
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2019

Why reinventing the wheels? An empirical study on library reuse Why reinventing the wheels? An empirical study on library reuse

and re-implementation and re-implementation

Bowen XU
Singapore Management University, bowenxu.2017@phdis.smu.edu.sg

Le AN
Polytechnique Montreal

Ferdian THUNG
Singapore Management University, ferdianthung@smu.edu.sg

Foutse KHOMH
Polytechnique Montreal

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer and Systems Architecture Commons, Databases and Information Systems

Commons, and the Software Engineering Commons

Citation Citation
XU, Bowen; AN, Le; THUNG, Ferdian; KHOMH, Foutse; and LO, David. Why reinventing the wheels? An
empirical study on library reuse and re-implementation. (2019). Empirical Software Engineering. 25, (1),
755-789.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4500

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09771-0

Why reinventing the wheels? An empirical study
on library reuse and re-implementation

Bowen Xu1 · Le An2 · Ferdian Thung1 · Foutse Khomh2 ·David Lo1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Nowadays, with the rapid growth of open source software (OSS), library reuse becomes
more and more popular since a large amount of third- party libraries are available to down-
load and reuse. A deeper understanding on why developers reuse a library (i.e., replacing
self-implemented code with an external library) or re-implement a library (i.e., replacing an
imported external library with self-implemented code) could help researchers better under-
stand the factors that developers are concerned with when reusing code. This understanding
can then be used to improve existing libraries and API recommendation tools for researchers
and practitioners by using the developers concerns identified in this study as design crite-
ria. In this work, we investigated the reasons behind library reuse and re-implementation.
To achieve this goal, we first crawled data from two popular sources, F-Droid and GitHub.
Then, potential instances of library reuse and re-implementation were found automatically
based on certain heuristics. Next, for each instance, we further manually identified whether
it is valid or not. For library re-implementation, we obtained 82 instances which are dis-
tributed in 75 repositories. We then conducted two types of surveys (i.e., individual survey
to corresponding developers of the validated instances and another open survey) for library
reuse and re-implementation. For library reuse individual survey, we received 36 responses
out of 139 contacted developers. For re-implementation individual survey, we received
13 responses out of 71 contacted developers. In addition, we received 56 responses from
the open survey. Finally, we perform qualitative and quantitative analysis on the survey
responses and commit logs of the validated instances. The results suggest that library reuse
occurs mainly because developers were initially unaware of the library or the library had
not been introduced. Re-implementation occurs mainly because the used library method
is only a small part of the library, the library dependencies are too complicated, or the
library method is deprecated. Finally, based on all findings obtained from analyzing the sur-
veys and commit messages, we provided a few suggestions to improve the current library
recommendation systems: tailored recommendation according to users’ preferences, detec-
tion of external code that is similar to a part of the users’ code (to avoid duplication or

Communicated by: Maurizio Morisio

Bowen Xu and Le An are contributed equally.

� Bowen Xu
bowenxu.2017@phdis.smu.edu.sg

Extended author information available on the last page of the article.

Published in Empirical Software Engineering, 2019 September, Pages 1-35
https://doi.org/10.1007/s10664-019-09771-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09771-0&domain=pdf
http://orcid.org/0000-0003-1246-864X
mailto: bowenxu.2017@phdis.smu.edu.sg

Empirical Software Engineering

re-implementation), grouping similar recommendations for developers to compare and
select the one they prefer, and disrecommendation of poor-quality libraries.

Keywords Code reuse · Code re-implementation · Library recommendation systems

1 Introduction

Library reuse has been researched in the 1990s, researchers at that time claimed that while
many companies were developing proprietary software libraries, library reuse was not yet a
major force in most corporate software development (Krueger 1992; Griss 1993). However,
nowadays, with the rapid development of open source software (OSS), library reuse has
became a very common practice as more and more third-party libraries are available to be
downloaded and reused (Abdalkareem et al. 2017; Heinemann et al. 2011; Ruiz et al. 2012).
For example, a recent work concluded that in the world of open-source Java development,
high reuse rate is not a theoretical possibility but rather a practical reality (Heinemann et al.
2011). Moreover, the availability of reusable functionality, which is a necessary prerequisite
for library reuse to occur, is well-established in Java platform. In addition, the costs of
developing and maintaining reusable libraries were considered as an investment during the
software development in the 1990s (Kim and Stohr 1998). Today, many well-maintained
library repositories, which target to different programming languages, have been built to
help developers easily reuse code. For example, NPM,1 Maven,2 RubyGems,3 Packagist,4

PyPI5 are respectively library managers/hosts for JavaScript, Java, Ruby, PHP, and Python.
We observed that these repositories are growing rapidly. For example, in 2010, Sonatype
reported that Maven Central contained over 260,000 Maven libraries.6 By the end of 2018,
the number of unique Maven libraries has reached 3,356,473, which is 12 times larger than
it was in 2010. The growth of these open source libraries indicates that developers are more
willing to share code. Since such bountiful supply of libraries is not likely to happen without
sufficient demand from developers, this tendency suggests a growing demand for code reuse
with libraries as well.

In recent literatures, some empirical studies have investigated code reuse in third-party
libraries. For example, Mojica et al. (2014) conducted a large-scale empirical study based
on more than 200,000 free Android apps across all 30 app categories in Google Play. They
found that while library reuse is prevalent in mobile apps, those apps also inherit the dis-
advantages of reuse, such as increased dependencies. They suggested that more research is
needed to analyze this negative impact. Zaimi et al. (2015) investigated the reuse of third-
party libraries in five well-known open-source software projects: i.e., dr Java, Findbugs,
ArgoUML, jFreeChart and Mogwai. The results of their study suggest that OSS projects
heavily reuse third-party libraries. However, reuse decisions are not frequently revisited, and
there is no clear evidence that reuse decisions are quality-driven. Although the above stud-
ies have provided insights into third-party library reuse, the reasons why developers reuse
third-party libraries are still unclear.

1Nodejs, https://www.npmjs.com
2Maven, https://maven.apache.org
3RubyGems, https://rubygems.org
4Packagist, https://packagist.org
5PyPI, https://pypi.python.org/pypi
6Statistics for the Maven Repository, https://search.maven.org/stats

https://www.npmjs.com
https://maven.apache.org
https://rubygems.org
https://packagist.org
https://pypi.python.org/pypi
https://search.maven.org/stats

Empirical Software Engineering

Moreover, some researchers have noticed the opposite phenomenon, i.e., develop-
ers re-implement the behavior of an existing library (Kawrykow and Robillard 2009;
Sun et al. 2011). Kawrykow and Robillard (2009) proposed a code similarity detection
approach that identifies cases of code re-implementation in software projects. To improve
the accuracy of Kawrykow et al.’s approach, Sun et al. (2011) proposed a graph-based
approach to detect code re-implementations. However, the reasons why developers re-
implement code instead of using third-party library have not been investigated in the
literature.

To fill the gaps left by the above-mentioned lines of work and deepen our understanding
of the reasons behind the phenomena of library reuse and re-implementation, we conducted
this empirical study with the aims to help software researchers and practitioners better
understand the factors that developers are concerned with when reusing code. This under-
standing can then be used to improve existing library and API recommendation tools (e.g.,
Thung et al. (2013a), Rahman et al. (2016), Nguyen et al. (2016), and Gu et al. (2016))
by putting developers concerns as design criteria. Moreover, library developers can benefit
from understanding key concerns that library users voiced when choosing between library
reuse or re-implementation. This understanding helps to further improve the quality of the
library.

In this work, we focus on two scenarios of library reuse and re-implementation,
(1) replacing self-implemented code with an external library, (2) replacing an imported
external library with self-implemented code. Our study investigates the following research
questions:

RQ1 Why do developers replace their self-implemented method with an external library
method?

RQ2 Why do developers replace an external library method with their self-implemented
code?

RQ3 Under what circumstances do developers prefer to reuse or re-implement code?

To answer the above research questions, we conducted two types of surveys and
performed a manual qualitative analysis on commit logs:

Individual Survey We surveyed developers who have experienced either of the fol-
lowing scenarios to get insights on their rationales: (1) A developer who replaced a
self-implemented method by calling a method from a third-party library (library reuse);
(2) A developer who replaced a method call to a third-party library method with a self-
implemented method (library re-implementation). To identify real-world instances of the
above scenarios, we analyzed commits in Java and Python repositories from multiple
sources (e.g., F-Droid7 and GitHub8). We wrote a script to automatically identify likely
cases of library reuse and re-implementation. From these cases, we manually examined their
correctness. Finally, for library reuse, we obtained 183 instances across 133 repositories.
For code re-implementation, we obtained 82 instances across 75 repositories.

We built a customized survey for each of the identified true instances and sent it to the
corresponding developer (who made the commit) to ask for the reasons behind the code
reuse or code re-implementation. Finally, we received 36 responses out of 139 contacted
developers (i.e., response rate: 25.9%) for the individual survey of library reuse, and 13

7F-Droid, https://f-droid.org
8Github, https://github.com

https://f-droid.org
https://github.com

Empirical Software Engineering

responses out of 71 contacted developers (i.e., response rate: 18.3%) for the individual
survey of code re-implementation.

Open Survey We also conducted an open survey to get inputs from other developers. In the
open survey, we first collected demographic of our respondents, i.e., educational attainment,
preferred programming language, role in project and software development experience.
Next, we asked them questions about library reuse and code re-implementation. We dis-
seminated this open survey in several online communities through Reddit. We also sent the
open survey to some of our colleagues, who work as software engineering researchers or
developers. Finally, we received 56 responses from the open survey. For more details, please
refer to Section 2.4.

Commit Log Analysis During our manual validation on the code reuse and re-
implementation candidates, we noticed that some developers mentioned the rationales why
they performed such operations. Thus, we also considered these commit messages as
supplementary information.

This work makes the following contributions:

– We empirically analyzed a large number of concrete cases in which developers replaced
their own implementation with an external library method or vice versa. The manual
analysis took months to complete and we released our manually curated dataset publicly
to benefit other researchers: https://github.com/swatlab/reuse reimpl.

– We qualitatively investigated the reasons behind the library reuse and re-
implementation phenomena. We found that developers prefer to reuse well-maintained,
tested, and easy-to-use code. However, they may switch from code reuse to self-
implementations if the reused code is only a small part of the third-party library,
deprecated, or involves complicated dependencies.

– We made suggestions for improving the current code recommendation techniques,
which should be tailored according to users’ preferences, detect external code that is
similar to a part of users’ code (to avoid duplicate/re-implementation), group similar
recommendations for developers to compare and select the one they prefer, as well as
avoid recommending code from poor quality libraries.

The remainder of this paper is structured as follows. In Section 2, we describe the design
of our empirical study. In Section 3, we present the results of our study. In Section 4.2,
we discuss the threats to validity of our study. In Section 5, we discuss related works. In
Section 6, we conclude this paper and discuss about future works.

