified values at the head of the list.
– LPOP: removes and returns the first element of the list.
– SADD: adds the specified members to the set stored at some key.
– SPOP: removes and returns one or more random elements from the set value.
– LRANGE: returns the specified elements of the list.

MongoDB The warm-up phase of MongoDB container lasts for 30 seconds. After the
warm-up phase, we runmongo-perf (Mongodb 2017) tool to connect toMongoDB container
remotely from another virtual machine. mongo-perf measures the throughput of MongoDB
server. We run each of the test cases in mongo-perf with tag core, on 1 thread, and for 10
seconds. The detail of test cases is described as follows:

– insert document: inserts documents only with object ID into collections.
– update document: randomly selects a document using object ID and increments one

of its integer field.
– query document: queries for a random document in the collections based on an

indexed integer field.
– remove document: removes a random document using object ID from the collections.
– text query: runs case-insensitive single-word text query against the collections.

Empirical Software Engineering

– geo query: runs nearSphere query with geoJSON format and two-dimensional sphere
index.

MySQL The warm-up phase of MySQL container lasts for 30 seconds. After the warm-
up phase, we create a database, and use sysbench (Kopytov 2017) tool to connect to
MySQL container. We then run the OLTP database test cases in sysbench with maximum
request number of 800, on 8 threads for 60 seconds. The test cases include the following
functionalities:

– create database: creates a database test.
– create table: creates a table sbtest in the database.
– insert record: inserts 1,000,000 records into the table.
– update record: updates records on indexed and non-indexed columns.
– select record: selects records with a record ID and a range for record ID.
– delete records: deletes records with a record ID.

PostgreSQL The warm-up phase of PostgreSQL container lasts for 30 seconds. After the
warm-up phase, we connect to PostgreSQL container using pgbench (PostgreSQL 2017)
tool. We first run pgbench initialization mode to prepare the data for testing. The initializa-
tion is followed by two 60-second runs of read/write test cases with queries. The test cases
cover the functionalities as follows:

– create database: creates a database pgbench.
– create table: creates four tables in the database, namely pgbench branches,

pgbench tellers, pgbench accounts, and pgbench history.
– insert record: inserts 15, 150 and 1,500,000 records into the aforementioned tables

expect pgbench history respectively.
– update and select record: executes pgbench built-in TPC-B-like transaction with

prepared and ad-hoc queries: updating records in table pgbench- branches,
pgbench tellers,and pgbench accounts, and then doing queries, finally
inserting a record into table pgbench history.

6.2.2 Statistics

During sandbox mining, the eight containers executed approximately 5,340,000 system
calls. The number of system call execution of the eight containers is shown in Fig. 6.
We can see that the number of system call execution goes to thousands or even millions.
Thus tracing and analyzing system calls on a real-time environment will cause a con-
siderate performance penalty. To achieve low performance penalty, we only traced and
analyzed system calls in sandbox mining phase. A decomposition of the most frequent sys-
tem calls of each container is shown in Fig. 7. The system call with the highest frequency
is recvfrom() which is used to receive a message from a socket. The corresponding sys-
tem call sendto() which is used to send a message on a socket has high frequency as
well. The system calls that monitor multiple file descriptors are also prominent, such as
epoll ctl() and epoll wait(). System calls that access filesystem are also executed
frequently, such as read() and write().

Empirical Software Engineering

Fig. 6 Number of system call execution of the containers

6.3 RQ1: SandboxMining Efficiency

Figure 8 shows the sandbox rule saturation charts for the eight containers. For sandbox rules
of system call type, we can see that six charts “flatten” before one minute mark, and the
remaining two before two minutes. For sandbox rules of both system call type and argument,
we can observe that five charts “flatten” before one minute mark, two charts before two
minutes (redis and postgres), and the remaining one before three minutes (node).

For sandbox rules of system call type, our approach has discovered 76, 74, 98, 105, 99,
66, 73, and 74 system calls accessed by Nginx, Redis, MongoDB, MySQL, PostgreSQL,
Node.js, Apache, and Python Django containers respectively. The number of accessed
system calls is far less than 300+ of the default Docker sandbox. The attack surface is sig-
nificantly reduced. For sandbox roles of system call type and argument, our approach has
discovered 90, 91, 121, 122, 115, 79, 89, 83 sandbox rules respectively, which reflected
the significant argument models of system calls. The attack surface is further reduced by
restricting the arguments of system call invocations.

During the warm-up phase, the number of system calls accessed by each of the con-
tainers grew rapidly. After the warm-up phase, for all of the Web servers except Apache,
the simple HTTP request caused a further increase and the number of system calls con-
verges; for Apache container, httperf caused a small increase, and the number of system
calls showed no change later. For Redis container, connecting to the container via docker
exec caused a first increase after the warm-up phase; and later redis-benchmark triggered
a small increase. ForMongoDB,MySQL and PostgreSQL containers, mongo-perf, sysbench
and pgbench caused a small increase after the warm-up phase.

The answer of RQ1 is: our approach can mine the saturated sandbox rules within three
minutes. The mined sandboxes reduce the attack surface.

Sandbox mining quickly saturates accessed system calls for the selected static test cases.

6.4 RQ2: System Call Coverage

To estimate the system call coverage of sandbox mining, we follow the steps as below:

Empirical Software Engineering

Fig. 7 Histogram of system call frequency for each of the containers

Empirical Software Engineering

Table 3 Estimation of system call behavior coverage

Min Max Median Mean

Nginx 93.0% 100.0% 98.2% 97.5%

Redis 93.9% 100.0% 98.5% 98.6%

MongoDB 95.2% 100.0% 100.0% 99.0%

MySQL 98.9% 100.0% 98.9% 99.3%

PostgreSQL 98.9% 100.0% 100.0% 99.8%

Node.js 88.7% 100.0% 98.1% 96.4%

Apache 96.7% 100.0% 98.4% 98.2%

Python Django 96.8% 100.0% 100.0% 99.0%

1. Randomly split the tracing log for each container into two, i.e., a training set and a
testing set, by using the 10-fold cross validation (we use KFold() function in Scikit-
learn);

2. Mine sandboxes on the training set;
3. Compare the list of allowed system calls on each training set with the list of system

calls on complete tracing log.

