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Abstract—Linux kernel stable versions serve the needs of users who
value stability of the kernel over new features. The quality of such stable
versions depends on the initiative of kernel developers and maintainers
to propagate bug fixing patches to the stable versions. Thus, it is desir-
able to consider to what extent this process can be automated. A pre-
vious approach relies on words from commit messages and a small set
of manually constructed code features. This approach, however, shows
only moderate accuracy. In this paper, we investigate whether deep
learning can provide a more accurate solution. We propose PatchNet,
a hierarchical deep learning-based approach capable of automatically
extracting features from commit messages and commit code and using
them to identify stable patches. PatchNet contains a deep hierarchical
structure that mirrors the hierarchical and sequential structure of commit
code, making it distinctive from the existing deep learning models on
source code. Experiments on 82,403 recent Linux patches confirm
the superiority of PatchNet against various state-of-the-art baselines,
including the one recently-adopted by Linux kernel maintainers.

1 INTRODUCTION

The Linux kernel follows a two-tiered release model in
which a mainline version, accepting bug fixes and feature
enhancements, is paralleled by a series of older stable ver-
sions that accept only bug fixes [41]. The mainline serves
the needs of users who want to take advantage of the
latest features, while the stable versions serve the needs of
users who value stability, or cannot upgrade their kernel
due to hardware and software dependencies. To ensure
that there is as much review as possible of the bug fixing
patches and to ensure the highest quality of the mainline
itself, the Linux kernel requires that all patches applied to
the stable versions be submitted to and integrated in the
mainline first. A mainline developer or maintainer may
identify a patch as a bug fixing patch appropriate for sta-
ble kernels and add to the commit message a Cc: stable
tag (stable@vger.kernel.org). Stable-kernel maintainers then
extract such annotated commits from the mainline commit
history and apply the resulting patches to the stable versions
that are affected by the bug.

A patch consists of a commit message followed by the
code changes, expressed as a unified diff [48]. The diff

consists of a series of changes (removed and added lines of
code), separated by lines beginning with @@ indicating the
number of the line in the affected source file at which the
subsequent change should be applied. Each block of code
starting with an @@ line is referred to as a hunk. Fig. 1 shows
three patches to the Linux kernel. The first patch changes
various return values of the function csum_tree_block.
The commit message is on lines 1-10 and the code changes
are on lines 11-25. The code changes consist of multiple
hunks, only the first of which is shown in detail (lines 15-23).
In the shown hunk, the function called just previously to
the return site, map_private_extent_buffer (line 16),
can return either 1 or a negative value in case of an error.
So that the user can correctly understand the reason for
any failure, it is important to propagate such return values
up the call chain. The patch thus changes the return value
of csum_tree_block in this case from 1 to the value
returned by the map_private_extent_buffer call. The
remaining hunks contain similar changes. The Linux kernel
documentation [14] stipulates that a patch should be applied
to stable kernels if it fixes a real bug that can affect the user
level and satisfies a number of criteria, such as containing
fewer than 100 lines of code and being obviously correct.
This patch fits those criteria. The patch was first included
in the Linux mainline version v4.6, and was additionally
applied to the stable version derived from the mainline
release v4.5, first appearing in v4.5.5 (the fifth release based
on Linux v4.5) as commit 342da5cefddb.

The remaining patches in Fig. 1 should not be propa-
gated to stable kernels. The patch in Fig. 1b performs a
refactoring, replacing some lines of code by a function call
that has the same behavior. As the behavior is unchanged,
there is no impact on the user level. The patch in Fig. 1c
addresses a minor performance bug, in that it removes some
code that performs a redundant operation. The performance
improvement should not be noticeable at the user level, and
thus this patch is not worth propagating to stable kernels.
Note that none of the patches shown in Fig. 1 contains
keywords such as “bug” or “fix”, or links to a bug tracking
system. Instead, the stable kernel maintainer has to study



1 commit 8bd98f0e6bf792e8fa7c3fed709321ad42ba8d2e
2 Author: Alex Lyakas <alex.bolshoy@gmail.com>
3 Date: Thu Mar 10 13:09:46 2016 +0200
4
5 btrfs: csum_tree_block: return proper errno value
6
7 Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
8 Reviewed-by: Filipe Manana <fdmanana@suse.com>
9 Signed-off-by: David Sterba <dsterba@suse.com>

10
11 diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
12 index d8d68af..87946c6 100644
13 --- a/fs/btrfs/disk-io.c
14 +++ b/fs/btrfs/disk-io.c
15 @@ -303,7 +303,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,
16 err = map_private_extent_buffer(buf, offset, 32,
17 &kaddr, &map_start, &map_len);
18 if (err)
19 - return 1;
20 + return err;
21 cur_len = min(len, map_len - (offset - map_start));
22 crc = btrfs_csum_data(kaddr + offset - map_start,
23 crc, cur_len);
24 @@ -313,7 +313,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,
25 ...

(a) A fix of a bug that can impact the user level.
1 commit 7b0692f1c60a9551f8ad5fe706b79a23720a196c
2 Author: Andy Shevchenko <...>
3 Date: Wed Aug 14 11:07:11 2013 +0300
4
5 HID: hid-sensor-hub: change kmalloc + memcpy by kmemdup
6
7 The patch substitutes kmemdup for kmalloc followed by memcpy.
8
9 Signed-off-by: Andy Shevchenko <...>

10 Acked-by: Srinivas Pandruvada <...>
11 Signed-off-by: Jiri Kosina <...>
12
13 diff --git a/drivers/hid/hid-sensor-hub.c b/drivers/hid/hid-sensor-hub.c
14 index 1877a2552483..e46e0134b0f9 100644
15 --- a/drivers/hid/hid-sensor-hub.c
16 +++ b/drivers/hid/hid-sensor-hub.c
17 @@ -430,11 +430,10 @@ static int sensor_hub_raw_event(struct hid_device *hdev,
18 ...
19 - pdata->pending.raw_data = kmalloc(sz, GFP_ATOMIC);
20 - if (pdata->pending.raw_data) {
21 - memcpy(pdata->pending.raw_data, ptr, sz);
22 + pdata->pending.raw_data = kmemdup(ptr, sz, GFP_ATOMIC);
23 + if (pdata->pending.raw_data)
24 pdata->pending.raw_size = sz;
25 - } else
26 + else
27 pdata->pending.raw_size = 0;
28 ...

(b) A refactoring.
1 commit: 501bcbd1b233edc160d0c770c03747a1c4aa14e5
2 Author: Thierry Reding <...>
3 Date: Wed Apr 14 09:52:31 2014 +0200
4
5 drm/tegra: dc - Do not touch power control register
6
7 Setting the bits in this register is dependent on the output type driven
8 by the display controller. All output drivers already set these properly
9 so there is no need to do it here again.

10
11 Signed-off-by: Thierry Reding <...>
12
13 diff --git a/drivers/gpu/drm/tegra/dc.c b/drivers/gpu/drm/tegra/dc.c
14 index 8b21e20..33e03a6 100644
15 --- a/drivers/gpu/drm/tegra/dc.c
16 +++ b/drivers/gpu/drm/tegra/dc.c
17 @@ -743,10 +743,6 @@ static void tegra_crtc_prepare(struct drm_crtc *crtc)
18 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
19 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
20 - value = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
21 - PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
22 - tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
23 /* initialize timer */
24 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
25 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);

(c) A fix of a minor performance bug.

Fig. 1: Example patches to the Linux kernel.

the commit message and the code changes, to understand
the impact of the changes on the kernel code.

As patches for stable kernels contain fixes for bugs that
can impact the user level, the quality of the stable kernels
critically relies on the effort that the developers and sub-
system maintainers put into identifying and labeling such
patches, which we refer to as stable patches. This manual
effort represents a potential weak point in the Linux kernel
development process, as the developers and maintainers

may forget to label some relevant patches, and apply dif-
ferent criteria for selecting them. While the stable-kernel
maintainers can themselves additionally pick up relevant
patches from the mainline commits, there are hundreds of
mainline commits per day, and many will likely slip past.
This task can thus benefit from automated assistance.

One way to provide such automated assistance is to
build a tool that learns from historical data how to differ-
entiate stable from non-stable patches. However, building
such a tool poses some challenges. First, a patch contains
both a commit message (in natural language) and some code
changes. While the commit message is a sequence of words,
and is thus amenable to existing approaches on classifying
text, the code changes have a more complex structure.
Indeed, a single patch may include changes to multiple
files; the changes in each file consist of a number of hunks,
and each hunk contains zero or more removed and added
code lines. As the structure of the commit message and
code changes differs, there is a need to extract their features
separately. Second, the historical information is noisy since
stable kernels do not receive only bug fixing patches, but
also patches adding new device identifiers and patches on
which a subsequent bug fixing patches depends. Moreover,
patches that should have been propagated to stable kernels
may have been overlooked. Finally, as illustrated by Fig. 1c,
there are some patches that perform bug fixes but should
not be propagated to stable kernels for various reasons (e.g.,
lack of impact on the user level or complexity of the patch).