2 Case Study Design

The main goal of this study is to understand why developers switch from their self-
implemented code to an external library with the same functionality and the other way
around. In practice, developers often reuse a whole library method and/or re-implement an
existing method. Thus, in this paper, we detect library reuses and re-implementations at
the method level. In the following subsections, we elaborate the design of our case study,
including the data collection process, the detection approaches for the above phenomena,
and the design of our surveys, which are used to address our research questions. Figure 1
shows an overview of our data collection and analysis approaches.

https://github.com/swatlab/reuse_reimpl

Empirical Software Engineering

Manual
validation

Open survey

Identify removed
methods

Identify added
methods

Calculate
relative distanceCommit logs

Code reuse
survey

Code re-impl
survey

Commit message
analysis

dataset [9]

GitHub

F-Droid Detection of code reuse & re-implementation

RQ1
to

 RQ3

Fig. 1 Overview of our data collection and analysis approaches

2.1 Data Collection

We chose two representative programming languages: Java and Python. Java is a represen-
tative for statically-typed language, while Python is a representative for dynamically-typed
language. Both languages are extensively used for software development and possess a
large developer base. We believe that developers of libraries written in either of these
languages can provide us insights in understanding the phenomena of library reuse and re-
implementation. To study Java applications, we collect data from Android repositories that
were maintained on F-Droid9 as of August 2017 and that were used by Krutz et al. (2015). In
this work, we only considered repositories that are version controlled by Git. After remov-
ing redundant repositories in both F-Droid and Krutz et al.’s datasets, we obtained 1,732
unique Android repositories. To study Python applications, we wrote a crawler to collect
repositories from GitHub using the GitHub API.10 To avoid toy projects (i.e., projects that
are self-developed, unoriginal, or have a very short history), we referred to Abdalkareem et
al.’s work (2017) to filter our subject repositories based on the following criteria: selected
repositories must be mainly written in Python, were not forked, contain at least 20 com-
mits, and were developed by at least two developers. In the end, we obtained 4,461 unique
Python repository.

2.2 Detection of Library Reuse

We assume that if a pair of removed and added method invocations is located “close” to
each other (i.e., there are zero or only a few lines between the two methods in a patch), it
is likely to be the case that a developer replaced her own method with an external library
method. We refer to this case as library reuse. In the rest of this section, we elaborate more
on our detection steps.

2.2.1 Identification of RemovedMethods

For each studied application, we cloned its Git repository. Then, we used the git show
command to extract the patch of each commit, from which we identified whether there is
any method implementation that was removed and the invocation of the method was also

9F-Droid, https://f-droid.org/
10Github API, https://developer.github.com/v3

https://f-droid.org/
https://developer.github.com/v3

Empirical Software Engineering

removed. To detect a removed method, we first used the following regular expressions to
look for any method declarations in the removed lines (i.e., lines starting with “-”) in the
patch. In case of Java, we used the following regular expression:

(?:(?:public|private|protected|static|final|native|
synchronized|abstract|transient)+\s)+(?:[\$_\w\<\>\[\]]*)\s+
([\$_\w]+)\(([ˆ\)]*)\)?\\s*\{?[ˆ\}]*\}?

In case of Python, we used the following regular expression.

def\s+?(\w+?)\s*\((.+)

Python developers may write a “method” without a class, which is called a function. A
developer can reuse or re-implement code either in a method or a function. In this paper, we
do not specifically distinguish between methods or functions in Python because they have
the same effect and will not affect our case study results. When we mention a “method” in
Python, it may also mean a function. Libraries in Python are called modules. To simplify
our expressions, we refer to Python modules as “libraries” in the rest of the paper.

For Android applications, if a removed method declaration is located at line Ldcl (and we
assume the method ends at lineLdcl+N whereN > 1), to decide whether the whole method
implementation was removed as well, we matched curly bracket pairs (i.e., {}) in Ldcl and
its subsequent removed lines (i.e., [Ldcl +1, Ldcl +N] | N ≥ 1). Once each of the left curly
brackets (from Ldcl to Ldcl +N) can be matched to a corresponding right curly bracket, we
consider that the whole method implementation is removed. If the right counterparts of some
left curly brackets have not been found and we meet a non removed line (context line i.e.,
line starting with a white space, or added line i.e., line starting with “+”), we consider that
this method is not fully removed. For Python applications, if a removed method declaration
is located at lineLdcl , we look whether the consecutive removed lines followed byLdcl (i.e.,
[Ldcl + 1, Ldcl + N] | N > 1) have more indentation than Ldcl . If yes, and if Ldcl + N + 1
is not an added line, we consider that the method is fully removed. If Ldcl + N + 1 is an
added line, and if it has less indentation than Ldcl , we also consider that the method is fully
removed.

For the fully removed methods, we then examined whether their corresponding invoca-
tions (method invocations with the same method name and number of parameters) were
also removed. If so, we save the line numbers of the removed invocations into a set Setdel .
We will later manually validate whether each of these removed invocations corresponds to
a completely removed method, which will be described in Section 2.2.4.

Example 1 In the commit 9d0ca05 of the FBReader project,11 a method (getString()
of Class HtmlToStringReader) was fully deleted from lines 124 to 126 from the old
revision of the file HtmlToString.java12 (as shown in Fig. 2). Also, the invocation of this
method was removed at line 69 (as shown in Fig. 3).

2.2.2 Identification of Imported Methods

For Android apps, we identified newly imported classes by looking for this pattern
(import external.library.class;) from the added lines (i.e., lines starting with

11https://github.com/geometer/FBReaderJ/commit/9d0ca05
12https://github.com/geometer/FBReaderJ/commit/9d0ca05#diff-111c3f193c58d04aed7c19db835db11b

https://github.com/geometer/FBReaderJ/commit/9d0ca05
https://github.com/geometer/FBReaderJ/commit/9d0ca05#diff-111c3f193c58d04aed7c19db835db11b

Empirical Software Engineering

Fig. 2 The removed implementation of the method getString() in the commit 9d0ca05 of FBReader

“+”) in the patch. For Python apps, we considered all module importing patterns mentioned
in PythonModule (2018) to identify newly imported classes from the added lines, i.e.,

import (.+?) as (.+)
import (.+?)
from (.+?) import .+ as (.+)
from .+? import (.+?)

Then, for each imported class, we sought for the invocation of the class’s static method
(method directly invoked by the class) and its instance method (method invoked by an
instantiated object of the class). We saved the line number of the added method invocations
into a set Setadd .

Example 2 In the same file of Example 1, an external class (android.text.Html)
was imported at line 22 in the new revision. A static method of the class (result =
Html.fromHtml(new String(contentArray)).toString();) was invoked
at line 62 (as shown in Fig. 3).

2.2.3 Calculation of Relative Distance

To decide whether a pair of removed and added methods is reasonably close to each other,
we calculate its “relative distance” as follows. For each unique pair of Ldel (∈ Setdel)
and Ladd (∈ Setadd), we designed the following heuristic to calculate their relative
distance.

In the unified diff format (GNU 2017) (which is the default output of the git show
command), if one line is replaced by another line, the patch will output a removed line
followed by an added line.

- // the old method invocation
+ // the new method invocation

Given a pair of removed (Ldel) and added (Ladd) lines in commit C, we first calculated
the position of Ldel in its block of consecutive deleted lines (Blockdel) as well as the posi-
tion of Ladd in its block of consecutive added lines (Blockadd). If Ldel is the ith line in

Fig. 3 The removed invocation of the method getString() and the added invocation of the method
toString() in the commit 9d0ca05 of FBReader

Empirical Software Engineering

Blockdel and Ladd is the j th line in Blockadd , we calculated the relative distance between
Ldel and Ladd as:

Distrelative = j − i + Linesinbetween

Where Linesinbetween denotes the number of lines that are between Blockdel and Blockadd

but do not belong to the two code blocks. Ideally, developers should replace their own
method invocation with an external one at the same place. However, they may sometimes
remove comments, white space, or log printing lines after Ldel or add these kinds of lines
before Ladd . Thus, even in case that Ladd cannot be perfectly matched to Ldel’s position
(i.e., Distrelative = 0), they can still be a pair of the replacement from a self-implemented
method to a library method. There is a trade-off between the detection’s precision and recall
performance when choosing different values of the threshold Distrelative. Larger relative
distance can yield more candidates, but the precision will be relatively lower (which will
also increase the difficulty of our manual validation, see Section 2.2.4); while smaller rel-
ative distance can achieve a higher precision, but may miss certain good candidates. To
evaluate the sensitivity of the relative distance value, we set Distrelative as 5, 10, and 15,
respectively. We found that when this value is 10 or 15, not much new results were detected,
but the number of false positives increases significantly. Thus, we choose to set the thresh-
old for the relative distance Distrelative to 5. In case that developers removed a white space
or comment line (Lwhite) prior to the deleted method invocation, and added the replacement
library method before Lwhite, Distrelative would be negative. To successfully detect these
cases, we adjust our criterion of the relative distance as |Distrelative| < 5.

In this heuristic, we did not directly compare the line number of Ldel in C’s parent (Cˆ)
with the number of Ladd in C because the code above these lines may be heavily changed,
which can result in a large offset between Ldel in Cˆ and Ladd in C.

Example 3 In Examples 1 and 2, the removed invocation is the second line in a consecutive
deletion block (i.e., i = 2), while the added invocation is the first line in a consecutive
addition block (i.e., j = 1). Since there is no line between the deletion and addition blocks
(Linesinbetween = 0), we calculate the relative distance as: Distrelative = 1− 2+ 0 = −1.

2.2.4 Manual Validation

Following the above steps, we detected a total of 19,221 pairs of Android library
reuse candidates and 40,927 pairs of Python library reuse candidates. For each can-
didate, we outputted its commit ID, line numbers of the pair of deleted and added
method invocations, as well as the fully qualified class to which the added method
belongs to. Then, we manually removed the candidates where the class of the added
method belongs to the current application (app). We could not automate this step because
the name of the app may not be contained in its class package names. For exam-
ple, in the commit 515907013 of the chanu app, the FileUtils.copyStream
method was replaced by the IoUtils.copyStream method, which belongs to
com.nostra13.universalimageloader.utils.IoUtils. Although the new
class’s package name does not contain “chanu”, we found that it was also implemented
by chanu’s developers. After this preliminary filtering, we retained 391 pairs of Android
candidates and 167 pairs of Python candidates.