We repeat the above steps 10 times and present the statistics of system call coverage for
each container in Table 3. The average coverage rates range from 96.4% to 99.8% across
the containers in our experiment.

To further investigate if most important functionality of a container was found during
sandbox mining, we read the documentation of the containers and prepare 30 use cases
which reflect containers’ typical usages. Table 4 provides a full list of the use cases.
We implemented all of these use cases as automated bash test cases, allowing for easy
assessment and replication.

After mining the sandbox for a given container, the central question for the evaluation
is whether these use cases would be impacted by the sandbox, i.e., a benign system call
would be denied during sandbox enforcing. To recognize the impact of the sandbox, we set
the default action of sandboxes to be SCMP ACT KILL in the experiment. When the mined
sandbox denies a system call, the process which accesses the system call will be killed, and
auditd (Grubb 2017) will log a message of type SECCOMP for the failed system call. Note
that the default action of our mined sandboxes is SCMP ACT ERRNO in production.

The “Message # in auditd” column in Table 4 summarizes the number of messages
logged by auditd. When we enforced sandboxes of system call types, no message was
logged by auditd for the 30 use cases. The number of false alarm is zero. When enforcing
sandboxes of system call types and arguments, one message was logged by auditd for the
second use case of the Nginx container - accessing the non-existent page hello.htmlwas
denied by our sandbox. Accessing non-existent pages were not “normal” behaviors. Thus
we did not consider the one message in auditd as a false alarm.

The set of use cases we have prepared for assessing the risk of false alarms (Table 4)
does not and cannot cover the entire range of functionalities of the analyzed containers.
Although we assume that the listed user cases represent the most important functionalities,
other usages may yield different results.

The answer of RQ2 is the estimation of system call coverage for sandbox mining range
from 96.4% to 99.8%. We did not find any impact from the mined sandboxes on the basic
functionalities of the containers. As we noted, this might not be true for containers which

Empirical Software Engineering
Ta
bl
e
4

U
se

ca
se
s

C
on
ta
in
er

U
se

ca
se

Fu
nc
tio

n
M
es
sa
ge

#
in

au
di
td

(t
yp
e
/t
yp
e+

ar
g)

N
gi
nx

A
cc
es
s
st
at
ic
pa
ge

A
cc
es
s
de
fa
ul
tp

ag
e
i
n
d
e
x
.
h
t
m
l
,5

0
x
.
h
t
m
l

0/
0

A
cc
es
s
no
n-
ex
is
te
nt

A
cc
es
s
no
n-
ex
is
te
nt

pa
ge

h
e
l
l
o
.
h
t
m
l

0/
0

pa
ge

R
ed
is

SE
T
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,s
et
ke
y
to

ho
ld

th
e
st
ri
ng

va
lu
e

0/
1

G
E
T
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,g
et
th
e
va
lu
e
of

ke
y

0/
0

IN
C
R
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,i
nc
re
m
en
tt
he

nu
m
be
r
st
or
ed

at
ke
y
by

on
e

0/
0

L
PU

SH
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,i
ns
er
ta
ll
th
e
sp
ec
if
ie
d
va
lu
es

at
th
e
he
ad

of
th
e
lis
ts
to
re
d
at
ke
y.

0/
0

L
PO

P
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,r
em

ov
e
an
d
re
tu
rn
s
th
e
fi
rs
te
le
m
en
to

f
th
e
lis
ts
to
re
d
at
ke
y

0/
0

SA
D
D
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,a
dd

th
e
sp
ec
if
ie
d
m
em

be
rs
to

th
e
se
ts
to
re
d
at
ke
y

0/
0

SP
O
P
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,r
em

ov
e
an
d
re
tu
rn

on
e
or

m
or
e
ra
nd
om

el
em

en
ts
fr
om

th
e
se
t

0/
0

va
lu
e
st
or
e
at
ke
y

L
R
A
N
G
E
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,r
et
ur
n
th
e
sp
ec
if
ie
d
el
em

