
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2019

The impact of changes mislabeled by SZZ on just-in-time defect The impact of changes mislabeled by SZZ on just-in-time defect

prediction prediction

Yuanrui FAN

Xin XIA

Daniel A. COSTA

David LO
Singapore Management University, davidlo@smu.edu.sg

Ahmed E. HASSAN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Data Storage Systems Commons, and the Software Engineering Commons

Citation Citation
FAN, Yuanrui; XIA, Xin; COSTA, Daniel A.; LO, David; HASSAN, Ahmed E.; and LI, Shanping. The impact of
changes mislabeled by SZZ on just-in-time defect prediction. (2019). IEEE Transactions on Software
Engineering. 1-26.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4494

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yuanrui FAN, Xin XIA, Daniel A. COSTA, David LO, Ahmed E. HASSAN, and Shanping LI

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4494

https://ink.library.smu.edu.sg/sis_research/4494

1

The Impact of Mislabeled Changes by SZZ on
Just-in-Time Defect Prediction

Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E. Hassan, Shanping Li

Abstract—Just-in-Time (JIT) defect prediction—a technique which aims to predict bugs at change level—has been paid more
attention. JIT defect prediction leverages the SZZ approach to identify bug-introducing changes. Recently, researchers found that the
performance of SZZ (including its variants) is impacted by a large amount of noise. SZZ may considerably mislabel changes that are
used to train a JIT defect prediction model, and thus impact the prediction accuracy.
In this paper, we investigate the impact of the mislabeled changes by different SZZ variants on the performance and interpretation of
JIT defect prediction models. We analyze four SZZ variants (i.e., B-SZZ, AG-SZZ, MA-SZZ, and RA-SZZ) that are proposed by prior
studies. We build the prediction models using the labeled data by these four SZZ variants. Among the four SZZ variants, RA-SZZ is
least likely to generate mislabeled changes, and we construct the testing set by using RA-SZZ. All of the four prediction models are
then evaluated on the same testing set. We choose the prediction model built on the labeled data by RA-SZZ as the baseline model,
and we compare the performance and metric importance of the models trained using the labeled data by the other three SZZ variants
with the baseline model. Through a large-scale empirical study on a total of 126,526 changes from ten Apache open source projects,
we find that in terms of various performance measures (AUC, F1-score, G-mean and Recall@20%), the mislabeled changes by B-SZZ
and MA-SZZ are not likely to cause a considerable performance reduction, while the mislabeled changes by AG-SZZ cause a
statistically significant performance reduction with an average difference of 1%–5%. When considering developers’ inspection effort
(measured by LOC) in practice, the changes mislabeled B-SZZ and AG-SZZ lead to 9%–10% and 1%–15% more wasted inspection
effort, respectively. And the mislabeled changes by B-SZZ lead to significantly more wasted effort. The mislabeled changes by MA-SZZ
do not cause considerably more wasted effort. We also find that the top-most important metric for identifying bug-introducing changes
(i.e., number of files modified in a change) is robust to the mislabeling noise generated by SZZ. But the second- and third-most
important metrics are more likely to be impacted by the mislabeling noise, unless random forest is used as the underlying classifier.

Index Terms—Just-in-Time Defect Prediction, SZZ, Noisy Data, Mining Software Repositories

F

1 INTRODUCTION

To reduce the costs consumed by software defects, a
plethora of research has focused on defect prediction
techniques [25]. In recent years, change-level defect
prediction techniques have been paid more attention [22],
[35]–[38], [54], [63]. Kamei et al. referred to these techniques
as Just-in-Time (JIT) defect prediction [37]. In comparison
to traditional defect prediction techniques that predict the
defect-proneness of files or modules [29], [44], [51], [80],
JIT defect prediction has the following advantages: 1)
developers can inspect a much smaller number of potential
risky lines; 2) defective changes can be inspected when the
modification contexts are still fresh in developers’ mind [37].

In JIT defect prediction, a key task is to identify the
changes that initially introduce bugs, i.e., bug-introducing
changes, from the historical changes of a project. Modern

• Yuanrui Fan and Shanping Li are with the College of Computer Science
and Technology and Ningbo Research Institute, Zhejiang University,
Hangzhou, China. E-mail: {yrfan, shan}@zju.edu.cn

• Xin Xia is with Faculty of Information Technology, Monash University,
Melbourne, Australia. E-mail: xin.xia@monash.edu

• Daniel Alencar da Costa is with the Information Science Department,
University of Otago, Dunedin, New Zealand. Email:
danielcalencar@otago.ac.nz

• David Lo is with the School of Information Systems, Singapore
Management University, Singapore. E-mail: davidlo@smu.edu.sg

• Ahmed E. Hassan is with School of Computing, Queen’s University.
Email: ahmed@queensu.ca

• Xin Xia is the corresponding author.

software projects contain large amounts of historical
changes, and it is impractical to manually pinpoint the
bug-introducing changes. Hence, researchers proposed the
SZZ approach to automatically identify bug-introducing
changes [15], [40], [56], [65].

The SZZ approach was initially proposed and
implemented by Śliwerski, Zimmermann, and Zeller—
hence the acronym [65]. To identify bug-introducing
changes of a bug, SZZ first looks for the changes whose
change log contains the bug identifier. These changes are
deemed to fix bugs, which are referred to as bug-fixing
changes. In the bug-fixing changes, SZZ identifies the lines
that are modified so that the bug is removed. These lines are
referred to as buggy lines. Next, SZZ traces back through
the code change history to search for the changes where
buggy lines were introduced. Such changes are deemed
as potential bug-introducing changes. After obtaining the
initial set of potential bug-introducing changes, SZZ filters
away the incorrect ones. Finally, the remaining changes are
finally deemed as bug-introducing.

Many JIT defect prediction studies employ SZZ
to identify bug-introducing changes and label their
datasets [22], [35]–[38], [63]. Due to the foundational role
of SZZ, researchers have raised concerns about the quality
of SZZ-generated data. Prior studies observed that SZZ
is affected by a large amount of noise (e.g., changes that
only modify code comments or blank lines), which result in
mislabeled changes [15], [40], [56]. The mislabeled changes

2

include false positives and false negatives. Notice that in
this context, false positives refer to changes that do not
introduce any bugs but are labeled as bug-introducing, and
false negatives refer to changes that truly introduce bugs
but are labeled as clean.

Prior studies proposed improvements for SZZ to avoid
the effect of noise [15], [40], [56]. However, the existing
JIT defect prediction studies have used the original SZZ
approach as proposed by Śliwerski et al. [65], which may
considerably mislabel changes [21], [34], [35], [37], [38], [63].
In our study, we find that compared to the labeled data by
the latest SZZ variant, up to 44% of the bug-introducing
changes labeled by the original SZZ algorithm are false
positives. Training models using such mislabeled data may
significantly impact the models [4], [6], [39]. Hence, the
mislabeled changes by SZZ may threaten the validity of the
observations of prior JIT defect prediction models.

In this study, we set out to investigate the impact of the
mislabeled changes by SZZ on JIT defect prediction models.
We evaluate JIT defect prediction models that use change
metrics proposed by Kamei et al. [37]. Kamei et al. showed
that the models built using their metrics are effective in
identifying bug-introducing changes [37]. Moreover, their
metrics are widely used in prior studies [21], [34], [36], [37],
[50], [81]–[83]. We totally analyze four SZZ variants, which
are proposed by previous studies and briefly described as
follows.

• Śliwerski et al.’s SZZ: the original SZZ [65]. In this
paper, we refer to it as Basic SZZ (B-SZZ). B-SZZ
considers all lines modified by bug-fixing changes as
buggy lines. It uses the built-in annotate command
in version control systems to trace back through the
change history.

• Kim et al.’s SZZ: an SZZ variant that is built
on top of B-SZZ [40]. It discards non-semantic
lines including blank/comment lines and those
involving format modifications (e.g. modifications to
code indentation) [40]. This implementation uses the
annotation graph—a tool for tracing the evolution of
lines of code along the code history as proposed by
Zimmermann et al. [85]—to trace back through the
change history. We refer to Kim et al.’s SZZ variant as
Annotation Graph SZZ (AG-SZZ).

• Da Costa et al.’s SZZ: an SZZ variant that is built on top
of AG-SZZ [15]. This variant mitigates the noise caused
by branch/merge changes and property changes for
AG-SZZ. Da Costa et al. referred to such changes as
meta-changes. The authors referred to their SZZ variant
as Meta-change Aware SZZ (MA-SZZ).

• Neto et al.’s SZZ: an SZZ variant that is built on top
of MA-SZZ [56]. It detects refactoring modifications
in changes and mitigates the noise induced by such
modifications. Neto et al. referred to their SZZ variant
as Refactoring Aware SZZ (RA-SZZ).

We first label our datasets leveraging the four SZZ
variants. Then, we leverage the labeled data by each SZZ
variant machine learning techniques including random
forest [8], logistic regression [32] and naive Bayes [17] to
learn models. RA-SZZ has the most filters to deal with
noise compared to the other SZZ variants. Da Costa et al.’s

analysis on the evaluation of different SZZ variants [15] and
our manual analysis on the detected refactorings of RA-SZZ
indicate that RA-SZZ generates the cleanest data compared
to the other SZZ variants. We construct the testing set using
the labeled data by RA-SZZ. Next, we evaluate the models
learned from the labeled data by studied SZZ variants on
the testing set. We use AUC (Area Under the Curve) [33],
F1-score and G-mean [68] as performance measures. We
use the model trained using the labeled data by RA-SZZ
as a baseline model, since it is built on the cleanest data.
We compare the models trained using the labeled data
by B-SZZ, AG-SZZ and MA-SZZ with the baseline model.
By doing so, we analyze the impact of the mislabeled
changes by B-SZZ, AG-SZZ, MA-SZZ on the performance
of JIT models. And we also investigate the impact of the
mislabeled changes by SZZ when JIT models are applied to
predict bug-introducing changes. We compare the number
of incorrectly predicted changes and wasted inspection
effort (measured by LOC) made by the models trained
using the labeled data by each SZZ variant. Furthermore,
we calculate and compare the most important metrics in
identifying bug-introducing changes for the models.

In addition to predicting bug-introducing changes, prior
studies have proposed JIT defect prediction techniques
to prioritize changes for developers by considering the
limited resources and human effort to inspect changes [21],
[34], [83]. These techniques are referred to as effort-aware
JIT defect prediction techniques. We also investigate the
impact of mislabeled changes by SZZ on performance of
effort-aware JIT defect prediction models. We leverage two
techniques to build the effort-aware models: Huang et al.’s
CBS [34] and Fu et al.’s OneWay [21]. We use Recall@20% to
evaluate effort-aware models and compare the performance
of the models.

Notice that in this study, as shorthand notations, we
denote the four models as B, AG, MA and RA models,
respectively

We conduct a large-scale empirical study on ten projects
containing a total of 126,526 code changes. Experimental
results show that the mislabeled changes by B-SZZ and
MA-SZZ do not cause a significant performance reduction
for JIT models in identifying bug-introducing changes.
The mislabeled changes by AG-SZZ cause a significant
performance reduction with an average difference of 1%–5%
in terms of AUC, F1-score and G-mean. When considering
developers’ effort to inspect the bug-introducing changes
that are predicted by JIT models, the mislabeled changes
by B-SZZ and AG-SZZ lead to 9%–10% and 1%–15% more
wasted effort on false positives. The mislabeled changes
by B-SZZ significantly increase developers’ wasted effort.
In terms of model interpretation, the mislabeled changes
by SZZ do not impact the top-most important metric for
identifying bug-introducing changes (i.e., number of files
in a change). But the mislabeled changes can impact the
second- and third-most important metrics for identifying
bug-introducing changes, unless random forest is used as
the underlying classifier. For the effort-aware JIT models,
experimental results show that the mislabeled changes by
B-SZZ and MA-SZZ do not cause performance reduction,
while the mislabeled changes by AG-SZZ cause a significant
performance reduction in terms of Recall@20% with an

3

average difference of 2% when the CBS technique [34] is
used.

We analyze the reason as to why the B model wastes
considerably more effort than the RA model even if the
prediction performance of the B model is not lower than
the RA model (See Section 4.3). We find that B-SZZ tends
to mislabel larger changes as bug-introducing and smaller
changes as clean compared to RA-SZZ, and thus, the B
model is more likely to predict large changes as bug-
introducing. In such a case, developers may waste more
effort on the changes that are incorrectly predicted as
bug-introducing by the B model. Moreover, we discuss
the reasons why the B and MA models achieve a similar
performance compared to the RA model and why the
AG model shows a significant performance reduction (see
Section 5.1). We find that the labeled data by B-SZZ and
MA-SZZ has a relatively low false positive rate and false
negative rate, which may not considerably impact the
prediction of JIT models. On the other hand, the labeled
data by AG-SZZ contains a considerable number of false
negatives (the average false negative rate is 30%), which are
likely to induce bias to the prediction of JIT models.

To the best of our knowledge, this paper is the first to
systematically investigate the impact of mislabeled changes
by different SZZ variants on Just-in-Time defect prediction
models. We conducted a large-scale empirical study on a
total of 126,526 code changes that are collected from ten
Apache open source projects. We note the following findings
along with their implications:

• Although mislabeled changes by the original SZZ
algorithm (i.e., B-SZZ) do not cause a considerable
performance reduction, the mislabeled changes lead
to significantly more wasted inspection effort for
the practical usage of JIT models. Furthermore, the
mislabeled changes may impact the interpretation of JIT
models. Hence, prior JIT defect prediction studies that
applied B-SZZ may need to be revisited to determine
whether considerable amount of inspection effort was
wasted in practice and whether the interpretation of
their JIT models is impacted (e.g., Kamei et al. [37]).

• The mislabeled changes by AG-SZZ lead to a significant
performance reduction, and they cause more wasted
inspection effort. Also, the mislabeled changes impact
the interpretation of JIT models. Hence, AG-SZZ should
be avoided in future studies. The mislabeled changes
by MA-SZZ do not cause a significant performance
reduction nor do they considerably waste more effort.
RA-SZZ may be difficult to use when refactoring
detection tools are not available (e.g., projects are
written in programming languages other than Java).
In such a case, MA-SZZ may be an alternative for
RA-SZZ to label data. To combat the impact of the
mislabeled changes by MA-SZZ on the interpretation
of JIT models, practitioners can use a random forest
classifier as the underlying classifier for their JIT
models.

The datasets and code for reproducing our study are
available from our accompanying GitHub repository1.

1. https://github.com/YuanruiZJU/SZZ-TSE

Paper organization. The remainder of this paper is
organized as follows. Section 2 provides background
concepts and briefly reviews the related work. Section 3
describes our experimental setup (e.g., the studied projects).
Section 4 presents the results with respect to five
research questions, while Section 5 further discusses our
experimental results and discloses the threats to the validity
of our study. Finally, Section 6 concludes our paper.

2 BACKGROUND AND RELATED WORK

In this section, we describe the concepts that are necessary
to understand our study. We also highlight the studies that
are most closely related to our work.

