
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2021

Smart contract development: Challenges and opportunities Smart contract development: Challenges and opportunities

Weiqin ZOU
Nanjing University

David LO
Singapore Management University, davidlo@smu.edu.sg

Pavneet Singh KOCHHAR
Microsoft

Xuan-Bach D. LE
University of Melbourne

Xin XIA
Monash University

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons, and the Technology and Innovation Commons

Citation Citation
ZOU, Weiqin; LO, David; KOCHHAR, Pavneet Singh; LE, Xuan-Bach D.; XIA, Xin; FENG, Yang; CHEN, Zhenyu;
and XU, Baowen. Smart contract development: Challenges and opportunities. (2021). IEEE Transactions
on Software Engineering. 47, (10), 2084-2106.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4496

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4496&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4496&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4496&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Weiqin ZOU, David LO, Pavneet Singh KOCHHAR, Xuan-Bach D. LE, Xin XIA, Yang FENG, Zhenyu CHEN, and
Baowen XU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4496

https://ink.library.smu.edu.sg/sis_research/4496

1

Smart Contract Development:
Challenges and Opportunities

Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia, Yang Feng, Zhenyu Chen,
Baowen Xu

Abstract—Smart contract, a term which was originally coined to refer to the automation of legal contracts in general, has recently seen
much interest due to the advent of blockchain technology. Recently, the term is popularly used to refer to low-level code scripts running
on a blockchain platform. Our study focuses exclusively on this subset of smart contracts. Such smart contracts have increasingly been
gaining ground, finding numerous important applications (e.g., crowdfunding) in the real world. Despite the increasing popularity, smart
contract development still remains somewhat a mystery to many developers largely due to its special design and applications. Are
there any differences between smart contract development and traditional software development? What kind of challenges are faced by
developers during smart contract development? Questions like these are important but have not been explored by researchers yet. In
this paper, we performed an exploratory study to understand the current state and potential challenges developers are facing in
developing smart contracts on blockchains, with a focus on Ethereum (the most popular public blockchain platform for smart contracts).
Toward this end, we conducted this study in two phases. In the first phase, we conducted semi-structured interviews with 20 developers
from GitHub and industry professionals who are working on smart contracts. In the second phase, we performed a survey on 232
practitioners to validate the findings from the interviews. Our interview and survey results revealed several major challenges developers
are facing during smart contract development: (1) there is no effective way to guarantee the security of smart contract code; (2) existing
tools for development are still very basic; (3) the programming languages and the virtual machines still have a number of limitations; (4)
performance problems are hard to handle under resource constrained running environment; and (5) online resources (including
advanced/updated documents and community support) are still limited. Our study suggests several directions that researchers and
practitioners can work on to help improve developers’ experience on developing high-quality smart contracts.

Index Terms—Smart Contract, Challenges, Empirical Study, Blockchain

F

1 INTRODUCTION
Since the release of Bitcoin in 2009 [105], decentralized cryp-
tocurrencies have gained considerable attention and adoption [2].
For instance, till February 2018, the numbers of coins and tokens
hosted on the coinmarketcap1 were 896 and 649, respectively. A
cryptocurrency is administrated not by a central authority, but
by automated consensus among networked users. The users in
the cryptocurrency network run a consensus protocol to maintain
and secure a public and append-only ledger of transactions, i.e.,
blockchain. In recent years, the potential of blockchain technology
has been exploited beyond cryptocurrencies, among which a
promising use of blockchain is smart contract.

The term “smart contract” was originally coined to refer to the
automation of legal contracts in general [140]. The term was (and

• Weiqin Zou, Yang Feng, Zhenyu Chen, and Baowen Xu are with State Key
Laboratory for Novel Software Technology, Nanjing University, China.
E-mail: wqzou@smail.nju.edu.cn, charles.fy0708@gmail.com,
zychen@nju.edu.cn, bwxu@nju.edu.cn

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Pavneet Singh Kochhar is a software engineer in Microsoft, Canada.
E-mail: kochharps.2012@phdis.smu.edu.sg

• Xuan-Bach Dinh Le is with School of Computing and Information Systems,
University of Melbourne, Australia.
E-mail: bach.le@unimelb.edu.au

• Xin Xia is with Faculty of Information Technology, Monash University,
Australia.
E-mail: xin.xia@monash.edu

• Zhenyu Chen is the corresponding author.
1http://coinmarketcap.com

is still) used to refer to a legal contract which or at least parts of
which is capable of being expressed and implemented in software
[66]. The advent of blockchain technology has recently brought
much interest on smart contracts. Today, the term is popularly
used to refer to as code scripts that run synchronously on multiple
nodes of a distributed ledger (e.g., a blockchain) [30]. In this paper,
we mainly focus on the latter, more specific definition of smart
contracts, i.e., low-level code scripts running on blockchains.

As a program running on a blockchain, a smart contract
can be correctly executed by a network of mutually distrusting
nodes without the need of an external trusted authority. The
self-executing nature of smart contracts provides a tremendous
opportunity for use in many fields that rely on data to drive
transactions [139]. In the beginning of 2018, more than 10% of the
jobs advertised on Guru2 (one of the biggest freelancer sites) were
related to smart contracts and blockchains [56]. Currently, more
and more developers are devoting themselves to developing smart
contracts in various domains, e.g., finance, game, and notary [11].
The number of smart contracts deployed on Ethereum3 (the most
popular public blockchain for running smart contracts with market
capitalization exceeding $80 billions) has also sharply increased
to more than 2 million in March 20184.

The emergence of smart contracts brings about a growing
and widespread interest in the research community. More and
more researchers are taking smart contracts as study targets [21],

2http://www.guru.com/
3http://www.ethereum.org/
4https://etherscan.io/accounts/c. Last Access: March 2018

2

[90], [69]. A growing number of papers have been published in
events such as ACM/IEEE International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB)5, and
International Workshop on Blockchain Oriented Software Engi-
neering (IWBOSE)6, as well as some tracks at conferences such
as ACM Conference on Computer and Communications Security
(CCS) and International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA)7[122],
etc.

Despite the increasing popularity of smart contract, the po-
tential challenges that developers are facing when developing
smart contracts have not yet been clearly explored. Without
understanding these challenges, practitioners and researchers may
spend much efforts developing techniques and tools that are not
appreciated by developers and thus are underused in practice.

To help advance research in smart contract development, we
conducted an empirical study to explore the work practice and
potential challenges faced by developers during smart contract
development on blockchains, with a focus on Ethereum. We
followed a mixed-method approach that is a combination of
interviews (qualitative) and survey (quantitative). Specifically,
we first interviewed 20 developers with different backgrounds
and expertise. During interviews, we asked participants about
their normal work practices and relevant challenges faced during
different stages (e.g., coding, testing, debugging) of smart contract
development. Then we used open card sorting [135] to analyze the
interview results. The resulting categories produced by open card
sorting were grouped into six groups, i.e., security, debugging,
programming language, Ethereum virtual machine, gas, and online
learning resources & community support. After that, we performed
a validation survey with 232 developers to confirm various insights
from the interviews, including challenges, best practices, and
desired improvements.

Based on the interviews and survey, we found that develop-
ers cared a lot about code security but did not have effective
ways to prove the correctness, reliability and security of their
code; meanwhile, the lack of powerful tools especially step-
through/interactive debuggers often made it painful to program
smart contracts. Furthermore, as mentioned by developers, the
current programming languages and virtual machines that were
specifically designed for smart contracts still had a number of lim-
itations (e.g., lack of general purpose libraries and limited support
for debugging). These limitations often adversely affected their
project development experience, especially for complex projects.
Another big challenge for developers was performance issues -
they were interested in tools and resources that could help them
write efficient smart contracts that consume fewer resources on
the blockchain. Besides, lack of advanced/updated documents and
delay in responses from the online community also had an impact
on smart contract development.

The major contributions of our study are as follows:
• To the best of our knowledge, this is the first in-depth study

that explores practitioners’ perceptions on current state of smart
contract development and challenges ahead through interviews
and survey.

• We perform an analysis of the qualitative and quantitative
data and highlight actionable insights and implications that

5http://conferences.computer.org/icse-w/2018/#!/toc/28
6http://saner.unimol.it/blockchainOrientedSoftwareEngineering
7http://www.isola-conference.org/isola2018/tracks.html

developers, tool builders, and researchers can use to improve
developer experience during smart contract development.

The remaining parts of this paper are structured as follows: In
Section 2, we provide background materials on smart contracts. In
Section 3, we present our empirical study methodology in detail.
The findings of our study are presented in Section 4. Section 5
presents some potential research directions based on our findings.
Section 6 discusses the threats to validity of our study. The last
two sections present the related work and summarize our study.

2 BACKGROUND

Blockchain. A blockchain in its very simple form is a chain of
records called blocks, in which blocks are linked and secured using
cryptography. Each block is characterized by some transaction
data, a time stamp, and the hash value of its previous block.
Blockchain can be considered as a public ledger where each
block contains records of some transactions. The blockchain is
not stored in a single location but on a network of nodes, where
each network node has a copy of this blockchain. This means
all the records are public and easily verifiable to all network
nodes, which makes it very expensive for a node to modify
any data in the blockchain. Once a block is appended to the
blockchain, it is extremely hard to modify the block’s transactions
without achieving consensus of all nodes. All these features are
by design and based on peer-to-peer consensus protocol [105].
The blockchain technology allows two untrusted parties to make
transactions securely without the participation of a trusted third
party. This makes blockchain suitable for record keeping tasks
such as storage of ownership rights of musical work, financial
transactions, etc. Cryptocurrencies which are based on blockchain
have attracted considerable attention lately [90]. An emerging area
of blockchain technology is smart contract.
Smart Contract. The term “smart contract” was coined by Nick
Szabo in the mid 1990s [140]. He suggested translating the clauses
of a contract into code and embedded them into software or hard-
ware to make them self-execute, in order to minimise contracting
cost between transacting parties and to avoid accidental exceptions
or malicious actions during contract performance.

Currently people in different disciplines used the term “smart
contract” in different ways. Some referred “smart contract” as
a legal contract which (or at least elements of which) could be
represented by software. While some others took “smart contract”
as code scripts which are designed to execute certain tasks once
pre-defined conditions are met; these scripts typically (although
not necessarily) run on distributed ledgers (e.g., blockchains)
[27], [136]. Clack et al. proposed a definition of smart contract
which is broad enough to cover the breath of above-mentioned
definitions. They defined a smart contract as “an automatable and
enforceable agreement. Automatable by computer, although some
parts may require human input and control. Enforceable either by
legal enforcement of rights and obligations or via tamper-proof
execution of computer code.” [29].

In this paper, we mainly focus on low-level code scripts
running on blockchains. As a program running on a blockchain,
a smart contract can facilitate a contract between two parties
without relying on a trusted third party. Technically speaking, a
smart contract is a program that contains both data (e.g., account
balance) and executable code. Smart contract can be stored in the
blockchain, and can be automatically executed when certain pre-
condition is met. After each execution of the smart contract, its
state can be updated on the blockchain [152].

3

Smart Contracts Running on Corda. Corda is an open-source
permissioned blockchain platform that is explicitly designed to
account for the highly regulated environment of the financial
service industry [92]. Within Corda, each node has a certificate
that maps their network identity to a real-world legal identity.
The communication between Corda nodes is point-to-point and the
transaction history is fully encrypted and private to only necessary
parties [17]. Smart contracts running on Corda are allowed to
consist of both code and legal prose [146]. The associated legal
prose could be referred back to traditional legal systems in case
of legal disputes in smart contract performance. A smart contract
in Corda has three key elements, namely executable code, state
objects, and commands [119]. The executable code mainly val-
idates the changes to state objects in transactions. State objects
are data that record the existence, content and current state of
an agreement between two or more parties, and work as input
or output of transactions. Commands are additional data that are
included within transactions. They mainly describe what is going
on and tell the executable code the way to verify a transaction. All
smart contracts could be programmed in Kotlin or Java and could
be compiled into Java Virtual Machine (JVM) bytecode.
On-Chain and Off-Chain Smart Contracts. Due to the nature of
blockchain technology, smart contracts deployed on blockchains
(i.e., on-chain smart contracts) generally need to be executed
and validated by each node, with all relevant transactions being
visible to the entire blockchain network. This reduces the privacy
of smart contracts. Further, for smart contracts especially those
with complex computation, the transaction cost may be high
(e.g., users need to pay gas fee for transactions on Ethereum)
and the validation of relevant transactions may take a long time
(due to replicated execution of smart contracts among nodes). As
an alternative solution towards these problems, the idea of “off-
chain” smart contract has been proposed [41], [83]. Off-chain
smart contracts are executed outside of the blockchain. Unlike on-
chain smart contracts, an off-chain smart contract only needs to
be signed and executed by interested participants. As proposed, an
off-chain smart contract is generally designed to encapsulate func-
tions involving high-cost computation or private information about
the participants; while an on-chain smart contract is suggested to
conduct some low-cost and non-sensitive tasks. To preserve the
properties and benefits of a blockchain, in practice, the results of
off-chain smart contracts would be for example logged on-chain
[41]. In case of any disagreement on the execution results of an
off-chain smart contract, an on-chain smart contract may be used
to fork the off-chain smart contract and execute it on blockchain
to solve the dispute [83].
Blockchain Platforms for Smart Contracts. Blockchains can be
divided into public and non-public categories. Public blockchain
platforms allow any user to join the network while non-public
blockchain platforms allow only permitted users to join. Examples
of public blockchains are Ethereum, and NEO8. Some examples
of non-public blockchains are Fabric9 and Quorum10. Different
blockchain platforms provide different support for smart contracts.
Some (e.g., Bitcoin) may only allow users to use a simple scripting
language to develop smart contracts with simple logic; while
some platforms, such as Ethereum, support much more advanced
programming languages for writing smart contracts [127].