en
ts
of

th
e
lis
ts
to
re
d
at
ke
y

0/
0

M
SE

T
co
m
m
an
d

C
on
ne
ct
to

R
ed
is
se
rv
er
,r
ep
la
ce

m
ul
tip

le
ex
is
tin

g
va
lu
es

w
ith

ne
w
va
lu
es

0/
0

M
on
go
D
B

in
se
rt

C
on
ne
ct

to
m
on
go
d,

us
e

da
ta
ba
se

t
e
s
t
,

in
se
rt

re
co
rd

{i
m
a
g
e
:
"
r
e
d
i
s
"
,
c
o
u
n
t
:
"
1
"
}

in
to

co
lle
ct
io
n
f
a
l
s
e
a
l
a
r
m
,e
xi
t

0/
0

sa
ve

C
on
ne
ct
to

m
on
go
d,

us
e
da
ta
ba
se

t
e
s
t
,u

pd
at
e
re
co
rd

in
co
lle
ct
io
n
f
a
l
s
e
a
l
a
r
m
,e
xi
t

0/
0

fi
nd

C
on
ne
ct
to

m
on
go
d,

us
e
da
ta
ba
se

t
e
s
t
,l
is
ta
ll
re
co
rd
s
in

co
lle
ct
io
n
f
a
l
s
e
a
l
a
r
m
,e
xi
t

0/
0

M
yS

Q
L

C
R
E
A
T
E
D
A
TA

B
A
SE

C
on
ne
ct
to

M
yS

Q
L
se
rv
er
,c
re
at
e
da
ta
ba
se

t
e
s
t
,l
is
ta
ll
da
ta
ba
se
s,
ex
it

0/
0

C
R
E
A
T
E
TA

B
L
E

C
on
ne
ct
to

M
yS

Q
L
se
rv
er
,u
se

da
ta
ba
se

t
e
s
t
,c
re
at
e
ta
bl
e
F
a
l
s
e
A
l
a
r
m
,i
ns
er
tr
ec
or
d,

ex
it

0/
0

IN
SE

R
T

C
on
ne
ct
to

M
yS

Q
L
se
rv
er
,u
se

da
ta
ba
se

t
e
s
t
,i
ns
er
tr
ec
or
d
in
to

ta
bl
e
F
a
l
s
e
A
l
a
r
m
,e
xi
t

0/
0

U
PD

A
T
E

C
on
ne
ct
to

M
yS

Q
L
se
rv
er
,u
se

da
ta
ba
se

t
e
s
t
,u

pd
at
e
re
co
rd
,e
xi
t

0/
0

SE
L
E
C
T

C
on
ne
ct
to

M
yS

Q
L
se
rv
er
,u
se

da
ta
ba
se

t
e
s
t
,l
is
ta
ll
re
co
rd
s,
ex
it

0/
0

Po
st
gr
eS
Q
L

C
R
E
A
T
E
D
A
TA

B
A
SE

C
on
ne
ct
to

Po
st
gr
eS
Q
L
se
rv
er
,c
re
at
e
da
ta
ba
se

t
e
s
t
,l
is
ta
ll
da
ta
ba
se
s,
ex
it

0/
0

C
R
E
A
T
E
TA

B
L
E

C
on
ne
ct
to

Po
st
gr
eS
Q
L
se
rv
er
,c
on
ne
ct
to

da
ta
ba
se

t
e
s
t
,c
re
at
e
ta
bl
e
F
a
l
s
e
A
l
a
r
m
,e
xi
t

0/
0

Empirical Software Engineering

Ta
bl
e
4

(c
on
tin

ue
d)

C
on
ta
in
er

U
se

ca
se

Fu
nc
tio

n
M
es
sa
ge

#
in

au
di
td

(t
yp
e
/t
yp
e+

ar
g)

IN
SE

R
T

C
on
ne
ct
to

Po
st
gr
eS
Q
L
se
rv
er
,c
on
ne
ct
to

da
ta
ba
se

t
e
s
t
,i
ns
er
t

0/
0

re
co
rd

in
to

ta
bl
e
F
a
l
s
e
A
l
a
r
m
,e
xi
t

U
PD

A
T
E

C
on
ne
ct
to

Po
st
gr
eS
Q
L
se
rv
er
,c
on
ne
ct
to

da
ta
ba
se

t
e
s
t
,u

pd
at
e

0/
0

re
co
rd

in
ta
bl
e
F
a
l
s
e
A
l
a
r
m
,e
xi
t

SE
L
E
C
T

C
on
ne
ct
to

Po
st
gr
eS
Q
L
se
rv
er
,c
on
ne
ct
to

da
ta
ba
se

t
e
s
t
,l
is
ta
ll

0/
0

re
co
rd
s
in

ta
bl
e
F
a
l
s
e
A
l
a
r
m
,e
xi
t

N
od

e.
js

A
cc
es
s
ex
is
te
nt

U
R
I

A
cc
es
s
/

0/
0

A
cc
es
s
no
n-
ex
is
te
nt

U
R
I

A
cc
es
s
no
n-
ex
is
te
nt

U
R
I
/
h
e
l
l
o

0/
0

A
pa
ch
e

A
cc
es
s
st
at
ic
pa
ge

A
cc
es
s
de
fa
ul
tp

ag
e
i
n
d
e
x
.
h
t
m
l

0/
0

A
cc
es
s
no
n-
ex
is
te
nt

pa
ge

A
cc
es
s
no
n-
ex
is
te
nt

pa
ge

h
e
l
l
o
.
h
t
m
l

0/
0

Py
th
on

D
ja
ng
o

A
cc
es
s
ex
is
te
nt

U
R
I

A
cc
es
s
/

0/
0

A
cc
es
s
no
n-
ex
is
te
nt

U
R
I

A
cc
es
s
no
n-
ex
is
te
nt

U
R
I
/
h
e
l
l
o

0/
0

au
di
td

lo
gs

a
m
es
sa
ge

w
he
n
a
sy
st
em

ca
ll
in
vo
ca
tio

n
is
de
ni
ed

by
th
e
sa
nd
bo
x

Empirical Software Engineering

require access to dynamic paths or deployment of specific functionalities. For example, in
the case of database containers, we did not include administrative operations in the test
cases. In those cases, our approach may generate an unknown number of false alarms.

The estimation of system call coverage for sandbox mining range from 96.4% to 99.8%.
The mined sandboxes require no further adjustment on use cases of basic functionalities
for the executions included in the selected static test cases.

6.5 RQ3: Performance Overhead

To analyze the performance overhead of sandbox enforcing, we ran the eight containers
in three environments: 1) natively without sandbox as a baseline, 2) with syscall “type”
sandbox mined by our approach, 3) with syscall “type+argument” sandbox mined by our
approach, and 4) with default Docker sandbox.

We measured the throughput of each container as an end-to-end performance metric. To
minimize the impact of the network, we ran each of the containers using host networking via
docker run --net=host. We repeated each experiment 10 times with a less than 5%
standard deviation.

For the Redis,MongoDB, PostgreSQL andMySQL containers, we evaluated the transac-
tions per second (TPS) of each container by running the aforementioned tools in Section 6.3.
The percentage reduction of TPS per container for Redis, MongoDB, PostgreSQL and
MySQL is presented in Fig. 9. We noticed that enforcing mined sandboxes incurred a small
TPS reduction (0.6% - 2.14% for syscall “type” sandboxes, 1.22% - 3.76% for syscall
“type+argument” sandboxes) for the four containers. Syscall “type” sandboxes produced a
slightly smaller TPS reduction than that of the default sandbox (0.83% - 4.63%). The reason
is that the default sandbox contains more rules than mined sandboxes, and thus the corre-
sponding BFP program needs more computation during sandboxing. The TPS reduction of
syscall “type+argument” sandboxes is close to that of the default sandbox.