2.1 Just-in-Time Defect Prediction

Traditional defect prediction techniques focus on predicting
defect-prone software entities at a coarse-grained level,
e.g., predicting defect-proneness of files or modules.
Such granularity challenges the practical usage of these
techniques. For example, a prediction model is likely to
predict large files containing thousands of lines as defect-
prone [42]. However, it is difficult for developers to inspect
thousands of lines of code to find and fix potential bugs.
Furthermore, a predicted defect-prone file may be modified
by hundreds of developers. Hence, it is also difficult to find
an expert who should be assigned to fix potential bugs in
such a file [23], [38].

To tackle the above-mentioned challenges, prior studies
proposed the change-level defect prediction, i.e., predicting
defect-proneness for software changes, which are more
fine-grained than files or modules [54]. Mockus and Miss
proposed the change-level defect prediction [54]. They
leveraged a prediction model to predict defects for initial
maintenance requests (IMRs). An IMR consists of multiple
changes. Failures of IMRs are recorded in a tracking system,
thus labeling training data is easy.

Śliwerski et al. proposed the SZZ approach, which can
identify bug-introducing changes based on data stored in an
issue tracking system (ITS, e.g., JIRA) and version control
system (VCS, e.g., Git) of a software project [65]. Due
to the advent of SZZ, practitioners have the opportunity
to identify the individual changes that introduce bugs.
Using SZZ, they can label each historical change of a
project as bug-introducing or clean. Hence, in recent studies,
more researchers have been focusing on techniques that
predict the defect-proneness of individual changes [35]–
[38], [50]. Kamei et al. referred to these techniques as
Just-in-Time defect prediction techniques since they can
predict the defect-proneness of a change when it is initially
submitted [37]. Figure 1 presents the general framework
of Just-in-Time (JIT) defect prediction which consists of
four steps. First, JIT defect prediction leverages the SZZ
approach to label historical changes as stored in VCS as
bug-introducing or clean. Then, it extracts change metrics
to characterize the code changes. Next, it leverages machine
learning techniques (such as random forest) to learn a model
based on the labels and change metrics. Finally, JIT defect
prediction leverages the learned model to predict the defect-
proneness of new code changes.

4

Fig. 1: General framework of Just-in-Time (JIT) defect
prediction

Many prior studies have focused on JIT defect prediction
techniques. And in these studies, SZZ plays a foundational
role. As shown in Figure 1, it generates the labels of
the studied datasets for training models. Kim et al. are
the first to predict the defect-proneness for individual
changes [38]. Kamei et al. conducted a large-scale empirical
study on JIT defect prediction using both open-source and
commercial projects [37]. Jiang et al. proposed to predict
defect-proneness of changes in a personalized way [35].
Kamei et al. investigated the performance of JIT defect
prediction models in several cross-project settings [36]. All
of the above studies used B-SZZ (i.e., the original SZZ
approach) to label changes. Prior studies noted that this
variant is affected by a large amount of noise [15], [40], [56].
The noise results in mislabeled changes, which may threaten
the validity of these studies [35]–[38].

Recently, McIntosh et al. conducted a longitudinal case
study of JIT defect prediction [50]. To prepare their studied
datasets, they first used B-SZZ to generate labels. Then, they
removed false positives, e.g., the potential bug-introducing
changes that only modify code comments or whitespace
and those that contain too much churn and too many files.
However, the method used by McIntosh et al. does not
address the false negatives generated by SZZ. Note that
Kim et al. observed that B-SZZ may generate false negatives
since changes of code indentation can hinder B-SZZ from
identifying the real bug-introducing changes [40]. Thus,
mislabeled changes by SZZ may still threaten the validity
of McIntosh et al.’s study. Notice that although McIntosh
et al. made an effort to deal with the noise generated by
SZZ (e.g., removing false positives to clean their datasets),
the authors did not investigate whether the removed noise
impact JIT models.

In practice, due to limited resources and human effort,
developers can only inspect a limited number of lines
of code. Prior studies proposed effort-aware JIT defect
prediction techniques to prioritize changes for developers
to find more bugs while exerting the same effort [21], [34],
[37], [83].

Kamei et al. proposed a supervised effort-aware JIT
defect prediction technique EALR [37]. EALR predicts the
defect density of changes and prioritizes changes using the
predicted defect density in descending order. Yang et al.
proposed an unsupervised effort-ware JIT defect prediction
technique [83]. Their models first sort changes using one
of Kamei et al.’s metrics [37], and then, prioritize changes
for developers in that order. Yang et al. showed that

their unsupervised models achieve better cost-effectiveness
than EALR. Huang et al. proposed a supervised effort-
aware JIT defect prediction technique CBS [34]. CBS first
predicts defect-proneness of changes. Then, for changes
that are predicted as bug-introducing, CBS prioritizes them
for developers by their chunk size. Fu et al. proposed
a supervised effort-aware JIT defect prediction technique
OneWay [21]. OneWay first runs Yang et al.’s unsupervised
models on the training data and chooses the model that
achieves the best cost-effectiveness. Then it uses the model
to prioritize changes in the testing data. CBS and OneWay
can achieve better cost-effectiveness than Yang et al.’s
unsupervised models. These studies have applied the Kamei
et al.’s data [37] labeled by B-SZZ.

Mislabeled changes by SZZ cannot impact Yang et al.’s
unsupervised models, since these models do not require the
labels of changes. However, for studies based on supervised
models which require change label(e.g., Huang et al. [34]),
mislabeled changes by SZZ may threaten the validity of
these studies.

To the best of our knowledge, apart from using the
original SZZ (i.e., B-SZZ), no prior studies have investigated
the impact of adopting the newly proposed SZZ variants
(i.e., AG-SZZ, MA-SZZ and RA-SZZ) to build JIT defect
prediction models. Due to the foundational role of SZZ
in JIT defect prediction, it is necessary to analyze the
impact of noise that is introduced by SZZ on JIT defect
prediction models. We are the first to investigate this
problem systematically.

2.2 The SZZ Approach
2.2.1 The Original SZZ Approach
The original SZZ approach (B-SZZ) was proposed in
Śliwerski et al.’s study [65]. For a given bug, Śliwerski
et al. proposed four steps to identify the bug-introducing
changes [65]. In Figure 2, we show a bug from ActiveMQ
(bug AMQ-1381 [1]) to illustrate the four proposed steps:
(1) Identify bug-fixing changes. SZZ begins with searching for
bug-fixing changes. Many projects adopt an issue tracking
system (ITS) to store bug reports. Each bug has an identifier.
In JIRA, the bug identifier has the format PROJECT-ID
(AMQ-1381 in our example). Developers typically record the
bug identifier in the commit message of a change to indicate
that the change fixes the bug [7]. To identify changes that are
likely to be bug fixes, Śliwerski et al.’s SZZ checks whether
the change log contains the bug identifier as recorded in
ITS [65]. As a result, SZZ identifies that Change #645599 is
the change fixing the bug AMQ-1381.
(2) Identify buggy lines. SZZ leverages the diff command
provided by the VCS to identify the lines of code
modified by the bug-fixing changes. These lines of code
are considered as buggy lines. In the example shown
in Figure 2, SZZ identifies a buggy line that involves
a function declaration, where the type of the command
parameter is incorrect, i.e., its type should be Object rather
than Command. The description of the bug AMQ-1381 also
indicates that the function cannot be called because of the
incorrect parameter type [1]. Hence, this line is truly buggy.
(3) Identify potential bug-introducing changes. SZZ traces back
through the code history to identify the changes that

5

Fig. 2: Illustrative example for the SZZ approach.

introduce one or more of the buggy lines. We refer to these
changes as potential bug-introducing changes. Śliwerski et
al. proposed to use the built-in annotate command of the
VCS to trace back through the code history [65]. As shown
in Figure 2, SZZ identifies that Change #447608 introduces
the incorrect function declaration as found in Step 2.
(4) Filter away incorrect bug-introducing changes. SZZ filters
away incorrect ones from the potential bug-introducing
changes. Śliwerski et al. proposed that potential bug-
introducing changes which were created after the bug report
date are incorrect and should be filtered away [65]. And the
remaining potential bug-introducing changes are eventually
identified as changes that introduce the bug. Since Change
#447608 is created before the date AMQ-1381 was reported,
it is identified as a bug-introducing change.

2.2.2 Limitations and Improvements of the Original SZZ
Researchers noticed that SZZ is affected by a large amount
of noise when SZZ performs Step 2 (identify buggy lines)
and Step 3 (identify potential bug-introducing changes) [15],
[40], [56]. As a result, considerable changes may be
mislabeled. To deal with the noise, prior studies proposed
improvements for SZZ to perform the two steps more
accurately.

Kim et al. observed that B-SZZ may consider non-
semantic lines including blank/comment lines and those
involving format modifications (e.g., modifications to the
code indentation) to be buggy lines [40]. These lines of
code should not be considered to introduce bugs since
they do not affect the behavior of the code, i.e., these lines
should be ignored in Step 2 of SZZ. Moreover, format
modifications pose another challenge: in Step 3 of SZZ,
format modifications to the buggy lines (as identified in
Step 2) may appear when SZZ traces back through the
code history. In such a case, SZZ stops at the format
modification changes, and the format modification changes
are identified to introduce the bug. As a result, real bug-
introducing changes cannot be identified. Hence, format
modifications may cause false positives and false negatives.
We use three code changes as shown in Figure 3 to illustrate
the false positives and false negatives caused by format
modifications. In Figure 3, Change #170 fixes a bug by

Fig. 3: False positive and false negative example caused by
a format modification.

Fig. 4: Illustrative example of an annotation graph

changing the buggy line if(x == null) to if(x !=
null). When searching for the potential bug-introducing
changes, B-SZZ incorrectly stops at Change #152, which
only modifies the code indentation. As a result, Change #152
is mislabeled as bug-introducing (i.e., false positive) and
Change #110 is mislabeled as clean (i.e., false negative). To
deal with the challenge introduced by format modifications,
Kim et al. proposed AG-SZZ, which uses the annotation
graph [85] rather than the annotate command in Step
3. The annotation graph provides more comprehensive
information about line moves and modifications within a
file than the annotate command.

Figure 4 presents an illustrative example of an
annotation graph which traces the evolution of the lines

6

across three consecutive changes: Ck, Ck+1 and Ck+2. In
the graph, each node denotes a line. The annotation graph
uses edges to map the relationships between the lines of
two changes. For example, from Ck to Ck+1, one line of
code is deleted, and one line of code is added. If several
lines are modified, the VCS understands this case as deleted
and added, and the annotation graph will use edges to
connect each added line of Ck+1 with each deleted line
of Ck. When tracing back the code history, annotation
graph performs a depth-first search method to find the bug-
introducing changes. Furthermore, Williams and Spacco
proposed an enhancement to the annotation graph [77], [78].
In their work, they used weights to map the evolution of a
line. For example, if a change modifies a while statement
to a different while statement and two new lines of code,
the annotation graph would indicate that the previous
while statement is changed into these three lines. On the
other hand, if the change updates the while statement,
the enhanced algorithm would put a heavier weight on the
edge between the previous and updated while statements.
Such a heavier weight indicates that the previous while
statement is more likely to be updated rather than to be
replaced with a new line of code.

Da Costa et al. noticed that AG-SZZ flags meta-changes
as potential bug-introducing changes due to the limitation
of the annotation graph [15]. Meta-changes refer to changes
that are not related to code modification, and hence they are
considered as noise. Da Costa et al. observed three types of
meta-changes: branch changes (i.e., changes copying code
from one branch to a new branch), merge changes (i.e.,
changes applying code modifications from one branch to
another) and property changes (i.e., changes impacting file
properties) [15]. Da Costa et al. found that meta-changes
are incorrectly flagged because the annotation graph cannot
map the lines of code between meta-changes and their prior
changes [15]. In such a case, AG-SZZ may stop at meta-
changes in Step 3. Note that since B-SZZ uses a different
strategy (i.e., the annotate command) to perform Step 3,
B-SZZ is not affected by branch/merge changes. Hence, in
comparison with B-SZZ, AG-SZZ may generate more false
negatives due to the limitation of the annotation graph. To
mitigate the impact of meta-changes for AG-SZZ, Da Costa
et al. proposed MA-SZZ (Meta-change Aware SZZ) on top
of AG-SZZ, in which they enhanced Kim et al.’s annotation
graph by connecting all of the nodes in a given meta-change
with its prior change. This improvement avoids identifying
meta-changes as potential bug-introducing changes.

Neto et al. observed that prior SZZ variants (including
B-SZZ, AG-SZZ and MA-SZZ) may identify incorrect bug-
introducing changes due to the impact of refactoring
lines [56]. Refactoring lines refer to those involving
refactoring modifications (e.g., modification to a function
name). These lines impact Step 2 and Step 3 of SZZ. In
Step 2, since refactoring modifications are not likely to fix
bugs, refactoring lines should not be considered as buggy.
In Step 3, when tracing back through the code history to
identify the changes that introduce buggy lines, SZZ may
stop at a change in which buggy lines are refactored. In
fact, the bug had been introduced before the refactoring
modifications were performed. Hence, SZZ is hindered
from identifying the real bug-introducing changes. To deal

with the impact of refactoring lines, Neto et al. proposed
Refactoring Aware SZZ (RA-SZZ), where they incorporated
RefDiff into MA-SZZ. RefDiff is a refactoring-detection tool
for Java code [64]. In Step 2 and Step 3, RA-SZZ uses the
tool to detect refactoring lines. In Step 2, refactoring lines
are not considered as buggy lines. In Step 3, RA-SZZ does
not stop at changes involving refactoring lines and it will
further trace back through the code history to identify the
real bug-introducing changes.

Note that in this study, we use the same datasets that
were studied by Da Costa et al. [15] and Neto et al. [56].
From the datasets, Da Costa et al and Neto et al. have
provided many concrete examples of mislabeled changes by
different SZZ variants, which are helpful for understanding
the mislabeling of the studied SZZ variants.

Prior studies evaluated the generated data by different
SZZ variants [15], [16], [40], [56].

To evaluate B-SZZ, Davies et al. manually identified bug-
introducing changes of 174 bugs [16]. Then they compared
the manually identified changes with the bug-introducing
changes identified by B-SZZ. They found that the labeled
data by B-SZZ contains many false positives and false
negatives.

To evaluate AG-SZZ, Kim et al. compared the set of
bug-introducing changes identified by AG-SZZ (S1) with
the set of bug-introducing changes identified by B-SZZ
(S2). They assumed that AG-SZZ is more accurate than
B-SZZ. Then they calculated the false positives (|S2−S1|

|S2|)

and false negatives (|S1−S2|
|S1|). However, Da Costa et

al. analyzed the bug-introducing changes identified by
AG-SZZ and observed that AG-SZZ flags meta-changes
(including branch/merge changes and property changes)
as bug-introducing for 90%–98% of studied bugs due to
limitations of the annotation graph [15]. They also analyzed
the generated data by B-SZZ and found that B-SZZ does
not flag branch/merge changes as bug-introducing, but it
flags property changes as bug-introducing for 0%–48% of
the studied bugs. Hence, AG-SZZ may not be more accurate
than B-SZZ.