8http://neo.org/
9http://www.hyperledger.org/

10http://www.jpmorgan.com/global/Quorum

Ethereum. Since its release in July, 2015, Ethereum has grown to
become the most popular blockchain platform for smart contracts
[21]. Ethereum provides a decentralised Turing-complete ma-
chine, namely the Ethereum Virtual Machine (EVM), to execute
scripts using an international network of public compute nodes
[19]. On Ethereum, people can use programming languages, e.g.,
Solidity11 and Vyper12, to develop complex smart contract appli-
cations. All smart contracts written in high-level languages would
be compiled to the same format, i.e., Ethereum bytecode, and be
executed by the EVM. Ethereum also has its own cryptocurrenty,
namely Ether. Ether can be transferred between accounts and used
to compensate participants who mine blocks for computations
performed [19].
Gas. Ethereum adopts an internal pricing mechanism, i.e., gas
for all transactions running on it [19]. Gas is a measure of how
much computing resource a transaction would cost. People need
to pay gas fee (in Ethers) for each transaction they make; and
a transaction would fail if it runs out of gas. If users want to
have their transactions mined by miners faster, they can choose to
increase the gas price. By using the gas mechanism, Ethereum is
able to better allocate resources and mitigate spam on the network.
Trusted Execution Environment (TEE). To preserve the confi-
dentiality or privacy of smart contracts, some efforts are being
made to integrate trusted execution environments (TEEs) with
blockchains [26], [70], [46]. A TEE is a secure area of a main
processor which ensures sensitive data to be stored, processed, and
protected in an isolated environment called an enclave. Data inside
an enclave could only be accessed by code residing in the same
enclave. Within an enclave, both the code and data are protected by
hardware enforced access control policies. The operating system
and other applications are not able to tamper with or eavesdrop
on the state of any application running inside the enclave unless
the hardware is breached. There have been several realizations of
TEE, including Intel SGX (the most prominent TEE technology
today) [5], TrustZone [7], etc. By using a TEE, one does not need
to trust the host (which runs the blockchain code) of the enclave.

3 METHODOLOGY

Figure 1 shows the overview of our methodology design. On the
whole, our study includes two parts: a series of interviews with 20
expert developers to get insights into smart contract development
and a follow-up survey to validate the findings of the interviews.
We describe the details how we conduct the interview and survey
below.

3.1 Interview

Protocol. In our study, we conducted semi-structured inter-
views [133]. Specifically, we began each interview with an
introduction, a short explanation of our research, and some
demographic questions about the interviewee. Next, we used
some open questions to guide the discussion – some of them
are listed in Table 1. The full list of open questions can be
found at https://github.com/SurfGitHub/smartcontractStudy/blob/
master/interview questions.pdf. These open questions probed our
interviewees about their views on major differences between smart
contract development and traditional software development and
their impacts, challenges involved in performing various smart

11http://github.com/ethereum/solidity
12http://github.com/ethereum/vyper

4

Fig. 1. Overview of methodology design.

contract development activities, etc. Since the interview was semi-
structured, we also asked follow-up questions to dig deeper into
our interview participant’s viewpoints when appropriate. At the
end of the interview, we asked the interviewee to provide any
other important information that we may have missed during the
interview.

We totally had 31 interviewee candidates (more details in
Participant Recruitment below). During interviews, we followed
the methodology employed in [6], [134] to decide when to stop
interviewing, i.e., stopping interviews when saturation of findings
was reached. Saturation is a widely-used methodological principle
in qualitative research [106], [101], [55]. It is often taken to
indicate that further data collection or analysis are unnecessary
based on the data that have been collected or analyzed hitherto
[124]. More specifically, if the collected data is considered al-
ready sufficient and further data collection does not generate new
information, then the sampling should not be continued [137].

Taking into account the findings in behavior and brain sciences
which claim that “there is substantial variability in experimen-
tal results across populations” [58], we made sure to interview
participants from different backgrounds (as shown in Table 2)
before deciding whether saturation had been reached. During each

interview, the authors (who conducted interviews) worked together
to ask questions and take notes. Upon finishing an interview, they
would compare their notes with previous ones to check whether
the interview was bringing any new insights. Finally, we stopped
our interviews when we achieved saturation of the findings after
we interviewed 20 people.

All interviews were performed remotely via Skype, WeChat, or
Google Hangouts, and were audio recorded with the permission of
participants. The average and standard deviation of the interview
time were 52.34 and 15.74 minutes, respectively. Table 2 shows
the basic demographics of the interviewees. According to the table,
the interviewees had an average experience of 11.35 years in
general software development, and 1.27 years in smart contract
development by the time of interviews. Besides, they held various
roles, including developers, testers, project managers, architects,
designers, CEO/CTO, research assistants, and smart contract train-
ers. This to a large extent, guarantees the heterogeneity of those
20 persons.

Participant Recruitment. We contacted potential participants in
multiple ways. We sent emails to smart contract developers on
GitHub. We also contacted some developers in well-known com-

5

TABLE 1
Open Interview Questions (Excerpt).

ID Question

1 What are the main differences between smart contract develop-
ment and traditional software development?

2 How do the differences affect your smart contract development?
3 What practices do you often use to ensure code quality?

4 What kind of tools do you often use to develop smart contract?
Are they useful enough? Why?

5 What is your way to debug/test smart contract? Any problems
encountered?

6 Do you think current programming languages are good enough?
Why?

panies working on smart contract development such as Consen-
Sys13, and OpenZepplin14. Then, we expanded the initial group by
using a snowball process [47], i.e., adding additional participants
recommended by current participants. Finally, 31 persons agreed
to participate in our interviews.
Data Analysis. For each interview, the audio recording was first
transcribed into text. After that, the first author read the tran-
scripts and converted them into separate units each with coherent
meaning. Then, we performed card sorting [135] to identify the
categories from these units. Card sorting is a commonly used
technique that helps to derive categories from data [75], [76].
There are three types of card sorting, namely closed card sorting
with predefined categories for data, open card sorting with no
predefined categories (i.e., the categories of open card sorting are
totally derived from the data), and a hybrid card sorting which
combines the previous two types [159]. Considering our study
is an exploratory one with categories (i.e., challenges of smart
contract development) being unknown in advance, we decided to
adopt an open card sorting process to analyze the interview data.

Specifically, during card sorting, after a card was created for
each textual unit, the cards were then clustered into meaningful
groups, with each group having a topic or a theme. These groups,
i.e., low-level subcategories, further evolved into high-level cat-
egories. The results of such an open card sorting would let us
obtain a hierarchical structure of the categories. Four researchers
including two non-authors were involved in the card sorting
process. Each card was analyzed and verified by two researchers.
Through card sorting, we identified six high-level categories, i.e.,
security, debugging, gas, programming language, the Ethereum
Virtual Machine, and online resources & community support, with
each category containing several subcategories (more details in
Section 4).

3.2 Survey

Design. Our survey includes a number of demographic questions
and smart contract questions. The demographic questions are
mainly designed to understand the background and experience of
respondents. Specifically, we created 8 demographic questions that
ask respondent’s main role (e.g., development, testing, etc.), expe-
rience in software engineering and smart contract development,
country, highest educational qualification, and the kind of projects
and blockchains they mainly work on.

The smart contract questions are designed to validate insights
that we got by analyzing the interviewee comments. For each
of the six categories (i.e., security, debugging, programming
language, Ethereum virtual machine, gas, and online resources &

13https://new.consensys.net/
14https://openzeppelin.org/

TABLE 2
Basic information of interviewees. General Exp. and SC Exp. represent
a participant’s experience in general software development and smart
contract development respectively (in years) till the time of interview.

ID General Exp. SC Exp. Role
P1 21 0.7 CEO and Developer
P2 17 0.7 Architect

P3 15 2.8 CEO, Core developer of
Ethereum

P4 15 2.0 Developer
P5 6 1.5 Developer
P6 4 0.6 Research Assistant
P7 9 1.5 Project Manager
P8 6 1.5 Developer
P9 6 0.8 Developer
P10 7 0.9 Tester
P11 18 1.8 Developer
P12 22 2.0 CEO, Advisor, CTO
P13 15 0.6 Developer

P14 15 1.6 Blockchain speaker and trainer,
co-founder

P15 8 0.5 Developer, co-founder
P16 7 1.5 Developer, Token Sale Advisor
P17 15 0.8 Project Manager
P18 4 2.8 Designer
P19 9 1.5 Developer
P20 8 0.3 Developer

community support) that we identified by analyzing our interview
responses, we created a set of survey questions. In total, we created
27 questions. For some of them, we asked respondents to rate
statements on a Likert scale of 1 to 5 (1 = strongly disagree, and 5
= strongly agree). For some others, we asked respondents to pick
one or a few out of a number of options. Two of the questions were
open-ended. The full list of our survey questions can be found at
http://github.com/SurfGitHub/smartcontractStudy.
Survey Respondent Recruitment and Statistics. Our potential
survey respondents are developers who contributed to smart con-
tract related projects on GitHub. To identify those projects, we first
referred to the topic list15 of GitHub, and chose three topics that
are most related with smart contracts, i.e., Ethereum, Solidity and
Truffle16. Then we downloaded all the repositories under these
three topics. To ensure that we did not miss any popular smart
contract projects, we further used GitHub’s search API to get a
list of projects whose name, description or readme contain the
keyword “smart contract”. After that, we selected and manually
checked 1,000 smart contract related repositories that have the
most stars. For each repository, we obtained the email accounts by
analyzing its commit logs. In the end, we had 4,466 distinct email
addresses. Out of these, more than 2,590 developers were involved
in multiple repositories. Then we randomly selected 2,000 smart
contract developers and sent our survey invitations to them through
emails. In two weeks time, we got 205 responses, with a response
rate of 10.2%. This response rate is similar to those reported
by prior studies [94], [118]. Besides GitHub developers, we also
asked our friends in industry to help broadcast our survey to their
friends and colleagues who may be interested to participate in our
survey. With their help, we got another 27 responses from industry.
In the end, we had 232 responses from respondents coming from
48 countries.

Among the 232 respondents, 81.9% respondents’ main role
is development; and 43.1% respondents have advanced degrees
(e.g., Master, Ph.D.). The respondents have different expertise in

15GitHub Topics list can be accessed at https://github.com/topics.
16http://truffleframework.com/

6

general software development and smart contract development:
32.8% of the respondents have >10 years of general software
development experience, and 66.8% have >4 years of experience;
13.8% respondents have >2 years of smart contract development
experience, and 46.6% have >1 year of experience. We found that
69.4% of the respondents mainly developed smart contracts on
public blockchains; and the ratio of developers who mostly spent
time on open source projects and closed source projects are 40.1%
and 36.2%, respectively.
Data Analysis. After we got all the responses from respondents,
we adopted different analysis methods for closed-ended and open-
ended questions. Specifically, for each closed-ended question, we
counted the votes that went to each answer option. Then for
each answer option, we calculated its vote ratio by dividing the
number of votes for the option over 232 (i.e., the number of all
respondents). While for the open-ended questions, we collected
all the comments respondents made. Then we removed some
comments that were either not meaningful (e.g., “Yes”) or not
related to our research topic (e.g., “happy to help you with your
research”). After that, we tried to place the remaining comments
into their corresponding categories obtained from the interview
analysis. If a comment involved more than one category (e.g.,
belonging to both debugging and security), then we split it into
separate comments with each assigned to only one category.
Whenever we present survey comments, we refer it as (S?), e.g.,
S5 refers to the fifth survey respondent.

To better understand participants’ perspectives of smart con-
tract development, we divided all survey respondents into different
demographic groups, and compared their voting results towards
various challenges and desired improvements mentioned by in-
terviewees. Following prior studies [89], [80], we considered the
following demographic groups:

• Respondents who are developers (Dev)
• Respondents who are testers (Test)
• Respondents who are project managers (PM)
• Respondents with high experience in general software devel-

opment (>=10.0 years17) (seExpH)
• Respondents with low experience in general software devel-

opment (<=3.0 years17) (seExpL)
• Respondents with medium experience in general software

development (remaining respondents with more than 3.0 but
less than 10.0 years of experience) (seExpM)

• Respondents with high experience in smart contract develop-
ment (>=2.0 years18) (scExpH)

• Respondents with low experience in smart contract develop-
ment (<=1.0 year18) (scExpL)

• Respondents with medium experience in smart contract de-
velopment (remaining respondents) (scExpM)

• Respondents with advanced degree, e.g., Master, Ph.D. (Adv)

17The threshold settings of 10 and 3 helped us obtain three expertise groups
with roughly equal numbers of respondents -- the numbers of respondents
with high experience (>=10 years), medium experience (3-10 years) and low
experience (<=3 years) in general software development were 76, 79, and 77,
respectively).

18As the first platform that supports general smart contract development,
Ethereum (released on July 30, 2015) was only about 3.0 years old by the
time we conducted our survey. This indicated that even the most experienced
developers would generally have no more than 3.0 years of experience in
smart contract development. Taking this into account, we chose 2 and 1
as thresholds in determining whether a developer has high experience (>=2
years), medium experience (1-2 years), or low experience (<=1 year) in smart
contract development.

• Respondents without advanced degree (nAdv)
• Respondents who mainly develop on public blockchains

(pubBlk)
• Respondents who mainly develop on non-public blockchains

(nPubBlk)
• Respondents who develop on both public and non-public

blockchains (bothBlk)
For each demographic group, we calculated the number of

respondents who said yes or (strongly) agree, as well as the
number of respondents who said no or (strongly) disagree, to
individual challenges and desired improvements (mentioned by
interviewees), respectively. Then following [160], we adopted
Fisher’s exact test [43] with Bonferroni correction [98] on these
numbers to see whether one group tended to vote differently
from other group(s). Fisher’s exact test is a statistical significance
test used in the analysis of contingency tables, which displays
the frequency distribution of the variables (i.e., the numbers of
yes/(strongly) agree and no/(strongly) disagree votes from each
group in our study). It could assess whether the observed dif-
ference between two proportions, e.g., the ratios of yes/(strongly)
agree votes from two groups, is statistically significant. Bonferroni
correction could help to control the family-wise error rate when
conducting multiple comparisons. Section 4.7 presents the detailed
analysis results.

4 FINDINGS
In this section, we first report our findings for each of the six
categories that were identified by using open card sorting on
interview contents. Each category has several subcategories. For
each subcategory, we pick some of the most meaningful comments
and highlight some statistics that we derived based on our survey
responses to highlight the generalizability of the findings. Then
we present the voting results of each demographic group towards
those challenges and desired improvements mentioned by intervie-
wees, as well as relevant significance tests over these results. Last,
we provide a brief summary of our interview and survey results.