For the Web server containers, we evaluated the throughput, i.e., responses per second,
of each container by running httperf tool. To measure the response rate of each container,
we increased the number of requests per second that were sent to the container. The result is
shown in Fig. 10. Web server containers running with sandboxes except for Nginx achieved
performance very similar to that of the containers running without sandboxes. We can see
that the achieved throughput increased linearly with offered load until the container starts to
become saturated. The saturation points of Nginx, Node.js, Apache and Python Django are
around 11,000, 7,000, 4,000 and 300 requests per second respectively. After the offered load
increased beyond that point, the response rate of the container started to fall off slightly.

For the Nginx container, enforcing syscall “type+argument” sandbox incurred a signifi-
cant reduction of throughput (around 27%). Whenever the applied BPF program generated
a ptrace event during a target container’s execution, the kernel stopped the execution of
the target process and transferred control to our Tracer. The Tracer could then exam-
ine the string arguments of the target’s system call invocations by using ptrace interface.
However, using ptrace interface imposes high runtime overhead on the target due to two
context switches, from target to the Tracer and back (Guo and Engler 2011). During our
performance evaluation, the Nginx container extremely frequently accessed the system call
open() to open a Web page. This caused frequent invocations to the ptrace interface, and
further resulted in a significant reduction of throughput.

Empirical Software Engineering

Fig. 8 Per-container sandbox rule saturation for containers in Table 2. y axis is number of sandbox rules, x
axis is seconds spent

The answer of RQ3 is: enforcing sandboxes adds overhead to a container’s end-to-end
performance, but the overall increase is small.

Sandboxes incur a small end-to-end performance overhead.

Empirical Software Engineering

Fig. 9 Percentage reduction of transactions per second (TPS) due to sandboxing

For Web server containers, we evaluated the throughput, i.e., responses per second, of
each container by running httperf tool. To measure the response rate of each container, we
increased the number of requests per second that were sent to the container. The result is
shown in Fig. 10. Web server containers running with sandboxes except for Nginx achieved
the performance very similar to that of the containers running without sandboxes. We can
see that the achieved throughput increases linearly with offered load until the container
starts to become saturated. The saturation points of Nginx, Node.js, Apache and Python
Django were around 11,000, 7,000, 4,000 and 300 requests per second respectively. After
the offered load increased beyond that point, the response rate of the container started to fall
off slightly.

For the Nginx container, enforcing syscall “type+argument” sandbox incurred a signifi-
cant reduction of throughput (around 27%). Whenever the applied BPF program generated
a ptrace event during a target container’s execution, the kernel stopped the execution of
the target process, and transferred control to our Tracer. The Tracer could then exam-
ine the string arguments of the target’s system call invocations by using ptrace interface.
However, using ptrace interface imposed high runtime overhead on the target due to two
context switches, from target to the Tracer and back (Guo and Engler 2011). During our
performance evaluation, the Nginx container extremely frequently accessed the system call
open() to open a Web page. This caused frequent invocations to the ptrace interface, and
further resulted in a significant reduction of throughput.

The answer of RQ3 is: enforcing sandboxes adds overhead to a container’s end-to-end
performance, but the overall increase is small.

Sandboxes incur a small end-to-end performance overhead.

6.6 RQ4: Security Analysis

Since containers share the same non-namespace-aware system call interface, it is critical
to constrain the available system calls for each container to reduce the attack surface. For
the containers we tested on Linux kernel 4.4.0, the number of available system calls during
sandbox enforcing could be reduced from 373 to 66-105. In addition, the mined sandboxes
with constraints on system call arguments further reduce the attack surface.

Empirical Software Engineering

Fig. 10 Comparison of per-container reply rate for Nginx, Node.js, Apache, and Python Django that run
without sandbox, with mined “type” sandbox, with “type+argument” sandbox and with default sandbox. y
axis is response rate (responses per second), x axis is request rate (requests per second)

Through reducing available system call types and arguments, we can effectively reduce
the attack surface of the host OS and lower the risk that an exploitable application escapes
from the container and gains control of the host OS.

On the one hand, some vulnerable system calls could be prohibited and prevented from
being exploited by attackers. For instance, among the 297 prohibited system calls by our
mined sandboxes for the container Nginx, we found some vulnerable system calls with
CVE security level MEDIUM or above, e.g., sigaltstack(),3 setsid(),4 and
setsockopt().5

On the other hand, some high privileged system calls could be prohibited and pre-
vented from being misused by attackers to launch attacks after exploited, e.g., chmod(),
fchmod() and mknodat().

Preventing Security Breach in Reality We further provided an in-depth analysis of our
mined sandboxes by looking at CVE-2013-2028, a memory corruption vulnerability in
Nginx 1.3.9-1.4.0. We attempted to attack a running container of Nginx by exploiting
the vulnerability. Since there existed no available Docker image for Nginx 1.3.9 or 1.4.0,

3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2847
4https://www.cvedetails.com/cve/CVE-2002-1644
5https://www.cvedetails.com/cve/CVE-2017-6074

Empirical Software Engineering

we built a corresponding Docker image by using docker build. We first built binary
from source code of Nginx 1.4.0.6 Then we identified the runtime dependencies by using
dockerize7 and prepared the Dockerfile. Finally, we ran docker build to package the
dependencies and make a Docker image.

CVE-2013-2028 reports a signedness bug in the component that handles chunked Trans-
fer encoding. The bug can be exploited by overflowing the stack (MacManus et al. 2014) or
corrupting header data (Le 2014). We now discuss the bug in CVE-2013-2028 in more detail
as shown in Fig. 11. Attackers can have full control over content length n at line 8.
Note that the variable content length n is a signed integer. The macro ngx min at
line 7 processes two signed integers and returns the less one. Therefore, once attackers feed
Nginx a negative integer, ngx min will always return the negative integer. The negative
integer will then be converted to an unsigned integer and assigned to size at line 7. At line
11, the code invokes the function pointer recv to populate the array buffer at line 4 with
the attacker-controlled variable size. Note that the length of buffer is smaller than the
variable size. The array will overflow, which could further lead to code injection or code
reuse attacks.