MA-SZZ deals with the meta-changes on top of AG-SZZ.
Meta-changes can be correctly recognized using information
of the version control system. Thus, MA-SZZ is not likely
to introduce new noise when dealing with meta-changes,
i.e., MA-SZZ is more accurate than AG-SZZ. Furthermore,
Da Costa et al. proposed an evaluation framework for the
generated data by SZZ [15]. The framework uses three
metrics: 1) count of future bugs introduced by a change;
2) time span of future bugs introduced by a change; 3) time
span of bug-introducing changes of a bug. Da Costa et al.
noted that the SZZ-generated data with lower values of the
three metrics is more likely to be reliable. They leveraged
the framework to evaluate the generated data by B-SZZ and
MA-SZZ. They found that the generated data by MA-SZZ is
more reliable than B-SZZ.

RA-SZZ is built on top of MA-SZZ and further deals
with the refactoring modifications detected by RefDiff. Neto
et al. assumed that RefDiff can achieve high precision
in detecting refactoring modifications [56]. Based on the
assumption, they found that RA-SZZ reduces 20.8% of lines
that involved refactoring modifications but were identified

7

as buggy lines by MA-SZZ, and they concluded that
RA-SZZ can create cleaner data than MA-SZZ. However,
they did not analyze the reliability of this assumption.
In this study, we perform a manual evaluation on 1,000
randomly sampled refactoring changes as detected by
RefDiff (See Section 3.2). Our manual analysis verifies Neto
et al.’s assumption that RefDiff achieves high precision—
RefDiff achieves a precision of 98.1% on the sampled
data. Therefore, RA-SZZ generates cleaner data than MA-
SZZ, i.e., RA-SZZ generates the cleanest data compared to
the other SZZ variants. In this paper, we use the labels
generated by RA-SZZ to create the testing set.

2.3 Impact of Data Quality on Defect Prediction Models

In recent years, researchers have raised concerns about
the quality of data employed by defect prediction models
including file-level and change-level defect prediction
models.

Several studies investigated the impact of the missing
link issue between bugs and bug-fixing changes on defect
prediction models [4], [6]. Bird et al. noted that developers
may not explicitly record which commits correspond to
bug-fixes, and the linked bug repository exhibits bias with
respect to the severity of bug and reporter experience [6].
Bachmann et al. further found that the missing link issue
causes bias in the recorded bug-fix datasets [4]. Bird et
al. and Bachmann et al. evaluated the bias caused by the
missing link issue on file-level defect prediction models and
concluded that the bias can severely impact the models.
Note that Bird et al.’s study and Bachmann et al.’s study
are both based on the data in Bugzilla ITS. In our study,
all our studied projects use the JIRA issue tracking system.
Bissyande et al. analyzed the data in the JIRA ITS and
observed that the quality of links in the JIRA ITS is much
better than that of Bugzilla ITS [7].

Kim et al. conducted an empirical study on the impact
of noise on both file-level and change-level defect prediction
models [39]. In their study, they intentionally and randomly
injected false positives and false negatives into their
datasets. And they found that performance of the defect
prediction models significantly decreases when 25%–35%
changes of their dataset are mislabeled.

Prior studies also noticed that bug reports may be
mislabeled, and performed analysis on the impact of
mislabeled bug reports on defect prediction models [3], [30],
[72]. Antoniol et al. and Kochhar et al. noted issue report
mislabeling—reports labeled as bugs but actually refer to
non-bug issues [3], [41]. Herzig et al. manually inspected
more than 7,000 bug reports [30]. They considered that
bug reports that do not result in bug fixes are incorrectly
labeled. And they found that a large proportion of bug
reports are mislabeled. Tantithamthavorn et al. leveraged
Herzig et al.’s manually curated dataset to investigate
the impact of the mislabeled bug reports on file-level
defect prediction models [72]. They found that mislabeling
does not significantly impact precision of the models, but
significantly impacts recall of the models.

Herzig et al. noted that developers may perform
multiple tasks (such as bug fix and refactoring) in a single
change, and they referred to these changes as tangled code

changes [31]. They found that tangled changes only affect
1.5%–7.1% of source files which were originally labeled as
defective—these files should be labeled as clean. Since only
a small fraction of the files that were originally labeled
as defective are affected, the noise induced by tangled
changes does not significantly impact the models which
predict whether source files have bugs or not. On the other
hand, Herzig et al. observed that tangled changes impact
the number of associated bugs for 16.6% of all source files.
Since such a considerable number of files are affected with
respect to the number of associated bugs, the noise induced
by tangled changes significantly impacts the models which
predict the number of bugs in source files.

Our study is orthogonal to the above studies. First,
we focus our analysis on the impact of noise on Just-in-
Time (i.e., change-level) defect prediction models. Second,
we focus on noisy labels generated by SZZ. The noisy
labels are not randomly generated. Also, they are not
caused by developers’ imperfect operations. Instead, they
are generated due to the inherent limitations of different
SZZ variants.

3 EXPERIMENT SETTINGS

In this section, we first introduce our studied projects. Then,
we elaborate the four SZZ variants and describe the labeled
data by the SZZ variants. Next, we describe the studied
changes and our data preprocessing methods. After that, we
elaborate the details of our experimental setup, e.g., model
building and metric calculation. Finally, we introduce the
performance measures used in this study. We would like to
answer five research questions in this paper:
RQ1: How do mislabeled changes by SZZ impact the
performance of JIT defect prediction models trained using
the original data?
RQ2: How do mislabeled changes by SZZ impact the
performance of JIT defect prediction models trained using
re-balanced data?
RQ3: How do mislabeled changes by SZZ impact the
practical usage of JIT defect prediction models?
RQ4: How do mislabeled changes by SZZ impact on the
performance of effort-aware JIT defect prediction models?
RQ5: How do mislabeled changes by SZZ impact the
interpretation of JIT defect prediction models?

3.1 Studied Projects
In this study, we conduct our analysis on the ten Apache
projects that were used in Da Costa et al.’s study [15] and
Neto et al.’s study [56]. Table 1 shows the description of
our studied projects. We collect historical data of the ten
projects from August 2003 to September 2013. All the data
is retrieved from the Apache Git repository2.

All of the projects use JIRA ITS to manage bug reports.
JIRA provides add-ons for connecting issues to version
control systems, and thus it is easier for developers using
this ITS to link bug reports to changes [7]. Bissyande et al.
observed that the quality of links in JIRA is much better
than that of Bugzilla ITS [7]. Hence, our experimental results
are not likely to be impacted by the bias induced by the

2. http://git.apache.org/

8

TABLE 1: Overview of Studied Projects

Project Description #Changes

ActiveMQ A message broker with a Java message service
client. 7,753

Camel A versatile integration framework for a variety
of domain-specific languages. 17,374

Derby A relational database management system
(RDBMS) written in Java 9,775

Geronimo An application server fully certified by Java
Enterprise Edition 6 (Java EE 6). 16,152

Hadoop
Common

A software for distributed processing of large
data sets using clusters of computers. 27,077

HBase A distributed and scalable database adopted by
Hadoop for big-data store. 14,581

Mahout A framework for implementing distributed or
scalable machine learning algorithms. 2,762

OpenJPA Java persistence library using a object-relation
mapping (ORM) solution. 6,368

Pig A high-level platform for creating programs
using Hadoop to analyze large data sets. 3,089

Tuscany
A software that provides an infrastructure
for developing and managing service-oriented
architecture.

21,595

Total 126,526

missing link problem between bug reports and code changes
as noted by Bird et al. [6] and Bachmann et al. [4] in the
Bugzilla ITS.

As noted by Wang et al. [75] and McIntosh et al. [50],
large changes are likely to be caused by routine maintenance
(e.g., copyright updates). Hence, such changes are unlikely
to introduce bugs. Moreover, in practice, developers are
unlikely to take great efforts to review large changes. Hence,
in this study, we discard large changes from our analysis.
We consider changes that modify more than 10,000 lines
or 100 files as large changes following McIntosh et al.’s
study [50]. Table 1 shows the number of changes of each
studied project.

3.2 Data Labeling

In this study, we analyze four SZZ variants, namely B-SZZ,
AG-SZZ, MA-SZZ and RA-SZZ. Then we use the four SZZ
variants to label our data. Notice that in our study, we
use the implementation of B-SZZ, AG-SZZ and MA-SZZ
provided by Da Costa et al. [15] and the implementation of
RA-SZZ provided by Neto et al. [56]. The implementation
of the four SZZ variants is available on GitHub [13], [14].

To identify bug-introducing changes, all of the four SZZ
variants need to perform the four steps as shown in Figure 2.
All of them use the same method to perform Step 1 (i.e.,
identify bug-fixing changes) and Step 4 (i.e., filter away
incorrect bug-introducing changes). But they apply different
strategies when performing Step 2 (i.e., identify buggy lines)
and Step 3 (i.e., identify potential bug-introducing changes).

When identifying bug-fixing changes, all of the four
SZZ variants take the following two steps: (1) identify
occurrences of bug identifiers with the format PROJECT-
ID (e.g., HBASE-2975) in the commit log; (2) check if
the corresponding bug report with the given identifier is
defined as a defect in ITS. When filtering incorrect bug-
introducing changes for each bug, all of four SZZ variants
apply the strategy proposed by Śliwerski et al. [65], which
is: filter away the potential bug-introducing changes that are
created after the bug report date.

Table 2 presents the mapping and searching strategies
that are applied in Step 2 and 3 of the variants, respectively.
The mapping strategies are applied in Step 2 of SZZ to
identify the real buggy lines from the lines that are modified
by bug-fixing changes. In Step 3 of SZZ, the searching
strategies are applied when tracing back through the change
history to search for potential bug-introducing changes.
For instance, when identifying buggy lines (Step 2), RA-
SZZ filters away non-semantic lines and those involving
refactoring modifications from the lines modified by bug-
fixing changes and only use the remaining lines.

For each bug, we separately use the four SZZ variants
to identify and label bug-introducing changes. Then, we get
the labeled data by the four SZZ variants. Table 3 shows the
number and percentage of bug-introducing changes in the
labeled data by the four SZZ variants in each project.

Neto et al. concluded that RA-SZZ is more accurate than
MA-SZZ based on the assumption that RefDiff achieves
high precision in detecting refactoring modifications [56].
To verify whether the assumption holds for our study, we
perform a manual analysis of RefDiff as follows. We first
run RefDiff on each of the ten studied projects. RefDiff
takes as input the commit id of each change. It outputs
the refactoring changes with refactoring modifications in the
changes (e.g., rename method). Table 3 presents the number
of refactoring changes as detected by RefDiff for each
project. Then, for each project, we randomly sample 100
refactoring changes. In total, we sample 1,000 changes. Next,
the first and third author separately determined whether
the sampled changes have performed the refactoring
modifications as detected by RefDiff. Both authors have
multiple years of programming experience in Java. Finally,
both authors compared their determination results to
uncover any disagreements, i.e., refactoring changes on
which the two authors have different decisions. We find that
for 4% changes, the two authors have different decisions—
the two authors share the same decision on 96% of the
1,000 changes. For each change with decision conflict, the
two authors further discuss whether the change contains
the refactoring modifications as detected by RefDiff.

In Table 3, we show the precision of RefDiff on the
sampled changes in each project. From the table, we notice
that RefDiff achieves a precision of 97%–99% across the
ten projects. And it achieves a precision of 98.1% on the
1,000 sampled changes. Our manual analysis verifies the
assumption that RefDiff can achieve high precision. Hence,
RA-SZZ generates cleaner data than MA-SZZ. Furthermore,
as described in Section 2.2.2, prior studies have evaluated
the generated data by the different SZZ variants [15], [16],
[40], [56]. According to Da Costa et al.’s analysis [15], MA-
SZZ is more accurate than B-SZZ and AG-SZZ. Hence, RA-
SZZ can generate the cleanest data compared to the other
SZZ variants.

To be fair to the models analyzed in our study, we
need to evaluate the models on the same testing set which
contains as few mislabeled changes as possible. RA-SZZ
generates the cleanest data compared to the other SZZ
variants. Hence, in this study, we create the testing set using
the labels output by RA-SZZ—all the models trained using
the labeled data by the four SZZ variants will be evaluated
on the same testing set.

9

TABLE 2: The four studied SZZ variants.

SZZ Description Step 2: Mapping Strategy Step 3: Searching Strategy

B-SZZ The original SZZ proposed by
Śliwerski et al. [65]

All lines modified by bug-fixing changes are
identified as buggy lines.

The built-in annotate command of VCS is used to
identify the last change that modified each line of code in
a file for a given change. Using such information, all last
changes that modify lines involved in bug-fixing changes
are flagged as potential bug-introducing changes.

AG-SZZ
Improved SZZ variant proposed by
Kim et al. [40] which is built on top
of B-SZZ.

Non-semantic lines (including blank lines,
comment lines and those involving code
format modifications) are discarded. Other
lines involved in bug-fixing changes are
identified as buggy lines.

The annotation graph is used to record evolution for
lines of code in source files. A depth-first search of the
annotation graph is performed to identify potential bug-
introducing changes. The searching process does not stop
at format modifications to buggy lines.

MA-SZZ
Improved SZZ variant proposed by
Da Costa et al. [15] which is built on
top of AG-SZZ.

Non-semantic lines and those involving
refactoring modifications are discarded.
Other lines involved in bug-fixing changes
are identified as buggy lines.

In addition to steps done by AG-SZZ, the searching
process does not stop at meta-changes.

RA-SZZ
Improved SZZ variant proposed by
Neto et al. [56] which is built on top
of MA-SZZ.

In addition to steps done by AG-SZZ and MA-SZZ,
the searching process does not stop at refactoring
modifications to buggy lines.

TABLE 3: Number and percentage of bug-introducing changes in the labeled data by the four SZZ variants. The last two
columns show the number of refactoring changes detected by RefDiff and RefDiff’s precision on sampled changes.

Project B-SZZ AG-SZZ MA-SZZ RA-SZZ #Ref. Prec. of
Changes RefDiff

ActiveMQ 1,697 (22%) 1,157 (15%) 1,336 (17%) 1,245 (16%) 649 98%
Camel 2,957 (17%) 2,032 (12%) 2,186 (13%) 2,018 (12%) 1,832 97%
Derby 1,772 (18%) 1,799 (18%) 1,559 (16%) 1,153 (12%) 1,025 99%

Geronimo 2,309 (14%) 1,245 (08%) 1,999 (12%) 1856 (11%) 1,200 97%
Hadoop C. 1,951 (07%) 1,469 (05%) 1,907 (07%) 1,681 (06%) 3,899 98%

Hbase 3,323 (23%) 2,449 (17%) 3,072 (21%) 2,670 (18%) 1,902 98%
Mahout 539 (20%) 354 (13%) 456 (17%) 420 (15%) 357 99%

OpenJPA 810 (13%) 659 (10%) 853 (13%) 692 (11%) 509 99%
Pig 549 (18%) 441 (14%) 528 (17%) 467 (15%) 263 97%

Tuscany 2,157 (10%) 1,021 (5%) 1,594 (07%) 1,506 (07%) 2,007 99%

TABLE 4: Number of mislabeled changes (misl.), false positives (FP) and false negatives (FN) in the labeled data by B-SZZ,
AG-SZZ and MA-SZZ compared to the labeled data by RA-SZZ. False positive rate (FPR) and false negative rate (FNR) of
the labeled data by B-SZZ, AG-SZZ and MA-SZZ are also shown in the table.