13https://github.com/grzegorznittner/chanu/commit/5159070#diff-015d116ababf2863b74874b6ba078cfeR365

https://github.com/grzegorznittner/chanu/commit/5159070#diff-015d116ababf2863b74874b6ba078cfeR365

Empirical Software Engineering

To further filter out false positives, two of the authors manually examined the remaining
candidates separately. For a given candidate, the two authors (1) read the commit mes-
sage and checked whether the committer mentioned that their own method was replaced
by an external method (this is not a necessary condition but it can help us confirm the cor-
rectness of a candidate); (2) verified whether the removed method was implemented by
one of the project developers and whether the added method was implemented by external
developers; (3) semantically compared the functionalities between the removed and added
methods (we only include the results where the removed added methods have an identi-
cal functionality). To identify the ownership (i.e., who wrote a specific piece of code) of
a removed or added method, the best way would be to directly ask the developers them-
selves. However, this is not feasible because there are too many subject methods and only
a few developers may answer this question. Instead, in Step 2, for a given removed method
in a commit, we read the commit message and checked whether developers mentioned
that the method is self-implemented or taken from an external source. If the ownership
cannot be determined, we searched for the commit in which the method was introduced
for the first time. We read the commit message and checked whether developers men-
tioned that the method was copied from another project. We also read the source code to
find organization information and searched the method on the Internet, checking whether
the method is similar to code written in past projects. For example, if the namespace
(or naming pattern) of the method is different from the whole project, we will investi-
gate where the method was originally from. If we could not find any evidence showing
that the method was taken from an external source, we considered the method to be self-
implemented. For an added method, besides the aforementioned checks, we also checked
the name of the package the method belongs to. If the name does not follow the naming
style of other packages in the project, we performed an online search and checked whether
the package is taken from another project. Example 4 shows how we performed our manual
validation.

After labeling cases that satisfy the conditions 2 and 3 above, the authors compared
their results. They discussed on each discrepancy until a consensus was achieved. They also
removed all duplicate cases in a commit (e.g., in the commit 6752f2d of the Twidere-
Android app, we found 36 identical cases where a customized method used to convert string
to digit was replaced by an external method for the same purpose). Finally, for Android, we
obtained 128 cases of library reuse, which were performed by 79 developers and are dis-
tributed in 71 apps; for Python, we obtained 65 cases of library reuse, which were performed
by 60 developers and are distributed in 62 apps.

Example 4 In the commit message of Example 3, the committer mentioned:
“android.text.Html instead of own html parser”. The removed and added methods are both
used to parse an HTML string. In addition, the class of the added method is from an Android
official API,14 which was not implemented by developers of the FBReader app.

2.3 Detection of Re-implementations

Similar to the heuristic we used in Section 2.2, we assume that in an app, if there is a pair of
removed and added method invocations located “close” to each other, where the removed
method was imported from elsewhere and the added method is implemented by a developer

14https://developer.android.com/reference/android/text/Html.html

https://developer.android.com/reference/android/text/Html.html

Empirical Software Engineering

of the app, it is likely to be the case that the developer replaced an external library method
by her own implementation. We refer to this case as library re-implementation.

We used the same approach as described in Section 2.2 to identify such pairs of removed
and added methods. In a commit, for any newly implemented method, we saved its line
number into the set Setadd . For any removed method invocation, if the library the method
belongs to is also removed, we saved the line number of the invocation and the library the
method belongs to, into the set Setdel . From the detected results, we calculated the relative
distance (see Section 2.2.3) between each unique pair of deleted and added methods, i.e.,
the relative distance between any Ldel (∈ Setdel) and any Ladd (∈ Setadd). We used the
same threshold to filter candidates: |Distrelative| < 5.

We detected a total of 2,835 pairs of Android candidates and 43,823 pairs of Python
candidates on library re-implementation. We performed a manual validation on these can-
didates. For each candidate, we outputted its commit ID, line numbers of the pair of
deleted and added method invocations, as well as the fully qualified class to which the
removed method belongs. We first manually removed the candidates where the class of the
removed method belongs to the current app. As a result, 83 pairs of Android candidates
and 73 pairs of Python candidates remained. As we have mentioned in Section 2.2.4, not
all incorrect candidates can be eliminated automatically because some self-implemented
classes cannot be simply identified from their names, e.g., isoparser can either be a library
on PyPI,15 or a self-implemented class. For each of the remaining candidates, two of
the authors performed a manual inspection separately with the following steps: (1) read
the commit message and check whether the committer mentioned that they removed an
external method and implemented an equivalent one themselves; (2) verify whether the
added method was implemented by one of the project authors and whether the removed
method was implemented by external developers; (3) semantically compare the func-
tionalities between the added and removed methods (to understand the functionality of
the removed method, we may perform an online search). They resolved any discrep-
ancies through an in-person discussion on each pair and then removed duplicate cases.
Finally, for Android, we found 34 cases of library re-implementation, which were per-
formed by 32 developers and are distributed in 30 apps; for Python, we found 48 cases
of library re-implementation, which were performed by 47 developers and are distributed
in 45 apps.

Example 5 Figure 4 shows an example in the commit 5d1e7e8 of the Impeller
project.16 The invocation of the method setUrlDrawable, which belongs to
the class com.koushikdutta.urlimageviewhelper.UrlImageViewHelper,
was removed from the file src/eu/e43/impeller/ActivityAdapter.java.
This method was invoked at line 145 in the old revision. In the same file, a method
setImage was invoked instead at line 143 in the new revision. This method was newly
implemented in the file src/eu/e43/impeller/ImageLoader.java. Through a
manual inspection, we found that both setUrlDrawable and setImage are used for
loading an image into an object. The removed class belongs to another Android library,17

which was not implemented by developers of Impeller. We also learnt the motivation of

15https://pypi.python.org/pypi/isoparser
16https://github.com/erincandescent/Impeller/commit/5d1e7e8
17https://github.com/koush/UrlImageViewHelper

https://pypi.python.org/pypi/isoparser
https://github.com/erincandescent/Impeller/commit/5d1e7e8
https://github.com/koush/UrlImageViewHelper

Empirical Software Engineering

Fig. 4 The removal of a package import and setUrlDrawable() method invocation as well as the
addition of setImage() method invocation in commit 5d1e7e8 of Impeller

this change from the commit message: “change from UrlImageViewHelper to a custom
implementation ...”. Thus, we believe that this is a valid case of library re-implementation.

2.4 Survey

We now provide detailed information about the surveys that were conducted.

2.4.1 Survey on Library Reuse

To understand why developers used an external library to replace their self-implemented
methods, we designed a survey on Google Forms and distributed it (via emails) to the
developers who performed the library reuse detected in Section 2.2. We encouraged these
developers to answer the questions in a free-form text (except for Questions 3 and 7 pre-
sented below). At the same time, we also provided the surveyed developers with a few
answer options for some questions (where they could make multiple choices). To mitigate
biases, we randomly generated the order of the options for each multiple choice question.
Thus, our participants may not receive the options with the same order as shown below.
Before asking questions, we showed each participant the code snippet(s) where she replaced
her own implemented method by an external library method. The questions asked in our
survey are as follows.

1. What is (are) the reason (s) why you did not use the library method in the first place?
This is a required question, for which, we provided the following options to our
participants:

– I did not know how to use this library method (or I found that the library method
was hard to use).

– I was not aware of this library when I implemented the code.
– The required library method had not been introduced yet at the moment of my

implementation.
– Other.

This question along with Question 2 can provide us direct reasons why developers
switched from their own implementation to an external library. If library reuse is devel-
opers’ ultimate purpose, the answers can provide us with ideas that could help prevent
from such a “switch”, which can save developers’ time and efforts. We selected these
options because Kawrykow and Robillard (2009) and Sun et al. (2011) indicated that
developers may not reuse existing libraries because they are not aware of them. Sun
et al. (2011) argued that the lack of familiarity with relevant libraries would also lead

Empirical Software Engineering

developers to re-implement existing code. We encouraged participants to provide other
possible reasons in a free-form text.

2. Why did you replace your code with this library method?
This is a required question, for which, we provided the following options:

– Because I want to have a more efficient implementation.
– Because the library method is more reliable.
– I want my code to be more easily tested.
– I want to maintain my code more easily.
– Other.

These options are inspired by the results of Abdalkareem et al.’s study (2017) on
the code reuse of JavaScript packages. They found that developers tend to believe
that open source libraries are well implemented, tested, reliable, and easy to main-
tain. We encouraged participants to provide other possible reasons in a free-form
text.

3. Do you actively search for library reuse opportunities (i.e., code that can be replaced
by library methods)?
This is a required question, for which we only allow a binary answer (i.e., Yes or No).
If the answer is “Yes”, we then ask the participant Question 4; otherwise, we jump
to Question 6. This question, along with Questions 4 to 6, can let us know whether
developers performed a search for library reuse at the early stage of their development,
by which means they did such a search, otherwise, why they did not actively search for
library reuse.

4. When do you start looking for library reuse opportunities?
Participants can answer this question in a free-form text.

5. How do you perform such search?
Participants can answer this question in a free-form text. Then, we ask them Question 7.

6. Why don’t you search such opportunities?
Participants can answer this question in a free-form text, after which we ask them
Question 7.

7. Do you find it challenging to look for library reuse opportunities?
This is a required question, for which we only allow a binary answer (i.e., Yes
or No). The answer to this question can help us understand whether a better code
recommendation approach is needed.

8. Which criteria do you consider when replacing a piece of your own code with a corre-
sponding library implementation?
Participants can answer this question with free-form text. The answer to this question
can help us understand developers’ requirements when reusing code, thereby help in
improving the current library recommendation strategies.

2.4.2 Survey on Library Re-implementation

To investigate the reasons why developers gave up on an existing external library and choose
to implement their own method, we designed another survey targeted to the developers who
performed such operations. We first showed our participants the code snippets of the library
re-implementation that they made. We then asked them the following questions. As in the
survey of library reuse, we encouraged our participants to answer the questions in a free-
form text (except for Question 3, which requires a binary answer). For some questions,
we provided our participants with multiple-choice options, which are mostly inspired from

Empirical Software Engineering

previous studies. For this survey, we also randomly generated the order of the options for
each multiple choice question in order to mitigate any potential biases.

1. What is(are) the reason(s) why you use the library method in the first place?
This is a required question, for which we provided these options to our participants:
Because I thought that

– this library was easy to use.
– this library was well tested.
– this library was well maintained.
– this library had a good performance.
– using this library can increase our productivity.
– the license of this library was compatible with my project.
– other.

Although we expect that some developers prefer reusing code, this question along-
side Question 2 can provide us with the reasons why developers did the opposite. The
answers may point us to the weaknesses of the current libraries and provide ideas to
improve the current code recommendation systems. We select these options based on
two previous studies. Piccioni et al. (2013) found that usability is an important factor
that developers consider when choosing a library, e.g., accurate and complete documen-
tation. In addition, Abdalkareem et al. (2017) observed that developers prefer libraries
that have good testability, maintainability, performance, and license compatibility. We
encouraged participants to provide other possible reasons in a free-form text.

2. Why did you replace this library method with the self-implemented method?
This is a required question, for which we provided these options:
Because I need to:

– increase the security level.
– improve performance.
– replace this deprecated library.
– fix incompatibilities induced by this library method during the evolution of my

project.
– reduce the size of my project (or a simpler solution).
– reduce the dependency overhead involved by this library method.
– make my code more flexible.
– avoid license issues.
– other.