We leveraged the vulnerability by sending a POST request to the target container with
keyword chunked in the Transfer-Encoding header. The request contained a chun-
ked data block with a negative integer as its size. After receiving the request, the worker
process of the Nginx container repeatedly read data of size defined by the crafted great
integer. Consequently, the Nginx container refused to process subsequent requests. This
indicated that the attack successfully exploited vulnerability. We then ran a Nginx container
with our mined syscall “type+argument” sandbox and attacked the container using the same
exploit. The attack failed this time because our mined sandbox prohibited the worker process
from invoking recvfrom() system call when handling the crafted request. The specific
sandbox rule that denied the invocation of recvfrom() system call with a great integer
as argument 2 len is as follows:

{
"name":[

"recvfrom"
],
"action": "SCMP_ACT_ALLOW",
"args": [

{
"index": 2,
"value": 1024,
"valueTwo": 0,
"op": "SCMP_CMP_EQ"

}
]

}

The sandbox rule prevented recvfrom() system call invocations from receiving mes-
sages with length that are greater than 1024 through a socket. This greatly reduces the attack
surface of the Nginx container. Notice that our mined sandbox of system call types cannot
prevent the Nginx containers from the exploits because recvfrom() system call could be
invoked in benign behavior.

6http://nginx.org/download/
7https://github.com/jwilder/dockerize

Empirical Software Engineering

Fig. 11 A memory corruption vulnerability in Nginx 1.3.9-1.4.0 (CVE-2013-2028)

The answer of RQ4 is: our mined sandboxes effectively reduce the attack surface of
target containers, and indeed prevent exploitation of CVE-2013-2028 in Nginx 1.3.9-1.4.0.
A limitation is that the test cases of the Nginx container only cover 13.7% of the codebase.
Thus, there might be potential false alarms for legitimate execution that are not captured by
our experiment.

Our mined sandboxes reduce the attack surface of target containers, and can prevent
containers from security breaches in reality. This might happen at the price of false
alarms for executions not covered by the test cases.

7 Discussions and Threats

Granularity of Sandbox Rules A general dilemma exists in choosing an adequate granu-
larity for sandbox rules. Coarse-grained sandbox rules may be too inaccurate to correctly
separate attacks from legitimate use. However, as more fine-grained sandbox rules would
operate, two problems occur. First, more test cases would be required that cover the behav-
ioral diversity of the program. With the low code coverage of automatic testing (e.g., 13.7%
for the Nginx container), it does not help much that all system calls would be covered (e.g.,
write()). This is because there would be plenty of code yet uncovered whose results
eventually end up in the output (e.g., write()).

Second, the more fine-grained the sandbox rules are, the higher the burden becomes for
any operator who would like to check the sandbox rules against expected behavior.

Given that the mined rules cannot rule out misclassification, the effort of manual adjust-
ment can still occur. The effort of manual adjustment can still occur. The refinement of
sandbox rules typically involves analyzing audit logs to identify misclassification. To reduce
the manual effort required to refine sandbox rules, future studies could propose approaches
and tools for automatic analysis and refinement of sandbox rules.

Defense inDepth Our approach aims at reducing the attack surface due to non-namespaces
system calls. However, the system calls that are allowed by our mined sandboxes could be
vulnerable. In that case, our approach may fail to prevent attackers from exploiting those
vulnerable system calls. To further protect the containers against the exploitation of those
vulnerable system calls, we could combine our approach with other Linux security mecha-
nisms. For instance, we could combine our approach and the Linux Capabilities mechanism
(Hallyn and Morgan 2008) to block the exploitation of vulnerability CVE-2016-9793 in
system call setsockopt(). Specifically, CAP NET ADMIN capability is required to
exploit the vulnerability; If the vulnerable system call setsockopt() is allowed by our

Empirical Software Engineering

sandbox rules, we can still prevent this vulnerability by removing the CAP NET ADMIN
capability from the container.

System Call Completeness In our experiment, we trace the system calls of target contain-
ers during automatic testing using application build-in benchmarks and HTTP workload
generation tools. We further use the tool gcov to evaluate the code coverage of our test suites
during automatic testing. We notice that the code coverage is relatively low. For instance,
the code coverage of the automatic testing for the Nginx container is 13.7%. To facilitate the
application of our approach in practice, container developers could combine our approach
with the testing process of the application development. Since container developers might
also be the application developers, they would have a deeper understanding of the typical
and exceptional usage of the application. As suggested by Bacis et al. (2015), the container
developers could then publish their mined sandboxes with the images. Thus, the burden of
completeness would be moved from the container users to the container developers.

One alternative to dynamic analysis is to statistically determine the set of system calls
that can be invoked by a container. However, as discussed in Zeng et al.’s work (Zeng et al.
2014), it is typically difficult to identify system call invocation rules in terms of types,
sequences, and arguments, even for program developers. This is because system calls are
generally not invoked directly but through library APIs. Furthermore, a number of theoreti-
cal and practical barriers remain for static analysis-based approaches (Wan et al. 2014; Wan
and Zhou 2015). We use the tool cflow to analyze the system calls in the source code of
the application. For instance, we discover a list of 64 system calls in the source code of the
application part for the container Nginx. We further compare the list with our mined sandbox
for Nginx and find that only 34 system calls are overlapped. This indicates that 42 system
calls might be invoked through library APIs and 30 system calls are not covered during our
automatic testing. To improve the code coverage of automatic testing, container developers
could combine our approach with the testing process of the application development.

Risky System Calls Some system calls are riskier than the other. The ability to execute pro-
grams (exec()) is risky than the ability to access a file (access()) or check a semaphore
(semop()). We notice that some risky system calls (e.g., execve()) are only accessed
by the Docker init process for initialization before the target containers start running. We
can provide two mined sandboxes, one for the initialization phase and the other for the run-
ning phase. This also helps to further reduce the attack surface. In addition, during selecting
system calls for argument modeling, we plan to provide multiple strategies in our future
work, e.g., focusing on more risky system calls.