Project B-SZZ AG-SZZ MA-SZZ
#misl. FP FPR FN FNR #misl. FP FPR FN FNR #misl. FP FPR FN FNR

ActiveMQ 892 672 10% 220 18% 552 232 4% 320 26% 149 120 2% 29 2%
Camel 1,503 1,221 8% 282 14% 1,186 600 4% 586 29% 268 218 1% 50 1%
Derby 939 779 9% 160 14% 1,016 831 10% 185 16% 572 489 6% 83 6%
Geronimo 931 692 5% 239 13% 1,047 218 2% 829 45% 259 201 1% 58 1%
Hadoop C. 876 573 2% 303 18% 772 280 1% 492 29% 356 291 1% 65 1%
Hbase 1,381 1017 9% 364 14% 1,087 433 4% 654 24% 598 500 4% 98 4%
Mahout 225 172 7% 53 13% 168 51 2% 117 28% 84 60 3% 24 3%
OpenJPA 398 258 5% 140 20% 431 199 4% 232 34% 271 216 4% 55 4%
Pig 196 139 5% 57 12% 166 70 3% 96 21% 91 76 3% 15 3%
Tuscany 1,121 886 4% 235 16% 813 164 1% 649 43% 250 169 1% 81 1%

Moreover, to estimate the amount of the changes that are
mislabeled by the different SZZ variants, we need data that
contains no false positives nor false negatives. However, in
practice, retrieving such clean data is very challenging as
it requires a considerable amount of manual effort (e.g.,
manually analyzing thousands of lines of code) and in-
depth domain knowledge of the project (which is only
feasible by contacting the core developers of a project).
RA-SZZ generates the cleanest data compared to the other
three SZZ variants. We compare the generated data by B-
SZZ, AG-SZZ and MA-SZZ with the generated data by RA-
SZZ. By doing so, we calculate the number of mislabeled
changes in the labeled data by B-SZZ, AG-SZZ and MA-
SZZ. Also, we calculate the number of false positives and
false negatives generated by B-SZZ, AG-SZZ and MA-SZZ.
Furthermore, we calculate the false positive rate and false
negative rate of the labeled data by the three SZZ variants
compared to the labeled data by RA-SZZ. Notice that the

false positive rate is calculated as the proportion of false
positives over the total changes that are truly clean as
labeled by RA-SZZ, and the false negative rate is calculated
as the proportion of false negatives over the total changes
that are truly bug-introducing as labeled by RA-SZZ. Table 4
shows the number of mislabeled changes, false positives
and false negatives in the labeled data by B-SZZ, AG-SZZ
and MA-SZZ as compared to the labeled data by RA-SZZ.
We also present the false positive rate and false negative rate
of the labeled data by B-SZZ, AG-SZZ and MA-SZZ in the
table.

We calculate the percentage of the false positives in the
bug-introducing changes labeled by B-SZZ, AG-SZZ and
MA-SZZ as shown in Table 3. We find that 25%–44%, 14%–
46% and 9%–31% of the bug introducing changes labeled by
B-SZZ, AG-SZZ and MA-SZZ are false positives (i.e., clean
changes labeled by RA-SZZ), respectively. Hence, B-SZZ,
AG-SZZ and MA-SZZ generate a considerable number of

10

TABLE 5: Studied Change Metrics

Dimension Metric Description

Diffusion

NS Number of subsystems modified by this
change

ND Number of directories modified by this change
NF Number of files modified by this change

Entropy Distribution of code across the modified files

Size
LA Lines of code added in this change
LD Lines of code deleted in this change
LT Lines of code in the files before this change

Purpose FIX Whether this change fixes a bug

History
NDEV Number of developers who modified the files

AGE Average time interval between this change and
last changes that modify the files

NUC Number of changes that modified the files

Experience
EXP Developer’s experience (number of changes)

REXP Developer’s recent experience
SEXP Developer’s experience on a subsystem

mislabeled changes.
In Table 4, we notice that AG-SZZ generates more

mislabeled changes than B-SZZ in several projects (e.g.,
Derby)—indicating that AG-SZZ may not be more accurate
than B-SZZ. Also, we notice that AG-SZZ generates more
false negatives than B-SZZ on the ten studied projects.
As mentioned in Section 2.2.2, AG-SZZ is impacted by
branch/merge changes (two types of meta-changes) due to
the use of annotation graph, while B-SZZ is not impacted by
such changes. Due to the impact of branch/merge changes,
AG-SZZ generates more false negatives than B-SZZ.

3.3 Studied Metrics

In this section, we introduce the studied change metrics.
We use the 14 change metrics that are proposed by Kamei
et al. [37]. Table 5 presents the overview of the 14 change
metrics, which are grouped along five dimensions including
diffusion, size, purpose, history and experience.

The diffusion dimension quantifies distribution of code
within a change. Prior work shows that scattered changes
are more likely to be defective [29]. The size dimension
measures size of a change, and a larger change is more
defect-prone since such a change introduces or modifies
more code [55]. The purpose dimension only includes the
FIX metric, which indicates whether the change fixes a
bug. Prior studies show that bug-fixing changes are more
likely to be defective and introduce new bugs [24], [59]. The
metrics in history dimension characterize how developers
modify the files within the change in the code history. These
metrics have been shown to be good indicators of bugs, e.g.,
Matsumoto et al. noted that files previously modified by
many developers contain more bugs [49]. The metrics in the
experience dimension quantify the change experience of the
developer who makes the change. These metrics are based
on the number of changes that are previously submitted
by the developer. Mockus et al. noted that developers with
more experience are less likely to introduce bugs in their
changes [54].

3.4 Data Preprocessing

We characterize each change in our datasets using the
14 studied metrics. Directly using these metrics to build
models may lead to reduced model performance or
incorrect model interpretation. For example, some metrics

may be correlated. Tantithamthavorn and Hassan noted
that correlated metrics impact interpretation (i.e., metric
importance) of defect prediction models [70]. Hence, we
need to preprocess our datasets before we build JIT
models following prior studies [37], [45], [62]. Our data
preprocessing includes the following two parts:

Dealing with Skew. Most of our change metrics are
highly skewed, and to alleviate the effect of highly
skewed values of the metrics, we apply a logarithmic
transformation following prior studies [37], [62]. And we
use the standard logarithmic transformation ln(x + 1). We
apply the logarithmic transformation for each metric except
the FIX metric since the FIX metric is a binary variable.

Dealing with Correlated Metrics. Tantithamthavorn et al.
demonstrated that correlated metrics can impact defect
prediction models [70]. Hence, we perform metric selection
to remove correlated metrics before we use the metrics
to learn a model. Change metrics in different projects
may show different degrees of correlation, and thus, we
separately perform the metric selection on each project.
Notice that our metric selection are performed after we
apply the logarithmic transformation for our metrics since
our models are trained using the transformed metrics.
Following the guidelines proposed by Harrel for building
models [27], we perform the metric selection using the
following steps:

(1) Correlation Analysis. In this step, we deal with the
correlation between each pair of metrics. For each project,
we first calculate the correlation between each pair of
metrics leveraging the Spearman rank correlation test [84].
Furthermore, we use the variable clustering analysis
implemented in the Hmisc R package to cluster the
correlated metrics based on the results of Spearman rank
correlation test. Following Li et al. [45], we set the
correlation threshold for removing collinearity as 0.8. If the
absolute correlation value between a pair of metrics is larger
than 0.8, we keep the one that is easier to understand to ease
model interpretation following prior studies [37], [45]. For
example, we notice that EXP and REXP are highly correlated
in each project. We keep the EXP metric and drop the REXP
metric.

(2) Independence Analysis. We notice that FIX is a binary
variable and the other metrics are continuous. The
Spearman rank correlation test may not work for the FIX
metric since this metric does not have an order between its
two values. Hence, in this step, we use the Chi-squared test
of independence [58] to analyze the statistical independence
of the FIX metric from each of the other continuous metrics.
We apply the chisq.test function in the vcd R package [53].
We notice that the FIX metric is not independent from the
other metrics (e.g., LA) on our studied projects, and thus the
FIX metric is dropped.

(3) Redundancy Analysis. In this step, we further remove
redundant metrics that can be predicted by the combination
of other metrics. These redundant metrics should be
removed since they do not contribute to the model in the
appearance of the other metrics. To detect such redundant
metrics, we apply the redun function implemented in the
rms R package [28]. For all the studied projects, we did

11

not detect any redundant metric. Hence, we do not remove
metrics in this step.

3.5 Case Study Setup
We adopt the out-of-sample bootstrap technique [18] to
evaluate the performance and metric importance for our
JIT models. Tantithamthavorn et al. suggested that out-of-
sample bootstrap tends to produce performance estimates
with the least bias and variance [73]. Using the out-of-
sample bootstrap can ensure that our conclusions about JIT
models are robust.

The out-of-sample bootstrap on an original change
dataset of size N involves two steps. First, N changes
are bootstrap sampled with replacement from the original
change dataset. These changes serve as the training data.
Second, the changes that do not appear in the N sampled
ones are also retrieved, which serve as the testing data. On
average, the testing data pertains to 36.8% of the original
change data [73].

Figure 5 depicts the overall framework for evaluating
the performance and metric importance for the JIT models
trained using the labeled data by the studied four SZZ
variants in an out-of-sample bootstrap. We take seven steps
to do that:

1. Perform out-of-sample bootstrap. Changes in a project are
split into training dataset and testing dataset using out-
of-sample bootstrap process described earlier.

2. Label the training dataset. We leverage B-SZZ, AG-SZZ,
MA-SZZ and RA-SZZ to label the training dataset.

3. Build model. We build a prediction model using the
training dataset labeled by each SZZ variant. In total,
we have four JIT models trained using the training data
that is labeled by B-SZZ, AG-SZZ, MA-SZZ and RA-
SZZ, respectively. Our methods for building models are
described in Section 3.6.

4. Apply models. We apply the four JIT models on the
testing dataset. For each change in the testing dataset,
each of the four models predicts whether the change is
likely to introduce bugs and outputs a label.

5. Label the testing dataset. As mentioned in Section 3.2, all
the models are evaluated on the data that is labeled by
RA-SZZ. Hence, we apply RA-SZZ to label changes in
the testing dataset.

6. Analyze model performance. We calculate performance
measures (such as AUC) based on the prediction results
output by the four models and the labels of the testing
dataset as generated by RA-SZZ.

7. Calculate metric importance. We calculate importance
score of each change metric for each of the four
models. To calculate metric importance for a model, we
apply the generic metric importance score proposed by
Tantithamthavorn et al. [74]. This importance score is
elaborated in Section 3.7.

The out-of-sample bootstrap process is repeated 1,000
times. After the 1,000 runs, we further conduct our analysis
on the performance measures and the metric importance
calculated in the 1,000 runs.

3.6 Model Building
In this study, we evaluate two groups of models: JIT
models which predict a change as bug-introducing or clean,

and effort-aware JIT models which prioritize changes for
developers to inspect. We describe our method for building
the two groups of models as follows.

3.6.1 Building Prediction Models
We build JIT models using two settings:

1. We use the original training data to build JIT models.
Prior JIT defect prediction studies have built models
using the original training data [36], [50].

2. Also, we notice that the labeled data by SZZ is
imbalanced. To deal with the imbalanced data, Kamei
et al. re-balanced training data before building their
JIT models [37]. Hence, we also build models on
re-balanced training data and investigate the impact
of mislabeled changes by SZZ on such models.
To re-balance our training data, we leverage the
undersampling method following Kamei et al. [37].
From training data, we randomly remove the changes
in the majority class (i.e., clean changes) until the
majority class drops to the same level as the minority
class (i.e., bug-introducing changes). Notice that we do
not re-balance the testing data.

For both settings, we leverage three types of classifiers
to build models. These classifiers include machine
learning-based (i.e., random forest), regression-based (i.e.,
logistic regression) and probability-based (i.e., naive Bayes)
classifiers. We choose the three types of classifiers following
Tantithamthavorn et al.’s study [73]. Moreover, the studied
classifiers are also widely used in prior JIT defect prediction
studies [34]–[37], [63]. We briefly describe the classifiers as
follows.
Random Forest. Random forest is proposed by Breiman [8].
It is an ensemble approach which is specially designed for
decision trees. A random forest model contains multiple
decision trees, each of which is built using a random
subset of metrics. When deciding the class of a sample,
the decision trees may report different outcomes. Random
forest aggregates votes of the decision trees to decide a
final class for the sample. In this work, we use the random
forest implementation provided by the randomForest R
package [46].
Logistic Regression. Logistic regression is a regression-
based technique which is usually applied to estimate the
relationship between a binary dependent variable (i.e., bug-
introducing change or clean change in our case) and one or
more independent variables (i.e., our studied metrics) [32].
In this work, we implement logistic regression using the glm
R function.
Naive Bayes. Naive Bayes is a probabilistic classifier which is
based on Bayes’ theorem and assumes that all predictors are
independent of each other [17]. We implement naive Bayes
using the naivebayes R package [47].

As shorthand notations, we denote random forest,
logistic regression and naive Bayes as RF, LR and NB,
respectively.

3.6.2 Building Effort-Aware Models
We build effort-aware JIT defect prediction models
using two state-of-art effort-aware JIT defect prediction
techniques, i.e., CBS [34] and OneWay [21]. We choose the

12

Fig. 5: Evaluating performance and metric importance for the JIT models trained using the labeled data by different SZZ
variants in an out-of-sample bootstrap. The described process is repeated 1,000 times.

two techniques since they show better cost-effectiveness
than other state-of-art techniques [21], [34]. The two
techniques are elaborated below.
CBS is a supervised effort-aware JIT defect prediction
technique proposed by Huang et al. [34]. CBS first uses
a supervised model to predict the defect-proneness of
changes. Then, for changes that are predicted as buggy,
CBS prioritizes them using their churn size in ascending
order. Following Huang et al.’s study [34], when building
the supervised model that is used by CBS, we use logistic
regression as the underlying classifier. Moreover, following
Huang et al.’s study [34], we use the undersampling method
to re-balance the class distribution of training data before
building models.
OneWay is a supervised effort-aware JIT defect prediction
technique proposed by Fu et al. [21]. OneWay is inspired
by Yang et al.’s unsupervised technique [83]. Yang et
al.’s models first sort changes using one of Kamei et
al.’s metrics (e.g., LT) [37], then prioritize changes for
developers in that order. Fu et al. observed that most of Yang
et al.’s unsupervised models cannot achieve better cost-
effectiveness than supervised models in the within-project
setting [21]. They noted the necessity of using supervised
data to prune weaker models away. OneWay first evaluates
Yang et al.’s unsupervised models on labeled training data,
then it selects the unsupervised model with the best cost-
effectiveness (in our study, we use Recall@20% to measure
the cost-effectiveness) to prioritize changes in the testing
data.