These options are mostly inspired by the study of Abdalkareem et al. (2017), who found
that developers are often worried about some potential weaknesses in their imported
libraries, such as security, performance, dependency overhead, and license issues.
Moreover, Kawrykow and Robillard (2009) indicated that “APIs sometimes evolve in
a backward-compatible fashion, without any element being annotated as deprecated”.
Also, to reduce the size and increase the flexibility of a project, developers may choose
to give up on an existing library method and implement an equivalent method them-
selves (Blog of Jos de Jong 2017). We encouraged participants to provide other possible
reasons in a free-form text.

3. Did the above self-implemented code meet your expectation?
This is a required question, which only accepts a binary answer (Yes/No). We assume
that some developers may want to avoid problems, such as complex dependencies

Empirical Software Engineering

(when they choose to reimplement a library method). Once there is a new library that
better fit their requirements, they might perform library reuse again.

4. Under what circumstances would you choose an external library method rather than
implement one by yourself?
We ask this and the subsequent question because it can help to improve the current
library recommendation systems if we understand the circumstances when developers
switch from an external method to their own implementation and the other way around.
Participants can answer this question in a free-form text.

5. Under what circumstances would you choose to implement a method by yourself rather
than seek an external library?
Participants can answer this question in a free-form text.

2.4.3 Open Survey

Our library reuse and re-implementations surveys target 207 Android and Python developers
(after removing duplicate ones). According to Singer et al.’s study (2008), the response rate
in questionnaire-based software engineering surveys is rather low, i.e., around 5%. To obtain
more opinions from the development communities, we also designed an open survey, which
is based on the surveys described in Sections 2.4.1 and 2.4.2 with some additional questions
as shown below:

– Background questions (all questions are required):

1. Educational attainment
2. Preferred programming language
3. Role in project
4. Software development experience (time period in years)

– Preliminary questions on library reuse:

1. Do you think that replacing a self-implemented code with a library method is a
common phenomenon in development?

2. Have you ever replaced a self-implemented code with a library method?

– Library reuse questions:
If participants answer yes to the preliminary question #2, we will ask them the following
questions:

1. Why didn’t you use the library method in the first place? (participants can answer
this in a free-form text)

2. Did any of the following factors play a role in your decision to not use the library
method? (we provided the same options as Question 1 in Section 2.4.1)

3. Why did you replace your code with this library method? (participants can answer
this in a free-form text)

4. Did any of the following factors play a role in your decision to replace your
code with this library method? (we provided the same options as Question 2 in
Section 2.4.1)

– Preliminary questions on library re-implementation (all questions are required):

1. Do you think that replacing an external library method with your own code is a
common phenomenon in development?

2. Have you ever replaced an external library method with your own code?

Empirical Software Engineering

– Library re-implementation questions:
If participants answer yes to the above preliminary question #2, we will ask them the
following questions:

1. What is(are) the reason(s) why you used the library method in the first place?
(participants can answer this in a free-form text)

2. Did any of the following factors play a role in your decision to use the library in
the first place? (we provided the same options as Question 1 in Section 2.4.2)

3. Why did you replace this library method with the self-implemented method?
(participants can answer this in a free-form text)

4. Did any of the following factors play a role in your decision to replace this library
method with the self-implemented method? (we provided the same options as
Question 2 in Section 2.4.2)

– General questions (not required):
We ask the same questions as Questions 4 and 5 in Section 2.4.2.

We published the open survey on some development online communities, such as Python
community at Reddit,18 Android community at Reddit,19 Developer community at Reddit.20

We also invited some of our colleagues, who work as software engineering researchers or
developers, to participate in this survey.

Since the library reuse and re-implementation surveys will be sent to individual develop-
ers, to distinguish them from the open survey, in the rest of the paper, we will refer to each
of them respectively as “individual survey” and “open survey”.

2.4.4 Analysis on Survey Responses

In general, there are two types of questions in our surveys, multiple-choice questions and
open-ended questions. For answering the multiple-choice question, we analyzed the dis-
tribution of answers. For open-ended questions, we applied card sorting to interpret the
answers. In detail, two of the authors independently aggregated similar answers, and then
extracted key sentences from them. Next, we discussed together to condense the answers
into key findings. Finally, we summarized all findings and discuss their implications for
practitioners and researchers. For the latter, we compare our findings with the capabilities
of the state-of-the-art tools (e.g., library recommendation tools) and recommend desired
features for future work.

2.5 Analysis on Commit Messages

In our manual validation on the library reuse and re-implementation candidates, from some
commit messages, we read the motivations why the code authors performed these opera-
tions. These commit messages can be used as supplementary information for our analysis
since not all developers will answer our survey questions.

We extracted commit messages from each of the validated library reuse and re-
implementation cases. Two of the authors independently classified the motivations extracted
from the commits. One commit may contain more than one motivation, such as to improve

18https://www.reddit.com/r/Python
19https://www.reddit.com/r/Android
20https://www.reddit.com/r/developer

https://www.reddit.com/r/Python
https://www.reddit.com/r/Android
https://www.reddit.com/r/developer

Empirical Software Engineering

reliability and performance. For the commits where we cannot extract any useful informa-
tion related to this study, we put them in the category “unknown”.

We then compared our classification results. We discussed on each discrepancy until
reaching an agreement.

3 Case Study Results

From the library reuse surveys, we received 15 responses out of the 79 contacted Android
developers (i.e., response rate: 19%); and 21 responses out of the 60 contacted Python devel-
opers (i.e., response rate: 35%). From the code re-implementation surveys, we received 4
responses out of the 31 contacted Android developers (i.e., response rate: 12.9%); and 9
responses out of the 40 contacted Python developers (i.e., response rate: 22.5%). Most of our
participants answered all the non-required questions in free-form texts. For library reuse,
only 3 out of 15 Android developers (20%) and 2 out of 21 Python developers (9.5%) did
not answer these questions. For code re-implementation, only 1 out of 4 Android developers
(25%) and 1 out of 9 Python developers (11.1%) did not answer these questions.

In addition, we received 56 responses from the open survey. Table 1 shows the back-
ground information of our survey participants. Based on the responses, most of our
participants (83.9%) have received higher education. Python (42.9%), Java (14.3%), PHP
(10.7%), and JavaScript (8.9%) are their most favorite programming languages. Most par-
ticipants are working as developers (73.2%) and a few of them are working as project
managers, architects, and algorithm engineers (17.9%). Regarding the development experi-
ence, most participants have more than 3 years of experience, 32.1% of them have worked
for more than 5 years, 12.5% have worked for 4-5 years, and 17.9% have worked for 3-4
years.

Figure 5 shows answers of the preliminary questions of the open survey. 69.6% of the
participants think that replacing a self-implemented code with a library method is a com-
mon phenomenon, and 83.9% of them acknowledge this phenomenon in practice. Regarding
the phenomenon where developers replace an external library method with their self-
implemented code, only 39.3% of the participants think that this is common in development.
However, 76.8% of them acknowledge that they have performed this in practice.

In the rest of this section, we will show the other results obtained from the individual and
open surveys, and discuss their implications in addressing our three research questions. As
aforementioned, since not all contacted developers participated in our surveys, we also use
the extracted commit messages as additional source of information for our analysis. Since
there are some overlapped questions between the two kinds of surveys, in the rest of this
section, we will combine the results for the identical questions.

3.1 (RQ1) Why do Developers Replace Their Self-ImplementedMethod
with an External Library Method?

Table 2 shows the options chosen by our participants for the first three questions in the
library reuse survey (refer to Section 2.4.1). Our first research question investigates the rea-
son why developers did not use a library method in the first place but use it later to replace
their own code. 46% of the participants vote that they were not aware of that method;
implying that developers would not reinvent the wheel if they know a library that serves
their purpose. This reason is particularly voted by Android (47%) and open (50%) survey
participants, while only 30% Python participants vote for this reason. Although we expect

Empirical Software Engineering

Table 1 Answers to background
questions of the open survey (a) Education attainment

Education Number Percentage

Bachelor 2 3.6%

Master 4 7.1%

Doctorate 20 35.7%

University without degree 12 21.4%

Secondary school 11 19.6%

Professional degree 3 5.4%

Prefer not to answer 4 7.1%

(b) Preferred programming language

Language Number Percentage

Python 24 42.9%

Java 8 14.3%

PHP 6 10.7%

JavaScript 5 8.9%

C# 6 10.7%

C 1 1.8%

C++ 1 1.8%

Swift 2 3.6%

Other 3 5.4%

(c) Role in project

Role Number Percentage

Developer 41 73.2%

Project manager 3 5.4%

Architect 3 5.4%

Algorithm engineer 4 7.1%

Other 5 8.9%

(d) Development experience

Experience Number Percentage

Less than a year 3 5.4%

1-2 years 8 14.3%

2-3 years 10 17.9%

3-4 years 10 17.9%

4-5 years 7 12.5%

More than 5 years 18 32.1%

that Android developers often program with an IDE (which may come with a code recom-
mendation system), they still have difficulties to find an appropriate library. Many of the
current code recommendation techniques, such as Thung et al. (2013a), make recommen-
dations based on the relationships of existing libraries in a project. Few of these techniques
can semantically understand developers’ need about their ongoing code and none of them
can actively seek for appropriate libraries online (i.e., in order to minimize the chance of
missing any useful libraries). Designers and researchers of future code recommendation
systems should realize these problems and improve their techniques along these directions.
In addition, 14% developers acknowledge that they did not know how to use the library in

Empirical Software Engineering

69.6%

14.3%

16.1%

Yes No I don't know

(a) Do you think that replacing a self-
implemented code with a library method
is a common phenomenon in development?

83.9%

16.1%

Yes No

(b) Have you ever replaced a self-
implemented code with a library method?

39.3%

33.9%

26.8%

Yes No I don't know

(c) Do you think that replacing an exter-
nal library method with your own code is a
common phenomenon in development?

76.8%

23.2%

Yes No

(d) Have you ever replaced an external li-
brary method with your own code?

Fig. 5 Answers of the preliminary questions of the open survey

the first place. Some participants further explain that “the library was badly documented”.
This result suggests that library vendors should improve the readability of their documenta-
tion. Furthermore, many current library recommendation techniques, such as Thung (2016)
and Thung et al. (2013b), rely on text analysis. These techniques cannot work well with
badly or non-documented libraries. Better approaches, such as semantic source code analy-
sis, need to be proposed. In addition, 28% participants said that the required library method
has not been introduced at that time. As discussed above, if a code recommendation sys-
tem can actively look for appropriate libraries online, once such libraries are available, the
system can recommend them to the developers; allowing them to switch early from using
their own implementations to reusing code before their project becoming overly complex.
From comments of the participants, we learned other reasons as follows: evolution of the
project (“quick prototyping”, “the required complexity climbed”, “required functionality
was simple in the first phase of development”, “there was no need when the original method
was created”) and work transfer from one developer to another (“(the) original code was
implemented before I joined the project”, “this code was already introduced when I initially
started working on the project ... I realized it (the self-implemented code) could be removed
with a function provided by the Android APIs instead”).