Diversity of the Container Evaluation Although our experimental results demonstrate the
feasibility of sandbox mining for containers, our current evaluation only focuses on two
most popular categories of Application containers, i.e., database systems and Web servers,
which count for half of all deployed containers. The diversity of containers brings challenges
to sandbox mining. First, for the containers that include dynamically generated scripts (e.g.,
PHP), a variety of pathname for file access exist. An iterative method could be adopted to
update models of string type arguments through a longer sandboxmining phase and by using
test cases that are more consistent with usage in production. Second, for the OS containers
(e.g., BusyBox), they may intend to invoke arbitrary system calls. Sandboxing based on sys-
tem call interposition is not a suitable solution in this case. We could leverage other Linux
security mechanisms to protect those containers. Third, for the containers of distributed
systems (e.g., Cassandra), different nodes in the cluster may present different system call

Empirical Software Engineering

behavior. Thus, a distinct sandbox may be required for each node in the distributed systems;
we may have to mine multiple sandboxes for each node in the distributed systems. In addi-
tion, some containers may comprise multiple processes which have distinct responsibilities,
for instance, a Linux, Apache, MySQL, and PHP (LAMP) stack in one container. This may
increase attack surface, and lead to more false negatives.

False Positives and False Negatives System call access is either benign or malicious. Our
approach automatically decides on whether a system call accessed by a container should be
allowed. As we do not assume a specification of what makes a benign or malicious system
call access for a container, we face two risks:

– False positives.A false positive occurs when a benign system call is mistakenly prohib-
ited by the sandbox, degrading a container’s functionality. In our setting, a false alarm
happens if some benign system call is not seen during the mining phase, and thus not
added to sandbox rules to be allowed. The number of false alarms can be reduced by
better testing.

– False negatives. A false negative occurs when a malicious system call is mistakenly
allowed by the sandbox. In our setting, a false alarm can happen in two ways:

– False negatives allowed during sandbox enforcing. The inferred sandbox
rules may be too coarse and thus allow future malicious system calls. For
instance, a container may access system calls mmap(), mprotect() and
munmap() as benign behaviors. However, code injection attack could also
invoke these system calls to change memory protection. This issue can be
addressed by combining our approaches with other security mechanisms.

– False negatives seen during sandbox mining. The container may be initially
malicious. We risk mining the malicious behaviors of the container during the
mining phase. Thus malicious system calls would be included in the sandbox
rules. This issue can be addressed by identifying malicious behaviors during
the mining phase.

Finally, in the absence of a specification, a mined policy cannot express whether a sys-
tem call is benign or malicious. Although our approach cannot eliminate the risks of false
positives and false negatives, we do reduce the attack surface by detecting and preventing
unexpected behavior.

8 Conclusion and FutureWork

In this paper, we present an approach to mine sandboxes for Linux containers. During
sandbox mining, the approach first explores the behaviors of a container by automatically
running test suites and monitors the system call invocations of the container. The approach
then characterizes the system call names and arguments and translates the models of system
calls into sandbox rules. During sandbox enforcement, the mined sandbox confines the con-
tainer by restricting its access to system calls. Our evaluation shows that our approach can
efficiently mine sandboxes for containers and substantially reduce the attack surface for the
selected static test cases. For containers which require access to dynamic file paths, have
a deployment of dependent features, or have largely incomplete test cases, our approach
may generate an unknown number of false alerts. In our experiment, automatic testing
sufficiently covers container behaviors, and sandbox enforcement incurs low overhead.

Empirical Software Engineering

Future work could be mining more fine-grained sandbox policy, taking into account
temporal features of system calls, internal states of a container, or data flow from and to
sensitive resources. The more fine-grained sandbox may lead to more false positives and
increase performance overhead. It requires to search for sweet spots that both minimize
false positives and performance overhead. Future work could also leverage modern test case
generation techniques to systematically explore container behaviors. This may help to cover
more normal behaviors of a container. Also, for now, we enforce one system call policy on
a whole container. However, a container may comprise multiple processes which have dis-
tinct behaviors. To further reduce the attack surface, future work could enforce a distinct
policy for each process which corresponds to the behavior of that process.

Acknowledgements This research was partially supported by the National Key Research and Development
Program of China (2018YFB1003904), NSFC Program (No. 61602403), Project of Science and Technology
Research and Development Program of China Railway Corporation (P2018X002), and the Fundamental
Research Funds for the Central Universities.

References

Acharya A, Raje M (2000) Mapbox: using parameterized behavior classes to confine untrusted applications.
In: Proceedings of the 9th conference on USENIX security symposium. USENIX Association

Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M, Harrold MJ, Mcminn P,
Bertolino A et al (2013) An orchestrated survey of methodologies for automated software test case
generation. J Syst Softw 86(8):1978–2001

Bacis E, Mutti S, Capelli S, Paraboschi S (2015) Dockerpolicymodules: mandatory access control for docker
containers. In: 2015 IEEE Conference on communications and network security (CNS). IEEE, pp 749–
750

Bao L, Le TDB, Lo D (2018) Mining sandboxes: are we there yet? In 2018 IEEE 25th International
conference on software analysis, evolution and reengineering (SANER). IEEE, p 445–455

Bhatkar S, Chaturvedi A, Sekar R (2006) Dataflow anomaly detection. In: 2006 IEEE Symposium on security
and privacy (S&P’06). IEEE, pp 15–pp

Cadar C, Sen K (2013) Symbolic execution for software testing: three decades later. Commun ACM
56(2):82–90

Chen TY, Kuo FC, Merkel RG, Tse T (2010) Adaptive random testing: the art of test case diversity. J Syst
Softw 83(1):60–66

Ciupa I, Leitner A, Oriol M, Meyer B (2008) Artoo: adaptive random testing for object-oriented software.
In: Proceedings of the 30th international conference on software engineering. ACM, pp 71–80

Corbet J (2009) Seccomp and sandboxing. https://lwn.net/Articles/332974, [Online; Accessed 2017-11-28]
Corbet J (2012) Yet another new approach to seccomp. http://lwn.net/Articles/475043, [Online; Accessed