4.1 Security
4.1.1 High requirement for code security
Based on our interviews and survey, we found that there was a
very high emphasis on ensuring code security for smart contracts.
Security concerns bypass all other factors, as highlighted by one
survey respondent: “Contract security concerns and operational
security concerns when managing deployed contracts (e.g. key
management, contract artifact management) permeate all deci-
sions” (S71). In our survey, we found that 75.0% respondents
agreed to the assertion that smart contract development has a much
higher requirement for code security than traditional software
development. Based on the reasons highlighted by interviewees,
we were able to find three major themes on why there was an
increased focus on security in smart contract development:
Sensitive Nature of Information Handled. Since smart contracts
often control and manage sensitive digital assets (such as virtual
currencies, token, digital art files, etc.), people naturally show
greater concern for its security, than they do for traditional
software. As P20 stated: “Developer is dealing with money or
money flows through code. People would of course have a high
requirement on the code security because it controls their assets”.
Irreversible Transactions. Unlike traditional software develop-
ment, users cannot recover any loss they experience while making

7

transactions on a blockchain based financial system using smart
contracts. Since smart contracts run on the blockchain (on which
transactions cannot be reverted), if you lose your money, you lose
it forever. One developer mentioned: “Smart contract development
is very unforgiving in the sense that you might lose a lot of money
and it is impossible to get back. You know, we cannot revert any
transactions on blockchain” (P12).
Code unmodifiable after deployment. Code of smart contract
cannot be changed after it has been deployed to the blockchain.
Unlike traditional software, developers cannot provide a patch to
fix a bug. As P9 stated: “Smart contracts are fundamentally dif-
ferent than regular programming languages due to the blockchain.
Once deployed, smart contracts are difficult to change”.

4.1.2 Hard to guarantee security
We found that 71.6% survey respondents agreed that it was
difficult to guarantee the security of smart contacts during de-
velopment. Based on our interviews, we were able to uncover four
major aspects of these difficulties.
Public code access. As highlighted by one interviewee, the
code of smart contract (e.g., on Ethereum) is always publicly
accessible. This means that anyone can try to exploit the code,
design an attack, and execute it. Also, as smart contracts deal
with money, they are always under focus by attackers willing
to exploit any loophole. Such reasons place a great burden on
smart contract developers who need to secure their code from
many potential attacks. One developer mentioned: “Blockchain
environment provides a kind of a unique environment, because
all of the code runs on the ecosystem is deployed publicly and
is accessible to anyone. Anyone can exploit it and may conduct
an attack if they find some security vulnerability within code. You
need to think like a hacker and defend your code. It is not easy to
anyone” (P3).
Flaws in compiler. Another factor that makes it hard to guarantee
code security lies in the compiler itself. Compared with compil-
ers for traditional programming languages, compilers for smart
contracts are not mature enough. Many security bugs have been
found within smart contract compiler19. Also as the compiler is
continually evolving, new bugs may be uncovered in future which
developers are not even aware of at present. As P4 stated: “People
have discovered a list of security bugs within different compiler
versions. I do not know what new bugs we may encounter within
the compiler since it still evolves. This is bad I mean, you risk your
Solidity code at unseen flaws within future-version compiler”.

Besides, as some survey respondents commented, the compiler
changes constantly and does not always have backward compat-
ibility, which makes it hard to ensure the correctness of code
especially for a long-running project. “Due to constant changes
on compilers, backward compatibility usually is a problem.” (S43)
“Solidity changes very rapidly, and complains that code that
identifies itself as for an older compiler version uses deprecated
features that were current at that version. This means that, for a
long-running project, you either have to update your old contracts
to new language versions (and have them not correspond to the
real, deployed code when you run tests), or you have to ignore a
screen full of warnings every time you build.” (S69)
Lack of best practices for writing safe code. Many interviewees
highlighted the fact that it is harder for them to find coding
and security best practices for smart contract development than

19https://solidity.readthedocs.io/en/develop/bugs.html

for traditional software development. As mentioned by several
interviewees, there are efforts by organizations such as ConsenSys,
to constantly develop and organize some common best practices to
help developers in writing safe code. P2 mentioned, “ConsenSys
wrote quite a good guide on smart contact best practices. We
would always check its update and tend to adopt them”. However,
developers said that such efforts still fall short of meeting the
requirements of smart contract application development. One
interviewee mentioned, “ConsenSys or one of the big companies
doing smart contracts may have that best practices. I can’t find
it as an independent developer. When I develop something new, I
just cannot find any best practice that help me to make it safe. So
I am gonna do with whatever I think is the best” (P13).
Lack of tools/techniques to verify code correctness. In tradi-
tional software development, developers could use various tools
to help them ensure the quality of their code. Whereas in smart
contract development, many interviewees complained that there
are no mature tools to verify the correctness of smart contacts.
Specifically, they mentioned two kinds of tools that they desired
most to better help guarantee code security: code auditing tools
and formal verification techniques (49.1% and 42.2% survey
respondents listed them as their most desired tools, respectively).

• Code auditing tools are the ones which can help developers
to discover bugs, security breaches or violations of program-
ming conventions. As P1 stated: “There are no reliable code
auditing tools to help you do a comprehensive analysis of
smart contract code. I hope we can have such tools to help us
analyze the code, and tell us whether there are some potential
bugs, security problems, or convention violations”.

• Formal verification techniques ensure the security of code
because they are based on mathematical proof. Some inter-
viewees and survey respondents said that they hoped more
research work can be done. As one survey respondent stated:
“Mature and robust formal verification tools would be a
godsend; code coverage can only get you so far in terms
of correctness. Call for formal verification” (S128).

4.1.3 Current best practices for security
As writing secure code is one of the major focus of developing
smart contract applications, we asked developers what steps they
followed to ensure security in face of a number of challenges.
Interviewees mentioned that testing and code review are their
major ways to ensure the correctness of smart contracts, which
are discussed in details below.
Testing. As P11 stated: “To ensure the quality of smart contract, I
think one best practice is to mostly make heavy use of unit testing”.
To better understand the situation of smart contract testing in
practice, we asked interviewees what kinds of testing they con-
ducted and what kinds of code coverage they used, then we asked
the potential challenges they faced during smart contract testing.
We verified their answers in the survey. Our survey results show
that 84.9% developers conducted unit testing, 61.6% developers
performed integration testing, and 25.4% developers performed
performance testing. The most code coverage used by them was
function coverage (with 68.1% votes); the statement, branch, and
condition coverages were less preferred with 37.1%, 34.1%, and
35.8% developers mentioning that they used them, respectively.

Despite the small/medium size of smart contract program20,
72.4% survey respondents agreed it was more difficult to test

20After exploring the size of source code from 10000+ smart contracts on
Ethereum, we found that more than half smart contract have <300 code lines.

8

TABLE 3
Major challenges of testing smart contracts.

Challenge Votes
Difficult to consider all corner cases and scenarios 69.4%
Potential unseen flaws in compilers and virtual machines 53.4%
No mature testing frameworks like other languages 40.5%
Testing needs to be done in an asynchronous way 31.0%
Lack of useful guidance for testing 28.0%
No tool to measure the quality of smart contract test suite 22.4%
Testing consumes gas if tested on testnets or mainnet 22.4%

smart contracts than traditional software projects. Table 3 presents
the major challenges of testing smart contract rated by survey
respondents. The top three challenges are: (1) developers need to
consider all corner cases and scenarios; (2) there exist potential
unseen flaws in compilers and virtual machines themselves; (3)
there are no mature testing frameworks like other languages, e.g.,
Java.
Code review. 84.9% survey respondents agreed that code review
is an essential way to ensure the correctness of smart contacts.
Our survey statistics do reflect that different kinds of reviews are
performed in reality: 83.6% respondents said they would often
perform peer code review within team; 26.3% respondents said
they would often request help in GitHub for code review; and
27.2% developers said they would often hire third party agency to
audit their code.

Meanwhile, compared to traditional software development,
some interviewees mentioned that it is more costly to perform code
reviews for smart contracts. They mentioned two major challenges
of code review that were also verified by our survey results. One
challenge is that it is very time consuming to conduct code review
(agreed by 66.4% of respondents). One developer commented,
“Within our company, all members of our team participate in the
code review. We sit together, read and sometimes discuss code line
by line. It is indeed good for improving code quality, but it is too
time consuming” (P8).

The other challenge is that it is very difficult to find qualified
developers to find security flaws in smart contracts (agreed by
80.2% respondents). One survey respondent commented that you
cannot find people help you unless you pay them: “It’s hard to
find another developer to test or even read your smart contract
without spending extra funds. I think developers that involved in
open-source, should help each other” (S32).

4.2 Debugging
4.2.1 Debugging is painful
During our interviews, most participants complained that it is
more painful to debug smart contract code compared to traditional
software development. In our follow-up survey with developers,
88.8% survey respondents also agreed that it is difficult to debug
smart contract applications. In our semi-structured interviews, two
main categories of debugging challenges came up, which were
also given as answer options to developers during our survey. The
categories are briefly described below:
Lack of powerful interactive debuggers. As smart contract de-
velopment is a very recent technology, there is a lack of powerful
debuggers in this domain. As one interviewee explained, “Current
debuggers, e.g., Remix, can only provide bytecode level debugging
(which requires high skills of developers) and basic interactions,
you cannot use it to e.g., visualize the memory state, step through
the code line by line and check the current values of variables”
(P1). 69.0% survey respondents also agreed that there is a lack of

powerful interactive debuggers, which makes debugging painful
and challenging during smart contract development.
Non-informative error messages. Some interviewees highlighted
the fact that apart from the lack of debugging tools, Solidity (the
language used for smart contract development) and EVM (the run
time environment used for smart contracts) have a poor support for
displaying informative error messages. One interviewee explained,
“Solidity cannot support people to e.g., print error messages in
code. Instead, we can only use events or throw exceptions to track
the state of the transactions” (P19). EVM in some cases does
not even provide support to display error messages for certain
failures such as when a transaction fails. This was highlighted by
one of the interviewee who said, “Sometimes when transactions
fail, EVM even cannot throw out the exception” (P2). In that case,
developers totally have no idea what went wrong.

4.2.2 Current debugging practices
As highlighted in previous section, there is a lack support for
debugging for smart contract development; we were curious to
explore if smart contract developers follow certain practices while
debugging their code. Based on our interviews and survey results,
we summarize the current debugging practices followed by smart
contract developers below :
• In our survey, 65.1% respondents said that they use existing

debugging tools, e.g., Remix or truffle debugger, to debug
buggy code. However, another 65.1% respondents mentioned
that they often manually comment out code step-by-step to
narrow down buggy code search space.

• 56.5% respondents mentioned that they would often write
additional methods/events to check variables and transaction
states. This can be attributed to the fact that existing tools do
not support checking variable values and transaction states,

• 17.2% respondents of our survey mentioned that they would
often request the help of GitHub community or other devel-
opers through some forums, e.g., Stack Overflow, when they
encounter bugs.

All aforementioned debugging practices, as some interviewees
mentioned, are “very primitive and very inefficient” (P7). They
hope that in the future, the community can develop some powerful
debugging tools and can help developers to find “an easy way
to quickly visualize the effects of a smart contract, such as a
particular execution, such as showing the call graph for a smart
contract in a solidity dependency graph format, and allowing you
to highlight a particular section, debug just the execution section.
I think things like that would make an enormous difference” (P11).

4.3 Programming Language
4.3.1 Limitations of Solidity
Unlike traditional software which are developed in mature general-
purpose programming languages (e.g., Java/Python), most smart
contracts are developed in specifically-designed programming
languages (e.g., Solidity). Through our survey, we found that the
programming languages themselves are a major barrier during
smart contract development. 39.7% of our survey respondents,
agreed that this is one of the top 3 concerns. There are several
specific programming languages (e.g., Solidity, Vyper, Bamboo21)
that can be used for smart contract development. However, as P12
stated: “Only Solidity is ready for production and used by many

21http://github.com/pirapira/bamboo

9

developers, others are still under experiments”. In practice, even
Solidity has issues, as mentioned by some interviewees. Since it
has emerged only in the last 3 years, it is still not mature and has
many limitations. Based on our survey and interviews, we found
that the major limitations of Solidity include:
Lack of general purpose libraries. Based on our survey statistics,
56.9% survey respondents said that they often reuse existing
libraries for their own development. However, 77.2% respondents
agreed that the existing libraries are not enough for smart contract
development. Some interviewees and respondents said they need
to implement various kinds of libraries (such as string manipula-
tion libraries) by themselves again and again. “There is a strong
need for a well-tested (ideally: verified) standard library for smart
contract development. The current state leads to reinventing-
the-wheel over and over again for simple things such as string
manipulation.” (S105)
Lack of support for error logging/reporting. Unlike other
traditional programming languages, Solidity does not support
direct printing (or logging) of errors, thus developers face a lot
of challenges in developing and debugging smart contracts. As
one developer opined, “In terms of the language, I think if a few
features such as error reporting is available, that will make a big
difference to ease the developments in the future” (P11).
Lack of standards/rules. Several interviewees mentioned that
there is a scarcity of standard/rules (e.g., like the ERC20 token
standard interface) which can serve the whole development com-
munity. P3 mentioned: “Providing standard interface (such as the
ERC20 for token), is even more important than providing general
purpose libraries. We lack standards in this field currently”.
Lack of safety checks for data types. Two interviewees men-
tioned that Solidity does not provide a good check for the safety
of data types. P14 stated: “Solidity does not do well in checking
the safety of data types. The compiler does not help you enough.
We cannot rely on the compiler to let us know there could be a
bug here”.
Inconvenient way to call external functions. Many interviewees
mentioned that passing parameters to call external functions is
odd, e.g., a developer cannot directly pass his/her own defined
structure to the function, instead, he/she should split them and pass
them one by one. P17 stated: “In solidity, struct is only recognized
within a smart contract. If Solidity can create a way of packaging
the struct in a transportable sort of data structure that would be
useful”.
Lack of support for memory management. One interviewee
mentioned that Solidity allocates memory in an invisible way
that you cannot control. This makes it difficult for developers
to develop smart contract in a resource constrained environment.
“Solidity disguises some of the underlying operations of what
you’re doing more than I would prefer personally, so sometimes
you can do things in Solidity that appeared simple but actually
resulted in conflicts underlying state changes or more work than
you would expect. It does things like allocate memory invisibly
and you have no control over that, so in a resource constrained
environment sometimes that can be less than ideal.” (P11)
Constrained number of local variables. Some interviewees said
that Solidity supports a limited number of local variables and to
solve this problem, developers need to use more state variables,
which affects the efficiency of code. “If a function uses more than
16 local variables, it cannot be compiled. So you may have to use
state variables; but they are slow to read and write as they are
stored in the storage rather than in the stack or memory. If you do

TABLE 4
Improvements developers would most like to have in Solidity.

Improvement Votes
More general purpose libraries 53.0%
More powerful error logging/reporting functions 48.7%
More standard interfaces (e.g., ERC20) 45.7%
Better support for security checking of data types 44.8%
More convenient and secure way to call external functions 35.8%
More powerful memory management 18.1%
Loosen the limited number of global and local variables 13.4%
I think Solidity is good enough 6.5%
Others 5.6%

not want to lose program efficiency, you may have to refactor your
code.” (P8)

4.3.2 Most desired Solidity improvements
To help the community solve the limitations that developers are
most concerned about, we asked each survey respondent to select
up to 3 improvements that they would like to see in Solidity. Since
it is not possible to cover all limitations by interviews, we provide
an “Other” text option that allows respondents to fill relevant
improvements they would like to have, which did not come out
during interviews. Besides, we provide an “I think Solidity is good
enough” option for answer completeness.