A first step in the direction of automatically identifying
patches that should be applied to stable Linux kernels was
proposed by Tian et al. [63] who combine LPU (Learn-
ing from Positive and Unlabeled Examples) [42] and SVM
(Support Vector Machine) [59] to learn from historical infor-
mation how to identify bug-fixing patches. Their approach
relies on thousands of word features extracted from commit
messages and 52 features extracted from code changes. The
word features are obtained automatically by representing
each commit message as a bag of words, i.e., a multiset of
the words found in the commit, whereas the code features
are defined manually. The bag-of-words representation of
the commit message implies that the temporal dependencies
(ordering) of words in a commit message are ignored. The
manual creation of code features might overlook features
that are important to identify stable patches.

To address the limitations of the work of Tian et al. and
to focus on stable patches, we propose a novel hierarchi-
cal representation learning architecture for patches, named
PatchNet. Like the LPU+SVM work, PatchNet focuses on
the commit message and code changes, as this information is
easily available and stable-kernel maintainers have reported
to us that they use one or both of these elements in assess-
ing potential stable patches. Deviating from the previous
LPU+SVM work, however, which requires human effort
to construct code features, PatchNet aims to automatically
learn two embedding vectors for representing the commit
message and the set of code changes in a given patch,
respectively. While the first embedding vector encodes the
semantic information of the commit message to differentiate
between similar commit messages and dissimilar ones, the
latter embedding vector captures the sequential nature of
the code changes in the given patch. The two embedding
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vectors are then used to compute a prediction score for a
given patch, based on the similarity of the patch’s vector
representation to the information learned from other stable
or non-stable patches. The key challenge is to accurately
represent the structure of code changes, which are not con-
tiguous text like the commit message, but rather amount to
scattered fragments of removed and added code across mul-
tiple files, within multiple hunks. Thus, different from exist-
ing deep learning techniques working on source code [24],
[36], [66], [68], PatchNet constructs separate embedding
vectors representing the removed code and the added code
in each hunk of each affected file in the given patch. The
information about a file’s hunks are then concatenated to
build an embedding vector for the affected file. In turn, the
embedding vectors of all the affected files are used to build
the representation of the entire set of code changes in the
given patch.

PatchNet has already attracted some industry attention.
Inspired by the work of Tian et al. and by our work on Patch-
Net, the Linux kernel stable maintainer Sasha Levin has
adopted a machine-learning based approach for identifying
patches for stable kernels, which we use as a baseline for
our evaluation (Section 4.3). Recently Wen et al. [67] of ZTE
Corporation have also adapted PatchNet to the needs of
their company. These works show the potential usefulness
of PatchNet in an industrial setting.

The main contributions of this paper include:
• We study the manual process of identifying patches for

Linux stable versions. We explore the potential benefit of
automatically identifying stable patches and summarize
the challenges in using machine learning for this purpose.

• We propose a novel framework, PatchNet, to automati-
cally learn a representation of a patch by considering both
its commit message and corresponding code changes.
PatchNet contains a novel deep learning model to con-
struct an embedding vector for the code changes made by
a patch, based on their sequential content and hierarchi-
cal structure. The two embedding vectors, representing
the commit message and the set of code changes, are com-
bined to predict whether a patch should be propagated
to stable kernels.

• We evaluate PatchNet on a new dataset that contains
82,403 recent Linux patches. The results show the superi-
ority of PatchNet compared to state-of-the-art baselines.
PatchNet also achieves good performance on the com-
plete set of Linux kernel patches.
The rest of this paper is organized as follows. Section 2

introduces background information. Section 3 elaborates
the proposed PatchNet approach. Section 4 presents the
experimental results. Section 6 discusses potential threats to
validity. Section 7 highlights related work. Finally, Section 8
concludes and presents future work.

2 BACKGROUND

In this section, we present background information about
the maintenance of Linux kernel stable versions, the po-
tential benefits of introducing automation into the stable
kernel maintenance process, and the challenges posed for
automation via machine learning.

2.1 Context
The Linux kernel, developed by Linus Torvalds in 1991, is
a free and open-source, monolithic, and Unix-like operating
system kernel [47]. It has been deployed on both traditional
computer systems, i.e., personal computers and servers, and
on many embedded devices such as routers, wireless access
points, smart TVs, etc. Many devices, i.e., tablet computers,
smartphones, smartwatches, etc. that have the Android op-
erating system also use the Linux kernel.

The Linux kernel includes a two tiered release model
comprising a mainline version and a set of stable versions.
The mainline version, often released every two to three
months, is the version where all new features are intro-
duced. After the mainline version is released, we consider it
as “stable”. Any bug fixing patches for a stable version are
backported from the mainline version.

Linux kernel development is carried out according to
a hierarchical model, with Linus Torvalds—who has ulti-
mate authority about which patches are accepted into the
kernel—at the root and patch authors at the leaves. A patch
author is anyone who wishes to make a contribution to
the kernel, fix a bug, add a new functionality, or improve
the coding style. Authors submit their patches by email to
maintainers, who commit the changes to their git trees and
submit pull requests up the hierarchy. In this work, we are
mostly concerned with the maintainers, who are responsible
for assessing the correctness and usefulness of the patches
that they receive. Part of this responsibility involves deter-
mining whether a patch is stable, and ensuring that it is
annotated accordingly.

The Linux kernel provides a number of guidelines to
help maintainers determine whether a patch should be
annotated for propagation to stable kernels [14]. The main
points are as follows:
• It cannot be bigger than 100 lines.
• It must fix a problem that causes a build error, an oops, a

hang, data corruption, a real security issue, or some “oh,
thats not good” issue.

These criteria may be simple, but are open to interpretation.
For example, even the criterion about patch size, which
seems unambiguous, is only satisfied by 93% of the patches
found in the stable versions based on Linux v3.0 to v4.13, as
of September 2017.

2.2 Potential Benefits of Automatically Identifying Sta-
ble Patches
To understand the potential benefit of automatically iden-
tifying stable patches, we examine the percentage of all
mainline commits that are propagated to stable kernels
across different kernel subsystems and the percentage of
these that are annotated with the Cc: stable tag. We focus
on the 12 directories for which more than 500 mainline
commits were propagated to stable kernels between Linux
v3.0 (July 2011) and Linux v4.12 (July 2017). Fig. 2 shows the
percentage of all mainline commits that are propagated to
stable kernels for these 12 directories. We observe that there
is a large variation in these values. Comparing directories
with similar purposes, 4% of arch/arm (ARM hardware
support) commits are propagated, while 10% of arch/x86
(x86 hardware support) commits are propagated, and 6-8%
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Fig. 2: Percentage of mainline commits propagated to stable
kernels for the 12 directories with more than 500 mainline
commits being propagated to stable kernels between Linux
v3.0 (July 2011) and Linux v4.12 (July 2017). The number
above each bar indicates the number of propagated com-
mits.
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Fig. 3: Percentage of mainline commits propagated to stable
kernels that contain a Cc: stable tag for the 12 directories
with more than 500 mainline commits being propagated
to stable kernels between Linux v3.0 (July 2011) and Linux
v4.12 (July 2017). The number above each bar indicates the
number of propagated commits.

of the scsi, gpu and net driver commits are propagated,
while 17% of usb driver commits are propagated.1 If we
make the assumption that the rate of bug introduction is
roughly constant across similar kinds of code, the wide
variation in the propagation rates for similar kinds of code
suggests that relevant commits may be being missed.

Fig. 3 shows the percentage of mainline commits prop-
agated to stable kernels that contain the Cc: stable tag, for
the same set of kernel directories. The rate is very low for
drivers/net and net, which are documented to have
their own procedure [14]. The others mostly range from
60% to 85%. Commits in stable kernels that do not contain
the tag are commits that the stable kernel maintainers have
identified on their own or that they have received via other
non-standard channels. This represents work that can be
saved by an automatic labeling approach.

2.3 Challenges for Machine Learning

Stable patch identification poses some unique challenges for
machine learning. These include the kind of information
available in a Linux kernel patch and the different reasons
why patches are or are not selected for stable kernels.

1. The usb driver maintainer is also a stable kernel maintainer.

First, patches contain a combination of text, represented
by the commit message, and code, represented by the enu-
meration of the changed lines. Code is structured differently
than text, and thus we need to construct a representation
that enables machine learning algorithms to detect relevant
properties.