2017-11-28]
Cowan C (2007) Apparmor linux application security
CVE-2016-0728 (2016) CVE-2016-0728. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0728,

[Online; Accessed 2017-11-28]
DjangoSoftwareFoundation (2015) Django: a high-level PythonWeb framework. https://www.djangoproject.

com, [Online; Accessed 2017-11-28]
DockerDocs (2017) Seccomp security profiles for Docker. https://docs.docker.com/engine/security/seccomp,

[Online; Accessed 2017-11-28]
DockerHub (2017a) Docker Hub. https://hub.docker.com/explore, [Online; Accessed 2017-11-28]
DockerHub (2017b) Hello-world container. https://hub.docker.com/ /hello-world, [Online; Accessed 2017-

11-28]
DraisInc (2017) Sysdig. http://www.sysdig.org, [Online; Accessed 2017-11-28]
Endler D (1998) Intrusion detection. Applying machine learning to solaris audit data. In: Computer Security

Applications Conference, 1998. Proceedings. 14th Annual. IEEE, pp 268–279
Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines

and linux containers. In: 2015 IEEE International symposium on performance analysis of systems and
software (ISPASS). IEEE, pp 171–172

Empirical Software Engineering

Fetzer C, Süßkraut M (2008) Switchblade: enforcing dynamic personalized system call models. ACM
SIGOPS Oper Syst Rev 42(4):273–286

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA (1996) A sense of self for unix processes. In: 1996 IEEE
Symposium On Security And Privacy, 1996. Proceedings. IEEE, pp 120–128

Forrest S, Hofmeyr SA, Somayaji A (1997) Computer immunology. Commun ACM 40(10):88–97
Fraser T, Badger L, Feldman M (1999) Hardening cots software with generic software wrappers. In:

Proceedings of the 1999 IEEE Symposium on Security and Privacy, 1999. IEEE, pp 2–16
Gao D, Reiter MK, Song D (2006) Behavioral distance measurement using hidden markov models. In:

International workshop on recent advances in intrusion detection. Springer, pp 19–40
Garfinkel T et al (2003) Traps and pitfalls: practical problems in system call interposition based security

tools. In: NDSS, vol 3, pp 163–176
Garfinkel T, Pfaff B, Rosenblum M et al (2004) Ostia: a delegating architecture for secure system call

interposition. In: NDSS
GlobalIndustryAnalystsInc (2015) Platform as a Service PaaS Market Trends. http://www.strategyr.com/

MarketResearch/Platform as a Service PaaS Market Trends.asp, [Online; Accessed 2017-11-28]
Goldberg I, Wagner D, Thomas R, Brewer EA et al (1996) A secure environment for untrusted helper

applications: confining the wily hacker. In: USENIX security symposium
Grubb S (2017) auditd. http://linux.die.net/man/8/auditd, [Online; Accessed 2017-11-28]
Guo PJ, Engler DR (2011) Cde: using system call interposition to automatically create portable software

packages. In: USENIX Annual technical conference, p 21
Hallyn SE, Morgan AG (2008) Linux capabilities: making them work. In: Linux symposium, vol 8
Harman M, McMinn P (2010) A theoretical and empirical study of search-based testing: local, global, and

hybrid search. IEEE Trans Softw Eng 36(2):226–247
Hofmeyr SA, Forrest S, Somayaji A (1998) Intrusion detection using sequences of system calls. J Comput

Secur 6(3):151–180
Jain K, Sekar R (2000) User-level infrastructure for system call interposition: a platform for intrusion

detection and confinement. In: NDSS
Jamrozik K, von Styp-Rekowsky P, Zeller A (2016) Mining sandboxes. In: Proceedings of the 38th

international conference on software engineering. ACM, pp 37–48
JSON (2017) Introducing JSON. http://www.json.org, [Online; Accessed 2017-11-28]
Kim T, Zeldovich N (2013) Practical and effective sandboxing for non-root users. In: USENIX Annual

technical conference (USENIX ATC 13), pp 139–144
Kiriansky V, Bruening D, Amarasinghe SP et al (2002) Secure execution via program shepherding. In:

USENIX Security symposium, vol 92, p 84
Ko C, Fraser T, Badger L, Kilpatrickv D (2000) Detecting and countering system intrusions using software

wrappers. In: USENIX security symposium, pp 1157–1168
Kopytov A (2017) SysBench. https://github.com/akopytov/sysbench, [Online; Accessed 2017-11-28]
Kruegel C, Mutz D, Valeur F, Vigna G (2003) On the detection of anomalous system call arguments. In:

European symposium on research in computer security. Springer, pp 326–343
Le L (2014) Exploiting nginx chunked overflow bug, the undisclosed attack vector. http://ropshell.com/slides/

Nginx chunked overflow the undisclosed attack vector.pdf, [Online; Accessed 2017-11-28]
Le TB, Bao L, Lo D, Gao D, Li L (2018) Towards mining comprehensive android sandboxes. In: 2018

23rd International conference on engineering of complex computer systems (ICECCS), pp 51–60
https://doi.org/10.1109/ICECCS2018.2018.00014

Liao Y, Vemuri VR (2002) Use of k-nearest neighbor classifier for intrusion detection. Comput Secur
21(5):439–448

MacManus G, Hal, Saelo (2014) Nginx HTTP Server 1.3.9-1.4.0 chunked encoding stack buffer overflow.
https://www.rapid7.com/db/modules/exploit/linux/http/nginx chunked size, [Online; Accessed 2017-
11-28]

Maggi F, Matteucci M, Zanero S (2010) Detecting intrusions through system call sequence and argument
analysis. IEEE Trans Depend Secur Comput 7(4):381–395

Mattetti M, Shulman-Peleg A, Allouche Y, Corradi A, Dolev S, Foschini L (2015) Securing the infrastructure
and the workloads of linux containers. In: 2015 IEEE Conference on communications and network
security (CNS). IEEE, pp 559–567

McCarty B (2005) Selinux: Nsa’s open source security enhanced linux, vol 238. O’Reilly
Menage P (2004) CGroups. https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt, [Online;