Table 4 shows the votes. In Table 4, we observe that only 6.5%
of the survey respondents agreed that Solidity is good enough.
Most developers’ concerns are mainly focused on the availability
of libraries (including general purpose libraries (with 53.0% votes)
and some standard interfaces (with 45.7% votes)), error reporting
functions (with 48.7% votes), data type checking (with 44.8%
votes), and better way to call external functions (with 35.8%
votes).

4.4 Ethereum Virtual Machine (EVM)
4.4.1 Limitations of EVM
Unlike traditional software which run on mature and well-tested
virtual machines like JVM and CLR, smart contracts on Ethereum
blockchains are executed by a relatively new virtual machine,
namely Ethereum Virtual Machine (EVM). Compared to tradi-
tional VM like JVM, the current EVM has several limitations. Our
survey results show that 35.3% of respondents voted that limita-
tions of the current EVM to be one of the top-3 major challenges
that prevent them from effectively developing smart contracts.
Four main limitations of EVM mentioned by our interviewees are
as follows:
Limited support for debugging. When failures happen, devel-
opers need help to know where, why, and how their code fails.
Unfortunately, the support of debugging features that can provide
this needed information is limited in EVM. For example, although
EVM supports throwing exceptions, no informative error messages
are given to developers, thus giving no clues on what might be
the root cause of the problem. As commented by a developer,
“You can only throw exceptions in code. But actually, when your
transactions fail in EVM, sometimes even the exceptions cannot
be thrown. In that case, we totally have no idea what is going on”
(P2).
Lack of support of traditional languages. Popular programming
languages (e.g., Rust or Python) are not supported by EVM.
EVM instead only supports languages such as Solidity and Vyper,
which are newly invented by the smart contract community. Thus,
developers’ familiarity with popular programming languages may

10

TABLE 5
Improvements that developers would like to have the most in EVM.

Better support for debugging 65.5%
Improve execution speed of byte code 31.9%
Loosen the stack size limit 27.6%
Ability to support traditional languages 26.7%
I think EVM is good enough 12.5%
Others 9.6%

not be applicable for those EVM-supported languages, incurring
considerable amount of learning cost. “I am familiar with Python.
It is really good. Is it possible for EVM to support python-like
language?” (P6)
Inefficiency of bytecode execution. Execution of bytecode in
EVM is not speedy due to its design to be single-threaded, accord-
ing to our interviewees. To mitigate this problem, developers have
to find ways to execute bytecode more efficiently by themselves.
“EVM is a single-threaded machine that cannot run transactions
in parallel. I mean it is inefficient in executing bytecode. This may
be a big problem for people who have a higher requirement on
the timely reaction and verification of their transactions. And this
further makes developers’ life harder.” (P4)
Limited stack size. The EVM is a stack machine and all the
computations are performed on an area called the stack. The stack
has a maximum size of 1024 items with each item having a size
of 256 bits. This limited stack size could make it very painful
for developers to code their smart contracts. One interviewee said
that even a slightly complex smart contract would easily reach the
limit of the stack. In this case, a considerable amount of work is
required to redesign the code. “We once developed a relatively
complex application, that application could not be compiled only
because we have an additional temporary arguments in code...To
solve this problem, we had to split one function into several small
functions, which makes the code very ugly.” (P1)

4.4.2 Most desired improvements for EVM
Next, we want to identify the most desirable improvements of
EVM for which the community should focus more on. Our survey
lists a number of EVM’s desirable improvements (as shown in
Table 5) derived from our initial interviews. From this list, our
survey respondents can select the improvements that they desire
the most. In addition to the four predefined choices given to
respondents, we also provided an “Other” option to allow survey
respondents to propose complementary improvements that they
wish to have.

Table 5 depicts EVM improvements options given to respon-
dents and their popularity among respondents’ choices. The results
suggest that better support for debugging is desired the most
(65.5% of survey respondents pick this improvement), followed by
improvement in execution speed of bytecode (31.9%). The ability
to support other programming languages is desired by 26.7%
of respondents. Interestingly, although many of our interviewees
initially wish EVM to loosen stack size limit, it is desired by
only 27.6% of the respondents in the survey. Respondents that are
satisfied with current features that EVM offers only made up of
12.5% of total votes.

4.5 Gas
Some interviewees mentioned that one significant difference be-
tween smart contract development and traditional software devel-
opment lies in the gas mechanism. The gas mechanism is unique

to smart contract development, where the execution of smart con-
tracts would cost gas and users need to pay the gas fee. As a result,
developers need to pay special attention to gas consumption during
smart contract development. Some interviewees also mentioned
some difficulties they encountered in handling gas problems.

4.5.1 Special attention to gas consumption
As mentioned in Section 2, platforms like Ethereum use the gas
mechanism to control the executions of smart contracts. Majority
of interviewees mentioned that gas consumption deserves special
attentions. This is also later validated in our survey – 86.2% of
survey respondents declared that they (often) paid attention to gas
consumption when developing smart contracts. According to our
interviewees, two reasons for why gas consumption is specially
important are as follows:
Gas is money. One interviewee explained that, on public
blockchain platforms like Ethereum, all the resources that a smart
contract used would translate into actual direct costs that need to
be paid by users in terms of gas. In other words, “Gas is money
for users” (P1), thus developers need to be much more conscious
on resource consumption. “Contracts for the Ethereum blockchain
have to be executed under very tight constraints. All the resources
they used would translate into actual direct costs.” (P11)
Transaction failure due to insufficient amount of gas. Some
interviewees mentioned that on EVM, if a transaction of smart
contract is not given sufficient amount of gas, the transaction might
fail. Indeed, our survey results showed that 35.3% of respondents
often encountered transaction failures caused by running out of
gas. “You can specify how much gas your transaction is allowed
to use; if your transaction run out of gas, it would fail. I often met
transaction failures due to insufficient gas for my application.”
(P6)

4.5.2 Difficulty in handling gas problems
In our survey, 63.4% respondents agreed that gas optimization
is always painful, especially for complex applications. According
to our interviewees, two aspects that contribute to difficulties in
performing gas optimization are as follow:
No gas estimation tool at source code level. Developers often
desire to write and optimize source code rather than bytecode,
because it is more intuitive when working at source code level.
Unfortunately, there currently exists no gas estimation tool for
source code. To optimize their source code with respect to gas
consumption, developers thus have to alternatively resort to avail-
able gas estimation tools at bytecode level (such as Remix22),
which may not fully reflect the effect of changes at source code.
This approach is hence not intuitive and error-prone, rendering it
difficult for developers to perform source code optimization. “We
only have bytecode level dynamic gas estimation tools. What we
do right now to optimize code, is to modify the code and run the
modified program, and try to compare the gas consumption with
the previous program before modified. It is very time consuming
to do this actually.” (P2)

A high demand on effective source-code-level gas estimation
tools is mentioned by a majority of our interviewees. Such tools,
which can directly identify the piece of source code that is
most gas costly, would be of tremendous value, according to
interviewees. “We have a bad need in gas estimation tools. Ideally,
I hope we can have a tool that does not need to compile your code
and can tell you how much gas each source code line costs.” (P1)

22http://remix.ethereum.org

11

Tradeoff between gas optimization and code readability. Ac-
cording to our interviewees, optimizing gas without hurting code
readability is often a tricky problem. “If you want to spend less
gas, you have to make your code more efficient, so shorter basi-
cally, have fewer instructions. But if you have fewer instructions, it
tends to make your code less readable as well, so it’s a dilemma.”
(P14)

4.6 Online Resource and Community Support
Some interviewees told us that for traditional software develop-
ment, we can get a lot of help online when we encounter problems;
while for smart contract development, the resource and mentors
are scarce because “smart contract is very new on the blockchain”
(P16). 22.8% of the survey respondents voted that lacking enough
online learning resource and supportive community is one of
the top-3 major challenges that prevent them from effectively
developing smart contracts.

4.6.1 Online learning resources
After analyzing the interview and survey results, we find devel-
opers mainly mentioned three kinds of online learning resources
that are missing, i.e., reference code, standardized knowledge, and
up-to-date documentations.
Lack of reference code. Some interviewees told us that since
there are not enough online reference code to reuse, when they
build new smart contract applications, they have to build them
from scratch. “So I programmed a lot in python and c++ and
javascript, and they all have frameworks, they all have lots of
code. The solidity has nothing to test your code on. If I want to do
something new, there was nothing on the internet like that, I had
to invent it, I feel like from scratch.” (P13)
Lack of standardized knowledge. One survey respondent com-
mented that no strict standardized knowledge can guide developers
to write better code in an easier way. “Chaotic non standardized
knowledge. i.e., no strict standards (even though there are rec-
ommendations - erc). Community intentionally (scam) or uninten-
tionally allow bugs that are later exploited. Basically not mature
enough approaches.” (S92)

One interviewee highlighted the importance of coding conven-
tion and best practices. “What’s missing is, when you write python
code there are code standards, and I didn’t find anything like that
for Solidity. I don’t know what best practices are for code, and so
even if I want it to follow them I couldn’t.” (P13)

Some interviewees think we should have guides to help devel-
opers better test their smart contracts, and as shown in Table 3,
22.4% survey respondents consider the lack of testing guidance as
a major testing challenge. “I do not know what is the best way to
do testing, there is no testing guidance that I can follow.” (P10)
Lack of up-to-date documentations. Some interviewees men-
tioned that documentations are often out-of-date due to the quick
evolution of relevant tools. Such outdated documentation often
make developers feel helpless to make full and correct use of the
tools. “Right now you have documentation about Truffle, about
Solidity, about web3, about testrpc. They’re all separate, they are
all evolving at different speeds, and they are not updated as fast
as they could. In the end, developers need to use all those tools
together, and yet the documentation is really inconsistent and not
always up-to-date.” (P14)

One interviewee suggested that it is necessary to enrich the
documentation for some important tools (such as Truffle), e.g.,

by trying to provide more code examples of some medium and
complicated applications. “I think Truffle would be better if it had
more code examples. Truffle, when I used, it had like ’hello world’,
how to get say ’hello’ and had a smart contract, smart token, and
that’s all that had. There’s a lot of things people are building
with truffle, but they really had nothing, they didn’t have a lot of
examples for you to build up the truffle, for me these are really
simple examples.” (P13)

4.6.2 Community support
Some interviewees said that although the community support
for smart contract development is increasing, the support is still
limited. When they encounter some problems or want to ask
for some help to e.g., review their code, they cannot easily find
relevant developers. One of them mentioned, “Since the technique
is new, the community is still in development. Sometimes you
cannot get timely help from the community when you get stuck”
(P16). Another interviewee P13 commented, “if you go on code
review for a javascript or python, you will get lots of people who
give you feedback, but in Solidity, you got no feedback. As a hobby
developer, we rely on the community to give us feedback and code
review, and if you don’t have that, we’re gonna do whatever we
think is right”.

4.7 Survey Results
Table 6 lists 28 challenges and desired improvements mentioned
by interviewees in the above Sections 4.1 to 4.6. C1 to C6 were
six major challenges on the whole of smart contract development.
C7 to C17 were challenges developers were facing during dif-
ferent stages (e.g., coding, testing, debugging) of smart contract
development. I18 to I28 represented desired improvements of
Solidity and EVM, respectively. The last column of Table 6 is
the number (ratio) of respondents who voted for the corresponding
challenges or desired improvements. For challenges/improvements
with “(top-3)”, the values represented how many respondents rated
them as one of the top-3 challenges or desired improvements.
For example, 166 (71.6%) out of 232 respondents rated C1 as
one of top-3 challenges (out of six) during their smart contract
development.

As the overall voting results of individual challenges or desired
improvements have been mentioned in Section 4.1 to 4.6, here
we mainly focus on analyzing the voting results of different
demographic groups towards these 28 challenges and desired im-
provements (c.f., Section 3.2 for a description of the methodology
that we follow). Table 7 shows the detailed voting results.

From Table 7, we could observe that the voting results varied
from demographic groups. For example, for C2, the ratios of
scExpM and scExpL were 57.9% and 58.1% while the ratio was
only 34.4% for group scExpH. Another example, for C3, the
ratios of Dev, Test, and PM were 38.4%, 83.3%, and 47.6%,
respectively. To check whether the observed ratio differences
are statistically significant, for each challenge/desired improve-
ment, we applied Fisher’s exact test with Bonferroni correction
on five sets of demographic groups, i.e., groups with different
roles (Dev vs. Test vs. PM), groups with different experience in
general software development (seExpH vs. seExpM vs. seExpL),
groups with different experience in smart contract development
(scExpH vs. scExpM vs. scExpL), groups with different education
degrees (Adv vs. nAdv), and groups working on different kinds of
blockchains (pubBlk vs. nPubBlk vs. bothBlk).

12

After conducting 392 (14 group pairs ⇥ 28 challenges/im-
provements) Fisher’s exact tests with Bonferroni corrections, we
found that there were three tests showing that the relevant dif-
ference is statistically significant. They are scExpM vs. scExpL
on C6 (p-value=0.002<0.05/3 after Bonferroni correc-
tion), pubBlk vs. nPubBlk on I24 (p-value=0.006<0.05/3
after Bonferroni correction), and Adv vs. nAdv on I28
(p-value=0.038<0.05, Bonferroni correction is not needed
for the single test). Based on the testing results, we can say with
some certainty that:

• Developers with low experience in smart contract devel-
opment (scExpL) are significantly more likely to rate C6
(limited online learning resource and community help) as
a major challenge they are facing during smart contract
development, than those with median experience (scExpM)
(32.3% vs. 13.2%).

• Developers who mainly worked on non-public blockchains
desired I24 (loosening the limited number of global and local
variables of Solidity) more, than those mainly working on
public blockchains (pubBlk) (37.5% vs. 9.9%).

• Developers without advanced degree (nAdv) desired I28
(EVM’s support for traditional programming languages)
more than those with an advanced degree (nAdv) (32.1%
vs. 19.8%).

4.8 Summary of Results
Through the analysis of interview and survey data, we could find
that:

• Smart contract has a high requirement for code security.
However, developers currently have no effective way to
assure code security; some tools like code auditing and
formal verification techniques are highly desired. Currently,
developers mainly used testing and code reviews to help
ensure code correctness.

• Current debugging tools are primitive and inefficient, which
makes debugging very painful in practice; more powerful
interactive debuggers which provide informative error mes-
sages are badly needed.