Second, the available labeled data from which to learn
is somewhat noisy. The only available source of labels is
whether a given patch is already in a stable kernel. However,
stable kernels in practice do not receive only bug-fixing
patches, but also patches that add new device identifiers
(structure field values that indicate some properties of a
supported device) and patches on which a subsequent bug-
fixing patch depends, as long as these patches are small
and obviously correct. On the other hand, our results in the
previous section suggest that not all patches that should be
propagated to stable kernels actually get propagated. These
sources of noise may introduce apparent inconsistencies into
the machine learning process.

Finally, although some patches perform bug fixes, not
propagating them to stable kernels is the correct choice.
One reason is that some parts of the code change so rapidly
that the patch does not apply cleanly to any stable version.
Another reason is that the bug was introduced since the
most recent mainline release, and thus does not appear in
any stable version.

As the decision of whether to apply a patch to a stable
kernel depends in part on factors external to the patch
itself, we cannot hope to achieve a perfect solution based
on applying machine learning to patches alone. Still, we
believe that machine learning can effectively complement
existing practice by orienting stable-kernel maintainers to-
wards likely stable commits that they may have overlooked,
even though the above issues introduce the risk of some
false negatives and false positives.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [40] are a class of
deep learning models originally inspired by the connectivity
pattern among neurons within an animal’s visual cortex.
Each cortical neuron responds to stimuli only in a restricted,
local region of the visual field known as the receptive field.
The receptive fields of different neurons partially overlap
such that they cover the entire visual field. CNN has demon-
strated successful applications in various problem domains,
such as image/video recognition, natural language pro-
cessing, recommender systems, etc. [30], [35], [37]. A CNN
typically has an input layer, a convolutional layer, followed
by a nonlinear activation function, a pooling layer, a fully-
connected layer, and an output layer. We briefly explain
these layers in turn below.

The input layer often takes as an input a 2-dimensional
matrix. The input is passed through a series of convolutional
layers. The convolutional layers take advantage of the use
of learnable filters. These filters are then applied along the
entirety of the depth of the input data to produce a feature
map. The activation function is then applied to each value
of the feature map. There are many types of activation
function, i.e., sigmoid, hyperbolic tangent (tanh), rectified
linear unit (ReLU), etc. In practice, most CNN architectures
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use ReLU as it achieves better performance compared to
other activation functions [1], [13].

After the application of the activation function, the pool-
ing layer is employed to reduce the dimensionality of the
feature map and the number of parameters, which in turn
helps mitigate data overfitting [64]. The pooling layer per-
forms dimensionality reduction by applying an aggregation
operation to the outputs of the feature map. There are
three major types of pooling layer, i.e., max pooling layer,
average pooling layer, and sum pooling layer, which use
maximum, average and summation as aggregation opera-
tors, respectively. Among them, the max pooling is the most
widely used in practice, as it typically demonstrates a better
performance than the average or sum pooling [72].

The output of the pooling layer is often flattened and
passed to a fully connected layer. The output of the fully
connected layer then goes to an output layer, based upon
which we can define a loss function to measure the quality
of the outputs [38]. Accordingly, the goal of CNN training is
to minimize this loss function, which is typically achieved
using the stochastic gradient descent (SGD) algorithm [5] or
its variants.

3 PROPOSED APPROACH

In this section, we first formulate the problem and provide
an overview of PatchNet. We then describe the details of
each module inside PatchNet. Finally, we present an algo-
rithm for learning effective values of PatchNet’s parameters.

3.1 Framework Overview

The goal of PatchNet is to automatically label a patch as
stable or non-stable in order to reduce the manual effort for
the stable-kernel maintainers. We consider the identification
of stable patches as a learning task to construct a prediction
function f : X 7−→ Y , where Y = {0, 1}. Then, xi ∈ X is
identified as a stable patch when f(xi) = 1.

As illustrated in Fig. 4, PatchNet consists of three main
modules: (1) a commit message module, (2) a commit code
module, and (3) a classification module. The first two are
built upon a convolutional neural network (CNN) archi-
tecture [35], [39], and aim to learn a representation of the
textual commit message (cf. Fig. 1, lines 5-12) and the set
of diff code elements (cf. Fig. 1, lines 14-28) of a patch,
respectively. The commit message module and the commit code
module transform the commit message and the code changes
into embedding vectors em and ec, respectively. The two
vectors are then passed to the classification Module, which
computes a prediction score indicating the likelihood of a
patch being a stable patch.

3.2 Commit Message Module

Fig. 5 shows the architecture of the commit message mod-
ule, which is the same as the one proposed by Kim [31]
and Kalchbrenner et al. [29] for sentence classification. The
module involves an input message, represented as a two-
dimensional matrix, a set of filters for identifying features
in the message, and a means of combining the results of
the filters into an embedding vector that represents the most
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Fig. 4: The proposed PatchNet framework. em and ec are
embedding vectors collected from the commit message
module and commit code module, respectively.

a convolution layer with 

multiple filters + a ReLU

activation function 

commit message 

matrix M ∈ ℝ 𝒎 ×𝒅𝒎

an embedding 

vector

btrfs

errno

value 

word embedding matrix 

𝐖𝒎 ∈ ℝ
𝑽𝒎 ×𝒅𝒎

e𝑚

∎
∎

∎
∎
∎
∎
∎
∎

∎
∎
∎
∎

a max pooling 

operation

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎

∎
∎
∎

∎
∎
∎

Fig. 5: Architecture of the commit message module. An
embedding vector from the commit message is built by
using a convolution layer with multiple filters and a max
pooling operation.

salient features of the message, to be used as a basis for
classification.

Message representation. We encode a commit message
as a two-dimensional matrix by viewing the message as a
sequence of vectors where each vector represents one word
appearing in the message. The embedding vectors of the
individual words are maintained using a lookup table, the
word embedding matrix, that is shared across all messages.

Given a message m as a sequence of words [w1, . . . ,w|m|]
and a word embedding matrix Wm ∈ R|Vm|×dm , where Vm
is the vocabulary containing all words in commit messages
and dm is the dimension of the representation of a word, the
matrix representation M ∈ R|m|×dm of the message is:

M = [W[w1], . . . ,W[w|m|]] (1)

For parallelization, all messages are padded or truncated to
the same length.

Convolutional layer. The role of the convolutional layer
is to apply filters to the message, in order to identify the
message’s salient features. A filter f ∈ Rk×dm is a small
matrix that is applied to a window of k words to produce
a new feature. A feature ti is generated from a window of
words Mi:i+k−1 starting at word i ≤ |m| − k + 1 by:

ti = α(f ∗Mi:i+k−1 + bi) (2)
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where ∗ is a sum of element-wise products, bi ∈ R is a bias
value, and α(·) is a non-linear activation function. For α(·),
we choose the rectified linear unit (ReLU) activation func-
tion [52], as it has been shown to have better performance
than its alternatives [1], [13]. The filter f is applied to all
windows of size k in the message resulting in a feature vector
t ∈ R|m|−k+1:

t = [t1, t2, · · · , t|m|−k+1] (3)

Max pooling. To characterize the commit message, we
are interested in the degree to which it contains various
features, but not where in the message those features occur.
Accordingly, for each filter, we apply max pooling [11] over
the feature vector t to obtain the highest value:

max
1≤i≤|m|−k+1

ti (4)

The results of applying max pooling to the feature vector
resulting from applying each filter are then concatenated
unchanged to form an embedding vector (em on the right
side of Fig. 5) representing the meaning of the message.

3.3 Commit Code Module

Like the commit message, the commit code can be viewed
as a sequence of words. This view, however, overlooks the
structure of code changes, as needed to distinguish between
changes to different files, changes in different hunks, and
changes of different kinds (removals or additions). To in-
corporate this structural information, PatchNet contains a
commit code module that takes as input the code changes
in a given patch and outputs an embedding vector that
represents the most salient features of the code changes.
The commit code module contains a commit file module
that automatically builds an embedding vector representing
the code changes made to a given file in the patch. The
embedding vectors of code changes at file level are then
concatenated unchanged into a single vector representing
all the code changes made by the patch.

3.3.1 Commit File Module
The commit file module builds an embedding vector for
each file in the patch that represents the changes to the file.

As shown in Fig. 6, the commit file module takes as
input two matrices (denoted by “–” and “+” in Fig. 6)
representing the removed code and added code for the
affected file in a patch, respectively. These two matrices
are passed to the removed code module and the added code
module, respectively, to construct corresponding embedding
vectors. The two embedding vectors are then concatenated
unchanged to represent the code changes in each affected
file. We present the removed code module and the added
code module below.