Empirical Software Engineering

Table 2 Answers to Questions 1-3 of the library reuse survey (for each question, we calculated the percentage
of the answers to a specific option over the total number of answers)

Reason Android Python Open

(a) What is(are) the reason(s) why you did not use the library method in the first place?

I did not know how to use it 0 1 (1%) 15 (13%)

I was not aware of it 8 (7%) 7 (6%) 38 (33%)

It had not been introduced 6 (5%) 8 (7%) 18 (16%)

Other 3 (3%) 7 (6%) 5 (4%)

(b) Why did you replace your code with this library method?

Efficiency 4 (3%) 4 (3%) 25 (18%)

Reliability 2 (1%) 10 (7%) 23 (16%)

Testability 4 (3%) 5 (4%) 21 (15%)

Maintainability 12 (9%) 15 (11%) 0

Other 3 (2%) 5 (4%) 7 (5%)

(c) Do you actively search for library reuse opportunities?

Yes 11 (13%) 17 (20%) 37 (45%)

No 4 (5%) 4 (5%) 10 (12%)

Regarding why developers replaced their own implementation with a library method, our
provided options, improving reliability, development efficiency, testability, and maintain-
ability, received equally important votes (i.e., 25%, 24%, 22%, and 20% votes respectively).
This result is inline with the finding of Abdalkareem et al. (2017). Although nobody
directly voted for “having a better maintainability” in the open survey, some participants
left comments in-line with this reason: “more elegant code”, “my implementation is hard
to maintain”, “... better class readability and less code to maintain”, etc. By analyz-
ing participants’ comments, we observed other reasons: improving security (“for security
consideration”), performance (“see if I could achieve better performance”), obtaining addi-
tional features (“library method sometimes does more”, “it (the library) was more robust
and feature complete”), permission or license issues (“the new method doesn’t require
RECORD AUDIO permission, and the need for that had a frequent complaint from users”).
In addition, some developers trust external libraries more than their own code: “I think the
developer who can publish (this) library must be more senior than me”, “my code lacks
verification”, “... (the library) is peer reviewed”, “the library is of higher quality”, “(it)
depends, if the one is a common (library) and from a well known organization (I) will use it”.
This result suggests that library recommendation systems should extract and show reviews,
quality assessment, and organization information to developers, and prioritize code written
by well-reputed organizations.

From the result of both individual and open surveys, we find that most participants have
actively sought for library reuse opportunities. Some participants look for such opportu-
nities more proactively (“at the beginning of a new feature”, “all the time”), others wait
until their code is too complex (“the pure implementation starts getting hard to manage”,
“whenever it feels like what I’m doing could be part of a separate project”), when they
face problems (“when bugs appear”, “when my implementation is becoming a mess”), or
when they realize that someone else has implemented the same functionality (“when the
implementation feels like somebody should already have written that”). Developers may

Empirical Software Engineering

also conditionally seek for library reuse, when “... (having had) a clear picture in mind how
and in which direction the project will evolve” or “... (doing) complex repetitive, boring
tasks”. Moreover, we notice some interesting reasons why developers do not actively seek
for library reuse. Some developers only want to have a challenge (“I think I can do it”).
Some developers do not want to increase dependency complexity (“depending on third par-
ties is more work for simple things”). Some developers do not need to seek library reuse for
a small-scale project (“the project is a spare-time project, and I don’t have spare time to do
such code-maintenance activities unless essential to immediate progress.”, “if it ain’t broke,
don’t fix it? This is a hobby project in minimal maintenance mode”). Some others have con-
fidence in themselves and/or do not prioritize the practice of library reuse (“I didn’t think
about it in the first place”, “I know when I need a library and in this case I will look for
one. I will not scan my code thinking about which part can be replaced by library code.”).
However, all of the developers eventually replaced their own code with a library method;
indicating that library recommendation would be helpful even if developers did not think so
initially.

21 out of 36 participants, who answered Question 6 of the individual survey, do not think
that searching for library reuse opportunities is challenging. Regarding the way of searching
for a library reuse opportunity, using general-purpose search engines (especially Google) is
the first choice for 19 out of 22 participants who answered Question 5 of the individual sur-
vey. 11 participants searched from general code bases or forums (including GitHub, GitLab,
StackOverflow, and Hack News21). 4 participants searched from language specific websites
(including Android Arsenal22 and PyPI). 2 participants searched from the documents of
Android and Python standard library. Nobody has mentioned the use of any library or code
recommendation tool. Only one participant used her newsletters to find library reuse oppor-
tunities. Although library recommendation techniques have been proposed and improved
for many years, in this work, we do not find an empirical evidence to support the fact that
developers have used these techniques to successfully find libraries they need. There is still
a gap between the practices of code search and recommendation.

In the last question of the library reuse survey, we ignored some vague answers such as
“good code quality”, and learned the criteria that developers use to replace their own code
with an external library code. 22 out of 34 participants look whether the library is well main-
tained and tested (“well maintained”, “well tested”, “whether it is actively developed”,
“update cadence e.g., how many commit in the last 6 months”). 9 participants look for the
reputation of the library (“popular library”, “respected developers”, “widely adopted”,
“used by other projects”, “exposure on Stack Overflow”). 4 participants look for the read-
ability of code and documentation (“documentation”, “readability”, “clearness of code”).
4 participants look for the stability (“does it have a stable API?”). 3 look for the size or
complexity of the library (“complexity of code”, “conciseness”). 3 look for license com-
patibility (“license clauses of library”, “forkability”). 2 look for the difficulty to integrate
the library into their project (“it needs to fit in to my existing API and be close to a net zero
code change”, “does it require only few changes to be integrated in my project?”).

From the above results, we learned that, when taking decisions to replace a self-
implemented method with an equivalent library method, criteria may vary according to
circumstances. A tutorial video, which is recommended by a participant, on “designing and
evaluating reusable components” (YouTube video 2004) can be useful when taking such

21https://news.ycombinator.com
22https://android-arsenal.com

https://news.ycombinator.com
https://android-arsenal.com

Empirical Software Engineering

decisions. To summarize this, we would like to cite a participant’s comment: “Is out imple-
mentation, out of all potential implementations out there, worth keeping, and will getting
rid of ours for a more maintained/supported version be worth it. In other words, if we get
rid of our implementation, but the cost is adding 3-4+ dependencies to use a different one,
it may not be worth it; it needs to be evaluated on a case-by-case basis.”

Figure 6 shows the motivations that we identify from the commit messages where library
reuse occurred. We ignored 132 out of the 170 messages, in which we cannot identify any
useful information regarding the motivation of switching to library reuse. All of the identi-
fied motivations are either expected when we designed the survey or mentioned by survey
participants as well. In general, this result is consistent with our observations from the
survey result.

In general, developers replace their self-implemented method with an external library
method because they were initially not aware of the library or the library had not
been introduced. After realizing that there is a well maintained and tested library
that meets their requirement, they later used the library method to replace their own
implementation.

3.2 (RQ2) Why do Developers Replace an External Library Method
with Their Self-Implemented Code?

Table 3 shows the options chosen by our participants for the first two questions in the library
re-implementation survey (refer to Section 2.4.2). As we only receive 4 responses from
the Android survey, in the following analyses, we will not discuss the reason why Android
developers do not choose some of the options.

Our participants used an external library method in the first place because they think
the library is easy to use (25%), can increase development productivity (19%), and is well
maintained (18%). Although the library method was eventually discarded, this result implies
that an easy-to-use library can attract developers to adopt it; if a library is hard to use,
developers may find it easier to implement the library’s functionalities. Therefore, if library
vendors expect their code to be well-adopted, ease-of-use would be an important criterion
to take into account. From participants’ comments, we learned other reasons, i.e., “it is the
recommended method for Android”, “I was mistakenly under the impression it was part of
the Python standard library”).

Regarding why developers replaced the first adopted library method and switch to imple-
ment their own method, reducing dependency (21%), improving flexibility (19%), and
having a simpler solution (18%), are voted as the three most popular reasons. Some partic-
ipants further explained: “FYI super old project, we wanted to reduce dependencies when

29%

21%

21%

16%

5%

5%

3%Remove obsolete permission

Reliability

Testability

Performance

Not aware of the lib before

Use standard lib

Additional features

0 3 6 9

Fig. 6 Motivations identified from the messages of the commits where library reuse occurred

Empirical Software Engineering

Table 3 Answers to Questions 1 and 2 of the library re-implementation survey (for each question, we
calculated the percentage of the answers to a specific option over the total number of answers)

Reason Android Python Open

(a) What is(are) the reason(s) why you use the library method in the first place?

Testability 1 (1%) 4 (2%) 19 (12%)

License compatibility 0 2 (1%) 15 (9%)

Usability 1 (1%) 5 (3%) 34 (21%)

Performance 0 1 (1%) 18 (11%)

Productivity 0 3 (2%) 28 (17%)

Maintainability 1 (1%) 3 (2%) 24 (15%)

Other 2 (1%) 2 (1%) 1 (1%)

(b) Why did you replace this library method with a self-implemented method?

Better performance 0 3 (2%) 16 (11%)

Reduce dependency 0 4 (3%) 26 (18%)

Better security 0 0 5 (3%)

Fix incompatibility 0 1 (1%) 12 (8%)

Simplicity 0 3 (2%) 23 (16%)

Avoid license issues 0 0 8 (5%)

Replace deprecated lib. 0 1 (1%) 12 (8%)

Flexibility 2 (1%) 1 (1%) 25 (17%)

Other 2 (1%) 2 (1%) 0

possible”, “(I) didn’t need to wrestle a 800 pound gorilla to do a simple few things”, “I
only needed one function so I didn’t want to have a full library”, “down the road, the
client needed more specific features of which the library did not provide nor expose”, “(I)
can’t easily refactor across library boundaries”. Library vendors should also make their
products more flexible and easy to modify without introducing too much complexity in the
configuration process. Moreover, given two libraries that provide a similar functionality,
many developers are likely to prefer the light-weighted one. Thus, library vendors should
take this into account when making and maintaining their products. Moreover, from the
comments, we realize that “bug in library” can also make developers switch to their own
implementations.

12 out of 13 participants who answered Question 3 of the library re-implementation sur-
vey thought that their self-implementations meet their expectation. However, in their com-
ments, some participants also discussed potential drawbacks of their self-implementations,
including: additional implementation efforts (“it took longer (time) to write it myself”),
additional maintenance efforts (“if using a library, no need to maintain it”), lower reliability
(“(the self-implementation has) the potential for introducing bugs”), and lower performance
(“I might not be an expert on how to do thing properly. Specialized libraries will surely do
better.”).

Figure 7 shows the library re-implementations’ motivations that we identified from the
commit messages where the re-implementations’ occurred. We ignored 47 out of 81 com-
mit messages where no useful information can be extracted about the motivation of library
re-implementations. Among the identified motivations, removing dependency is mentioned
most of the time. Particularly, two committers said that they removed the dependency

Empirical Software Engineering

41%

18%

18%

8%

8%

5%

3%Switch to standard lib

Remove obsolete lib

Performance

Simplicity

Reliability

Flexibility

Remove dependency

0 5 10 15

Fig. 7 Motivations identified from the messages of the commits where library re-implementations occurred

because it was “only used once”. Other motivations, such as making the code more flexible,
more reliable, simpler, and more performant, are also mentioned in the analyzed commit
messages. Similar to the survey participants’ comments, removing obsolete libraries as well
as implementing their own solution based on standard libraries could also be the reasons
why developers discarded external libraries. In general, this result is consistent with what
we obtained from the surveys.