• Undesirable characteristics of Solidity language (e.g., diffi-
culty in passing data to external functions, limitations in the
number of variables), compiler (backward compatibility and
reliability issues due to rapidly changing compiler and its un-
seen flaws) and EVM (e.g., non-informative error messages,
limited stack size, inefficient execution due to single-threaded
EVM), make it very challenging to program smart contracts
effectively and efficiently in practice.

• There is a need for source-code-level gas-estimation and
optimization tools that consider code readability.

• There is a lack of best practice, code examples, community
support, third-party libraries, and standards for smart contract
development.

5 FUTURE DIRECTIONS

5.1 Security and Reliability of Smart Contracts
Developers perceive security to be critical to smart contracts. Past
reports highlight a wide range of vulnerabilities that affect security
of smart contracts, e.g., reentrancy bug [90], etc. Since many
developers working on smart contract development are new in
the area, they may not be aware of these vulnerabilities. There is

TABLE 6
28 challenges and desired improvements (mentioned by interviewees)

with survey voting results.

ID Challenges/Desired improvements #Votes (Ratios)
Major challenges on the whole (top-3)

C1 It is hard to guarantee the security of smart con-
tracts. 166 (71.6%)

C2 There is a lack of powerful tools (e.g., debugger,
testing framework). 127 (54.7%)

C3 Current programming languages have a number
of limitations. 92 (39.7%)

C4 The Ethereum virtual machine that runs smart
contracts have a number of limitations. 82 (35.3%)

C5 It is hard to handle performance problems. 79 (34.1%)

C6 Online learning resources and community support
are limited. 53 (22.8%)

Challenges of debugging, gas optimization, and
code review

C7 It is difficult to debug during smart contract de-
velopment. 206 (88.8%)

C8 Doing gas optimization is always painful espe-
cially for complex applications.. 147 (63.4%)

C9 It is hard to find qualified developers to find
security flaws in smart contract code. 186 (80.2%)

C10 Code review of smart contracts is very time con-
suming. 154 (66.4%)

Challenges of testing (top-3)

C11 Difficult to consider all corner cases and scenar-
ios. 161 (69.4%)

C12 Potential unseen flaws in compilers and virtual
machines. 124 (53.4%)

C13 No mature testing frameworks like other lan-
guages, e.g., Java. 94 (40.5%)

C14 No tools to measure the quality of smart contract
test suite. 72 (31.0%)

C15 Testing needs to be done in an asynchronous way. 65 (28.0%)

C16 Testing consume gases if tested on testnets or
mainnet. 52 (22.4%)

C17 Lack of useful guidance for testing, e.g., best
practice, tutorials, etc. 52 (22.4%)

Desired improvements of Solidity (top-3)
I18 More general purpose libraries. 123 (53.0%)
I19 More powerful error logging/reporting functions. 113 (48.7%)
I20 More standard interfaces. 106 (45.7%)
I21 Better support for security checking of data types. 104 (44.8%)

I22 More convenient and secure way to call external
functions. 83 (35.8%)

I23 More powerful memory management. 42 (18.1%)

I24 Loosen the limited number of global and local
variables. 31 (13.4%)

Desired improvements of EVM
I25 Better support in debugging. 152 (65.5%)
I26 Improve execution speed of byte code. 74 (31.9%)
I27 Loosen the stack size limitation. 64 (27.6%)
I28 Be able to support other traditional languages. 62 (26.7%)

also much code duplication in smart contracts [71]; copy-paste is
a common development method. By copy-and-pasting, vulnerable
code can easily “infect” other code. Thus, there is a need for
tool supports to help developers not only to detect but also repair
vulnerabilities to prevent them from “spreading” further.

Relatively mature bug finding and automated code inspection
tools exist for conventional software, e.g., Findbugs23, Facebook
INFER [20], etc.; however these tools are not able to be used
to statically check and identify smart contract vulnerabilities.
Existing tools that detect smart contact bugs, e.g., Oyente [90],
are relatively new, and much more study is needed to demonstrate
their efficacy in terms of low false positive and false negative rate.
Such studies have been done for Findbugs, and other tools for

23http://findbugs.sourceforge.net/

13

TABLE 7
Voting results of different demographic groups towards 28 challenges and desired improvements mentioned by interviewees. The Total row

represents the number of respondents each group has. The rows C1 to I28 represent the percentages (%) of respondents from each demographic
group who voted for 28 challenges and desired improvements; for example, the value 73.2 in the C1 row means that 73.2% respondents from the

Dev group (which has 190 respondents) rated C1 as one of top-3 major challenges they were facing during smart contract development.

ID Dev Test PM seExpH seExpM seExpL scExpH scExpM scExpL Adv nAdv pubBlk nPubBlk bothBlk
Total 190 6 21 76 79 77 32 76 124 101 131 161 16 55
C1 73.2 50.0 57.1 73.7 72.2 68.8 75.0 71.1 71.0 67.3 74.8 71.4 75.0 70.9
C2 54.7 66.7 52.4 59.2 49.4 55.8 34.4 57.9 58.1 60.4 50.4 52.8 75.0 54.5
C3 38.4 83.3 47.6 38.2 35.4 45.5 43.8 40.8 37.9 43.6 36.6 37.3 50.0 43.6
C4 34.7 33.3 42.9 35.5 32.9 37.7 46.9 34.2 33.1 35.6 35.1 36.0 25.0 36.4
C5 32.6 33.3 47.6 27.6 34.2 40.3 37.5 39.5 29.8 34.7 33.6 29.8 56.3 40.0
C6 21.1 16.7 42.9 27.6 13.9 27.3 9.4 13.2 32.3 21.8 23.7 22.4 25.0 23.6
C7 89.5 100.0 85.7 94.7 86.1 85.7 81.3 89.5 90.3 89.1 88.5 90.7 87.5 83.6
C8 62.6 50.0 61.9 67.1 57.0 66.2 46.9 67.1 65.3 67.3 60.3 60.2 81.3 67.3
C9 82.1 66.7 71.4 85.5 75.9 79.2 75.0 80.3 81.5 84.2 77.1 80.7 81.3 78.2
C10 65.3 50.0 66.7 63.2 68.4 67.5 78.1 67.1 62.9 67.3 65.6 70.2 62.5 56.4
C11 70.0 83.3 61.9 77.6 63.3 67.5 75.0 71.1 66.9 65.3 72.5 69.6 56.3 72.7
C12 53.7 66.7 61.9 43.4 60.8 55.8 53.1 55.3 52.4 48.5 57.3 50.3 56.3 61.8
C13 40.5 50.0 33.3 32.9 39.2 49.4 34.4 47.4 37.9 40.6 40.5 36.0 56.3 49.1
C14 31.1 0.0 33.3 32.9 24.1 36.4 28.1 30.3 32.3 32.7 29.8 26.1 37.5 43.6
C15 29.5 33.3 19.0 27.6 31.6 24.7 37.5 28.9 25.0 21.8 32.8 28.0 43.8 23.6
C16 24.7 16.7 19.0 21.1 25.3 20.8 18.8 25.0 21.8 22.8 22.1 21.1 25.0 25.5
C17 23.2 16.7 28.6 28.9 20.3 18.2 18.8 21.1 24.2 22.8 22.1 22.4 12.5 25.5
I18 51.1 50.0 85.7 52.6 50.6 55.8 59.4 51.3 52.4 52.5 53.4 50.9 56.3 58.2
I19 50.0 33.3 23.8 60.5 45.6 40.3 43.8 60.5 42.7 51.5 46.6 46.6 50.0 54.5
I20 47.4 16.7 57.1 44.7 49.4 42.9 53.1 42.1 46.0 43.6 47.3 47.2 31.3 45.5
I21 43.2 83.3 47.6 56.6 38.0 40.3 46.9 46.1 43.5 47.5 42.7 44.7 56.3 41.8
I22 35.8 33.3 42.9 34.2 32.9 40.3 21.9 30.3 42.7 37.6 34.4 31.7 43.8 45.5
I23 18.9 16.7 14.3 9.2 21.5 23.4 15.6 13.2 21.8 14.9 20.6 18.6 6.3 20.0
I24 12.1 33.3 9.5 5.3 10.1 24.7 6.3 18.4 12.1 17.8 9.9 9.9 37.5 16.4
I25 66.8 66.7 61.9 73.7 58.2 64.9 65.6 63.2 66.9 69.3 62.6 60.9 68.8 78.2
I26 31.6 66.7 28.6 27.6 26.6 41.6 34.4 31.6 31.5 31.7 32.1 30.4 56.3 29.1
I27 28.9 0.0 19.0 28.9 26.6 27.3 31.3 34.2 22.6 27.7 27.5 24.2 31.3 36.4
I28 26.8 33.3 23.8 18.4 27.8 33.8 21.9 22.4 30.6 19.8 32.1 26.7 18.8 29.1

conventional software [120] but there are no similar studies yet for
smart contract tools. More testing, fuzzing, and concolic testing
tools can also be designed to augment existing static analysis
tools to improve their efficacy. Besides, formal verification is also
of great demand to reduce the possible adverse impact of smart
contract vulnerabilities. Some researchers have tried to use formal
verification methods to prove the correctness of smart contracts
[61], [14], [4]. However, these approaches are still not mature yet
and have not been demonstrated to scale to a large number of
smart contracts of varying sizes.

Program repairs have recently become more mature with
industrial adoption. Facebook is now using automated program
repair to fix its apps24. Smart-contract specific repair solutions can
also be designed to automatically patch vulnerabilities in smart
contract. Generic repair is very difficult; but what works very well
in practice are patching specific kinds of vulnerabilities. A novel
program transformation tool extending existing tools that work
for C and Java, such as Coccinelle [111] or Spoon [115], can po-
tentially be designed for Solidity. Next, required transformations
can be specified as semantic patches [104] and applied to patch
existing smart contracts that suffer from vulnerabilities.

Developers also mentioned bugs in Solidity compiler. This is
a serious issue since such bugs can translate to vulnerabilities
and unreliable executions of many smart contracts. More mature
compilers like gcc have shown to be buggy [138] and compiler
testing solutions have found many of such bugs. There is a need for
a further study to demonstrate the extent existing compiler testing
solutions can work to identify bugs in Solidity compilers and

24https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-
automatically-with-sapfix-and-sapienz/

design steps to adapt the solutions for them to be more effective
for Solidity.

Developers are also in need for best practices and code
smells that may prevent them from introducing vulnerabilities.
Systematic literature review and cataloging of such vulnerabilities
is one first step. Designing common repositories to store com-
mon vulnerabilities specific to smart contact – in similar fashion
like CVE25 – is another step. Operationalizing CVE into tools,
e.g., [132] is yet another step.

5.2 Other Factors Affecting Smart Contract Develop-
ment
Aside from security, many other factors affect smart contract
development. Here, we highlight five different aspects of smart
contract development that pose open research problems requiring
advances in the field.

5.2.1 Programming Language and Virtual Machine Design
Solidity and Ethereum VM are in their infancy and developers
often encounter difficulties in developing smart contracts due
to their limitations (e.g., type checking, memory management,
multi-threading support, etc.). These highlights opportunities for
research to add additional features in Solidity and Ethereum VM.
Additional consideration needs to be put in the design of these
features considering specific constraints for smart contract and
the unique way it is deployed and run in a distributed manner.
For example, adding multi-threading support to Ethereum VM
is non-trivial. “A miner cannot simply execute these contracts in

25http://cve.mitre.org/

14

parallel, because they may perform conflicting accesses to shared
data, and an arbitrary interleaving could produce an inconsistent
final state.” [39] We have seen recent early work proposing these
missing features, e.g., [33], [116], that require deep technical nov-
elty as “porting” features from a popular programming language
(e.g., Java) to Solidity and a popular VM (e.g., Java VM) to
Ethereum VM are non-trivial. Existing proposed research solu-
tions often have trade-off or introduce additional complexities that
may prevent their adoptions; further research is needed to develop
additional solutions that may consider other trade-offs to help
Ethereum VM and Solidity language designers/maintainers decide
the most promising approach or direction that the community
should take. These decisions need to be taken carefully as it will
have long term implications.

Another possible direction is to enable developers to code in
their language of choice (or a restricted subset of that language)
and allow their code to be translated to Solidity. Recent research
have explored ways to transform Java to C# [107], [157]. There
may also be solutions developed to transform code written in
languages such as Javascript (which has a large developer base,
and is similar to Solidity) to Solidity code.

5.2.2 Better Resource Management
Smart contract developers need to optimize for gas and efficiency
while constrained with stack size, number of local variables, etc.
This makes it harder for developers to focus on designing cool
new features. Manual optimization of these considerations also
pose other issues (e.g., readability). Thus, new support to help
developers optimize for gas considering the various constraints is
needed. Current solution only provides estimate for bytecode but
developers may need support for source code and developers may
also need recommendations on ways to optimize code. Solutions
that can automatically and safely transform a code that is readable
(to developers) but do not satisfy constraints into another code
that satisfy constraints (but is less readable) seamlessly may also
be in demand. These solutions are non-trivial and further research
is needed in these directions. Existing research on program trans-
formations, e.g., [141], [91], [99] can be a good starting point in
designing these solutions.

5.2.3 Library Construction
Developers are in serious need of libraries. The level of code
redundancies among deployed smart contracts is high – this
highlights that developers are reinventing-the-wheel often. This
is not surprising as modern software are often built on top of
libraries – for example, libraries can comprise of more than 90% of
a web application26. Tools are needed to identify reusable common
components used in many smart contracts and organize them
into easy-to-find and easy-to-use classes, methods, and libraries.
Methods from clone detection [72], [148] and code categoriza-
tion [102], [73], [130] can potentially be employed to construct
such libraries. Security considerations need to also be considered
in the construction of such libraries to ensure that vulnerabilities
do not spread through library dependencies, c.f., [36].

5.2.4 Evolution, Maintenance, and Deployment of Smart
Contracts
As one developer mentions, once a smart contract is deployed it
is not possible for it to be modified. There are workarounds to

26http://www.linkedin.com/pulse/how-can-you-ensure-your-open-source-
components-secure-sharma/

address the evolution of contracts (with varying levels of difficulty
and impact to users), such as by using detegatecall (i.e., separating
data and logic of a smart contract in separate contracts and letting
the data contract call the logic contract through delegatecall)27, or
using a registry contract to store latest version of a contract28, etc.
However, no systematic study has been done on the advantages
and disadvantages of different maintenance options. Further study
is needed to explore this and to possibly develop new maintenance,
evolution, and deployment methods that prevent smart contract
evolution to adversely affect developers and users.