Removed code module. Fig. 7 shows the structure of the
removed code module. The input of this module is a three-
dimensional matrix, indicating the removed code in a file
of a given patch, denoted by Br ∈ RH×N×L, where H, N ,
and L are the number of hunks, the number of removed
code lines for each hunk, and the number of words in each
removed code line in the affected file, respectively. This
module takes advantage of a commit line module and a 3D

removed code 

module

added code 

module

Commit file 

module
an embedding 

vector

e𝑟

e𝑎

e𝒇

Fig. 6: Architecture of the Commit File Module for mapping
a file in a given patch to an embedding vector. The input
of the module is the removed code and added code of the
affected file, denoted by “–” and “+”, respectively.

convolutional layer (3D-CNN) to construct an embedding
vector (denoted by er in Fig. 6) representing the removed
code in the affected file. We describe the commit line module
and the 3D-CNN in the following sections.

a) Commit line module. Each line of removed code in Br
is processed by the commit line module to obtain a list of
embedding vectors representing the removed code lines.
This module has the same structure as the commit message
module, but maintains a code-specific vocabulary and word
embedding matrix, as a word may have different meanings
in a textual message and in source code.

The obtained commit line vectors are used to construct
a new three-dimensional matrix, B̂r ∈ RH×N×E . B̂r repre-
sents a sequence of H hunks; each hunk has a sequence of
removed lines, where each line is now represented as a E-
dimensional embedding vector (eij ∈ RE) extracted by the
commit line module. B̂r is then passed to the 3D convolutional
neural network (3D-CNN), described below, to construct an
embedding vector for the code removed from a file by a
given patch.

b) 3D-CNN. The 3D convolutional layer is used to extract
features from the code removed from the affected file, as rep-
resented by B̂r . This layer applies each filter F ∈ Rk×N×E
to a window of k hunks Hi:i+k−1 to build a new feature as
follows:

fi = α(F ∗Hi:i+k−1 + bi)] (5)

∗ is the sum of element-wise products, Hi:i+k−1 ∈
R|i:i+k−1|×N×E is constructed from the i-th hunk through
the (i+ k − 1)-th hunk in the removed code of the affected
file, bi ∈ R is the bias value, and α(·) is the ReLU acti-
vation function. As for the commit message module (see
Section 3.2), we choose k ∈ {1, 2}. Fig. 8 shows an example
of a 3D convolutional layer that has one filter. Applying the
filter F to all windows of hunks in B̂r produces a feature
vector:

F = [f1, . . . , fH−k+1] (6)

As in Section 3.2, we apply a max pooling operation to F
to obtain the most important feature. The features selected
by max pooling with multiple filters are concatenated un-
changed to construct an embedding vector er representing
information extracted from the removed code changes in the
affected file.
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Fig. 7: Architecture of the removed code module used to build an embedding vector for the code removed from an affected
file.

Fig. 8: A 3D convolutional layer on 3×3×3 data. The 1×3×3
red cube on the right is the filter. The dotted lines indicate
the sum of element-wise products over all three dimensions.
The result is a scalar vector.

Added code module. This module has the same architec-
ture as the removed code module. The changes in the added
and removed code are furthermore padded or truncated to
have the same number of hunks (H), number of lines for
each hunk (N ), and the number of words of each line (L),
for parallelization. Moreover, both modules also share the
same vocabulary and use the same word embedding matrix.

The added code module constructs an embedding vector
(denoted by ea in Fig. 6) representing the added code in
a file of a given patch. An embedding vector representing
all of the changes made to a given file by a commit is
constructed by concatenating the two embedding vectors
representing the removed code and added code as follows:

ef = er ⊕ ea (7)

3.3.2 Embedding Vector for Commit Code
The embedding vector for all the changes performed by a
given patch is constructed as follows:

ec = ef1 ⊕ · · · ⊕ efv (8)

where ⊕ simply concatenates two vectors unchanged, fi
denotes the i-th file affected by the given commit, v is
the number of affected files, and efi denotes the vector
constructed by applying the commit file module to the affected
file fi.

3.4 Classification Module
Fig. 9 shows the architecture of the classification module. It
takes as input the commit message embedding vector em

e𝑚

e𝑐
e

output layer

Classification module

a fully-connected 
layer

FC

Fig. 9: Architecture of the classification module, comprising a
fully connected layer (FC), and an output layer.

and the commit code embedding vector ec discussed in
Sections 3.2 and 3.3, respectively. The patch is represented
by their concatenation as follows:

e = em ⊕ ec (9)

We then feed the concatenated vector e into a fully-
connected (FC) layer, which outputs a vector h as follows:

h = α(wh · e+ bh) (10)

where · is a dot product, wh is a weight matrix associated
with the concatenated vector, bh is the bias value, and α(·)
is a non-linear activation function. Again, we use ReLU
to implement α(·). Note that both wh and bh are learned
during our model’s training process. Note that both wh and
bh are learned during our model’s training process.

Finally, the vector h is passed to an output layer, which
computes a probability score for a given patch:

zi = p(yi = 1|xi) =
1

1 + exp(−h ·wo)
(11)

where wo is a weight matrix that is also learned during the
training process.
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3.5 Parameter Learning
During the training process, PatchNet learns the following
parameters: the word embedding matrices for commit mes-
sages and commit code, the filter matrices and bias of the
convolutional layers, and the weights and bias of the fully
connected layer and the output layer. The training aims to
minimize the following regularized loss function [20]:

O = − log

(
N∏
i=1

p(yi|xi)
)
+
λ

2
‖θ‖22

= −
N∑
i=1

[yi log(zi) + (1− yi) log(1− zi)] +
λ

2
‖θ‖22

(12)

where zi is the probability score from the output layer and θ
contains all the (learnable) parameters as mentioned before.

The term λ
2 ‖θ‖

2
2 is used to mitigate data overfitting

by penalizing large model parameters, thus reducing the
model complexity. To further improve the robustness of our
model, we also apply the dropout technique [58] on all the
convolutional and fully-connected layers in PatchNet.

To minimize the regularized loss function (12), we em-
ploy a variant of stochastic gradient descent (SGD) [5]
called adaptive moment estimation (Adam) [32]. We choose
Adam over SGD due to its computational efficiency and low
memory requirements [2], [3], [32].

4 EXPERIMENTS

We first describe our dataset and how we preprocess it. We
then introduce the baselines and evaluation metrics. Finally,
we present our research questions and results.

4.1 Dataset
We take our data from the patches that have been commit-
ted to mainline Linux kernel2 v3.0, released in July 2011,
through v4.12, released in July 2017. We additionally collect
information from the stable kernels3 that had been released
as of October 2017 building on Linux kernels v3.0 through
v4.13. We consider a mainline commit to be stable if it is
duplicated in at least one stable version. To increase the set
of commits that can be used for training, we furthermore
include in the training set of stable patches other Linux
kernel commits that are expected by convention to be bug-
fixing patches. Indeed, a Linux kernel release is created by
first collecting a set of commits for the coming release into
a preliminary release called a “release candidate”, named
rc1, that may include new features and bug fixes. This
is followed by a succession of further release candidates,
named rc2 onwards, that should include only bug fixes. We
thus also include the commits added for release candidates
rc2 onwards in our set of stable patches.

We refer to patches that are propagated to stable kernels
or are found in later release candidates as stable patches and
patches that are not propagated to stable kernels or found
in later release candidates as non-stable patches. To avoid
biasing the learning process towards either stable or non
stable patches, we construct our training datasets such that

2. git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
3. git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

the number of patches in each category is roughly balanced.
While this situation does not reflect the number of stable and
non-stable patches that confront a stable kernel maintainer
each day, it allows effective training and interpretation of
the experimental results.

4.1.1 Identifying Stable Patches

The main challenge in constructing the datasets is to de-
termine which mainline patches have been propagated to
stable kernels. Indeed, there is no required link information
connecting the two. Many stable patches explicitly mention
the corresponding mainline commit in the commit message,
which we refer to as a back link. For others, we rely on the
author name and the subject line. Subject lines typically
contain information about both the change made and the
name of the file or directory in which the change is made,
and should be unique. We first collect from the patches in
the stable kernels a list of back links and a list of pairs of
author name and subject line. A commit from the mainline
whose commit id is mentioned in a back link or whose
author name and subject line are the same as one found in a
patch to a stable kernel is considered to be a stable patch.

4.1.2 Collecting the Dataset

We collect our dataset from the mainline Linux kernel. In
order to focus on patches that are challenging for stable
maintainers to classify, we drop in advance all patches that
do not meet the stable-kernel size guidelines,4 i.e., those
that exceed 100 code lines, including both changed lines
and context as reported by diff. We subsequently keep
all identified stable patches for our dataset and select an
equal number of non-stable patches. Whenever possible,
we select non-stable patches that have a similar number
of changed lines as the stable patches, again to create a
dataset that reflects the cases that cannot be excluded by size
alone and thus are challenging for stable kernel maintainers.
These patches are then subject to a preprocessing step that
is detailed in the next section. We do not use the dataset
studied by Tian et al. [63], because it is seven years old and
unclean, including labeling as bug-fixing patches the results
of tools that may report coding style issues or faults whose
impact is not visible in practice.