Developers replace an external library with their own implementation because they tend
to choose an easy-to-use library method in the first place. Once they realize that the
used library method is only a small part of the library, and the library dependencies are
too complicated, or the library method becomes deprecated, they may switch to replace
the library with their own code. Library vendors should make their code flexible and
lightweight.

3.3 (RQ3) Under what Circumstances do Developers Prefer to Reuse
or Re-implement Code?

In RQ3, we want to investigate developers’ preference towards library reuse and library
re-implementation in a more general context.

We collected and card sorted the answers of the last two questions in the library re-
implementation and open surveys (refer to Sections 2.4.2 and 2.4.4). Figure 8 depicts the
circumstances under which developers prefer to reuse code. Nearly half of the participants
(47%) prefer to reuse an existing code in any case. A participant’s answer can explain
this well: “this (reusing code) is my first choice. I don’t usually self-implement something
unless I’m confident that a pre-existing solution doesn’t exist or a pre-existing solution
doesn’t suit my needs”. For the developers who actively seek for library reuse opportu-
nities, some of them analyze the quality (whether it is well maintained, reputable, or a
part of the standard library) of a library before adopting it; some others judge whether a
library is easy to use or can improve development efficiency. Even though previous studies
advocated that library reuse can reduce the cost in development and maintenance, improve
development efficiency and product performance (Heinemann et al. 2011; Mohagheghi
et al. 2004; Basili et al. 1996; Abdalkareem et al. 2017), some developers do not con-
sider it until after their code becomes too complex or when they can hardly implement
what they want. This result suggests that not all developers seek for library reuse oppor-
tunities at all times. A library recommendation system, which suggests a qualified library
satisfying developers’ requirement, can help them improve development efficiency and

Empirical Software Engineering

47%

18%

11%

8%

8%

3%

3%

3%Infrastructure development
Agile development

I can hardly implement it myself
The lib is easy to use

The lib can improve development efficiency
My solution becomes complex

The lib is standard, reputated, or well maintained
Any case

0 5 10 15

(a) Under which circumstances do you prefer to reuse code?

18%

16%

16%

16%

13%

13%

4%

2%

2%never
I develop a critial module

Existing libs' licenses are not compatible
Exising libs are hard to use or learn

I can easily implement it myself
I don't know any lib that can do my job

I want a light and simple solution
Quality of existing libs is not good enough

I need high flexibility

0 2 4 6 8

(b) Under which circumstances do you prefer to implement code yourself?

Fig. 8 Answers to the general questions

avoid reinventing the wheel. From the answers of this question, we also learned that some
developers prefer library reuse, especially in the case of agile development or infrastructure
development.

Regarding the circumstances under which developers prefer to implement code them-
selves, “requiring higher flexibility of code” is mentioned most of the time. Indeed, publicly
available libraries are designed for general developers. If a developer expects to fully cus-
tomize a functionality, she may have to implement it herself. Another strong reason that
pushes developers to implement their own code is when they cannot find any library that
satisfies their requirement. If a functionality is easy to implement, such as a “quick and dirty
work” mentioned by a participant, developers do not need to reuse code. Under these cir-
cumstances, library reuse does not have much advantage. Moreover, we also observed that
developers prefer implementing code themselves because they find that existing libraries are
not easy-to-use and/or understand, not simple or lightweight enough, or have incompatible
license with their project. To deal with these problems, code recommendation systems can
recommend more than one library, showing their characteristics (e.g., size, dependencies,
user rating, license, team information), and allow developers to choose the most appropriate
one.

Half of our survey participants prefer to reuse code at all times. However, developers
may also want to make their own implementations if they need a higher code flexibility.

4 Discussion

The following subsections summarize our findings and their implications to practitioners
and researchers, and acknowledge some threats to validity.

Empirical Software Engineering

4.1 Implications

In general, we observed that developers replaced their self-implemented method with an
external library method because they were initially unaware of the library or the library
had not been introduced. After realizing that there is a well-maintained and tested library
that meets their requirement, they later used the library method to replace their self-
implemented method. Moreover, developers replaced an external library method with their
self-implemented method because they tend to choose an easy-to-use library method in the
first place. Once they realize that the used library method is only a small part of the library,
the library dependencies are too complicated, or the library method is deprecated, they may
replace the library method with their self-implemented method.

According to our results, if library vendors want their product to be more widely used,
we suggest them to improve library documentation, make the library easy-to-use, and
reduce the size and complexity of the library. An IDE with library recommendation sys-
tems can help developers to seek library reuse opportunities, thereby preventing them from
re-inventing the wheel. For any industrial project, developers should always actively seek
library reuse opportunities, especially if their self-implemented code are becoming overly
complex to maintain. Another suggestion to developers is that either decision (reusing code
or implementing it themselves) should be carefully considered at the beginning of project
development. Once a piece of code is deeply integrated and interacted with other parts of
the project, the cost of replacing it would be tremendous.

Moreover, code recommendation systems can also help developers find and adopt code
or library they need. A number of code recommendation techniques have been proposed
in the literature (see Section 5.1 for details). The current code recommendation techniques
often make recommendations based on the relationships of existing libraries in a project,
library usage history, and some semantic features. Comparing our findings with capabilities
of these tools we find that such tools do not help in the following circumstances:

1. In our library reuse survey, nearly half of our participants acknowledged that they were
not aware of the library they eventually adopted at the time of their implementations.
In practice, recommendation tools require the capability to search for solutions in the
Internet. Such capability would minimize the chance of missing any libraries that might
be useful for developers.

2. Developers may want to reuse a library they have used or reused in another project,
which needs a recommendation tool that can record and analyze developers code usage,
reuse or programming preference.

3. According to our survey results, before applying an external library, developers often
want to know whether the library is produced by well-reputed team, whether it is well
documented, easy-to-use, and flexible enough. In addition, developers do not explicitly
receive the characteristics of the library from the recommendation results. However,
most current code recommendation systems do not group similar recommendations for
developers to compare and select the one they prefer.

4. The current recommendation systems only yield “positive” results but developers
may also want to be aware of “negative” results, i.e., the libraries they should not
use.

5. The current recommendation systems do not consider open source license compatibili-
ties, which cannot help developers to avoid license violations.

Empirical Software Engineering

Based on the above weaknesses, we suggest that the current library recommendation
techniques could be improved from the following aspects (which we believe to be interesting
directions for future work):

– Tailored recommendation: Since developers may have their own preference of reusing
libraries, the system can study and collect users’ preference before giving them sugges-
tions. For example, the system can analyze all external libraries used by a developer in
her current and past projects, use machine-learning algorithms to classify these libraries
according to the domain or requirement of this developer, and use these information to
make better recommendations.

– Detection of similar solution: The system can search for a piece of code that has similar
functionality to a part of the project (e.g., a method, class, module). An early sug-
gestion of library reuse potential can prevent developers from reinventing the wheel.
Earlier approaches (e.g., Kawrykow and Robillard (2009) and Sun et al. (2011)) have
already been capable of detecting re-implementation of a piece of library code if the
library has already been used in the project. However, developers might also want to
prevent re-implementations of the code from unused libraries. In such case, seman-
tic analysis and clone detection techniques can help to search similar code snippets.
A deep-learning based framework introduced by Wei and Li (2017) can potentially be
leveraged to achieve this.

– Grouped recommendations: The system can group similar recommendations for devel-
opers to compare and select the library they prefer. In such a group, the system can
further rank the the recommendations based on their number of users, reviews, and
documentation quality.

– Display of libraries’ characteristics: This can help to quickly assess the quality of a
library. As aforementioned, when there are multiple candidates, the system can also use
this information to rank the recommendations. For example, when a developer wants to
install a plugin from Eclipse Marketplace, a summary of the plugin will be provided.
Likewise, when a developer imports a new external library, the recommendation system
can popup a summary window, showing characteristics of the library.

– Disrecommendation: As we have learned, replacing a deprecated or inactive library is
one of the reasons why developers switched from library reuse to reimplementation.
If an imported library is deprecated, obsolete, badly rated, or inactively maintained, a
library recommendation tool may want to suggest developers to replace the library with
an alternative library. For example, a disrecommendation system can scan all imported
external libraries and connect to the libraries’ website, checking whether any library is
deprecated or out of maintenance. If so, the system will warn developers to avoid this
library and provide detailed reasons on why they should do so. A future recommenda-
tion systems may also predict deprecation or future issues (more generally) with some
libraries and pro-actively recommend alternatives.

– License compatibility suggestion: To help software organizations avoid license viola-
tions, library recommendations tools can also detect the license of the recommended
library, comparing it with the license of developers’ home project, checking whether
the recommended library can be legally imported.

Based on our findings, we provide several concrete improvements to existing works in
Section 5.3. Furthermore, to allow replication and verification of our study, a replication
package is publicly available to interested researchers.23 Moreover, we point out several

23Replication package, https://github.com/XBWer/Why-Reinventing-the-Wheel.

https://github.com/XBWer/Why-Reinventing-the-Wheel

Empirical Software Engineering

directions to extend our study. First, the state-of-the-art clone detection tool can potentially
be applied to identify more instances of library reuse and re-implementation. Second, more
diverse data sources can be considered, such as GitLab, BitBucket, and SourceForge. Third,
more types of program languages can be analyzed, such as JavaScript which is the most
commonly used programming language at the time of writing.24

4.2 Threats to Validity

There are several threats that may potentially affect the validity of our study. In this section,
we discuss the threats to validity of our study by following the guidelines for case study
research (Yin 2002).

Threats to construct validity are concerned with the relationship between theory and
observation. We designed some heuristics to detect real world cases of code reuse and
code re-implementation. However, the heuristics cannot detect all possible cases. For
example, a developer could potentially replace her self-implemented code with a method
from an already imported library in the project. Unfortunately, she did not realize that
the method of the library can fulfill her requirement in the first place. Our heuristics did
not cover the above case because it will yield a lot of false positives, which will require
a lot of time to validate. Our current heuristics alone costed several months of validation.
Moreover, the goal of this study is not to find all possible cases of code reuse and code
re-implementation. Instead, we aim to provide empirical evidences on these two phe-
nomena. Although researchers, such as Kawrykow and Robillard (2009) and Sun et al.
(2011), have discussed these phenomena in previous works, nobody has shown any real
world example. We aim to understand the reasons why developers replaced their self-
implemented code with an external library and the other way around by collecting real
world examples.