3.7 Metric Importance Calculation
Tantithamthavorn et al. proposed a generic metric
importance score based on Breiman’s metric importance
score [8], [74]. Tantithamthavorn et al.’s metric importance
score can be applied for any classifier [74]. In comparison,
Breiman’s metric importance score can only be applied for
random forest. In this study, we take three types of classifiers
(including random forest, logistic regression and naive
Bayes) as the underlying classifier for building models.
Hence, Tantithamthavorn et al.’s metric importance score is
more appropriate for our case. Moreover, using the same
importance measurement gives us a way of conducting
metric importance estimation in an unbiased setting.

Following Tantithamthavorn et al. [74], we calculate
metric importance scores for each of the four models by
taking two steps in each bootstrap iteration:

1. For each metric, we first randomly permutate the
values of the metric on the testing dataset, producing
a testing dataset with the metric permutated and all
other metrics unchanged.

2. For each metric, we calculate the difference of the
misclassification rate when applying the model on the
original testing dataset and when applying it on the
testing dataset with the metric randomly permutated.
The larger the difference, the greater is the importance
of the metric. Hence, the difference is considered as the
importance score of the metric.

Tantithamthavorn and Hassan note that class re-
balancing techniques should be avoided when calculating
metric importance for classifiers [70]. Hence, in this
study, we calculate metric importance in identifying bug-
introducing changes using the models that are trained on
the original data.

3.8 Performance Measures
We use the AUC, F1-score and G-mean to evaluate JIT
models with respect to the performance in identifying
bug-introducing changes. And we use the Recall@20% as
the performance measure to evaluate the effort-aware JIT
models with respect to their performance in prioritizing
changes. The performance measures are described below.
AUC: AUC is defined as the area under the Receiver
Operator Characteristics Curve, which plots true positive
rate against false positive rate across all thresholds [33].
Notice that in this context, a false positive refers to a truly
clean change (as labeled by RA-SZZ) that is predicted as
bug-introducing. AUC ranges from 0 to 1. A larger AUC
score indicates better performance. A classifier with an AUC
of 0.5 is considered to be no better than random guessing.
AUC has been used in the evaluation of many prior Just-in-
Time defect prediction studies [36], [37], [50].

AUC is a threshold-independent measure. When a
classifier determines the class of a change, it calculates
a probability score to be bug-introducing for the change,
and then, a threshold is needed to be set up to classify

13

the change as bug-introducing if the score is higher than
the threshold and clean otherwise. AUC evaluates the
prediction performance at all thresholds (from 0 to 1).
Hence, AUC is independent of the threshold.

Furthermore, the calculation of AUC automatically
considers the inherent class imbalance of a dataset [60].
Thus, AUC is not sensitive towards class distributions and
the level of data imbalance.
F1-score: F1-score is calculated based on Precision and
Recall. For bug-introducing changes, Precision is the
proportion of changes that are correctly predicted as bug-
introducing over the total of changes that are predicted as
bug-introducing. And Recall is the proportion of changes
that are correctly predicted as bug-introducing over the total
of changes that are truly bug-introducing. There is a tradeoff
between Precision and Recall. Thus, prior studies use F1-
score—a summary measure combining both precision and
recall—to evaluate the performance of JIT models [35], [37],
[63]. Let us denote Precision and Recall for bug-introducing
changes as P (b) and R(b), respectively. F1-score for bug-
introducing changes is calculated as the harmonic mean of
P (b) and R(b) (See Eq. 1).

F1-score =
2× P (b)×R(b)

P (b) +R(b)
(1)

Tantithamthavorn et al. show that different levels of
data imbalance can impact the F1-score of defect prediction
models [71]. Thus, for the models that are trained using the
original data, we avoid using F1-score as the performance
measure. On the other hand, we use F1-score to evaluate
the models built using the re-balanced data, since the class
imbalance problem has been mitigated in this case.
G-mean: G-mean is a summary measure of the Recall scores
for the two classes (bug-introducing and clean changes in
our case) [43]. G-mean assumes that the Precision of the
two classes has equal weight. And this measure tries to
maximize the Recall for each class while keeping the Recall
scores balanced. Let us denote the Recall for clean changes
as R(c). R(c) is calculated as the proportion of changes that
are correctly predicted as clean over the total number of
changes that are truly clean. G-mean is calculated as the
geometric mean of R(b) and R(c) (See Eq. 2). This measure
is also used by many prior defect prediction studies [11],
[68].

G-mean =
√
R(b)×R(c) (2)

Kubat et al.’s study showed that G-mean is also
impacted by the level of data imbalance [43]. Hence,
similarly to F1-score, we do not use the G-mean to evaluate
the models trained using the original imbalanced data. And
we use the G-mean to evaluate the models that are trained
using the re-balanced data.
Recall@20%: Recall@20% is defined as the Recall of the
bug-introducing changes when inspecting 20% of the total
lines of code (LOC). Defect prediction studies have used
LOC as a measure of the needed effort to inspect code [9],
[10], [52]. Besides, empirical studies showed that around
80% of defects are in 20% of the files [26], [57]. Hence,
many JIT defect prediction studies assume nowadays that

available resources only pertain to 20% of the effort to
inspect all changes and commonly use Recall@20% as their
performance measure to evaluate the cost-effectiveness of
JIT models [21], [34], [35], [37], [83].

4 RESULTS

In this section, we present the results of our analysis with
respect to the five research questions.

4.1 RQ1: How do mislabeled changes by SZZ impact
the performance of JIT defect prediction models trained
using the original data?

Motivation: In practice, JIT models can be used to predict
which changes are likely to be defective when they
are initially submitted. Leveraging the prediction results,
software developers can fix their changes before committing
a bug-introducing change into the code base, which would
save the effort of fixing bugs in the future. In this research
question, we would like to investigate whether mislabeled
changes by SZZ impact the prediction performance of JIT
models. Prior studies have used the original training data to
build JIT defect prediction models [36], [50]. In this research
question, we investigate the impact of mislabeled changes
by SZZ on the JIT models trained using the original data.
Approach: As mentioned in Section 3.2, changes labeled by
RA-SZZ are less likely to be mislabeled than those labeled
by the other three SZZ variants. We take the model trained
using the labeled data by RA-SZZ as the baseline model.
By comparing the models trained using the labeled data
by B-SZZ, AG-SZZ and MA-SZZ with the baseline model,
we investigate the impact of the mislabeled changes by the
three SZZ variants on the performance of the JIT models.
We perform the comparison for each of the studied three
classifiers (i.e., random forest, logistic regression and naive
Bayes). As described in Section 3.8, we use AUC as the
performance measure to combat the bias induced by data
imbalance following prior studies [36], [50].

As illustrated in Figure 5, we train four models in each
bootstrap iteration using training data that is labeled by
B-SZZ, AG-SZZ, MA-SZZ and RA-SZZ, respectively. As
shorthand notations, we denote the four models as B, AG,
MA and RA models, respectively. Then, we apply the four
models on the testing data that is labeled by RA-SZZ and
calculate the AUC score assuming that the labels produced
by RA-SZZ are correct. After 1,000 bootstrap iterations, we
have 1,000 AUC scores for each of the four models. We
calculate the average value of the 1,000 AUC scores. Then
we compare the average AUC scores of the B, AG and MA
models with those of the RA model. To do so, we calculate
the ratios of the average AUC scores of the B, AG and MA
models to those of the RA model.

Furthermore, we investigate whether B, AG and
MA models show a statistically significant performance
reduction in terms of AUC. To do this, we apply
the Wilcoxon signed-rank test [76] with a Bonferroni
correction [2] to compare the AUC scores for the B, AG
and MA models with the RA model. We also calculate
the Cliff’s delta, which can evaluate “how frequently the
values of one distribution is higher than the values of

14

another distribution” [12]. The Cliff’s delta is a widely
used effect size measure3. A negative Cliff’s delta indicates
performance reduction of the B, AG or MA model as
compared to the RA model.

Notice that the Cliff’s delta does not reflect the distance
in magnitude between the values of two distributions. For
example, if all the values of the first distribution D1 are
0.91 and all the values of the second distribution D2 are
0.90, the Cliff’s delta is 1 (i.e., a large effect size) since the
frequency of the event “values in D1 are larger than values
in D2” is 1. However, the absolute difference between the
values of the two distributions is actually small (only 0.01).
Hence, for the cases where the B, AG and MA models show
a significant performance reduction with a non-negligible
effect size, we need to verify whether the absolute difference
in performance is substantially large. To do so, we look into
each case and calculate the ratio of the absolute difference
in performance to the performance of the RA model, i.e., the
percentage of the performance reduction.
Results: Table 6 presents the average AUC scores of the B,
AG, MA and RA models and the ratios of the average AUC
scores of the B, AG and MA models to those of the RA
model. And Table 7 shows the adjusted p-values and Cliff’s
delta comparing AUC scores for the B, AG and MA models
with those of the RA model.

From Tables 6 and 7, we have the following findings:
• For the B model, the AUC score is 97%–102% of that of

the RA model. On average across the ten projects, the
AUC score of the B model is 99%–100% of that of the RA
model. When random forest is used as the underlying
classifier of the models, statistical tests show that the
AUC score of the B model is statistically significantly
lower than that of the RA model with a non-negligible
effect size on seven projects. When logistic regression
and naive Bayes are used as the underlying classifier
of the models, statistical tests show that in most cases,
the B model is not performing statistically significantly
worse than the RA model.

• For the AG model, the AUC score is 94%–100% of that
of the RA model. On average across the ten projects, the
AUC score of the AG model is 96%–99% of that of the
RA model. Statistical tests show that in most cases, the
AUC score of the AG model is statistically significantly
lower than that of the RA model. Moreover, in most
cases, the effect sizes are non-negligible.

• For the MA model, the AUC score is 97%–101% of that
of the RA model. On average across the ten projects, the
AUC score of the MA model is 99%–100% of that of the
RA model. Statistical tests show that in most cases, the
MA model is not performing statistically significantly
worse than the RA model.

In most of the cases where the B and MA models show a
statistically significant performance reduction as compared
to the RA model, we find that the B and MA models
only show 1% performance reduction in terms of AUC.
Such difference may not be deemed as substantially large
for practitioners. On the other hand, we notice that the

3. A Cliff’s delta less than 0.147, between 0.147 and 0.33, between
0.33 and 474, and larger than 0.474 is considered as a negligible, small,
medium and large effect size, respectively.

TABLE 6: AUC scores of the B, AG, MA and RA models.
We also show the ratios of the AUC scores of the B, AG and
MA models to those of the RA model. The AUC scores of
the B, AG and MA models that are lower than those of the
RA model are in bold. Cls refers to the underlying classifier
used by the four models.

Cls Project B AG MA RA

RF

ActiveMQ 0.80 100% 0.78 98% 0.81 101% 0.80
Camel 0.84 99% 0.81 95% 0.85 100% 0.85
Derby 0.79 99% 0.77 96% 0.79 99% 0.80

Geronimo 0.84 101% 0.81 98% 0.83 100% 0.83
Hadoop C. 0.87 99% 0.86 98% 0.88 100% 0.88

HBase 0.83 97% 0.82 95% 0.85 99% 0.86
Mahout 0.85 102% 0.82 99% 0.84 101% 0.83

OpenJPA 0.79 99% 0.75 94% 0.79 99% 0.80
Pig 0.80 99% 0.80 99% 0.81 100% 0.81

Tuscany 0.82 100% 0.79 96% 0.82 100% 0.82
Avg. 0.82 99% 0.80 96% 0.83 100% 0.83

LR

ActiveMQ 0.79 100% 0.78 99% 0.79 100% 0.79
Camel 0.79 100% 0.78 99% 0.79 100% 0.79
Derby 0.76 100% 0.76 100% 0.76 100% 0.76

Geronimo 0.79 100% 0.78 99% 0.79 100% 0.79
Hadoop C. 0.79 100% 0.78 99% 0.79 100% 0.79

HBase 0.78 100% 0.77 99% 0.78 100% 0.78
Mahout 0.83 101% 0.81 99% 0.82 100% 0.82

OpenJPA 0.74 100% 0.73 99% 0.74 100% 0.74
Pig 0.78 100% 0.77 99% 0.78 100% 0.78

Tuscany 0.81 100% 0.81 100% 0.81 100% 0.81
Avg. 0.79 100% 0.78 99% 0.79 100% 0.79

NB

ActiveMQ 0.74 100% 0.73 99% 0.74 100% 0.74
Camel 0.77 101% 0.73 96% 0.75 99% 0.76
Derby 0.74 99% 0.74 99% 0.73 97% 0.75

Geronimo 0.76 101% 0.73 97% 0.75 100% 0.75
Hadoop C. 0.74 100% 0.74 100% 0.74 100% 0.74

HBase 0.76 100% 0.75 99% 0.75 99% 0.76
Mahout 0.80 100% 0.79 99% 0.80 100% 0.80

OpenJPA 0.74 101% 0.71 97% 0.73 100% 0.73
Pig 0.75 100% 0.74 99% 0.75 100% 0.75

Tuscany 0.76 99% 0.77 100% 0.77 100% 0.77
Avg. 0.76 100% 0.74 97% 0.75 99% 0.76

AG model shows more performance reduction in terms of
AUC. In several cases, the AG model shows at least 5%
performance reduction.

In summary, the mislabeled changes by B-SZZ and MA-SZZ are
not likely to cause a considerable performance reduction in terms
of AUC. Finally, the mislabeled changes by AG-SZZ can cause
a statistically significant performance reduction with an average
difference ranging from 1% to 4% in terms of AUC.

4.2 RQ2: How do mislabeled changes by SZZ impact
the performance of JIT defect prediction models trained
using re-balanced data?

Motivation: Apart from using measures that are insensitive
towards class imbalance (e.g., AUC), prior studies also
leveraged class re-balancing techniques when building JIT
defect prediction models to combat the class imbalance
problem [37], [69]. In this research question, we investigate
the impact of mislabeled changes by SZZ on the
performance of JIT models trained using re-balanced data.

Approach: Following Kamei et al. [37], we re-balance the
training data that is labeled by each SZZ variant using the
undersampling method. In each bootstrap iteration, we train
B, AG, MA and RA models using the re-balanced training
data. As mentioned in Section 3.8, in this setting, we use
AUC, F1-score and G-mean to evaluate performance of the
models.

15

TABLE 7: Adjusted P-values and Cliff’s delta comparing
AUC scores for the B, AG and MA models with those of the
RA model. P-values and Cliff’s delta that show significant
performance reduction are in bold.