Our dataset comes from Linux kernel mainline versions
3.0 (July 2011) through 4.12 (July 2017). There were 424,380
commits during that period. We consider only those com-
mits that are not merge commits, that modify a file as
opposed to only adding or removing files, and that affect at
least one .c or .h file. This leaves 346,570 commits (82%).
Of these 346,570 commits, 79,319 (23%) are not considered
because they contain more than 100 changed lines, leav-
ing 267,251 commits. Of these,to have a balanced training
dataset, we pick the 42,408 stable patches for which the
preprocessing step is successful (see below,) and 39,995 non-
stable patches, i.e., 82,403 patches in all. In RQ4, we consider
the full set of Linux kernel patches in versions v3.0-v4.12
that are accepted by our preprocessing step.

4. https://www.kernel.org/doc/html/v4.15/process/stable-kernel-
rules.html
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4.2 Patch Preprocessing

Our approach applies some preprocessing steps to the
patches before they are given to PatchNet.

4.2.1 Preprocessing of Commit Messages
Our approach applies various standard natural language
techniques to the commit messages, such as stop word elimi-
nation and stemming [6], [65], to reduce message length and
eliminate irrelevant information. Subsequently, we pad or
truncate all commit messages to the same size, specifically
512 words, covering the complete commit message for all
patches, for parallelism. Because we are interested in cases
that are challenging for the stable kernel maintainer, we
drop tags such as Cc: stable and Fixes, whose goal is to
indicate that a given patch is a stable or a bug fixing patch.
We also drop tags indicating who has approved the patch,
as the set of developers and their work profiles can change
in the future.

4.2.2 Preprocessing of Code Changes
Diff code elements, as illustrated in Fig. 1a, may have many
shapes and sizes, from a single word to multiple lines spread
out over multiple hunks. To describe changes in terms of
meaningful syntactic units and to provide context for very
small changes, we collect differences at the granularity of
atomic statements. These may be, e.g., simple assignment
statements, return statements, if headers, etc. For example,
in the patch illustrated in Fig. 1a, the only change is to
replace 1 on line 22 by err on line 23. Nevertheless, we
represent the change as a change in the complete return
statement, i.e., return 1; that is transformed into return
err;. We also distinguish changes in error checking code
(code to detect whether an error has occurred, e.g., line 21
in Fig. 1a) and in error handling code (code to clean up
after an error has occurred, e.g., lines 22 and 23 in Fig. 1a)
from changes in other code, which we refer to as normal
code. Error handling code is considered to be any code
that is in a conditional with only one branch, where the
conditional ends in a return with an argument other than
0 (0 is typically the success indicator) or a goto, as well
as any code following a label that ends in a return with
an argument other than 0 or a goto. Error checking code is
considered to be the header of a conditional that matches the
former pattern. These criteria are not completely reliable, as
such code can sometimes represent the success case rather
than a failure case, but they are typically followed and
are actively promoted by Linux kernel developers. Error
checking code and error handling code are very common
in the Linux kernel, which must be robust, and they are
disjoint in structure and purpose from the implementation
of the main functionality.

For a given commit, the first step is to extract the names
of the affected files and to extract the state of those files
before and after the commit. Analogous to the stemming
and stop word elimination performed at the commit mes-
sage level, for each before and after file instance, we remove
comments and the contents of strings, as changes in com-
ments and within strings are not likely to be needed in stable
kernels. For a given pair of before and after files, we then
compute the difference using the command “git diff -U0 old

new”, giving the changed lines with no lines of surrounding
context. For each “–” or “+” line in the diff output, we
then collect a record indicating the sign (“–” or “+”), the
category (error-handling code, etc.), the hunk number, the
line number in the old or new version, respectively, and the
starting and ending columns of the non-space changes on
the line. We furthermore keep the names of called functions,
when these are not defined in the same file and are used
at least 5 times, but drop other identifiers, i.e. field names
and variable names, as these may be too diverse to allow
effective learning and unnecessarily slow down the train-
ing time. Indeed, adding just the frequently used function
names increases the code vocabulary size from 43 to 3,616
unique tokens, which increases the training time.

To extract changes at the level of atomic statements,
rather than the individual lines obtained by diff, we parse
each file as it exists before and after the change and keep
the atomic statements that intersect with a changed line ob-
served by diff. For this, we use the parser of the C program
transformation system Coccinelle [55], which uses heuristics
to parse around compiler directives and macros [54]. This
makes it possible to reason about patches in terms of the
way they appear to the user, without macro expansion, but
comes with some cost, as some patches must be discarded
because the parsing heuristics are not sufficient to parse all
of the code affected by the changed lines.

By following the above-mentioned steps, we collect the
files affected by a given patch. For each removed or added
code line of an affected file, denoted by “–” and “+”, we
collect the corresponding hunk number and line number.
Each word in a line is a pair of the associated token and the
annotation indicating whether the word occurs on a line of
as error-checking code, error-handling code, or normal code.
This information is used to build the two three-dimensional
matrices representing the removed code and the added code
for the affected file (see Fig. 6).

4.3 Baselines

We compare PatchNet with several baselines:
• Keyword: As a simple but frequently used heuristic [63],

we select all commits in which the commit message
includes “bug”, “fix”, or “bug-fix” after conversion of all
words to lowercase and stemming. While not all bug fixes
are relevant for stable kernels, as some bugs may have
very low impact or the fix may be too large or complex to
be considered clearly correct, the problem of identifying
bug fixes is close enough to that of recognizing stable
patches to make comparison with our model valuable.

• LPU+SVM: This method was proposed by Tian et al. [63]
and combine Learning from Positive and Unlabeled Ex-
amples (LPU) [27], [42], [45] and Support Vector Machine
(SVM) [10], [12], to build a classification model for auto-
matically identifying bug fixing patches. The set of code
features considered was manually selected. In Tian et al.’s
work, stable kernels were considered as a source of bug-
fixing patches in the training and testing data.

• LS-CNN: Huo et al. [24] combined LSTM [23] and
CNN [39] to localize potential buggy source files based
on bug report information. They used CNN to learn a
representation of the bug report and a combination of
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LSTM and CNN to learn the structure of the code. To
assess the ability of LS-CNN to classify patches as stable,
for a given patch, we give the commit message and the
code changes (i.e., the result of concatenating the lines
changed in the various files and hunks) as input to LS-
CNN in place of the bug report and the potential buggy
source file, respectively. To make a fair comparison, the
CNN used to learn the representation of the commit mes-
sage in LS-CNN has the same architecture (i.e., number of
convolutional layer, filter size, activation function, etc.) as
the CNN used to learn the representation of the commit
message in PatchNet.

• Feed-forward fully connected neural network (F-NN): In-
spired by PatchNet and the work of Tian et al. on
LPU+SVM, a Linux stable kernel maintainer, Sasha Levin,
has developed an approach to identifying stable patches
[43] based on a feed-forward fully connected neural net-
work [4], [15] and a set of manually selected features, in-
cluding frequent commit message words, author names,
and some code metrics. Levin actively uses this approach
in his work on the Linux kernel.
For LPU-SVM and LS-CNN, we used the same parame-

ters and settings as described in the respective papers. For
F-NN, we asked Levin to train the tool on our training data
and test it with our testing data. We use 50% as the cut off for
considering a patch as stable for PatchNet and all baselines.

4.4 Experimental Settings

PatchNet has several hyperparameters (i.e., the sizes of the
filters, the number of convolutional filters, the size of the
fully-connected layer, etc.) that we instantiate them in the
following paragraph.

For the sizes of the filters described in Section 3, we
choose k ∈ {1, 2}, making the associated windows anal-
ogous to a 1-gram or 2-gram as used in natural language
processing [7], [28]. Using 2-grams allows our approach to
take into account the temporal ordering of words, going
beyond the bag of words used by Tian et al. [63]. The
number of convolutional filters is set to 64. The size of the
fully-connected layer described in Section 3.4 is set to 100.
The dimensions of the word vectors in commit message dm
and code changes dc are set to 50. PatchNet is trained using
Adam [32] with shuffled mini-batches. The batch size is set
to 32. We train PatchNet for 50 epochs and apply the early
stopping strategy [9], [56], i.e., we stop the training if there
has been no update to the loss value (see Equation 12) for the
last 5 epochs. All these hyperparameter values are widely
used in the deep learning community [22], [24], [25], [57].
For parallelization, the number of changed files, the number
of hunks for each file, the number of lines for each hunk, the
number of words of each removed or added code are set to
5, 8, 10, and 120, respectively.