Solidity API also changes frequently and are often not back-
ward compatible. There are needs to help developers evolve
Solidity code to “catch up” with API evolution. Studies are needed
to explore if existing research solutions [57], [63] work well for
Solidity API and if not, novels solutions are needed. Developers
also expressed their desire for up-to-date documentations for
tools/languages they are using. It would be valuable to find
proper approaches that can help automatically update or even
generate documentation and link pieces of documentation from
different sources on the internet. Ideas from exiting studies that
recommending adaptive changes for documentation evolution [35]
and detecting API documentation errors [156] may help in this
direction.

5.2.5 Supporting End-Users
Smart contract technology has a great potential in the financial
domain while its development is still nascent. To facilitate the
widespread adoption of smart contracts in finance industry, some
big investment banks (e.g., European Bank for Reconstruction
and Development (EBRD)), International Swaps and Derivatives
Association (ISDA), leading law firms (e.g., Linklaters), as well
as some researchers, have been working to develop a set of best
practice and industry-wide standards in terms of the construction,
execution, and validation of smart contracts from both legal and
technical perspectives [65], [66], [32], [28], [29]. Related to
the construction of smart contracts, a noticeable problem is that
developers of smart contracts may not be finance domain experts.
There is a need to enable financial experts to write smart con-
tracts directly without intermediaries. Intermediaries may intro-
duce miscommunication and bugs [1]. Simplified domain-specific
languages have been designed for many areas, e.g., ABB have
designed a simplified language to enable end users to directly
program robots with more ease [131]. Similar solutions can also
be designed for smart contract development. These solutions may
involve design of a specialized Domain Specific Language, text-
to-code solutions, program synthesis from examples, bots that
can clarify requirements from financial experts, etc. Prior work
have shown that these technologies are feasible for specialized
domains [150], [8], but more effort needs to be invested in their
design.

6 THREATS TO VALIDITY

Internal Validity In our paper, we designed our survey questions
based on the interview results. However, it is possible that we
may draw wrong conclusions from interviewees’ comments. To
alleviate this threat, we tried to read the interview transcription
several times; and each step of card sorting of interview comments

27http://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
28https://ethereum.stackexchange.com/questions/2404/upgradeable-smart-

contracts?noredirect=1\&lq=1

15

was performed and verified by two researchers. Besides, before
sending the questions to our potential survey respondents, we
conducted a pilot study in which we asked 5 developers to fill the
survey and collected their feedbacks on the questions and answer
options. Refinement is subsequently made based on developers’
comments.

It is also possible that survey respondents may have provided
dishonest answers (e.g., saying what they want us to hear or saying
what we want to hear) due to various reasons. To help reduce this
bias, we made the following efforts: (1) In our survey invitation
letter, we explicitly mentioned that no personal information would
be disseminated in our paper. (2) We allowed our survey respon-
dents to be anonymous; they are untraceable if they do not leave
email addresses; and they can also leave new/anonymous email
addresses. According to [110], confidentiality and anonymity
helped in obtaining un-biased answers from survey respondents.

Besides, following the advice in [78], i.e. using the proper
language medium for intended respondents, we also translated our
survey into Chinese to ensure that respondents from China can
understand our survey questions well. We only have our survey in
English and Chinese since English is a lingua franca and Chinese
is the most spoken language in the world. During result analysis,
similarly, it is also possible that we may draw wrong conclusions
about survey respondents’ perceptions based on their comments.
To alleviate this threat, we also tried to read the survey comments
several times.
External Validity Following the strategy of previous studies
[134], [6], we stopped our interviews when we reached the
saturation of findings after interviewing 20 persons (this number
was also similar as prior studies [94], [60]). We have to admit
that the notion of “saturation of findings” may introduce inter-
viewer subjectivity and risk missing information. To avoid these
problems, we tried to include two interviewers for each interview
based on both interviewees’ and interviewers’ schedules. In total,
15 out of the 20 interviews were conducted by two interviewers.
They worked together to take memos and asked questions during
interviews. Having two interviewers could help us: (1) capture as
much relevant information as possible during interviews (some
information may be missed by single interviewer), and (2) reduce
the chance of unfair subjective bias in the discussion of whether
the saturation of findings has been reached (we had a more
comprehensive note for comparison with previous interview notes,
and by having multiple interviewers, collectively, we could better
recall the details of what happened or what was discussed).

Considering there may exist other populations who might add
new insights, we also need to acknowledge that the opinions
provided by our interviewees may not be representative of and
agreeable to the whole community. To reduce this threat, we
ensured that our interviewees hold various roles and have different
levels of expertise, e.g., developers, trainers, CEOs in companies
developing smart contract applications, etc. We believe that their
comments still uncovered various insights into the challenges of
smart contract development.

To validate our interview findings, we conducted a survey
with 232 developers from 48 countries. As our respondents were
mainly recruited through GitHub, we may risk ignoring some
developers (e.g., from proprietary smart contract development)
who are unlikely or are not permitted to respond to our survey.
Thus we cannot guarantee that our findings could be generalized to
all relevant smart contract practitioners. However, our respondents
had different experience levels, educational qualifications, and

contribute to various projects (including open-source and close-
source projects) on different blockchain platforms (including pub-
lic and non-public blockchains). Such a diversity in backgrounds
to a large extent, made us believe that our survey results still
projected valuable insights into the challenges of smart contract
development. To further improve the generalizability of our find-
ings, we encourage other researchers to replicate our study with
more developers in the future.

7 RELATED WORK

In this section, we highlight related work on smart contract,
including empirical studies on smart contract, tools developed
for smart contract, and studies on challenges and opportunities
in other domains outside of smart contract.
Empirical Studies on Smart Contract: The rapid growth of
smart contract development motivated a series of empirical stud-
ies. These studies mainly aimed to explore the characteristics
and potential impact of smart contracts [11], [69], summarize
development patterns or lessons [151], [37], evaluate existing
programming languages and techniques [112], [53], propose some
feasible strategies for smart contract programming and altering/un-
doing [1], [64], [96], etc.

Bartoletti et al. studied the application domains and design
of 834 verified smart contracts from Bitcoin and Ethereum [11].
Fröwis et al. investigated the problem of control flow immutability
of smart contacts on Ethereum [45]. Bartoletti et al. analyzed
how smart contract can be used to implement Ponzi schemes
on Ethereum [9] while Juels et al. mentioned the feasibility of
performing criminal activities on Ethereum, e.g., leaking secret
documents [69].

Delmolino et al. summarized some common mistakes that
students made during smart contract programming classes and
provided a guide to help people avoid those mistakes [37]. By
applying grounded theory into collected smart contract data,
Wohrer et al. summarized some security patterns and correspond-
ing solutions [151]. Unterweger et al. presented some lessons they
learned during their implementation of a privacy-preserving smart
contract in the energy domain [145].

Parizi et al. did an evaluation of usability and security of smart
contract programming languages [112]. They also did an assess-
ment over existing smart contract testing techniques on Ethereum
[113]. Grishchenko et al. did an overview of various static analysis
tools that can be applied to smart contracts, covering formal
semantics, security definitions, and verification tools [53]. Miller
et al. provided an overview of existing smart contract languages
and tools for analyzing smart contracts; they also presented some
research challenges for formal verification methods and program
analysis applied to smart contracts [100].

Idelberger et al. studied the utility of logic-based smart con-
tracts and explored how they could be used in blockchains [64].
Sergey and Hobor suggested to use existing formal methods to
reason about concurrency of smart contract [128]. Marino and
Juels developed a set of standards for altering and undoing smart
contacts [96]. Khalil et al. suggested that more attention being
paid to the traditional developers (i.e., the lawyers) of contracts
[1]. Clack et al. argued that a formal language which handles over-
the-counter financial smart contract derivatives needs to combine
temporal, deontic and operational aspects for such a formalism
[31]. Destefanis et al. called for a definition of blockchain software
engineering to help solve/avoid some smart contract issues [38].

16

Unlike the above studies that mainly focus on performing
empirical analyses on specific aspects of smart contracts (e.g.,
specific application domains or security patterns), our study ex-
plored the major challenges developers are facing during smart
contract development. Through interviews and a follow-up survey,
we identified several major barriers that prevent developers from
effectively developing smart contracts.
Tools for Smart Contract: Various kinds of tools have been
proposed to resolve smart contract related problems, ranging from
detecting bugs [90], [50], [4], [61], guarding data privacy/quality
[154], [123], to easing smart contract creation [44], [97] and
manual analysis [158], [15].

Due to the nature of smart contracts, bugs tend to be costly,
thus substantial efforts have been made to detect vulnerabilities
of smart contracts or to prove the correctness of smart contracts.
Luu et al. developed Oyente to identify several pre-defined kinds
of security bugs (such as transaction order dependency) [90].
Nikolic et al. developed MAIAN to identify greedy, prodigal,
and suicidal smart contracts [108]. Liu et al. developed ReGuard
to detect reentrancy bugs through fuzz testing [87]. Chen et al.
and Grech et al. attempted to identify gas-related problems [22],
[23], [50]. Marescotti et al. further proposed two approaches
inspired by model-checking techniques to compute the exact
worst-case gas consumption for smart contracts [95]. Chen et al.
proposed a method to detect potential Ponzi schemes on Ethereum
[24]. Tsankov et al. developed Securify to detect several kinds
of security bugs by inspecting whether or not smart contract
behavior violated certain semantic patterns derived from control-
and data-flow dependencies within smart contract [144], [143].
Grishchenko et al. and Grossman et al. tried to detect vulnerabil-
ities through reachability analysis [51] and effective-callback-free
objects detection [54]. Jiang et al. developed ContractFuzzer to
detect security vulnerabilities through generating fuzzing inputs
and instrumenting EVM [67]. Liu et al. attempted to predict
potential vulnerabilities by identifying irregular token sequences
[88]. Tikhomirov et al. developed SmartCheck to detect potential
problems by checking against XPath patterns [142]. Krupp et al.
developed TEETHER to automatically generate an exploit for a
smart contract given its binary code [81]. Wang et al. proposed a
random based and a NSGA-II based multi-objective approach to
generate cost-effective test suites for smart contracts [149]. They
further explored the potential of applying mutation testing into
smart contracts [153], [84].

To prove the correctness of smart contracts, some researchers
proposed to use formal verification methods to perform complete
analysis of smart contracts by using interactive theorem provers
[13], [61], [14], [109], [4], such as Isabelle/HOL29, F*30, Why3
[42], and K31, etc. Recently, Grishchenko et al. has formalized
a complete small-step semantics of EVM bytecode for the F*
proof assistant [52]. Rosu et al. also developed KEVM, a formal
semantics of the EVM in the K framework [121], [25]; and further
evaluated its effectiveness in verifying EVM smart contracts [59],
[114]. Sergey et al. proposed a verification framework based
on Scilla (an intermediate representation languages specifically
designed for verification) to apply formal verification methods
to reason about temporal properties of smart contracts [129].
Alt. et al. built an SMT-based formal verification module inside

29Isabelle. http://isabelle.in.tum.de/
30F*. https://www.fstar-lang.org/
31K Framework. http://www.kframework.org/index.php/Main Page

the Solidity compiler, where during compilation, users could get
automatic warnings of and counterexamples for several kinds of
potential problems like unreachable code, assertion failures, etc.
[3]. Hirai used Kripke models of the modal logic to check the
atomicity property of a protocol called “atomic cross-chain swap”
(expressed in a form of hashed timelock smart contracts) [62].
Besides formal verification, some researchers proposed to abstract
smart contacts to a certain form before conducting relevant verifi-
cation tasks [71], [50].

To guard the quality or confidentiality of data involved in smart
contract execution, Zhang et al. designed a data feed system called
Town Crier [154] to provide trusted input data for smart contracts
and keeping data requests secret from others. Sánchez and Cerezo
proposed a system called Raziel to help securely executing smart
contracts while guaranteeing their privacy, correctness, and veri-
fiability [123]. Liang et al. proposed a framework called DESC
to automatically control access in the domain of secure data
exchange and protect data owners’ rights [85].

To ease smart contract creation, Frantz and Nowostawski pro-
posed to semi-automatically create smart contracts by translating
textual contract into smart contract rules [44]. Mavridou et al.
proposed a framework called FSolidityM to allow developers to
design smart contract as Finite State Machines [97]. Schrans et al.
invented a programming language called Flint introducing caller
capabilities, and safe atomic operations [125]. Seijas et al. ex-
plored the design of Marlowe, a domain specific language targeted
at financial contracts on blockchains, together with examples of
its use; they further described a tool, called Meadow, that allows
users to interact with and simulate the operations of Marlowe
contracts [126]. Valliappan et al. combined Simplicity (a language
for programming smart contracts with a formal semantic) with a
categorical model, to facilitate the addition of local definitions,
functions, and bounded loops [147]. Bartoletti et al. designed a
high-level domain specific language with a computationally sound
compiler, namely BitML, for Bitcoin smart contracts. BitML
creates smart contracts in the form of symbolic expressions, then
compiles these expressions to Bitcoin scripts [10], [12]. To help
people better understand and analyze smart contracts, Brent et
al. proposed a framework called Vandal that decompiled EVM
bytecode and allowed developers to analyze bytecode via logic
specification [16]. Zhou et al. developed Erays to generate high-
level pseudocode from binary code of smart contracts [158].
Bragagnolo et al. developed SmartInspect which allowed users
to understand contract stored state without redeploying a smart
contract [15]. Additionally, Dickerson et al. proposed a way to
allow smart contracts to be executed in parallel by adapting
techniques from software transactional memory [39]. Colombo et
al. developed CONTRACTLARVA to recover smart contract from
violations dynamically [34].

Unlike the above studies which aimed to develop specific
tools/techniques for smart contract, we focused on identifying
major challenges developers are facing during smart contract
development. Our study also identified several kinds of tools that
developers desired most, such as advanced debuggers, source-
code-level gas estimations, advanced formal verification tech-
niques, etc. Our study provides a guide for tool builders to develop
tools that are needed by developers.
Studies on Challenges and Opportunities: There have been
several papers studying the challenges and corresponding oppor-
tunities in specific domains or software practices. Two studies
done by Porru et al. [117] and Lin et al. [86] are mostly re-

17

lated to our study. Porru et al. [117] studied the challenges and
new directions of blockchain-oriented software engineering, from
defining new professional roles, enhancing security and reliabil-
ity, to developing novel tools for software architecture/model-
ing, ensuring effective testing activities, etc. Their study mainly
discussed some high-level challenges/directions in developing
blockchain-oriented software, including both blockchain platforms
and general blockchain applications. Unlike their study, our work
specifically studied the challenges of smart contract (a special kind
of blockchain application) development from the practitioners’
view. Our study provided some concrete and actionable directions
for both researchers and practitioners to take on to facilitate the
development of smart contracts. Lin et al. [86] briefly summarized
some issues and challenges that people need to concern when
trying to embrace the blockchain technologies, e.g., regulations
problems, scale of blockchain problems, etc. Unlike them, we did
not study the adoption of blockchain itself; instead, we focused
on exploring the challenges and opportunities of developing smart
contracts which run on blockchain platforms.