Cls Project B AG MA

RF

ActiveMQ -0.15 (S)*** -0.91 (L)*** 0.08 (N)
Camel -0.32 (S)*** -1.00 (L)*** 0.02 (N)
Derby -0.30 (S)*** -0.93 (L)*** -0.42 (M)***

Geronimo 0.22 (S) -0.99 (L)*** 0.11 (N)
Hadoop C. -0.81 (L)*** -0.96 (L)*** 0.14 (N)

HBase -1.00 (L)*** -1.00 (L)*** -0.65 (L)***
Mahout 0.48 (L) -0.52 (L)*** 0.14 (N)

OpenJPA -0.20 (S)*** -0.97 (L)*** -0.17 (S)***
Pig -0.31 (S)*** -0.40 (M)*** 0.14 (N)

Tuscany 0.44 (M) -0.99 (L)*** -0.04 (N)***

LR

ActiveMQ 0.05 (N) -0.48 (L)*** 0.00 (N)
Camel -0.12 (N)*** -0.89 (L)*** -0.06 (N)***
Derby -0.19 (S)*** -0.34 (M)*** -0.26 (S)***

Geronimo -0.01 (N) -0.47 (M)*** 0.03 (N)
Hadoop C. 0.41 (M) -0.63 (L)*** -0.02 (N)***

HBase 0.01 (N) -0.37 (M)*** -0.03 (N)***
Mahout 0.14 (N) -0.29 (S)*** 0.03 (N)

OpenJPA -0.08 (N)*** -0.58 (L)*** 0.03 (N)
Pig 0.07 (N) -0.27 (S)*** -0.06 (N)***

Tuscany -0.06 (N)*** -0.27 (S)*** -0.03 (N)***

NB

ActiveMQ 0.18 (S) -0.47 (M)*** 0.10 (N)
Camel 0.70 (L) -0.97 (L)*** -0.18 (S)***
Derby -0.12 (N)*** -0.25 (S)*** -0.49 (L)***

Geronimo 0.29 (S) -0.76 (L)*** 0.06 (N)
Hadoop C. 0.00 (N) -0.05 (N)*** -0.05 (N)***

HBase 0.11 (N) -0.45 (M)*** -0.19 (S)***
Mahout 0.13 (N) -0.33 (M)*** 0.05 (N)

OpenJPA 0.29 (S) -0.69 (L)*** -0.02 (N)**
Pig 0.02 (N) -0.43 (M)*** -0.06 (N)***

Tuscany -0.63 (L)*** 0.07 (N) -0.14 (N)***
***p<0.001, **p<0.01, *p<0.05

We calculate the average AUC, F1-score and G-mean
across the 1,000 bootstrap iterations for the B, AG, MA and
RA models. For the average AUC scores, F1-scores and G-
mean scores, we calculate the ratios of the scores of the B,
AG and MA models to those of the RA model. Moreover,
we apply the Wilcoxon signed-rank test with a Bonferroni
correction to investigate whether the B, AG and MA models
show statistically significant performance reduction in terms
of AUC, F1-score and G-mean. We also calculate the Cliff’s
delta.

Results: Table 8, 9 and 10 present the average AUC, F1-score
and G-mean score of the B, AG, MA and RA models that are
trained using re-balanced data, respectively. The tables also
show the ratios of the performance of the B, AG and MA
models to that of the RA model in terms of AUC, F1-score
and G-mean score, respectively. Table 11, 12 and 13 present
the adjusted p-values and Cliff’s delta comparing the AUC,
F1-score and G-mean score for the B, AG and MA models
with the RA model, respectively.

From the two tables, we have the following findings:
• For the B model, the AUC score is 98%–103% of that of

the RA model, the F1-score is 94%–107% of that of the
RA model, and the G-mean score is 96%–103% of that of
the RA model. In terms of AUC, the B model performs
statistically significantly worse than the RA model
on seven projects when using random forest as the
underlying classifier; but the B model does not perform
worse than the RA model in most cases when using
logistic regression or naive Bayes as the underlying

TABLE 8: AUC scores of the B, AG, MA and RA models.
We also show the ratios of the AUC scores of the B, AG and
MA models to those of the RA model. The AUC scores of
the B, AG and MA models that are lower than those of the
RA model are in bold.

Cls Project B AG MA RA

RF

ActiveMQ 0.80 99% 0.79 98% 0.81 100% 0.81
Camel 0.84 99% 0.82 96% 0.85 100% 0.85
Derby 0.79 99% 0.78 98% 0.79 99% 0.80
Geronimo 0.84 100% 0.81 96% 0.84 100% 0.84
Hadoop C. 0.87 99% 0.86 98% 0.88 100% 0.88
HBase 0.83 98% 0.82 96% 0.84 99% 0.85
Mahout 0.85 101% 0.83 99% 0.84 100% 0.84
OpenJPA 0.80 100% 0.76 95% 0.80 100% 0.80
Pig 0.80 100% 0.79 99% 0.81 101% 0.80
Tuscany 0.83 100% 0.82 99% 0.83 100% 0.83
Avg. 0.83 100% 0.81 98% 0.83 100% 0.83

LR

ActiveMQ 0.79 100% 0.78 99% 0.79 100% 0.79
Camel 0.79 100% 0.78 99% 0.79 100% 0.79
Derby 0.76 100% 0.76 100% 0.76 100% 0.76
Geronimo 0.79 100% 0.77 97% 0.79 100% 0.79
Hadoop C. 0.80 103% 0.76 97% 0.78 100% 0.78
HBase 0.78 100% 0.78 100% 0.78 100% 0.78
Mahout 0.83 101% 0.82 100% 0.82 100% 0.82
OpenJPA 0.74 100% 0.72 97% 0.74 100% 0.74
Pig 0.78 100% 0.77 99% 0.77 99% 0.78
Tuscany 0.81 100% 0.80 99% 0.81 100% 0.81
Avg. 0.79 101% 0.77 99% 0.78 100% 0.78

NB

ActiveMQ 0.74 100% 0.73 99% 0.74 100% 0.74
Camel 0.77 101% 0.73 96% 0.75 99% 0.76
Derby 0.74 100% 0.74 100% 0.73 99% 0.74
Geronimo 0.76 101% 0.73 97% 0.75 100% 0.75
Hadoop C. 0.74 100% 0.74 100% 0.74 100% 0.74
HBase 0.76 100% 0.75 99% 0.75 99% 0.76
Mahout 0.80 101% 0.78 99% 0.80 101% 0.79
OpenJPA 0.74 101% 0.71 97% 0.73 100% 0.73
Pig 0.75 100% 0.74 99% 0.75 100% 0.75
Tuscany 0.76 99% 0.77 100% 0.77 100% 0.77
Avg. 0.76 101% 0.74 99% 0.75 100% 0.75

classifier. In terms of F1-score, the B model performs
significantly worse than the RA model on ten and
seven projects when using random forest and logistic
regression as the underlying classifier, respectively; but
the B model does not perform worse than the RA model
in most cases when using naive Bayes as the underlying
classifier. In terms of G-mean, the B model does not
perform significantly worse than the RA model in most
cases.

• For the AG model, the AUC score is 95%–100% of that
of the RA model, the F1-score is 88%–113% of that of the
RA model, and the G-mean score is 89%–100% of that of
the RA model. Statistical tests show that in most cases,
the AUC score, F1-score and G-mean score of the AG
model are statistically significantly lower than the three
scores of the RA model with a non-negligible effect size.

• For the MA model, the AUC score is 99%–101% of that
of the RA model, the F1-score is 86%–103% of that of
the RA model, and the G-mean score is 96%–101% of
that of the RA model. Statistical tests show that in most
cases, the MA model is not performing worse than the
RA model in terms of AUC and F1-score. In terms of
G-mean, the MA model performs significantly worse
than the RA model on five projects when using naive
Bayes as the underlying classifier, whereas it does not
perform significantly worse than the RA model when
using the other classifiers.

In terms of AUC, we notice that the B and MA models
show less than a 1% of performance reduction in most

16

TABLE 9: F1-scores of the B, AG, MA and RA models. We
also show the ratios of the F1-scores of the B, AG and MA
models to those of the RA model. The F1-scores of the B, AG
and MA models that are lower than those of the RA model
are in bold.

Cls Project B AG MA RA

RF

ActiveMQ 0.47 96% 0.46 94% 0.49 100% 0.49
Camel 0.44 96% 0.42 91% 0.45 98% 0.46
Derby 0.39 95% 0.38 93% 0.40 98% 0.41
Geronimo 0.44 100% 0.42 95% 0.44 100% 0.44
Hadoop C. 0.35 97% 0.33 92% 0.36 100% 0.36
HBase 0.54 95% 0.53 93% 0.55 96% 0.57
Mahout 0.51 100% 0.50 98% 0.51 100% 0.51
OpenJPA 0.39 100% 0.35 90% 0.38 97% 0.39
Pig 0.46 98% 0.45 96% 0.47 100% 0.47
Tuscany 0.31 97% 0.31 97% 0.31 97% 0.32
Avg. 0.43 98% 0.42 95% 0.44 100% 0.44

LR

ActiveMQ 0.44 98% 0.44 98% 0.45 100% 0.45
Camel 0.38 97% 0.37 95% 0.39 100% 0.39
Derby 0.35 95% 0.35 95% 0.36 97% 0.37
Geronimo 0.36 97% 0.36 97% 0.36 97% 0.37
Hadoop C. 0.26 104% 0.23 92% 0.24 96% 0.25
HBase 0.48 98% 0.48 98% 0.48 98% 0.49
Mahout 0.48 98% 0.48 98% 0.49 100% 0.49
OpenJPA 0.31 100% 0.31 100% 0.31 100% 0.31
Pig 0.42 100% 0.41 98% 0.41 98% 0.42
Tuscany 0.27 100% 0.27 100% 0.27 100% 0.27
Avg. 0.38 100% 0.37 97% 0.38 100% 0.38

NB

ActiveMQ 0.33 97% 0.33 97% 0.34 100% 0.34
Camel 0.36 106% 0.30 88% 0.33 97% 0.34
Derby 0.36 100% 0.33 92% 0.31 86% 0.36
Geronimo 0.30 100% 0.35 117% 0.30 100% 0.30
Hadoop C. 0.17 94% 0.16 89% 0.17 94% 0.18
HBase 0.44 100% 0.43 98% 0.43 98% 0.44
Mahout 0.50 100% 0.48 96% 0.50 100% 0.50
OpenJPA 0.32 107% 0.29 97% 0.31 103% 0.30
Pig 0.35 97% 0.32 89% 0.35 97% 0.36
Tuscany 0.27 100% 0.27 100% 0.27 100% 0.27
Avg. 0.34 100% 0.33 97% 0.33 97% 0.34

cases. On average across the ten projects, the AUC of the
two models is not lower than that of the RA model. On
the other hand, the AG model shows at least a 3% of
performance reduction in several cases. On average across
the ten projects, the AUC score of the AG model is 98%–99%
of that of the RA model.

In terms of F1-score, we notice that the B and MA models
show around a 5% performance reduction in most cases.
For the B or MA model, the average F1-score across the
ten projects is 97%–100% of that of the RA model. On the
other hand, the AG model shows at least a 8% performance
reduction in several cases. The average F1-score of the AG
model is 95%–97% of that of the RA model. Tables 8 and 9
show that for the B, AG and MA models, the percentage
of performance reduction in terms of F1-score is larger than
that in term of AUC. However, it does not mean that F1-
score of the JIT models is more likely to be impacted by the
mislabeled changes than AUC. By observing Tables 8 and 9,
we find that the F1-scores of the RA model are much smaller
than its AUC scores. Hence, the percentage of performance
reduction (in terms of F1-score) is likely to be inflated,
because the percentage change for smaller numbers tend to
be higher than the percentage change for greater numbers
even when the absolute difference is the same. For instance,
when using naive Bayes as the underlying classifier, the B
and RA models achieve an F1-score of 0.17 and 0.18 on our
Hadoop Common dataset. The absolute difference between
the two scores is 0.01 but the percentage of performance
reduction is 6%. For each case where the B, AG or MA model

TABLE 10: G-mean scores of the B, AG, MA and RA models.
We also show the ratios of the G-mean scores of the B, AG
and MA models to those of the RA model. The G-mean
scores of the B, AG and MA models that are lower than
those of the RA model are in bold.

Cls Project B AG MA RA

RF

ActiveMQ 0.73 100% 0.70 96% 0.73 100% 0.73
Camel 0.76 99% 0.74 96% 0.77 100% 0.77
Derby 0.72 99% 0.71 97% 0.72 99% 0.73
Geronimo 0.76 101% 0.73 97% 0.75 100% 0.75
Hadoop C. 0.80 100% 0.78 98% 0.81 101% 0.80
HBase 0.76 99% 0.74 96% 0.77 100% 0.77
Mahout 0.76 100% 0.75 99% 0.76 100% 0.76
OpenJPA 0.72 100% 0.68 94% 0.72 100% 0.72
Pig 0.73 100% 0.71 97% 0.73 100% 0.73
Tuscany 0.75 100% 0.73 97% 0.75 100% 0.75
Avg. 0.75 100% 0.73 97% 0.75 100% 0.75

LR

ActiveMQ 0.72 100% 0.71 99% 0.72 100% 0.72
Camel 0.72 100% 0.71 99% 0.72 100% 0.72
Derby 0.70 100% 0.69 99% 0.70 100% 0.70
Geronimo 0.72 101% 0.70 99% 0.71 100% 0.71
Hadoop C. 0.74 103% 0.70 97% 0.72 100% 0.72
HBase 0.71 100% 0.71 100% 0.71 100% 0.71
Mahout 0.75 100% 0.74 99% 0.75 100% 0.75
OpenJPA 0.67 100% 0.66 99% 0.68 101% 0.67
Pig 0.70 100% 0.69 99% 0.70 100% 0.70
Tuscany 0.73 100% 0.72 99% 0.73 100% 0.73
Avg. 0.72 101% 0.70 99% 0.71 100% 0.71

NB

ActiveMQ 0.55 96% 0.57 100% 0.56 98% 0.57
Camel 0.71 103% 0.65 94% 0.69 100% 0.69
Derby 0.68 99% 0.68 99% 0.66 96% 0.69
Geronimo 0.66 100% 0.68 103% 0.66 100% 0.66
Hadoop C. 0.64 102% 0.58 92% 0.61 97% 0.63
HBase 0.69 100% 0.68 99% 0.68 99% 0.69
Mahout 0.73 101% 0.72 100% 0.73 101% 0.72
OpenJPA 0.68 101% 0.65 97% 0.67 100% 0.67
Pig 0.63 100% 0.56 89% 0.62 98% 0.63
Tuscany 0.69 97% 0.70 99% 0.71 100% 0.71
Avg. 0.67 100% 0.65 97% 0.66 99% 0.67

TABLE 11: Adjusted P-values and Cliff’s delta comparing
AUC scores for the B, AG and MA models with those of the
RA model. P-values and Cliff’s delta that show significant
performance reduction are in bold.