In our experiments, we run PatchNet on Ubuntu 18.04.3
LTS, 64 bit, with a Tesla P100-SXM2-16GB5 GPU.5 Training
takes around 20 hours and testing less than 30 minutes
to process 16,481 patches (one of the five folds presented
in Section 4.6). Note that training only needs to be done
periodically (e.g., weekly/monthly) and the trained model

5. https://www.nvidia.com/en-us/data-center/tesla-p100/

can be used to label many patches. In our experiments, on
average, the trained PatchNet can assign a label to a single
patch in 0.11 seconds.

4.5 Evaluation Metrics
To evaluate the effectiveness of a stable patch identification
model, we employ the following metrics:
• Accuracy: Proportion of stable and non-stable patches that

are correctly classified.
• Precision: Proportion of patches that are correctly classi-

fied as stable.
• Recall: Proportion of stable patches that are correctly

classified.
• F1 score: Harmonic mean between precision and recall
• AUC: Area under the Receiver Operating Characteristic

curve, measuring if the stable patches tend to have higher
predicted probabilities (to be stable) than non-stable ones.

4.6 Research Questions and Results
Our study seeks to answer several research questions (RQs):

RQ1: Do the properties of stable and non-stable
patches change over time? A common strategy for
evaluating machine learning algorithms is n-fold cross-
validation [33], in which a dataset is randomly distributed
among n equal-sized buckets, each of which is considered
as test data for a model trained on the remaining n − 1
buckets. When data elements become available over time,
as is the case of Linux kernel patches, this strategy results in
testing a model on data that predates some of the data on
which the model was trained. Respecting the order of patch
submission, however, would limit the amount of testing that
can be done, given the fairly small number of stable patches
available.

To address this issue, we first assess whether training on
future data helps or harms the accuracy of PatchNet. We
first sort the patches collected in Section 4.1 from earliest to
latest based on the date when the patch author submitted
the patch to maintainers. Then, we divide the dataset into
five mutually exclusive sets by date. Note that the resulting
five sets are not perfectly balanced, but they come close,
with stable patches making up 45% to 55% of each set. Then,
we repeat the following process five times: take one set as
a testing set and use the remaining four sets for training.
Testing on the first set shows the impact of training only
on future data. Testing on the fifth set shows the impact of
training only on past data. The other testing sets use models
trained on a mixture of past and future data.

Table 1 shows the results of PatchNet on the different test
sets. The standard deviations are quite small (i.e., at most
0.013), hence there is no difference between training on past
or future data. Our dataset starts with Linux v3.0, which
was released in 2011, twenty years after the start of work on
the Linux kernel. The lack of impact due to training on past
or future data suggests that in such a mature code base the
properties that make a patch relevant for stable kernels are
fairly constant over time. This property is indeed beneficial,
because it means that our approach can be used to identify
stable commits that have been missed in older versions. In
the subsequent research questions, we thus retain the same
five test and training sets.

10



TABLE 1: The results of PatchNet on the five chronological
test sets

Accuracy Precision Recall F1 AUC
Set=1 0.852 0.841 0.886 0.863 0.850
Set=2 0.860 0.833 0.909 0.869 0.859
Set=3 0.866 0.833 0.910 0.870 0.867
Set=4 0.864 0.828 0.912 0.868 0.864
Set=5 0.869 0.860 0.917 0.887 0.862
Std. 0.007 0.013 0.012 0.009 0.007

TABLE 2: PatchNet vs. Keyword, LPU+SVM, LS-CNN, and
F-NN.

Accuracy Precision Recall F1 AUC
Keyword 0.626 0.683 0.515 0.587 0.630
LPU+SVM 0.731 0.751 0.716 0.733 0.731
LS-CNN 0.765 0.766 0.785 0.775 0.765
F-NN 0.809 0.838 0.781 0.808 0.809
PatchNet 0.862 0.839 0.907 0.871 0.860

RQ2: How effective is PatchNet compared to other
state-of-the-art stable patch identification models? To an-
swer this RQ, we use the five test sets of the dataset
described in RQ1. Of these, we take one test set as the testing
data and regard the remaining patches as the training data.
We repeat this five times, and then average the results to
get the aggregated accuracy, precision, recall, F1, and AUC
scores. Table 2 shows the results for PatchNet and the other
baselines. PatchNet achieves average accuracy, precision,
recall, F1 score, and AUC of 0.862, 0.839, 0.907, 0.871,
and 0.860, respectively. Compared to the best performing
baseline, F-NN, these constitute improvements of 6.55%,
0.12%, 16.13%, 7.80%, and 6.30%, respectively. PatchNet thus
achieves about the same precision as F-NN, but a significant
improvement in terms of recall. This is achieved without
the feature engineering required for the F-NN approach, but
rather by automatically learning the weight of the filters via
our hierarchical deep learning-based architecture.

We also employ Scott-Knott ESD ranking [61] to statis-
tically compare the performance of PatchNet and the four
considered approaches (i.e., PatchNet, F-NN, LS-CNN, and
LPU-SVM). The results show that PatchNet consistently
appears in the top Scott-Knott ESD rank in terms of accu-
racy, precision, recall, F1 score, and AUC. The ranks of the
four considered approaches are furthermore consistent (i.e.,
PatchNet > F-NN > LS-CNN > LPU-SVM) except for recall
(i.e., PatchNet > LS-CNN > F-NN > LPU-SVM).

Fig. 10 compares the precision-recall curves for PatchNet
and the baselines. For most values on the curve, PatchNet
obtains the highest recall for a given precision and the
highest precision for a given recall. For example, for a low
false positive rate of 5 percent (precision of 0.95), PatchNet
achieves a recall of 0.786 which is 14.9% higher than that
of the best performing baseline. Likewise, for a low false
negative rate of 5 percent (recall of 0.95), PatchNet achieves
a precision of 0.603 which is 41.2% higher than that of the
best performing baseline. In addition, considering the sweet
spots where both precision and recall are high (larger than
0.8), PatchNet can achieve an F1 score of up to 0.886 which
is 10.6% higher than that of the best performing baseline.

Fig. 11 shows Venn diagrams indicating the number of
patches that PatchNet and each of the baselines correctly
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Fig. 10: Precision-recall curve: PatchNet vs. LPU+SVM, LS-
CNN, and F-NN.
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Fig. 11: Venn diagrams showing the number of stable
patches identified by PatchNet and the various baselines

recognize as stable. The top diagram compares the Keyword
approach to the two approaches, PatchNet and LS-CNN,
that automatically learn the relevant features. While there
are over 20K patches that all three approaches classify as sta-
ble, there are another 11K that are found by both learning-
based approaches, showing the advantage of learning-based
approach. As compared to Keyword and LS-CNN, there are
almost 7,000 patches that are only recognized by PatchNet,
while this is the case for fewer than 2,000 patches for LS-
CNN, showing the value of an approach that takes the
properties of code changes into account.

The bottom diagram then compares PatchNet to the two
approaches, LPU+SVM and F-NN, in which the code fea-
tures are handcrafted. While all three approaches correctly
recognize over 27K patches as stable, there are again 3x
more patches that only PatchNet correctly detects as stable
than there are that only each of the other two approaches
recognizes as stable. Examples of PatchNet true positives
not found by the other baselines include 5567e989198b6 and
2e31b4cb895a. Examples of PatchNet false negatives found
by at least one other baseline include 03f219041fdb and
56199016e867.

All of the above measures of precision and recall assume
that the set of patches found in the tested Linux kernel
versions is the correct one. Our motivation, however, is that
bug fixing patches that should be propagated to the Linux
kernel stable versions are being overlooked by the existing
manual labeling process. Showing that PatchNet improves
on the existing manual process requires collecting a dataset
of patches that have not been propagated to stable kernels,
but should have been. Collecting such a dataset, however,

6. git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
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TABLE 3: Contribution of commit messages, code changes
and function names to PatchNet’s performance

Accuracy Precision Recall F1 AUC
PatchNet-C 0.722 0.727 0.748 0.736 0.741
PatchNet-M 0.737 0.732 0.778 0.759 0.753
PatchNet-NN 0.776 0.745 0.779 0.765 0.768
PatchNet 0.862 0.839 0.907 0.871 0.860

requires substantial Linux kernel expertise, which it is not
feasible to harness at a large scale. We have nevertheless
been able to carry out two experiments in this direction.
First, we randomly selected 200 patches predicted as stable
patches by PatchNet, but that were not marked as stable
in our dataset. We sent the 200 patches to Sasha Levin (a
Linux stable-kernel maintainer and the developer of F-NN)
to label. Among the 200 patches, Levin labeled 61 patches
(i.e., 30.5%) as stable, highlighting that our approach can
find many additional stable patches that were not identified
by the existing manual process. Note that these patches
predated Levin’s used of F-NN on the Linux kernel. Second,
we looked at commits that have no Cc stable tag that Sasha
Levin selected with the aid of F-NN for the Linux 4.14
stable tree. These commits postdate all of the commits in
our dataset. There are over 1,800 of them, showing the false
negatives in the existing manual process and the need for
automated support. PatchNet detects 91% of them as stable.
The relationship between the results of F-NN and PatchNet
is similar to that shown in Fig. 11 for patches in our original
dataset and confirms that PatchNet can find stable patches
that were not identified by the existing manual process.