Accessed 2017-11-28]
Merkel D (2014) Docker: lightweight linux containers for consistent development and deployment. Linux J

2014(239):2
Mongodb (2017) Mongo-perf. https://github.com/mongodb/mongo-perf, [Online; Accessed 2017-11-28]

Empirical Software Engineering

Mosberger D, Jin T (1998) httperf: a tool for measuring web server performance. ACM SIGMETRICS
Perform Eval Rev 26(3):31–37

Mutz D, Valeur F, Vigna G, Kruegel C (2006) Anomalous system call detection. ACM Trans Inf Syst Secur
(TISSEC) 9(1):61–93

Nie C, Leung H (2011) A survey of combinatorial testing. ACM Comput Surv (CSUR) 43(2):11
OpenContainerInitiative (2017) runc libcontainer version 0.1.1. https://github.com/opencontainers/runc/blob/

v0.1.1/libcontainer/standard init linux.go, [Online; Accessed 2017-11-28]
PostgreSQL (2017) pgbench. https://www.postgresql.org/docs/9.3/static/pgbench.html, [Online; Accessed

2017-11-28]
Provos N (2003) Improving host security with system call policies. In: Usenix security
redislabs (2017) How fast is Redis? http://redis.io/topics/benchmarks, [Online; Accessed 2017-11-28]
Saltzer JH, SchroederMD (1975) The protection of information in computer systems. Proc IEEE 63(9):1278–

1308
Sekar R, Bendre M, Dhurjati D, Bollineni P (2001) A fast automaton-based method for detecting anomalous

program behaviors. In: 2001 IEEE Symposium on security and privacy, 2001. S&P 2001. Proceedings.
IEEE, pp 144–155

Somayaji A, Forrest S (2000) Automated response using system-call delay. In: Usenix security symposium,
pp 185–197

Utting M, Legeard B (2010) Practical model-based testing: a tools approach. Elsevier
Vlasenko D (2017) Ptrace documentation. https://lwn.net/Articles/446593, [Online; Accessed 2017-11-28]
Wagner DA (1999) Janus: an approach for confinement of untrusted applications PhD thesis. Department of

Electrical Engineering and Computer Sciences, University of California at Berkeley
Wagner D, Dean R (2001) Intrusion detection via static analysis. In: 2001 IEEE Symposium on Security and

Privacy 2001. S&P Proceedings. IEEE, pp 156–168
Wan Z, Zhou B (2011) Effective code coverage in compositional systematic dynamic testing. In: 2011 6th

IEEE Joint international information technology and artificial intelligence conference, vol 1. IEEE,
pp 173–176

Wan Z, Zhou B (2015) Points-to analysis for partial call graph construction. J Zhejiang Univ (Engineering
Science Edition) 49(6):1031–1040

Wan Z, Zhou B, Wang Y, Shen Y (2014) Efficient points-to analysis for partial call graph construction. In:
International conference on software engineering and knowledge engineering, pp 416–421

Wan Z, Lo D, Xia X, Cai L, Li S (2017) Mining sandboxes for linux containers. In: 2017 IEEE International
conference on software testing, verification and validation (ICST). IEEE, pp 92–102

Warrender C, Forrest S, Pearlmutter B (1999) Detecting intrusions using system calls: alternative data
models. In: 1999 IEEE Symposium on proceedings of the security and, privacy. IEEE, pp 133–145

Whalen S (2001) An introduction to arp spoofing
Zeller A (2015) Test complement exclusion: Guarantees from dynamic analysis. In: Proceedings of the 2015

IEEE 23rd international conference on program comprehension. IEEE Press, pp 1–2
Zeng Q, Xin Z, Wu D, Liu P, Mao B (2014) Tailored application-specific system call tables. Tech rep.,

Technical report, Pennsylvania State University

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Zhiyuan Wan is a post-doctoral research fellow in the Software
Practices Lab at the University of British Columbia, Canada, and
College of Computer Science and Technology, Zhejiang University,
China. She was a research scientist in the School of Information
Systems, Singapore Management University, Singapore in 2018. She
received her Ph.D. and Bachelor degrees from the College of Com-
puter Science and Technology, Zhejiang University, China. Her cur-
rent research focuses on empirical studies to better understand how
software practitioners work, how software is developed, and how soft-
ware technologies evolve. More information at: https://zhiyuan-wan.
github.io/.

Empirical Software Engineering

David Lo received his PhD degree from the School of Computing,
National University of Singapore in 2008. He is currently an Asso-
ciate Professor in the School of Information Systems, Singapore
Management University. He has more than 10 years of experience
in software engineering and data mining research and has more than
200 publications in these areas. He received the Lee Foundation and
Lee Kong Chian Fellow for Research Excellence from the Singa-
pore Management University in 2009 and 2018, and a number of
international research and service awards including multiple ACM
distinguished paper awards for his work on software analytics. He
has served as general and program co-chair of several prestigious
international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board mem-
ber of a number of high-quality journals (e.g., Empirical Software
Engineering).

Xin Xia is a lecturer at the Faculty of Information Technology,
Monash University, Australia. Prior to joining Monash University, he
was a post-doctoral research fellow in the software practices lab at
the University of British Columbia in Canada, and a research assis-
tant professor at Zhejiang University in China. Xin received both
of his Ph.D and bachelor degrees in computer science and software
engineering from Zhejiang University in 2014 and 2009, respectively.
To help developers and testers improve their productivity, his cur-
rent research focuses on mining and analyzing rich data in software
repositories to uncover interesting and actionable information. More
information at: https://xin-xia.github.io/.

Liang Cai is an associate professor of the College of Computer Sci-
ence at Zhejiang University. He received the BS and PhD degrees
from the College of Computer Science in Zhejiang University. He
serves as the Vice Dean of College of Software Technology in
Zhejiang University, Executive Deputy Director of Zhejiang Uni-
versity Blockchain Research Center. His research interests include
blockchain, cloud computing and software engineering.

View publication statsView publication stats

	Practical and effective sandboxing for Linux containers
	Citation

	tmp.1576734997.pdf.Lw4xF