Threats to internal validity are concerned with the factors that may affect a dependent
variable and were not considered in the study. In our surveys, we provided options for
participants to answer some of the questions. These options are inspired by previous
studies, such as Abdalkareem et al. (2017) and Piccioni et al. (2013). However, to mit-
igate biases led by these pre-defined options, we always encouraged our participants to
use their own words to answer the questions. As a result, we obtained some valuable
information from the answers in the free-form text, which were not pre-defined within
the options. Our surveys received a higher response rate than the average rate in soft-
ware engineering research surveys (Singer et al. 2008). One of the reasons is that our
survey invitation provides some information that are specific to the target survey respon-
dent (including their name, project name, target commit, target lines of code, and how the
library reuse/re-implementations were performed). This specific information increases
the chance of contacted developers responding to our email compared to emails with
only generic contents. Another reason is that we sent a reminder to developers if we did
not receive their response after a week, and another one after a month if we still did not
receive their response.

Threats to conclusion validity are concerned with the relationship between the treatment
and the outcome. This threat mainly derives from our manual validation of code reuse
and code re-implementation. During this process, we need to identify whether an added
method comes from a third-party library or was implemented by developers themselves.

24Stack Overflow Survey, https://insights.stackoverflow.com/survey/2019#technology.

https://insights.stackoverflow.com/survey/2019#technology

Empirical Software Engineering

In order to minimize this threat, two of the authors independently validated each of the
cases detected by the heuristics. They then compared their results and resolved each
of the conflicts. The whole process took several months. Through individual surveys,
a portion of our detected cases was confirmed by developers. However, we can hardly
guarantee the correctness of other validated cases. For example, a developer may copy
code from a library to her project and later replaced the copied code with another library
code. Thus, none of the code was implemented by the developer herself. On the other
hand, we card sorted some textual information, such as the free-form text answers from
surveys or commit messages. The card sorting classification results were verified and
discussed between the authors. However, as any other taxonomic studies, we cannot
guarantee a 100% accuracy on our classification results. We publish our classifica-
tion result along with the analyzed commit messages online: https://github.com/swatlab/
reuse reimpl. Due to privacy reasons, we cannot publish all the details of our survey
answers. Future replications are welcome to validate our work.

Threats to external validity are concerned with the generalizability of our results. In
this work, we studied code reuse and re-implementation phenomena in two program-
ming languages: Java and Python. We mined data from 1,732 Android repositories
and 4,461 Python repositories. Java and Python are representatives for statically-typed
and dynamically-typed languages, respectively. Both languages are popular for software
development. Nevertheless, replicating our work for other programming languages (such
as C++, C#, and JavaScript) is required to broaden our understanding of the phenomenon.
There are 109 developers participating in our survey. This number is as large as many
prior studies that also performed surveys to better understand a certain software engi-
neering phenomenon (Abdalkareem et al. 2017; Lethbridge 2000; Iivari 1996). Still, our
survey respondents’ feedback may not represent the opinions of all developers. We do
not view our work as a one-off work, but one of many to fully understand library reuse
and re-implementation. We welcome future studies to extend and/or replicate our study
with different participants and datasets. In this study, we only considered code reuse and
re-implementation from libraries because, according to the rapid growth of OSS libraries
in the recent years, we believe that library reuse is one of the main ways in which devel-
opers reuse code. Still, the reasons why developers reuse code from other sources, such
as frameworks or knowledge sharing platforms (e.g., Stack Overflow), are also worthy
for investigation. We encourage researchers to investigate this direction in the future.

5 RelatedWork

5.1 Library Reuse

Library reuse has been researched since the 90s. In 1992, Krueger (1992) surveyed differ-
ent approaches to software reuse and provided several insights to library reuse. First, the
author claimed that the major challenge to implement large libraries of reusable compo-
nents is to find concise abstractions. Better abstraction can improve the reuse rate. Although
we focus on open source applications in our work, our results show that removing depen-
dency is the most important reason behind developers’ decision to replace a library with a
self-implementation. Second, the author mentioned that library implementor must provide
specifications that succinctly describe component behavior. It corroborates our conclusion
that display of libraries’ characteristics can help to quickly assess the quality of a library.
Third, another challenge of library reuse is that developer must take time to study and

https://github.com/swatlab/reuse_reimpl
https://github.com/swatlab/reuse_reimpl

Empirical Software Engineering

understand how to use the library. We also found that the ease to use is the main reason
behind developers’ decision to use an external library method in the first place. Different
from Krueger’s work, Kim and Stohr (1998) surveyed software reuse in practice and pro-
vided several technical and non-technical factors that need to be considered. First, the cost
of developing and maintaining reusable libraries are considered as an investment during
the software development. This issue has been well addressed because of the rapid devel-
opment of open source libraries nowadays. Our study shows that no need to develop and
maintain becomes an important factor that motivate library reuse. Second, the nature of
program languages are related to library reuse. For example, the advent of Java provides
a new and potentially source of reusable software resources making it possible to create
distributed object-oriented applications that function independently of particular operat-
ing systems or hardware platforms. In this sense, Java can better support the concept of
widespread software reusability. Research works in the 90s mainly discussed internal library
reuse, i.e., developers need to design, develop and maintain libraries by themselves. Thus,
the corresponding costs are considered. However, we focus on the external library reuse,
i.e., developers use third-party library and no need to develop and maintain by themselves.

In the recent decade, with the rapid growth of open source software (OSS), many studies
have shown that library reuse is a very common practice in many different programming
communities (e.g., Java (Heinemann et al. 2011), JavaScript (Abdalkareem et al. 2017), and
Android (Ruiz et al. 2012; Mojica et al. 2014)). However, only a few of works paid atten-
tion on the reason behind library reuse. Emerging package management platforms, such
as Node Package Manager (NPM), are introduced to facilitate code sharing. Abdalkareem
et al. (2017) analyzed more than 230,000 NPM packages and 38,000 JavaScript applica-
tions. They observed that trivial package reuse is common and is increasing in popularity in
the Node.js community. They conducted a survey with 88 Node.js developers and observed
that trivial packages are widely used because developers assumed these packages to be well
implemented and tested. To empirically verify this assumption, they validated the most cited
reasons and drawbacks on the trivial package reuse. They found that only 45% of the stud-
ied trivial packages contain test code, despite the fact that trivial packages were expected to
be “deployment tested”. Additionally, they found that 12% of the studied trivial packages
have more than 20 dependencies. Hence, developers should be careful in choosing to use
trivial packages.

Our study complements those studies in several ways. Firstly, all of the above related
works either only focused on one programming language or too general while we investi-
gated multiple popular program languages with different naturals (i.e., Java and Python).
Second, although a few of the above related works investigated why developers reuse an
external library to replace their self-implemented code, none of them collect real world cases
and surveyed developers for the reasons behind. In this work, we focused on the instances
where developers initially self-implement a piece of code and then replace the code by using
a third-party library. We manually identified the cases of library reuse in two different pro-
gramming languages and utilized a qualitative analysis to understand why developers do not
use a library in the first place and what challenges they encounter when choosing to use a
library. Additionally, we also conducted an open survey to investigate the main factors that
influence developers’ decision on whether they should reuse a library or not.

5.2 Code Re-implementation

Nowadays, library reuse is a common practice. However, libraries were not always used by
developers. In particular, developers at times re-implement the behavior of an existing library.

Empirical Software Engineering

Kawrykow and Robillard (2009) assumed some reasons for code re-implementation,
e.g., developers are not familiar with the library, they are not aware of all the function-
alities, or they got lost in a huge collection of APIs. The authors argued that imitating
API code represents an ineffective usage of libraries as such re-implementation is not nec-
essary, and the existence of imitated codes creates maintenance burden. To detect cases
of code re-implementation, they developed a technique which extends code similarity
detection techniques with new matching relations between abstractions of the code re-
implementation and library methods. 405 actual cases of potentially suboptimal API usage
are detected within 10 open source Java systems. The overall precision of the approach is
31% and the average per-system precision is 21%. To improve the accuracy of Kawrykow
et al.’s approach (Kawrykow and Robillard 2009), Sun et al. (2011) proposed a graph-
based approach to detect code re-implementations. They used trace subsumption relation
of data dependency graphs to characterize the similarity between self-implemented code
and library code. Their approach detected 313 code re-implementation cases with higher
average precision, i.e., 82%, for the same dataset.

Above works are based on the assumption that code re-implementation happens because
developers did not find suitable library or API to reuse. However, there was no study that has
empirically investigated the reasons why developers re-invent the wheel. To fill this gap, we
detected cases where developers replace a library code with its equivalent self-implemented
code and then surveyed the corresponding developers to understand their reasons in doing
so. We find that developers replace an external library with their own implementation
because they tend to choose an easy-to-use library method in the first place. Once they real-
ize that the reused code is only a small part of the library, the library’s dependencies are too
complicated, or the library becomes deprecated, they may switch to replace the library with
their own code.

5.3 Library Recommendation

Nowadays, a large amount of code is available to be downloaded and used, e.g., third-party
libraries with APIs. However, developers are often unaware of suitable code to be used
for their projects and might miss these opportunities. Code recommendation techniques are
introduced to alleviate this problem.

Recommend a Code for a Given Project Thung et al. (2013a) proposed an approach
LibRec to automatically recommends libraries to developers for a particular project. LibRec
takes as input a set of libraries that a project currently uses, and recommends other libraries
that are likely to be relevant. LibRec combines association rule mining and collaborative
filtering. The association rule mining component extracts libraries that are commonly used
together and then rates each of the libraries based on their likelihood to appear together with
the currently used libraries. The collaborative filtering component works on the assumption
that similar projects are likely to share similar third-party libraries and then rates each of
the libraries based on how many of the top-N most similar projects use it. Based on our
findings, LibRec can be improved in several ways. First, recommending libraries by sim-
ply considering used libraries may not be sufficient. This is especially true at the beginning
of a project. At that time, developers may not be aware of many usable libraries for their
project. Thus, only a limited number of libraries are likely to be used. Corresponding to our
second suggestion (detection of similar solution), we should not only consider libraries that
has been used in the project, but we should also consider existing self-implementation to
better prevent developers from reinventing the wheel.

Empirical Software Engineering

Different than LibRec, Ouni et al. (2017) proposed a search-based approach LibFinder
to recommend potentially useful libraries. They consider the library recommendation prob-
lem as a multi-objective optimization problem. A multi-objective search-based algorithm is
applied to find a trade-off among three objectives : 1) maximizing co-usage between a can-
didate library and the actual libraries used by a given system, 2) maximizing the semantic
similarity between a candidate library and the source code of the system, and 3) minimizing
the number of recommended libraries. It is worthwhile to mention that LibFinder achieves
a better performance by detecting the semantic similarity between a library and the code of
the system, which is consistent with our second suggestion (detection of similar solution).
However, LibFinder can still be improved by performing a deeper analysis on the develop-
ment preference i.e., corresponding to our first suggestion (tailored recommendation). For
example, if most of the libraries used in the project are developed for large data process-
ing, it indicates that the project need to handle large data. Thus, the recommended libraries
should also be equipped with such capability.