RQ3: Does PatchNet benefit from considering both the
commit message and the code changes, and do function
names help identify stable patches? To answer this RQ, we
conduct an ablation test [34], [46] by ignoring the commit
message, the code changes, or the function names in the
code changes in a given patch one-at-a-time and evaluating
the performance. We create three variants of PatchNet:
PatchNet-C, PatchNet-M, and PatchNet-NN. PatchNet-C
uses only code change information while PatchNet-M uses
only commit message information. PatchNet-NN uses both
code change and commit message information, but ignores
the function names in the code changes. We again use the
five copies of the dataset described in RQ1 and compute the
various evaluation metrics.

Table 3 shows that the performance of PatchNet de-
grades if we ignore any one of the considered types of
information. Accuracy, precision, recall, F1 score, and AUC
drop by 19.39%, 15.41%, 21.26%, 18.34%, and 16.06% re-
spectively if we ignore commit messages. They drop by
16.96%, 14.62%, 16.58%, 14.76%, and 14.21% respectively if
we ignore code changes. And they drop by 11.08%, 12.62%,
16.43%, 13.86%, and 11.98% respectively if we ignore func-
tion names. Thus, each kind of information contributes to
PatchNet’s performance. Additionally, the drops are greatest
if we ignore commit messages, indicating that they are
slightly more important than the other two to PatchNet’s
performance.

RQ4: What are the results of PatchNet on the complete
set of Linux kernel patches? For RQ1, we use a dataset
collected such that the number of stable and non-stable

patches is roughly balanced. Among the 267,251 patches
that meet the selection criteria, we picked 42,408 stable
patches and 39,995 non-stable patches to build our dataset.
To investigate the results of PatchNet on the complete set
of patches from Linux v3.0-v4.12 having at most 100 lines
(and accepted by our preprocessor), we randomly divide
the remaining 184,481 non-stable patches into five sets and
merge each of them with each of the five test sets described
in RQ1. After this process, we have a new collection of
five test sets. In each test set, there are around 8.4K stable
patches and 44.8K non-stable patches. For each new test
set, we use the corresponding model trained for RQ1. We
repeat this five times, and then average the results to get the
aggregated AUC score. PatchNet achieves an average AUC
of 0.808. Since the new five test sets are highly imbalanced
(only 15.79% patches are stable patches), we omit the other
metrics (i.e., accuracy, precision, recall, and F1) [49], [53],
[60]. We also trained PatchNet on a whole training dataset
(i.e., 42,408 stable patches and 39,995 non-stable patches)
and evaluated it on 184,481 non-stable patches. We find that
PatchNet can correctly label them as non-stable 81.32% of
the time.

We also check the effectiveness of PatchNet on patches
that have more than 100 lines of code (i.e., long patches). As
mentioned earlier, we omit those patches from our training
dataset as they do not meet the selection criteria of Linux
kernel. We collect 52,415 long patches from July 2011 to
July 2017. Among them, there are 3,376 long stable patches
and 49,039 long non-stable patches. 21.33% of these patches
contain the “Cc: stable” tag. The others may have been
manually selected for stable versions despite not having
a tag or may come from the release candidates. We again
train PatchNet on the whole training dataset and evaluate
the effectiveness of PatchNet on the 52,415 long patches.
PatchNet achieves an AUC score of 0.805. Again we only
use AUC as this dataset is highly imbalanced [49], [53], [60].

Finally, we also check whether there is a difference of
performance in classifying patches containing a “Cc: stable”
tag and patches that do not containing a “Cc: stable” tag.
Among the 42,408 stable patches, there are 15,410 stable
patches with a stable tag and 26,998 stable patches with no
stable tag. The latter may again have been manually selected
for stable versions despite not having a tag or may come
from the release candidates. For each test set described in
RQ1, we split the stable patches into two groups: tagged
stable patches and non-tagged stable patches. We run Patch-
Net on the stable patches of each test set to predict the
stable patches and sum the results of predicting the stable
patches. Among 15,410 tagged stable patches, PatchNet pre-
dicts 14,578 patches as stable patches (i.e., 94.60%). Among
the 26,998 non-tagged stable patches, PatchNet predicts
23,466 patches as stable patches (i.e., 86.92%). We find that
PatchNet is more successful at recognizing tagged patches,
even when it does not have access to information about the
“Cc: stable” tag.

5 QUALITATIVE ANALYSIS AND DISCUSSION

In this section, we analyze some of the results obtained in
Section 4.6, considering in detail a patch where PatchNet
performs well and another where it performs poorly.
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1 commit 203dc2201326fa64411158c84ab0745546300310
2 Author: Jakob Bornecrantz <jakob@vmware.com>
3 Date: Mon Sep 17 00:00:00 2001 +0000
4
5 vmwgfx: Do better culling of presents
6
7 Signed-off-by: Jakob Bornecrantz <jakob@vmware.com>
8 Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
9 Signed-off-by: Dave Airlie <airlied@redhat.com>

10
11 diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
12 b/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
13 index ac24cfd..d31ae33 100644
14 --- a/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
15 +++ b/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
16 @@ -1098,6 +1098,7 @@ int vmw_kms_present(struct vmw_private *dev_priv,
17 ...
18 + int left, right, top, bottom;
19 ...
20 + left = clips->x;
21 + right = clips->x + clips->w;
22 + top = clips->y;
23 + bottom = clips->y + clips->h;
24 +
25 + for (i = 1; i < num_clips; i++) {
26 + left = min_t(int, left, (int)clips[i].x);
27 + right = max_t(int, right, (int)clips[i].x + clips[i].w);
28 + top = min_t(int, top, (int)clips[i].y);
29 + bottom = max_t(int, bottom, (int)clips[i].y + clips[i].h);
30 + }
31 + return err;
32 ...
33 - cmd->body.srcRect.left = 0;
34 - cmd->body.srcRect.right = surface->sizes[0].width;
35 - cmd->body.srcRect.top = 0;
36 - cmd->body.srcRect.bottom = surface->sizes[0].height;
37 + cmd->body.srcRect.left = left;
38 + cmd->body.srcRect.right = right;
39 + cmd->body.srcRect.top = top;
40 + cmd->body.srcRect.bottom = bottom;
41 ...
42 - blits[i].left = clips[i].x;
43 - blits[i].right = clips[i].x + clips[i].w;
44 - blits[i].top = clips[i].y;
45 - blits[i].bottom = clips[i].y + clips[i].h;
46 + blits[i].left = clips[i].x - left;
47 + blits[i].right = clips[i].x + clips[i].w - left;
48 + blits[i].top = clips[i].y - top;
49 + blits[i].bottom = clips[i].y + clips[i].h - top;
50 ...
51 - int clip_x1 = destX - unit->crtc.x;
52 - int clip_y1 = destY - unit->crtc.y;
53 - int clip_x2 = clip_x1 + surface->sizes[0].width;
54 - int clip_y2 = clip_y1 + surface->sizes[0].height;
55 + int clip_x1 = left + destX - unit->crtc.x;
56 + int clip_y1 = top + destY - unit->crtc.y;
57 + int clip_x2 = right + destX - unit->crtc.x;
58 + int clip_y2 = bottom + destY - unit->crtc.y;
59 ...

Fig. 12: Example of a successfully identified stable patch.

5.1 Successful Case

We first present a patch that PatchNet can predict as a stable
patch, intending to show an advantage of our model.