Cls Project B AG MA

RF

ActiveMQ -0.38 (M)*** -0.91 (L)*** -0.02 (N)
Camel -0.61 (L)*** -1.00 (L)*** -0.08 (N)***
Derby -0.43 (M)*** -0.93 (L)*** -0.55 (L)***

Geronimo 0.05 (N) -0.98 (L)*** 0.05 (N)
Hadoop C. -0.87 (L)*** -0.97 (L)*** 0.03 (N)

HBase -0.96 (L)*** -1.00 (L)*** -0.50 (L)***
Mahout 0.26 (S) -0.38 (M)*** 0.10 (N)

OpenJPA -0.03 (N) -0.96 (L)*** -0.17 (S)***
Pig -0.15 (S)*** -0.49 (L)*** 0.10 (N)

Tuscany -0.18 (S)*** -0.88 (L)*** 0.01 (N)

LR

ActiveMQ 0.05 (N) -0.45 (M)*** 0.02 (N)
Camel -0.17 (S)*** -0.82 (L)*** 0.00 (N)
Derby -0.20 (S)*** -0.25 (S)*** -0.20 (S)***

Geronimo 0.07 (N) -0.84 (L)*** -0.03 (N)***
Hadoop C. 0.89 (L) -0.88 (L)*** -0.02 (N)*

HBase 0.00 (N) -0.37 (M)*** -0.08 (N)***
Mahout 0.08 (N) -0.29 (S)*** 0.02 (N)

OpenJPA 0.01 (N) -0.64 (L)*** 0.05 (N)
Pig 0.13 (N) -0.32 (S)*** -0.06 (N)***

Tuscany -0.12 (N)*** -0.68 (L)*** -0.02 (N)***

NB

ActiveMQ 0.17 (S) -0.46 (M)*** 0.10 (N)
Camel 0.67 (L) -0.96 (L)*** -0.18 (S)***
Derby -0.11 (N)*** -0.22 (S)*** -0.44 (M)***

Geronimo 0.29 (S) -0.72 (L)*** 0.06 (N)
Hadoop C. 0.01 (N) -0.10 (N)*** -0.04 (N)***

HBase 0.13 (N) -0.44 (M)*** -0.15 (S)***
Mahout 0.15 (N) -0.29 (S)*** 0.05 (N)

OpenJPA 0.27 (S) -0.65 (L)*** 0.00 (N)
Pig 0.02 (N) -0.43 (M)*** -0.07 (N)***

Tuscany -0.55 (L)*** 0.01 (N) -0.11 (N)***
***p<0.001, **p<0.01, *p<0.05

17

TABLE 12: Adjusted P-values and Cliff’s delta comparing
F1-scores for the B, AG and MA models with those of the
RA model. P-values and Cliff’s delta that show significant
performance reduction are in bold.

Cls Project B AG MA

RF

ActiveMQ -0.52 (L)*** -0.72 (L)*** -0.02 (N)
Camel -0.81 (L)*** -0.97 (L)*** -0.14 (N)***
Derby -0.75 (L)*** -0.95 (L)*** -0.60 (L)***

Geronimo -0.28 (S)*** -0.82 (L)*** -0.14 (N)***
Hadoop C. -0.43 (M)*** -0.92 (L)*** -0.09 (N)***

HBase -0.96 (L)*** -0.99 (L)*** -0.69 (L)***
Mahout -0.16 (S)*** -0.19 (S)*** 0.00 (N)

OpenJPA -0.16 (S)*** -0.89 (L)*** -0.28 (S)***
Pig -0.21 (S)*** -0.44 (M)*** -0.11 (N)***

Tuscany -0.29 (S)*** -0.47 (M)*** -0.11 (N)***

LR

ActiveMQ -0.26 (S)*** -0.46 (M)*** -0.06 (N)***
Camel -0.58 (L)*** -0.73 (L)*** -0.10 (N)***
Derby -0.55 (L)*** -0.69 (L)*** -0.42 (M)***

Geronimo -0.19 (S)*** -0.17 (S)*** -0.13 (N)***
Hadoop C. 0.69 (L) -0.87 (L)*** -0.07 (N)***

HBase -0.66 (L)*** -0.32 (S)*** -0.46 (M)***
Mahout -0.22 (S)*** -0.24 (S)*** -0.02 (N)

OpenJPA -0.06 (N)*** -0.26 (S)*** 0.06 (N)
Pig -0.03 (N) -0.29 (S)*** -0.11 (N)***

Tuscany -0.19 (S)*** -0.26 (S)*** -0.05 (N)***

NB

ActiveMQ -0.29 (S)*** -0.15 (S)*** -0.04 (N)***
Camel 0.68 (L) -0.92 (L)*** -0.33 (M)***
Derby -0.01 (N) -0.69 (L)*** -0.91 (L)***

Geronimo -0.21 (S)*** 0.99 (L) -0.11 (N)***
Hadoop C. 0.00 (N) -0.41 (M)*** -0.36 (M)***

HBase 0.08 (N) -0.32 (S)*** -0.26 (S)***
Mahout -0.03 (N) -0.24 (S)*** 0.00 (N)

OpenJPA 0.44 (M) -0.32 (S)*** 0.12 (N)
Pig -0.05 (N)** -0.62 (L)*** -0.09 (N)***

Tuscany -0.19 (S)*** 0.06 (N) -0.08 (N)***
***p<0.001, **p<0.01, *p<0.05

TABLE 13: Adjusted P-values and Cliff’s delta comparing
Gmean scores for the B, AG and MA models with those
of the RA model. P-values and Cliff’s delta that show
significant performance reduction are in bold.

Cls Project B AG MA

RF

ActiveMQ 0.04 (N) -0.78 (L)*** 0.11 (N)
Camel -0.22 (S)*** -0.99 (L)*** 0.02 (N)
Derby -0.07 (N)*** -0.68 (L)*** -0.21 (S)***

Geronimo 0.40 (M) -0.93 (L)*** 0.16 (S)
Hadoop C. -0.29 (S)*** -0.86 (L)*** 0.24 (S)

HBase -0.79 (L)*** -1.00 (L)*** -0.36 (M)***
Mahout 0.25 (S) -0.27 (S)*** 0.13 (N)

OpenJPA 0.04 (N) -0.87 (L)*** -0.06 (N)*
Pig -0.03 (N) -0.42 (M)*** 0.08 (N)

Tuscany 0.19 (S) -0.78 (L)*** 0.03 (N)

LR

ActiveMQ 0.06 (N) -0.42 (M)*** 0.02 (N)
Camel -0.07 (N)*** -0.70 (L)*** 0.05 (N)
Derby -0.13 (N)*** -0.37 (M)*** -0.21 (S)***

Geronimo 0.14 (N) -0.83 (L)*** 0.01 (N)
Hadoop C. 0.95 (L) -0.86 (L)*** 0.26 (S)

HBase 0.04 (N) -0.26 (S)*** -0.08 (N)***
Mahout 0.02 (N) -0.41 (M)*** 0.00 (N)

OpenJPA 0.00 (N) -0.40 (M)*** 0.11 (N)
Pig 0.05 (N) -0.33 (M)*** -0.08 (N)***

Tuscany -0.38 (M)*** -0.66 (L)*** -0.02 (N)

NB

ActiveMQ -0.65 (L)*** -0.08 (N)*** -0.15 (S)***
Camel 0.70 (L) -0.96 (L)*** -0.33 (M)***
Derby -0.29 (S)*** -0.26 (S)*** -0.62 (L)***

Geronimo -0.25 (S)*** 0.54 (L) -0.13 (N)***
Hadoop C. 0.02 (N) -0.43 (M)*** -0.37 (M)***

HBase 0.11 (N) -0.39 (M)*** -0.30 (S)***
Mahout 0.07 (N) -0.11 (N)*** 0.10 (N)

OpenJPA 0.12 (N) -0.49 (L)*** 0.07 (N)
Pig -0.03 (N) -0.73 (L)*** -0.10 (N)***

Tuscany -0.66 (L)*** -0.43 (M)*** -0.06 (N)**
***p<0.001, **p<0.01, *p<0.05

shows a statistically significant performance reduction, we
also calculate the absolute difference between the F1-scores
of the model and the RA model. For the B and MA models,
the absolute difference is 0.01 in most of the cases. Such
differences are unlikely to be considered as substantially
large for practitioners. On the other hand, for the AG model,
the absolute difference ranges from 0.01 to 0.04.

In terms of G-mean, we notice that the B model shows
less than a 1% of performance reduction in most cases. On
average across the ten projects, the G-mean score of the B
model is not lower than that of the RA model. The MA
model also shows less than a 1% of performance reduction
in most cases. For most of the cases where the MA model
shows a significant performance reduction, the absolute
difference of the G-mean scores between the MA and RA
models is 0.01. The average G-mean score of the MA model
is 99%–100% of that of the RA model. On the other hand,
the AG model shows at least a 3% of performance reduction
in several cases. For the cases where the AG model shows a
significant performance reduction, the absolute difference of
G-mean scores between the AG and RA models ranges from
0.01 to 0.05. On average across the ten projects, the G-mean
score of the AG model is 97%–99% of that of the RA model.

In summary, for JIT models that are built using re-balanced data,
the mislabeled changes by B-SZZ and MA-SZZ are unlikely to
cause a considerable performance reduction in terms of AUC,
F1-score and G-mean score. The mislabeled changes by AG-SZZ
cause a statistically significant performance reduction with an
average difference of 1%–2%, 3%–5% and 1%–3% in terms of
AUC, F1-score and G-mean score, respectively.

4.3 RQ3: How do mislabeled changes by SZZ impact
the practical usage of JIT defect prediction models?

Motivation: The difference of performance measures (e.g.,
AUC) as shown in RQ1 and RQ2 may not be able to reflect
how the mislabeled changes by SZZ impact the practical
usage of JIT models. In this research question, we investigate
the impact of the mislabeled changes on the practical usage
of JIT models.
Approach: We apply the JIT models trained using the re-
balanced data to conduct our analysis. These models can be
used in practice since the class imbalance problem has been
mitigated, and the models do not favor the major class (i.e.,
clean changes).

We calculate the number of incorrectly predicted changes
(including false positives and false negatives) in the
prediction of the B, AG, MA and RA models in each
bootstrap iteration. Notice that in this context, a false
positive refers to a change that is truly clean but predicted
as bug-introducing, while a false negative refers to a
change that is truly bug-introducing but predicted as
clean. Moreover, considering that developers can inspect
all changes that are predicted as bug-introducing, their
inspection effort on false positives is wasted. We investigate
whether the mislabeled changes by SZZ cause more wasted
effort. In addition, we also consider developers’ overall
inspection effort on the changes that are predicted as bug-
introducing. We assume that developers are more likely to
favor a model that requires less overall inspection effort.

18

TABLE 14: Number of false positives and false negatives in
the prediction of the B, AG, MA and RA models

Cls. Project #False Positive #False Negative
B AG MA RA B AG MA RA

RF

ActiveMQ 574 495 501 487 139 171 150 154
Camel 1,264 1,154 1,123 1,097 183 238 196 200
Derby 797 819 736 655 126 136 136 142
Geronimo 1,084 986 1,029 987 190 241 202 210
Hadoop C. 1,591 1,700 1,584 1,536 144 154 134 142
HBase 991 871 924 837 252 316 251 260
Mahout 185 159 166 160 39 49 44 46
OpenJPA 452 468 458 428 85 101 86 88
Pig 220 213 218 202 54 60 54 57
Tuscany 1,612 1,474 1,543 1,516 157 188 165 167
Avg. 877 834 828 791 137 165 142 147

LR

ActiveMQ 723 690 667 650 121 136 132 136
Camel 1,594 1,518 1,465 1,430 202 227 217 222
Derby 981 994 921 853 123 126 133 138
Geronimo 1,567 1,315 1,524 1,482 185 241 193 199
Hadoop C. 2,592 2,644 2,628 2,515 144 201 167 181
HBase 1,260 1,060 1,146 1,028 282 331 309 331
Mahout 204 181 187 185 40 48 43 43
OpenJPA 667 646 653 650 85 92 85 86
Pig 289 287 287 279 51 55 52 53
Tuscany 2,032 1,969 2,056 2,044 148 160 140 141
Avg. 1,191 1,130 1,153 1,112 138 162 147 153

NB

ActiveMQ 1,585 1,492 1,519 1,497 53 68 59 63
Camel 1,750 2,434 2,185 2,025 201 184 171 184
Derby 748 1,109 1,342 825 169 121 100 153
Geronimo 2,388 1,326 2,331 2,270 141 265 147 153
Hadoop C. 4,707 5,575 5,247 4,778 113 87 95 107
HBase 1,684 1,715 1,797 1,701 225 239 212 225
Mahout 140 147 140 134 57 58 57 59
OpenJPA 604 778 739 785 90 81 74 69
Pig 486 613 493 472 33 24 32 35
Tuscany 1,707 1,718 1,873 1,847 208 201 182 182
Avg. 1,580 1,691 1,767 1,633 129 133 113 123

Hence, we also investigate whether the mislabeled changes
by SZZ cause more overall effort. We use number of lines
of code (LOC) as a proxy to measure developers’ inspection
effort following prior studies [34], [37]. In each bootstrap
iteration, we calculate the wasted effort and overall effort for
the B, AG, MA and RA models. Afterwards, we calculate the
average number of false positives, false negatives, wasted
effort and overall effort (measured by LOC) across the 1,000
bootstrap iterations, and we compare the results of the
B, AG and MA models with the RA model. Furthermore,
we apply the Wilcoxon signed-rank test with a Bonferroni
correction to investigate whether the wasted effort and
overall effort in the prediction of the B, AG and MA models
is significantly larger than that of the RA model. We also
calculate the Cliff’s delta.

Results: Table 14 presents the number of false positives,
false negatives in the prediction of the B, AG, MA and
RA models. Table 15 presents developers’ wasted effort and
overall effort (measured by LOC) in the prediction of the B,
AG, MA and RA models. And Table 16 presents the adjusted
p-values and Cliff’s delta for comparing the wasted effort
and overall effort of the B, AG and MA models with those
of the RA model.

From Table 14, we observe that on average across the
ten projects, the B model leads to more false positives and
less false negatives than the RA model when using random
forest or logistic regression as the underlying classifier. And
the B model leads to less false positives and more false
negatives than the RA model when naive Bayes is used.
Furthermore, we find that the MA model leads to more false
positives and less false negatives than the RA model. The
RA model cannot be deemed as better than the B or MA
models when it comes to the number of both false positives

and false negatives. On the other hand, the AG model leads
to 18–58 more false positives and 9–18 more false negatives
than the RA model. Hence, the RA model is better than the
AG model for the number of both false positives and false
negatives. Thus, when considering incorrectly predicted
changes, the RA model may not be better than the B and
MA model, but it is better than the AG model.

Furthermore, from Tables 15 and 16, we have the
following findings:

• When using the B model, on average, developers
inspect 31,822–41,582 more false positive lines (i.e., the
wasted effort) than when using the RA model. The
additional wasted effort is 9%–10% of the wasted effort
of the RA model. And on average, the B model requires
developers to inspect 36,499–46,712 more lines on the
changes that are predicted as bug-introducing than the
RA model. The additional effort is 7% of the overall
effort required by the RA model. Statistical tests show
that the wasted effort of the B model is significantly
larger than the RA model on 7–10 projects and the
overall effort of the B model is significantly larger than
the RA model on 8–10 projects.