Zhang et al. did a survey of cloud computing technology
and presented some design challenges of cloud computing [155].
Similarly, Dillon et al. presented several challenges from the
cloud computing adoption perspective and figured out that the
cloud interoperability issue deserved substantial attention [40].
Kephart [74] outlined some scientific and engineering challenges
of autonomic computing. Labrinidis and Jagadish discussed some
controversies and myths surrounding big data and summarized
some challenges and opportunities with big data [82]. Manferdelli
listed some challenges and opportunities during software develop-
ment based on many-core computing [93].

Knight summarized some challenges and directions in devel-
oping safety critical systems [79]. Broy studied the challenges in
automotive software engineering [18]. Muccini et al. [103] and
Joorabchi et al. [68] explored relevant challenges in software test-
ing and software development of mobile applications respectively.
Hilton et al. investigated the barriers and unmet needs faced by
developers during their adoption of continuous integration systems
[60]. Gousios et al. studied work practices and challenges in pull-
based development from both the contributor’s and integrator’s
perspective [48], [49]. Kim et al. did an empirical study to
understand refactoring challenges and benefits at Microsoft [77].

Unlike these studies, we explored challenges and opportunities
of a new topic, i.e., the development of smart contracts. We sum-
marized six major categories of challenges and further identified
some potential research directions specific to the smart contract
domain.

8 CONCLUSION AND FUTURE WORK
Smart contract, which originally refers to the automation of legal
contracts in general, has recently seen much interest due to the
rise of blockchain technology. Today, it is popularly used to refer
to low-level code scripts running on blockchains. In this study,
we investigated the challenges developers are facing in develop-
ing such smart contracts, especially focusing on the Ethereum
platform. Our interview and survey results indicate that smart
contract development is still in its infancy: there is no generally
accepted way to secure smart contract code; the existing develop-
ment toolchain is not powerful enough; development and runtime
platforms (i.e., programming languages, virtual machines) still
have a lot of limitations; online learning resources and community
supports are limited. Based on our findings, we summarized

some concrete and actionable directions in which researchers
and practitioners could take on in the future (e.g., automated
smart contract patching, Solidity compiler testing, source-code-
level gas optimization, automated Solidity library construction,
etc.). Progress in such directions would further facilitate smart
contract development.

REFERENCES

[1] F. Al Khalil, T. Butler, L. O’Brien, and M. Ceci. Trust in smart
contracts is a process, as well. In Proceedings of the 21st International
Conference on Financial Cryptography and Data Security, pages 510–
519, 2017.

[2] M. Alharby and A. van Moorsel. Blockchain-based Smart Contracts: A
Systematic Mapping Study. arXiv preprint arXiv:1710.06372, 2017.

[3] L. Alt and C. Reitwiessner. SMT-based verification of Solidity smart
contracts. In Proceedings of International Symposium on Leveraging
Applications of Formal Methods, pages 376–388, 2018.

[4] S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards verifying
Ethereum smart contract bytecode in Isabelle/HOL. In Proceedings
of the 7th International Conference on Certified Programs and Proofs,
pages 66–77, 2018.

[5] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for CPU based attestation and sealing. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, volume 13, 2013.

[6] M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M.-A. Storey,
and M. A. Gerosa. How modern news aggregators help development
communities shape and share knowledge. In Proceedings of the 40th
International Conference on Software Engineering, pages 499–510,
2018.

[7] ARM. Arm security technology – building a secure system
using trustzone technology. ARM Technical White Paper,
http://infocenter.arm.com/help/topic/com.arm.doc.prd29genc-
009492c/PRD29GENC009492C trustzone security whitepaper.pdf,
2009.

[8] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. FlashRelate: Extract-
ing relational data from semi-structured spreadsheets using examples.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 218–228, 2015.

[9] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia. Dissecting Ponzi
schemes on Ethereum: Identification, analysis, and impact. arXiv
preprint arXiv:1703.03779, 2017.

[10] M. Bartoletti, T. Cimoli, and R. Zunino. Fun with Bitcoin smart
contracts. In Proceedings of International Symposium on Leveraging
Applications of Formal Methods, pages 432–449, 2018.

[11] M. Bartoletti and L. Pompianu. An empirical analysis of smart
contracts: Platforms, applications, and design patterns. In Proceedings
of the 21st International Conference on Financial Cryptography and
Data Security, pages 494–509, 2017.

[12] M. Bartoletti and R. Zunino. BitML: A calculus for Bitcoin smart
contracts. In Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security, pages 83–100, 2018.

[13] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, et al. Formal verification of smart contracts: Short paper. In
Proceedings of the Workshop on Programming Languages and Analysis
for Security@CCS 2016, pages 91–96, 2016.

[14] G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto. Validation of
decentralised smart contracts through game theory and formal methods.
In Programming Languages with Applications to Biology and Security,
pages 142–161. Springer, 2015.

[15] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse. Smartinspect:
Smart contract inspection technical report. PhD thesis, Inria Lille, 2017.

[16] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz. Vandal: A scalable security analysis framework
for smart contracts. arXiv preprint arXiv:1809.03981, 2018.

[17] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: An introduc-
tion. R3 CEV, August, 2016.

[18] M. Broy. Challenges in automotive software engineering. In Proceed-
ings of the 28th International Conference on Software Engineering,
pages 33–42, 2006.

[19] V. Buterin. A next-generation smart contract and decentralized applica-
tion platform. white paper, 2014.

18

[20] C. Calcagno and D. Distefano. Infer: An automatic program verifier for
memory safety of C programs. In Proceedings of the 3rd International
Symposium on NASA Formal Methods, pages 459–465, 2011.

[21] T. Chen, X. Li, X. Luo, and X. Zhang. Under-optimized smart
contracts devour your money. In Proceedings of the 24th International
Conference on Software Analysis, Evolution and Reengineering, pages
442–446, 2017.

[22] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang. An adaptive gas cost mechanism for Ethereum to defend
against under-priced DoS attacks. In Proceedings of the 13th Inter-
national Conference on Information Security Practice and Experience,
pages 3–24, 2017.

[23] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang.
Towards saving money in using smart contracts. In Proceedings of
the 40th International Conference on Software Engineering: New Ideas
and Emerging Results, pages 81–84, 2018.

[24] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou. Detecting
Ponzi schemes on Ethereum: Towards healthier blockchain technology.
In Proceedings of the 27th World Wide Web Conference on World Wide
Web, pages 1409–1418, 2018.

[25] X. Chen, D. Park, and G. Roşu. A language-independent approach to
smart contract verification. In Proceedings of International Symposium
on Leveraging Applications of Formal Methods, pages 405–413, 2018.

[26] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts. arXiv preprint
arXiv:1804.05141, 2018.

[27] C. D. Clack. Smart contract templates: Legal semantics and code
validation. Journal of Digital Banking, 2(4):338–352, 2018.

[28] C. D. Clack. Smart contract templates: The semantics of smart legal
agreements. Journal of Digital Banking, 2(4):1–15, 2018.

[29] C. D. Clack, V. A. Bakshi, and L. Braine. Smart contract templates:
Foundations, design landscape and research directions. arXiv preprint
arXiv:1608.00771, 2016.

[30] C. D. Clack and C. McGonagle. Smart derivatives contracts: The ISDA
Master Agreement and the automation of payments and deliveries.
arXiv preprint arXiv:1904.01461, 2019.

[31] C. D. Clack and G. Vanca. Temporal aspects of smart contracts for
financial derivatives. In Proceedings of International Symposium on
Leveraging Applications of Formal Methods, pages 339–355, 2018.

[32] Clifford Chance and European Bank for Reconstruction and Develop-
ment. Smart contracts: Legal framework and proposed guidelines for
lawmakers. 2017.

[33] M. Coblenz. Obsidian: A safer blockchain programming language. In
Proceedings of the 39th International Conference on Software Engi-
neering Companion, pages 97–99, 2017.

[34] C. Colombo, J. Ellul, and G. J. Pace. Contracts over smart contracts:
Recovering from violations dynamically. In Proceedings of the 8th In-
ternational Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, pages 300–315, 2018.

[35] B. Dagenais and M. P. Robillard. Using traceability links to recommend
adaptive changes for documentation evolution. IEEE Transactions on
Software Engineering, 40(11):1126–1146, 2014.

[36] A. Decan, T. Mens, and E. Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. In Proceedings
of the 15th International Conference on Mining Software Repositories,
pages 181–191, 2018.

[37] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi. Step by
step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. In Proceedings of the 20th International Conference
on Financial Cryptography and Data Security, pages 79–94, 2016.

[38] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons. Smart contracts vulnerabilities: A call for blockchain soft-
ware engineering? In International Workshop on Blockchain Oriented
Software Engineering@SANER, pages 19–25, 2018.

[39] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen. Adding
concurrency to smart contracts. In Proceedings of the 36th Symposium
on Principles of Distributed Computing, pages 303–312, 2017.

[40] T. Dillon, C. Wu, and E. Chang. Cloud computing: Issues and
challenges. In Proceedings of the 24th International Conference on
Advanced Information Networking and Applications, pages 27–33,
2010.

[41] J. Eberhardt and S. Tai. On or off the blockchain? Insights on off-
chaining computation and data. In Proceedings of the 6th European
Conference on Service-Oriented and Cloud Computing, pages 3–15.
Springer, 2017.

[42] J.-C. Filliâtre and A. Paskevich. Why3--Where programs meet provers.
In Proceedings of the 22nd European Symposium on Programming,
pages 125–128, 2013.

[43] R. A. Fisher. On the interpretation of � 2 from contingency tables, and
the calculation of P. Journal of the Royal Statistical Society, 85(1):87–
94, 1922.

[44] C. K. Frantz and M. Nowostawski. From institutions to code: Towards
automated generation of smart contracts. In Proceedings of the 1st
International Workshops on Foundations and Applications of Self*
Systems, pages 210–215, 2016.

[45] M. Fröwis and R. Böhme. In code we trust? In ESORICS 2017 Interna-
tional Workshops on Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 357–372. Springer, 2017.

[46] H. S. Galal and A. M. Youssef. Trustee: Full privacy preserving vickrey
auction on top of ethereum. arXiv preprint arXiv:1905.06280, 2019.

[47] L. Goodman. Snowball sampling. Annals of Mathematical Statistics,
32(1):148–170, 1961.

[48] G. Gousios, M.-A. Storey, and A. Bacchelli. Work practices and
challenges in pull-based development: The contributor’s perspective.
In Proceedings of the 38th International Conference on Software
Engineering, pages 285–296, 2016.

[49] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In Proceedings of the 37th International Conference on
Software Engineering, pages 358–368, 2015.

[50] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis. Madmax: Surviving out-of-gas conditions in Ethereum smart
contracts. In Proceedings of the ACM on Programming Languages,
2(OOPSLA), pages 14–18, 2018.

[51] I. Grishchenko, M. Maffei, and C. Schneidewind. EtherTrust: Sound
static analysis of Ethereum bytecode.

[52] I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic frame-
work for the security analysis of Ethereum smart contracts. In Proceed-
ings of the 7th International Conference on Principles of Security and
Trust, pages 243–269, 2018.

[53] I. Grishchenko, M. Maffei, and C. Schneidewind. Foundations and tools
for the static analysis of Ethereum smart contracts. In Proceedings
of the 30th International Conference on Computer Aided Verification,
pages 51–78, 2018.

[54] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinet-
zky, M. Sagiv, and Y. Zohar. Online detection of effectively callback
free objects with applications to smart contracts. Proceedings of the
ACM on Programming Languages, 2(POPL):1–28, 2017.

[55] G. Guest, A. Bunce, and L. Johnson. How many interviews are enough?
An experiment with data saturation and variability. Field methods,
18(1):59–82, 2006.

[56] P. Hegedus. Towards analyzing the complexity landscape of Solidity
based Ethereum smart contracts. In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
pages 35–39, 2018.

[57] J. Henkel and A. Diwan. CatchUp! Capturing and replaying refactorings
to support API evolution. In Proceedings of the 27th International
Conference on Software Engineering, pages 274–283, 2005.

[58] J. Henrich, S. J. Heine, and A. Norenzayan. The weirdest people in the
world? Behavioral and brain sciences, 33(2-3):61–83, 2010.

[59] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, et al. KEVM: A complete
formal semantics of the Ethereum Virtual Machine. In Proceedings of
the 31st Computer Security Foundations Symposium, pages 204–217,
2018.

[60] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: Assurance, security, and flexibility. In
Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering, pages 197–207, 2017.

[61] Y. Hirai. Formal verification of Deed contract in Ethereum name
service, 2016.

[62] Y. Hirai. Blockchains as Kripke models: An analysis of atomic cross-
chain swap. In Proceedings of International Symposium on Leveraging
Applications of Formal Methods, pages 389–404, 2018.

[63] A. Hora and M. T. Valente. apiwave: Keeping track of API popularity
and migration. In Proceedings of the 31st International Conference on
Software Maintenance and Evolution, pages 321–323, 2015.

[64] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor. Evaluation of
logic-based smart contracts for blockchain systems. In Proceedings
of the 10th International Symposium on Rules and Rule Markup
Languages for the Semantic Web, pages 167–183, 2016.

[65] ISDA and King & Wood Mallesons. Smart derivatives contracts: From
concept to construction. 2018.

[66] ISDA and Linklaters. Smart contracts and distributed ledger - a legal
perspective. 2017.

19

[67] B. Jiang, Y. Liu, and W. Chan. ContractFuzzer: Fuzzing smart contracts
for vulnerability detection. In Proceedings of the 33rd International
Conference on Automated Software Engineering, pages 259–269, 2018.

[68] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In Proceedings of the 7th International Symposium
on Empirical Software Engineering and Measurement, pages 15–24,
2013.

[69] A. Juels, A. Kosba, and E. Shi. The ring of gyges: Investigating
the future of criminal smart contracts. In Proceedings of the 23rd
Conference on Computer and Communications Security, pages 283–
295, 2016.

[70] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten.
Arbitrum: Scalable, private smart contracts. In Proceedings of the 27th
{USENIX} Security Symposium, pages 1353–1370, 2018.

[71] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: Analyzing safety
of smart contracts. In Proceedings of the 25th Annual Network and
Distributed System Security Symposium, 2018.

[72] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654–670, 2002.