Recommend a Code for a Given Query Rahman et al. (2016) proposed an API recommen-
dation approach RACK that recommends a list of relevant APIs for a given natural language
query by leveraging the crowdsourced knowledge in Stack Overflow. They found that Stack
Overflow might be a potential source for code search keywords and APIs. At least two
APIs are used in each of the accepted answers in Stack Overflow, and about 65% of the
API classes from the core packages are used in those answers. Also, titles from Stack Over-
flow’s questions are a major source for code search keywords. Based on above findings,
they proposed a two-step approach: (a) construct token-API mapping database, and (b) rec-
ommend relevant APIs for a search query. In step (a), they extracted tokens in a question’s
title and map the APIs in the corresponding accepted answer. In step (b), they employed two
heuristics (i.e., Keyword-API Co-occurrence and Keyword-Keyword Coherence) to collect
candidate APIs given a query and then used two metrics (i.e., API Likelihood and API
Coherence) to estimate the relevance of the candidate APIs for the given query. Lastly, a
ranked list of the candidates are obtained and top-K APIs from the list are returned for
recommendation. Different from Rahman et al.’s work, Gu et al. (2016) proposed a deep
learning based approach DeepAPI to recommend API usage sequences for a given natural
language query. DeepAPI adapts a neural language model named RNN Encoder-Decoder. It
encodes a word sequence (i.e., user query) into a fixed-length context vector and generates
an API sequence based on the context vector. They also augmented the RNN Encoder-
Decoder by considering the importance of individual APIs. The advantages of DeepAPI is
that it does not rely on information retrieval techniques, which makes it different from other
code search techniques (e.g., McMillan et al. (2011) and Lv et al. (2015)). Based on our
findings, both RACK and DeepAPI can be improved by profiling library, i.e., correspond-
ing to our fourth suggestion (display of APIs’ characteristics). RACK considers all APIs
mentioned in 172,043 Stack Overflow questions and DeepAPI collects APIs from 442,928
Java projects from GitHub without any further filtering based on characteristics. However,
the developers’ opinion towards APIs can be collected from Stack Overflow or other API
review boards, e.g., Uddin and Khomh (2017). We believe that a display of APIs’ character-
istics can help to quickly assess the quality of APIs. Gao et al. (2015) studied the problem
of recommending suitable APIs that satisfy users’ need for mashup creation. They proposed
a manifold ranking framework for API recommendation. First, they categorized existing
mashups into functionally similar clusters. Then, they recommended APIs for each mashup
cluster using manifold ranking algorithm. Three factors are taken into consideration: (1)
APIs that are in functionally similar mashups, (2) popularity of APIs, and (3) similarity

Empirical Software Engineering

between APIs. Different than RACK and DeepAPI, APIs’ popularity is considered. To some
extent, it supports our suggestion that analysis of libraries’ (or APIs’) characteristics can
improve reuse rate. In summary, our suggestions outline five potential directions to further
improve existing code recommendation systems.

6 Conclusion

In this work, we explored the reasons behind two opposite developer behaviors, i.e., library
reuse and code re-implementation. To achieve this goal, we identified real world instances
from multiple sources and then performed two types of surveys, i.e., individual survey and
open survey. Moreover, we also performed a manual qualitative analysis on commit logs
as a supplement. Our experiment results show that, the reason why developer replace their
self-implemented method with an external library method is mainly because they were ini-
tially not aware of the library or the library had not been introduced. Once they find a
well maintained and tested library that meets their requirement, they reuse it. The rea-
sons why developer re-implement code by themselves are mainly because the used library
method is only a small part of the library, the library dependencies are too complicated, or
the library method becomes deprecated. Besides, we also provided five aspects that could
be helpful to improve the current code recommendation systems. In the future, we plan
to further improve existing library recommendation approaches by taking into consider-
ation the multiple factors that we discovered in this work, e.g., usability, complexity of
the external code. In addition, we will also investigate whether the state-of-the-art clone
detection tools are able to detect similarity between self-implemented code and external
code.

References

Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why do developers use trivial packages?
an empirical case study on npm. In: 11th joint meeting on foundations of software engineering. ACM,
pp 385–395

Basili VR, Briand LC, Melo WL (1996) How reuse influences productivity in object-oriented systems.
Commun ACM 39(10):104–116

Blog of Jos de Jong (2017) The art of creating simple but flexible APIs. http://josdejong.com/blog/2014/10/
18/the-art-of-creating-simple-but-flexible-apis/, online. Accessed 14 Nov 2017

Gao W, Chen L, Wu J, Gao H (2015) Manifold-learning based api recommendation for mashup creation. In:
22nd IEEE international conference on web services. IEEE, pp 432–439

GNU (2017) Unified diff format. http://www.gnu.org/software/diffutils/manual/html node/Unified-Format.
html, online. Accessed 14 Sept 2017

Griss ML (1993) Software reuse: From library to factory. IBM Syst J 32(4):548–566
Gu X, Zhang H, Zhang D, Kim S (2016) Deep api learning. In: 24th international symposium on foundations

of software engineering. ACM, pp 631–642
Heinemann L, Deissenboeck F, Gleirscher M, Hummel B, Irlbeck M (2011) On the extent and nature of

software reuse in open source java projects. In: 13th international conference on software reuse. Springer,
pp 207–222

Iivari J (1996) Why are case tools not used? Commun ACM 39(10):94–103
Kawrykow D, Robillard MP (2009) Improving api usage through automatic detection of redundant code. In:

24th international conference on automated software engineering. IEEE, pp 111–122

http://josdejong.com/blog/2014/10/18/the-art-of-creating-simple-but-flexible-apis/
http://josdejong.com/blog/2014/10/18/the-art-of-creating-simple-but-flexible-apis/
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

Empirical Software Engineering

Kim Y, Stohr EA (1998) Software reuse: survey and research directions. J Manag Inf Syst 14(4):113–
147

Krueger CW (1992) Software reuse. ACM Comput Surv 24(2):131–183
Krutz DE, Mirakhorli M, Malachowsky SA, Ruiz A, Peterson J, Filipski A, Smith J (2015) A dataset of

open-source android applications. In: 12th working conference on mining software repositories. IEEE,
pp 522–525

Lethbridge TC (2000) Priorities for the education and training of software engineers. J Syst Softw 53(1):
53–71

Lv F, Zhang H, Lou JQ, Wang S, Zhang D, Zhao J (2015) Codehow: Effective code search based on api
understanding and extended boolean model (e). In: 30th international conference on automated software
engineering. IEEE, pp 260–270

McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio: finding relevant functions and their
usage. In: 33rd international conference on software engineering. ACM, pp 111–120

Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical study of software reuse vs. defect-
density and stability. In: 26th international conference on software engineering. IEEE Computer Society,
pp 282–292

Mojica IJ, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE (2014) A large-scale empirical study on
software reuse in mobile apps. IEEE Softw 31(2):78–86

Nguyen AT, HiltonM, CodobanM, Nguyen HA,Mast L, Rademacher E, Nguyen TN, Dig D (2016) Api code
recommendation using statistical learning from fine-grained changes. In: 24th international symposium
on foundations of software engineering. ACM, pp 511–522

Ouni A, Kula RG, Kessentini M, Ishio T, German DM, Inoue K (2017) Search-based software library
recommendation using multi-objective optimization. Inf Softw Technol 83:55–75

Piccioni M, Furia CA, Meyer B (2013) An empirical study of api usability. In: 7th international symposium
on empirical software engineering and measurement. IEEE, pp 5–14

PythonModule (2018) Python official documentation on modules. https://docs.python.org/2/tutorial/
modules.html, online. Accessed 29 March 2018

Rahman MM, Roy CK, Lo D (2016) Rack: Automatic api recommendation using crowdsourced knowl-
edge. In: 23rd international conference on software analysis, evolution, and reengineering, vol 1. IEEE,
pp 349–359

Ruiz IJM, Nagappan M, Adams B, Hassan AE (2012) Understanding reuse in the android market. In: 20th
international conference on program comprehension. IEEE, pp 113–122

Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collection for field studies. In: Guide to
advanced empirical software engineering. Springer, pp 9–34

Sun C, Khoo SC, Zhang SJ (2011) Graph-based detection of library api imitations. In: 27th IEEE
international conference on software maintenance. IEEE, pp 183–192

Thung F (2016) Api recommendation system for software development. In: 31st international conference on
automated software engineering, pp 896–899

Thung F, Lo D, Lawall J (2013a) Automated library recommendation. In: 20th working conference on reverse
engineering. IEEE, pp 182–191

Thung F, Wang S, Lo D, Lawall J (2013b) Automatic recommendation of api methods from feature requests.
In: 28th international conference on automated software engineering. IEEE Press, pp 290–300

Uddin G, Khomh F (2017) Automatic summarization of api reviews. In: 2017 32nd IEEE/ACM international
conference on automated software engineering (ASE). IEEE, pp 159–170

Wei H, Li M (2017) Supervised deep features for software functional clone detection by exploiting lexical and
syntactical information in source code. In: 26th international joint conference on artificial intelligence,
pp 3034–3040

Yin RK (2002) Case study research: design and methods - Third Edition, 3rd edn. SAGE Publications
YouTube video (2004) Designing and evaluating reusable components. https://www.youtube.com/watch?

v=ZQ5 u8Lgvyk, online. Accessed 29 March 2018
Zaimi A, Ampatzoglou A, Triantafyllidou N, Chatzigeorgiou A, Mavridis A, Chaikalis T, Deligiannis I,

Sfetsos P, Stamelos I (2015) An empirical study on the reuse of third-party libraries in open-source
software development. In: 7th Balkan conference on informatics conference. ACM, p 4

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://docs.python.org/2/tutorial/modules.html
https://docs.python.org/2/tutorial/modules.html
https://www.youtube.com/watch?v=ZQ5_u8Lgvyk
https://www.youtube.com/watch?v=ZQ5_u8Lgvyk

	Why reinventing the wheels? An empirical study on library reuse and re-implementation
	Citation

	Why reinventing the wheels? An empirical study on library reuse and re-implementation
	Abstract
	Introduction
	Individual Survey
	Open Survey
	Commit Log Analysis

	Case Study Design
	Data Collection
	Detection of Library Reuse
	Identification of Removed Methods
	Identification of Imported Methods
	Calculation of Relative Distance
	Manual Validation

	Detection of Re-implementations
	Survey
	Survey on Library Reuse
	Survey on Library Re-implementation
	Open Survey
	Analysis on Survey Responses

	Analysis on Commit Messages

	Case Study Results
	(RQ1) Why do Developers Replace Their Self-Implemented Method with an External Library Method?
	(RQ2) Why do Developers Replace an External Library Method with Their Self-Implemented Code?
	(RQ3) Under what Circumstances do Developers Prefer to Reuse or Re-implement Code?

	Discussion
	Implications
	Threats to Validity

	Related Work
	Library Reuse
	Code Re-implementation
	Library Recommendation
	Recommend a Code for a Given Project
	Recommend a Code for a Given Query

	Conclusion
	References
	Affiliations