Figure 12 shows a patch propagated to stable kernels.
The commit message is on line 5 and the code changes are on
lines 16-59. The code changes include one changed file, five
hunks, 12 removed lines, and 25 added lines. PatchNet is
able to predict the patch in Figure 12 as stable patch. We see
that the commit message of this patch is quite short and does
not contain keywords such as “bug” or “fix”. To recognize
the patch as a stable patch, the stable kernel maintainer has
to study the code changes to understand the impact of the
changes in the kernel code. In the code changes, the four
variables (i.e, left, right, top, and bottom) are defined
and used across the multiple hunks in the changed file
(i.e., vmwgfx_kms.c). We also see the difference between
removed lines and added lines when the author committed
his code. By representing the removed code and the added
code as two three-dimensional matrices (each dimension
represents the number of hunks, the number of removed or
added code lines, and the number of words in each removed
or added code line), PatchNet uses the removed code module
and the added code module to construct the embedding vector
of the removed code and added code, respectively (see Sec-
tion 3.3). The two embedding vectors are then concatenated

1 commit c607f450f6e49f5794f27617bedc638b51044d2e
2 Author: Al Viro <viro@zeniv.linux.org.uk>
3 Date: Sat May 11 12:38:38 2013 -0400
4
5 au1100fb: VM_IO is set by io_remap_pfn_range()
6
7 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
8
9 diff --git a/drivers/video/au1100fb.c b/drivers/video/au1100fb.c

10 index 700cac067b46..ebeb9715f061 100644
11 --- a/drivers/video/au1100fb.c
12 +++ b/drivers/video/au1100fb.c
13 @@ -385,8 +385,6 @@ int au1100fb_fb_mmap(struct fb_info *fbi, struct vm_area_struct *vma)
14 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
15 pgprot_val(vma->vm_page_prot) |= (6 << 9); //CCA=6
16
17 - vma->vm_flags |= VM_IO;
18 -
19 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
20 vma->vm_end - vma->vm_start,
21 vma->vm_page_prot)) {

Fig. 13: Example of an unsuccessfully identified stable patch.

to represent the code change information. By doing this
process, the distinction between removed lines and added
lines is preserved. PatchNet automatically learns from this
rich representation by updating its parameters during the
training process (see Section 4.4) to build a model that can
predict whether a patch is stable.

On the other hand, we find that none of the other
baselines are able to classify the patch in Figure 12 as a
stable patch. Keyword is a heuristic approach that only looks
at whether the content of a commit message includes “bug”
or “fix”. LS-CNN concatenates the removed lines and added
lines in the multiple hunks without preserving the code
changes information. LPU+SVM and F-NN define a set of
features for the code changes (i.e., the number of removed
code lines, the number of added code lines, the number
of hunks in a commit, etc.). The manual creation of code
changes features may overlook features that are important
to identify stable patches, making LPU+SVM and F-NN
unable to classify the patch in Figure 12 as a stable patch.

5.2 Unsuccessful Case

Next, we present a patch that PatchNet fails to classify
correctly as a stable patch. This example serves to provide an
understanding of cases in which PatchNet may not perform
well.

Figure 13 shows a stable patch that was not recognized
by PatchNet. Its commit message does not contain any key-
words (i.e., “bug” or “fix”) that suggest whether the patch is
a stable patch. The code changes only include one removed
line and the removed line contains only three words: vma,
vm_flags, and VM_IO. As there is very little information in
both the commit message and the code changes, PatchNet
is unable to predict the patch in Figure 13 as a stable patch.
We find that the other baselines (i.e, keywords, LS-CNN, and
LPU+SVM), except F-NN, also fail to classify the patch as a
stable patch. F-NN considers not only the commit message
and the code changes of the given patch, but also informa-
tion such as author name, reviewer information, file names,
etc. This suggests that when the information of the commit
message and the code changes is limited, an approach that
takes advantage of other information in a given patch may
perform better than PatchNet.
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6 THREATS TO VALIDITY

Internal validity. Threats to internal validity relate to errors
in our experiments and experimenter bias. We have double
checked our code and data, but errors may remain. In the
baseline approach by Tian et al. [63], commits were labeled
by an author with expertise in Linux kernel code, which may
introduce author bias. In this work, none of the authors label
the commits.
External validity. Threats to external validity relate to the
generalizability of our approach. We have evaluated our
approach on more than 80,000 patches. We believe this is
a good number of patches. Still, the results may differ if
we consider other sets of Linux kernel patches. Similar to
the evaluation of Tian et al. [63], we only investigated Linux
kernel patches, although PatchNet can be applied to patches
of other systems, if labels are available. In the future, we
would like to consider more projects. Still, we note that
the Linux kernel represents one of the largest open source
projects, with over 16 million lines of C code, and that
different kernel subsystems have different developers and
very different purposes, resulting in a wide variety of code.
Construct validity. Threats to construct validity relate to
the suitability of our evaluation metrics. We use standard
metrics commonly used to evaluate classifier performance.
Thus, we believe there is little threat to construct validity.

7 RELATED WORK

Researchers have applied deep learning techniques to solve
software engineering problems, including code clone detec-
tion [8], [44], [68], software traceability link recovery [17],
bug localization [25], [36], defect detection [66], [70], auto-
mated program repair [18], and API learning [16]. However,
we did not find any research that applied deep learning
techniques to learn semantic representations of patches for
similar tasks such as stable patch identification, patch clas-
sification, etc. Here, we briefly describe the most closely
related work besides the baselines described in Section 4.3.
Sequence-to-sequence learning. Gu et al. adopted a neu-
ral language model named a Recursive Neural Network
(RNN) [19], [50] encoder-decoder to generate API usage
sequences, i.e., a sequence of method names, for a given
natural language query [16]. Gupta et al. proposed DeepFix
to automatically fix syntax errors in C code [18]. DeepFix
leverages a multi-layered sequence-to-sequence neural net-
work with attention [51], to process the input code and
a decoder RNN with attention that generates the output
fixed code. The above studies focus on learning sequence-to-
sequence mappings and thus consider a different task than
the one considered in our work.
Learning code representation. CCLearner [44] learns a deep
neural network classifier from clone pairs and non clone
pairs to detect clones. To represent code, it extracts features
based on different categories (reserved words, operators,
etc.) of tokens in source code. White et al. presented another
deep learning-based clone detector [68]. Their tool first
uses RNN to map program tokens to continuous-valued
vectors, and then uses RNN to combine the vectors with
extracted syntactic features to train a classifier. Wang et al.
used a deep belief network (DBN) [21] to predict defective
code [66]. The DBN learns a semantic representation (in the

form of a continuous-valued vector) of each source code
file from token vectors extracted from programs’ ASTs. Lam
et al. combined deep learning with information retrieval to
localize buggy files based on bug reports [36]. Bui and Jiang
proposed a deep learning based approach to automatically
learn cross-language representations for various kinds of
structural code elements (i.e., expressions, statements, and
methods) for program translation [8]. Different from the
above studies, we design a novel deep learning architecture
that focuses on code changes, taking into account their
hierarchical and structural properties.
Learning of both code and text representations. Huo and
Li proposed a model, LS-CNN, for classifying if a source
code file is related to a bug report (i.e., the source code file
needs to be fixed to resolve the bug report) [24]. LS-CNN is
the first code representation learning method that combines
CNN and LSTM (a specific type of RNN) to extract semantic
representations of both code (in their case: a source code
file) and text (in their case: a bug report). Similar to LS-
CNN, PatchNet also learns semantic representations of both
code and text. However, different from LS-CNN, PatchNet
includes a new representation learning architecture for com-
mit code comprising the representations of removed code
and added code of each affected file in a given patch.
The representation of removed code and added code is
able to capture the sequential nature of the source code
inside a code change, and it is learned following a CNN-3D
architecture [26] instead of LSTM. Our results in Section 4
show that PatchNet can achieve an 11.24% improvement in
terms of F1 over the LS-CNN model.

8 CONCLUSION

In this paper, we propose PatchNet, a hierarchical deep
learning-based model for identifying stable patches in the
Linux kernel. For each patch, our model constructs em-
bedding vectors from the commit message and the set of
code changes. The embedding vectors are concatenated and
then used to compute a prediction score for the patch.
Different from existing deep learning techniques working
on the source code [16], [17], [24], [36], [44], [66], [68],
our hierarchical deep learning-based architecture takes into
account the structure of code changes (i.e., files, hunks, lines)
and the sequential nature of source code (by considering
each line of code as a sequence of words) to predict stable
patches in the Linux kernel.

We have extensively evaluated PatchNet on a new
dataset containing 82,403 recent Linux kernel patches. On
this dataset, PatchNet outperforms four baselines includ-
ing two also based on deep-learning. In particular, for a
wide range of values in the precision-recall curve, PatchNet
obtains the highest recall for a given precision, as well
as the highest precision for a given recall. For example,
PatchNet achieves a 14.9% higher recall (0.786) at a high
precision level (0.950) and a 41.2% higher precision (0.603)
at a high recall level (0.950) compared to the best-performing
baseline.

In future work, we want to investigate ways to improve
our approach further, e.g., by incorporating additional data
such as more kinds of names and type information. Another
issue is to identify the stable versions to which a patch
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should be applied. We plan to investigate whether machine
learning can help with this issue. It would also be interesting
to apply our approach that learns patch embeddings to
other related problems, e.g. identification of valid/invalid
patches in automated program repair [69], assignment of
patches to developers for code review [62], [71], etc.
Dataset and Code. The dataset and code for PatchNet are
available at https://github.com/hvdthong/PatchNetTool.
A video demonstration of PatchNet is available at https:
//goo.gl/CZjG6X.
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