[73] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Mudablue: An
automatic categorization system for open source repositories. Journal
of Systems and Software, 79(7):939–953, 2006.

[74] J. O. Kephart. Research challenges of autonomic computing. In Pro-
ceedings of the 27th international conference on Software engineering,
pages 15–22, 2005.

[75] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging role
of data scientists on software development teams. In Proceedings of the
38th International Conference on Software Engineering, pages 96–107,
2016.

[76] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. Data scientists in
software teams: State of the art and challenges. IEEE Transactions on
Software Engineering, (1):1–1, 2017.

[77] M. Kim, T. Zimmermann, and N. Nagappan. An empirical study of
refactoringchallenges and benefits at Microsoft. IEEE Transactions on
Software Engineering, 40(7):633–649, 2014.

[78] B. A. Kitchenham and S. L. Pfleeger. Personal opinion surveys. In
Guide to advanced empirical software engineering, pages 63–92. 2008.

[79] J. C. Knight. Safety critical systems: Challenges and directions. In Pro-
ceedings of the 24th International Conference on Software Engineering,
pages 547–550, 2002.

[80] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’ expectations on
automated fault localization. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pages 165–176, 2016.

[81] J. Krupp and C. Rossow. TEETHER: Gnawing at Ethereum to auto-
matically exploit smart contracts. In Proceedings of the 27th USENIX
Security Symposium, pages 1317–1333, 2018.

[82] A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big
data. The VLDB Endowment, 5(12):2032–2033, 2012.

[83] C. Li, B. Palanisamy, and R. Xu. Scalable and privacy-preserving design
of on/off-chain smart contracts. arXiv preprint arXiv:1902.06359, 2019.

[84] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen. MuSC: A
Tool for mutation testing of Ethereum smart contract. In Proceedings of
the 34th International Conference on Automated Software Engineering-
Demonstrations (Accepted), 2019.

[85] J. Liang, W. Han, Z. Guo, Y. Chen, C. Cao, X. S. Wang, and F. Li.
DESC: Enabling secure data exchange based on smart contracts. Sci-
ence China Information Sciences, 61(4):049102, 2018.

[86] I.-C. Lin and T.-C. Liao. A survey of blockchain security issues and
challenges. IJ Network Security, 19(5):653–659, 2017.

[87] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. ReGuard:
Finding reentrancy bugs in smart contracts. In Proceedings of the 40th
International Conference on Software Engineering Companion, pages
65–68, 2018.

[88] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun. S-gram: Towards
semantic-aware security auditing for Ethereum smart contracts. In Pro-
ceedings of the 33rd International Conference on Automated Software
Engineering, pages 814–819, 2018.

[89] D. Lo, N. Nagappan, and T. Zimmermann. How practitioners perceive
the relevance of software engineering research. In Proceedings of the
10th Joint Meeting on Foundations of Software Engineering, pages 415–
425. ACM, 2015.

[90] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart
contracts smarter. In Proceedings of the 23rd Conference on Computer
and Communications Security, pages 254–269, 2016.

[91] S. Ma, D. Lo, T. Li, and R. H. Deng. Cdrep: Automatic repair of
cryptographic misuses in android applications. In Proceedings of the

11th ACM on Asia Conference on Computer and Communications
Security, pages 711–722, 2016.

[92] D. Magazzeni, P. McBurney, and W. Nash. Validation and verification
of smart contracts: A research agenda. Computer, 50(9):50–57, 2017.

[93] J. L. Manferdelli, N. K. Govindaraju, and C. Crall. Challenges and
opportunities in many-core computing. Proceedings of the IEEE,
96(5):808–815, 2008.

[94] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause. An empirical study of practitioners’ per-
spectives on green software engineering. In Proceedings of the 38th
International Conference on Software Engineering, pages 237–248,
2016.

[95] M. Marescotti, M. Blicha, A. E. Hyvärinen, S. Asadi, and N. Sharygina.
Computing exact worst-case gas consumption for smart contracts. In
Proceedings of International Symposium on Leveraging Applications of
Formal Methods, pages 450–465, 2018.

[96] B. Marino and A. Juels. Setting standards for altering and undoing
smart contracts. In Proceedings of the 10th International Symposium
on Rules and Rule Markup Languages for the Semantic Web, pages
151–166, 2016.

[97] A. Mavridou and A. Laszka. Designing secure Ethereum smart
contracts: A finite state machine based approach. arXiv preprint
arXiv:1711.09327, 2017.

[98] J. H. McDonald. Handbook of biological statistics, volume 2. sparky
house publishing Baltimore, MD, 2009.

[99] N. Meng, M. Kim, and K. S. McKinley. LASE: Locating and applying
systematic edits by learning from examples. In Proceedings of the
35th International Conference on Software Engineering, pages 502–
511, 2013.

[100] A. Miller, Z. Cai, and S. Jha. Smart contracts and opportunities
for formal methods. In Proceedings of International Symposium on
Leveraging Applications of Formal Methods, pages 280–299, 2018.

[101] J. M. Morse. Data were saturated... 25(5):587–588, 2015.
[102] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural

networks over tree structures for programming language processing.
In Proceedings of the 30th AAAI Conference on Artificial Intelligence,
pages 1287–1293, 2016.

[103] H. Muccini, A. Di Francesco, and P. Esposito. Software testing of
mobile applications: Challenges and future research directions. In Pro-
ceedings of the 7th International Workshop on Automation of Software
Test, pages 29–35, 2012.

[104] G. Muller, Y. Padioleau, J. L. Lawall, and R. R. Hansen. Semantic
patches considered helpful. ACM SIGOPS Operating Systems Review,
40(3):90–92, 2006.

[105] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[106] L. R. Ness and P. I. Fusch. Are we there yet? Data saturation in

qualitative research. 20(9):1408–1416, 2015.
[107] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen.

Statistical learning approach for mining API usage mappings for code
migration. In Proceedings of the 29th International Conference on
Automated Software Engineering, pages 457–468, 2014.

[108] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding
the greedy, prodigal, and suicidal contracts at scale. arXiv preprint
arXiv:1802.06038, 2018.

[109] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A proof
assistant for higher-order logic. In Lecture Notes in Computer Science
2283, 2002.

[110] A. D. Ong and D. J. Weiss. The impact of anonymity on responses to
sensitive questions. Journal of Applied Social Psychology, 30(8):1691–
1708, 2000.

[111] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
automating collateral evolutions in Linux device drivers. ACM SIGOPS
Operating Systems Review, 42(4):247–260, 2008.

[112] R. M. Parizi, Amritraj, and A. Dehghantanha. Smart contract program-
ming languages on blockchains: An empirical evaluation of usability
and security. In Proceedings of the 1st International Conference on
Blockchain, pages 75–91, 2018.

[113] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh. Empirical
vulnerability analysis of automated smart contracts security testing on
blockchains. arXiv preprint arXiv:1809.02702, 2018.

[114] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Rosu. A formal
verification tool for Ethereum VM bytecode. In Proceedings of the
27th International Symposium on Foundations of Software Engineering,
pages 18–21, 2018.

[115] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier.
Spoon: A library for implementing analyses and transformations of Java
source code. Software: Practice and Experience, 46(9):1155–1179,
2016.

20

[116] J. Pettersson and R. Edström. Safer smart contracts through type-driven
development. Master’s thesis, Chalmers University of Technology
And University Of Gothenburg, Department of Computer Science and
Engineering, 2016.

[117] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli. Blockchain-oriented
software engineering: Challenges and new directions. In Proceedings of
the 39th International Conference on Software Engineering Companion,
pages 169–171, 2017.

[118] T. Punter, M. Ciolkowski, B. Freimut, and I. John. Conducting on-line
surveys in software engineering. In Proceedings of the 2nd International
Symposium on Empirical Software Engineering, pages 80–88, 2003.

[119] R3. Corda documents. https://docs.corda.net/, 2018, R3 Limited.
[120] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu. Comparing static

bug finders and statistical prediction. In Proceedings of the 36th
International Conference on Software Engineering, pages 424–434,
2014.

[121] G. Rosu. An overview of the K semantic framework. Technical report,
2010.

[122] C. Sánchez, G. Schneider, and M. Leucker. Reliable smart contracts:
State-of-the-art, applications, challenges and future directions. In
Proceedings of International Symposium on Leveraging Applications
of Formal Methods, pages 275–279, 2018.

[123] D. C. Sánchez. Raziel: Private and verifiable smart contracts on
blockchains. arXiv preprint arXiv:1807.09484, 2018.

[124] B. Saunders, J. Sim, T. Kingstone, S. Baker, J. Waterfield, B. Bartlam,
H. Burroughs, and C. Jinks. Saturation in qualitative research: Explor-
ing its conceptualization and operationalization. Quality & quantity,
52(4):1893–1907, 2018.

[125] F. Schrans, S. Eisenbach, and S. Drossopoulou. Writing safe smart
contracts in Flint. In Conference Companion of the 2nd International
Conference on Art, Science, and Engineering of Programming, pages
218–219, 2018.

[126] P. L. Seijas and S. Thompson. Marlowe: Financial contracts on
blockchain. In Proceedings of International Symposium on Leveraging
Applications of Formal Methods, pages 356–375, 2018.

[127] P. L. Seijas, S. J. Thompson, and D. McAdams. Scripting smart
contracts for distributed ledger technology. IACR Cryptology ePrint
Archive, 2016:1156, 2016.

[128] I. Sergey and A. Hobor. A concurrent perspective on smart contracts.
In Proceedings of the 21st International Conference on Financial
Cryptography and Data Security, pages 478–493, 2017.

[129] I. Sergey, A. Kumar, and A. Hobor. Temporal properties of smart
contracts. In Proceedings of International Symposium on Leveraging
Applications of Formal Methods, pages 323–338, 2018.

[130] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo. Cataloging
GitHub repositories. In Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering, pages
314–319, 2017.

[131] D. Shepherd, P. Francis, D. Weintrop, D. Franklin, B. Li, and A. Afzal.
[Engineering Paper] An IDE for easy programming of simple robotics
tasks. In Proceedings of the 18th International Working Conference on
Source Code Analysis and Manipulation, pages 209–214, 2018.

[132] O. Sheyner and J. Wing. Tools for generating and analyzing attack
graphs. In Proceedings of the 2nd International Symposium on Formal
Methods for Components and Objects, pages 344–371, 2003.

[133] F. Shull, J. Singer, and D. I. Sjøberg. Guide to advanced empirical
software engineering. Springer, 2007.

[134] L. Singer, F. Figueira Filho, and M.-A. Storey. Software engineering at
the speed of light: How developers stay current using twitter. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 211–221, 2014.

[135] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[136] J. Stark. Making sense of blockchain smart contracts. CoinDesk,
Published on June, 4, 2016.

[137] A. Strauss and J. M. Corbin. Grounded theory in practice. SAGE, 1997.
[138] C. Sun, V. Le, and Z. Su. Finding and analyzing compiler warning

defects. In Proceedings of the 38th International Conference on
Software Engineering, pages 203–213, 2016.

[139] M. Swan. Blockchain: Blueprint for a new economy. O’Reilly Media,
2015.

[140] N. Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997.

[141] F. Thung, X.-B. D. Le, D. Lo, and J. Lawall. Recommending code
changes for automatic backporting of Linux device drivers. In Proceed-
ings of the 32nd International Conference on Software Maintenance
and Evolution, pages 222–232, 2016.

[142] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov. SmartCheck: Static analysis of
Ethereum smart contracts. In Proceedings of the 1st IEEE/ACM
International Workshop on Emerging Trends in Software Engineering
for Blockchain@ICSE, 2018.

[143] P. Tsankov. Security analysis of smart contracts in datalog. In
Proceedings of International Symposium on Leveraging Applications
of Formal Methods, pages 316–322, 2018.

[144] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and
M. Vechev. Securify: Practical security analysis of smart contracts. In
Proceedings of the 25th Conference on Computer and Communications
Security, 2018.

[145] A. Unterweger, F. Knirsch, C. Leixnering, and D. Engel. Lessons
learned from implementing a privacy-preserving smart contract in
Ethereum. In Proceedings of the 9th IFIP International Conference
on New Technologies, Mobility and Security, pages 1–5, 2018.

[146] M. Valenta and P. Sandner. Comparison of Ethereum, Hyperledger
Fabric and Corda. [ebook] Frankfurt School, Blockchain Center, 2017.

[147] N. Valliappan, S. Mirliaz, E. L. Vesga, and A. Russo. Towards adding
variety to simplicity. In Proceedings of International Symposium on
Leveraging Applications of Formal Methods, pages 414–431, 2018.

[148] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy. CCAligner: A token
based large-gap clone detector. In Proceedings of the 40th International
Conference on Software Engineering, pages 1066–1077, 2018.

[149] X. Wang, H. Wu, W. Sun, and Y. Zhao. Towards generating cost-
effective test-suite for Ethereum smart contract. In Proceedings of
the 26th International Conference on Software Analysis, Evolution and
Reengineering, pages 549–553, 2019.

[150] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin. Evaluating CoBlox: A comparative study of robotics
programming environments for adult novices. In Proceedings of the
36th CHI Conference on Human Factors in Computing Systems, page
366, 2018.

[151] M. Wohrer and U. Zdun. Smart contracts: Security patterns in the
Ethereum ecosystem and Solidity. In International Workshop on
Blockchain Oriented Software Engineering@SANER, pages 2–8, 2018.

[152] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151:1–32, 2014.

[153] H. Wu, X. Wang, J. Xu, W. Zou, L. Zhang, and Z. Chen. Mutation
testing for Ethereum smart contract. arXiv preprint arXiv:1908.03707,
2019.

[154] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 23rd
conference on computer and communications security, pages 270–282,
2016.

[155] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: State-of-the-art
and research challenges. Journal of internet services and applications,
1(1):7–18, 2010.

[156] H. Zhong and Z. Su. Detecting API documentation errors. In
Proceedings of the 27th International Conference on Object Oriented
Programming Systems Languages & Applications, pages 803–816,
2013.

[157] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In Proceedings of the 32nd
International Conference on Software Engineering, pages 195–204,
2010.

[158] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey.
Erays: Reverse engineering Ethereum’s opaque smart contracts. In
Proceedings of the 27th USENIX Security Symposium, pages 1371–
1385, 2018.

[159] T. Zimmermann. Card-sorting: From text to themes. In Perspectives on
Data Science for Software Engineering, pages 137–141. Elsevier, 2016.

[160] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu. How practi-
tioners perceive automated bug report management techniques. IEEE
Transactions on Software Engineering, 2018.

	Smart contract development: Challenges and opportunities
	Citation
	Author

	tmp.1576736928.pdf.JXyPB