• When using the AG model, on average, developers
inspect 2,425–58,151 more false positive lines (i.e., the
wasted effort) than when using the RA model. The
additional wasted effort is 1%–15% of the wasted effort
of the RA model. The overall effort of the AG model
is not larger than that of the RA model when using a
random forest classifier. When using logistic regression
or naive Bayes as the underlying classifier, on average,
the AG model requires developers to inspect 11,867–
60,702 more lines on the changes that are predicted
as bug-introducing than the RA model. The additional
effort is 2%–10% of the overall effort required by the RA
model. Statistical tests show that the wasted effort of the
AG model is significantly larger than the RA model on
4–5 projects, and the overall effort of the AG model is
significantly larger than the RA model on 3–4 projects.

• When using the MA model, developers’ wasted effort
is not larger than when using the RA model if a
random forest or logistic regression classifier is used.
When using naive Bayes, on average, the MA model
leads to 4,153 more inspected lines that are wasted
compared to using the RA model. The additional
wasted effort is 1% of the wasted effort of the RA
model. And the overall effort of the MA model is not
larger than that of the RA model when using a random
forest or logistic regression classifier. When using naive
Bayes, on average, the MA model requires developers
to inspect 3,785 more lines on the changes that are
predicted as bug-introducing than the RA model, and
the additional effort is less than 1% of the overall effort
of the RA model. Statistical tests show that on 7–10
of the projects, the wasted effort and overall effort of
the MA model are not significantly larger than the RA
model.

We find that the prediction performance of the B model is
not lower than the RA model but using the B model wastes
considerably more effort than the RA model. In addition,
the B model requires more overall inspection effort on the

19

TABLE 15: Developers’ wasted effort and overall effort (measured by LOC) in the prediction of the B, AG, MA and RA
models

Cls. Project Wasted Effort (#LOC) Overall Effort (#LOC)
B AG MA RA B AG MA RA

RF

ActiveMQ 118,141 91,240 111,859 110,221 228,584 186,914 221,310 219,279
Camel 296,535 276,205 282,136 282,275 541,864 504,564 526,059 526,241
Derby 384,098 347,884 287,713 305,590 619,422 566,718 503,230 530,573
Geronimo 407,898 458,425 395,386 382,093 708,572 745,592 691,214 677,544
Hadoop C. 759,906 585,724 660,650 704,120 1,014,051 812,657 901,905 949,769
HBase 335,923 294,304 316,208 310,688 776,534 693,529 753,317 747,503
Mahout 75,960 74,630 74,764 71,651 187,409 181,593 185,468 181,523
OpenJPA 155,668 147,824 144,915 140,401 261,515 247,752 249,389 244,778
Pig 90,009 82,352 87,083 86,614 194,662 181,688 189,871 188,663
Tuscany 959,855 931,429 861,554 872,118 1,295,166 1,245,632 1,183,909 1,196,918
Avg. 358,399 329,002 322,227 326,577 582,778 536,664 540,567 546,279

LR

ActiveMQ 176,539 152,056 161,043 160,001 298,646 267,988 280,380 279,085
Camel 369,020 354,584 353,733 354,233 621,230 598,878 602,750 603,373
Derby 479,157 448,953 363,385 377,776 727,269 687,399 591,797 609,799
Geronimo 688,260 719,702 651,383 655,038 1,002,095 1,029,585 961,745 965,848
Hadoop C. 1,146,744 1,039,812 1,036,366 1,061,585 1,415,719 1,289,032 1,292,703 1,318,654
HBase 418,393 394,750 397,958 395,382 868,931 837,288 841,587 838,366
Mahout 96,387 86,344 91,457 91,969 210,529 198,107 204,806 205,360
OpenJPA 225,030 204,642 198,338 196,704 336,258 315,107 310,134 307,635
Pig 111,549 96,072 101,536 103,085 219,029 200,959 208,282 209,887
Tuscany 1,349,123 1,286,330 1,253,440 1,248,603 1,703,008 1,629,915 1,602,233 1,597,581
Avg. 506,020 478,325 460,864 464,438 740,271 705,426 689,642 693,559

NB

ActiveMQ 106,579 98,801 102,089 100,175 201,555 189,052 196,053 193,600
Camel 330,336 325,546 318,628 315,623 569,571 550,500 549,230 546,891
Derby 426,231 365,743 321,087 297,190 653,863 585,255 529,322 510,407
Geronimo 383,510 566,876 375,927 366,847 661,893 859,558 653,323 642,412
Hadoop C. 1,238,411 1,305,400 1,266,688 1,245,824 1,493,424 1,563,709 1,520,122 1,499,343
HBase 337,962 332,973 336,829 333,343 763,718 750,355 755,276 750,747
Mahout 80,573 75,794 76,658 73,583 189,552 182,062 184,815 180,399
OpenJPA 200,902 182,163 179,022 177,072 310,103 287,600 286,487 282,173
Pig 108,912 108,498 109,855 109,127 211,988 208,510 212,011 211,463
Tuscany 1,029,105 1,117,401 852,437 878,907 1,355,586 1,442,735 1,163,526 1,194,881
Avg. 424,252 447,920 393,922 389,769 641,125 661,934 605,017 601,232

changes that are predicted as bug-introducing. To explain it,
we combine the data of the ten projects and perform analysis
on the combined data. Using Wilcoxon rank sum test [48],
we find that the churn size of the changes mislabeled as bug-
introducing by B-SZZ (i.e., RA-SZZ labels them as clean) is
statistically larger than that of the changes mislabeled as
clean (i.e., RA-SZZ labels them as bug-introducing) with p-
value < 0.001. Hence, B-SZZ mislabels larger changes as
bug-introducing. The B model trained using such data will
be more likely to predict large changes as bug-introducing
compared to the RA model. Hence, the B model requires
more inspection effort and developers waste more effort on
the false positives when using the B model.

In summary, when considering incorrectly predicted changes, the
mislabeled changes by B-SZZ and MA-SZZ may not make it
worse for the use of JIT models, while the mislabeled changes by
AG-SZZ make it worse for the use of JIT models. On the other
hand, when considering developers’ inspection effort (measured
by LOC), the mislabeled changes by B-SZZ lead to significantly
more wasted effort with an average difference of 9%–10%, and
they also lead to significantly more overall inspection effort. The
mislabeled changes by AG-SZZ lead to 1%–15% more wasted
effort, and they may lead to more overall inspection effort. For
several projects, the mislabeled changes by AG-SZZ lead to
significantly more wasted effort and overall effort. The mislabeled
changes by MA-SZZ are unlikely to cause significantly more
wasted effort and overall effort.

4.4 RQ4: How do mislabeled changes by SZZ impact
on the performance of effort-aware JIT defect prediction
models?

Motivation: Considering the limited budget in practice,
developers can only inspect a limited number of lines
of code, and they would expect to find as many bug-
introducing changes as possible while exerting the same
effort [9], [10]. Prior studies have leveraged effort-aware
JIT defect prediction techniques to prioritize changes for
developers to inspect aiming to find more bugs while
exerting the same effort [21], [34]. In this research question,
we investigate the impact of mislabeled changes by SZZ on
the performance of effort-aware JIT models.

Approach: We build the B, AG, MA and RA models
using Huang et al.’s CBS technique [34] and Fu et al.’s
OneWay technique [21]. As described in Section 3.8, we
use Recall@20% as the performance measure to evaluate the
models.

Similarly to RQ1, we calculate the average Recall@20%
score across the 1,000 bootstrap iterations for the B, AG,
MA and RA models, and the ratios of the Recall@20%
scores of the B, AG and MA models to those of the RA
model. Furthermore, we apply the Wilcoxon signed-rank
test to investigate whether the B, AG and MA models show
statistically significant performance reduction in terms of
Recall@20%. We also calculate the Cliff’s delta.

Results: Table 17 presents the average Recall@20% score of

20

TABLE 16: Adjusted P-values and Cliff’s delta comparing developers’ wasted effort and overall effort (measured by LOC)
in the prediction of the B, AG and MA models with those of the RA model. Developers’ wasted effort values and overall
effort values of the B, AG and MA models which are significantly larger than those of the RA model are in bold.

Cls. Project Wasted Effort Overall Effort
B AG MA B AG MA

RF

ActiveMQ 0.31 (S)*** -0.67 (L) 0.05 (N)*** 0.27 (S)*** -0.78 (L) 0.05 (N)***
Camel 0.44 (M)*** -0.19 (S) 0.00 (N) 0.37 (M)*** -0.48 (L) 0.00 (N)
Derby 0.94 (L)*** 0.70 (L)*** -0.34 (M) 0.91 (L)*** 0.51 (L)*** -0.40 (M)

Geronimo 0.37 (M)*** 0.82 (L)*** 0.18 (S)*** 0.37 (M)*** 0.69 (L)*** 0.15 (S)***
Hadoop C. 0.45 (M)*** -0.81 (L) -0.36 (M) 0.47 (M)*** -0.83 (L) -0.36 (M)

HBase 0.50 (L)*** -0.34 (M) 0.12 (N)*** 0.41 (M)*** -0.69 (L) 0.09 (N)***
Mahout 0.26 (S)*** 0.15 (S)*** 0.18 (S)*** 0.21 (S)*** 0.00 (N) 0.14 (N)***

OpenJPA 0.45 (M)*** 0.22 (S)*** 0.14 (N)*** 0.39 (M)*** 0.07 (N)*** 0.11 (N)***
Pig 0.15 (S)*** -0.16 (S) 0.03 (N) 0.17 (S)*** -0.18 (S) 0.04 (N)

Tuscany 0.68 (L)*** 0.45 (M)*** -0.08 (N) 0.68 (L)*** 0.34 (M)*** -0.09 (N)

LR

ActiveMQ 0.45 (M)*** -0.23 (S) 0.02 (N)*** 0.47 (M)*** -0.26 (S) 0.03 (N)***
Camel 0.45 (M)*** 0.01 (N) -0.02 (N) 0.42 (M)*** -0.11 (N) -0.01 (N)
Derby 0.96 (L)*** 0.84 (L)*** -0.22 (S) 0.95 (L)*** 0.80 (L)*** -0.23 (S)

Geronimo 0.40 (M)*** 0.67 (L)*** -0.04 (N) 0.40 (M)*** 0.62 (L)*** -0.04 (N)
Hadoop C. 0.64 (L)*** -0.19 (S) -0.23 (S) 0.67 (L)*** -0.23 (S) -0.22 (S)

HBase 0.45 (M)*** -0.01 (N) 0.05 (N)*** 0.42 (M)*** -0.02 (N) 0.05 (N)***
Mahout 0.21 (S)*** -0.27 (S) -0.02 (N) 0.17 (S)*** -0.23 (S) -0.02 (N)

OpenJPA 0.69 (L)*** 0.21 (S)*** 0.05 (N)*** 0.60 (L)*** 0.16 (S)*** 0.05 (N)***
Pig 0.30 (S)*** -0.26 (S) -0.05 (N) 0.24 (S)*** -0.24 (S) -0.04 (N)

Tuscany 0.72 (L)*** 0.29 (S)*** 0.03 (N)* 0.71 (L)*** 0.23 (S)*** 0.03 (N)*

NB

ActiveMQ 0.46 (M)*** -0.10 (N) 0.14 (N)*** 0.37 (M)*** -0.23 (S) 0.11 (N)***
Camel 0.51 (L)*** 0.35 (M)*** 0.13 (N)*** 0.53 (L)*** 0.08 (N)*** 0.06 (N)***
Derby 0.96 (L)*** 0.83 (L)*** 0.54 (L)*** 0.95 (L)*** 0.74 (L)*** 0.31 (S)***

Geronimo 0.40 (M)*** 1.00 (L)*** 0.23 (S)*** 0.36 (M)*** 1.00 (L)*** 0.20 (S)***
Hadoop C. -0.09 (N) 0.41 (M)*** 0.17 (S)*** -0.07 (N) 0.41 (M)*** 0.15 (S)***

HBase 0.12 (N)*** -0.01 (N) 0.10 (N)*** 0.20 (S)*** 0.00 (N) 0.07 (N)***
Mahout 0.29 (S)*** 0.09 (N)*** 0.13 (N)*** 0.26 (S)*** 0.05 (N)** 0.13 (N)***

OpenJPA 0.53 (L)*** 0.09 (N)*** 0.07 (N)*** 0.54 (L)*** 0.09 (N)*** 0.12 (N)***
Pig -0.01 (N) -0.02 (N) 0.04 (N)*** 0.02 (N) -0.08 (N) 0.02 (N)***

Tuscany 0.80 (L)*** 0.82 (L)*** -0.15 (S) 0.79 (L)*** 0.80 (L)*** -0.16 (S)
***p<0.001, **p<0.01, *p<0.05

TABLE 17: Recall@20% scores of the B, AG, MA and RA
models. We also show the ratios of the Recall@20% scores of
the B, AG and MA models to those of the RA model.

Tech. Project B AG MA RA

CBS

ActiveMQ 0.58 104% 0.57 102% 0.57 102% 0.56
Camel 0.38 100% 0.36 95% 0.38 100% 0.38
Derby 0.47 100% 0.47 100% 0.47 100% 0.47

Geronimo 0.57 104% 0.48 87% 0.56 102% 0.55
Hadoop C. 0.64 108% 0.56 95% 0.62 105% 0.59

HBase 0.51 109% 0.47 100% 0.49 104% 0.47
Mahout 0.37 100% 0.36 97% 0.37 100% 0.37

OpenJPA 0.43 102% 0.40 95% 0.42 100% 0.42
Pig 0.47 102% 0.46 100% 0.46 100% 0.46

Tuscany 0.52 95% 0.52 95% 0.55 100% 0.55
Avg. 0.49 102% 0.47 98% 0.49 102% 0.48

OneWay

ActiveMQ 0.44 100% 0.44 100% 0.44 100% 0.44
Camel 0.32 97% 0.33 100% 0.33 100% 0.33
Derby 0.29 107% 0.28 104% 0.28 104% 0.27

Geronimo 0.49 100% 0.49 100% 0.49 100% 0.49
Hadoop C. 0.44 100% 0.44 100% 0.44 100% 0.44

HBase 0.44 100% 0.44 100% 0.44 100% 0.44
Mahout 0.35 100% 0.35 100% 0.35 100% 0.35

OpenJPA 0.41 100% 0.41 100% 0.41 100% 0.41
Pig 0.38 100% 0.38 100% 0.38 100% 0.38

Tuscany 0.51 100% 0.51 100% 0.51 100% 0.51
Avg. 0.41 100% 0.41 100% 0.41 100% 0.41

the B, AG, MA and RA models that are built using the CBS
and OneWay techniques. Table 18 presents the adjusted p-
values and Cliff’s delta comparing Recall@20% scores for
the B, AG and MA models with the RA model.

From the two tables, we have the following findings:

• For the models built using the CBS technique, the

TABLE 18: Adjusted P-values and Cliff’s delta comparing
Recall@20% scores for the B, AG and MA models with
those of the RA model. P-values and Cliff’s delta that show
significant performance reduction are in bold.

Tech. Project B AG MA

CBS

ActiveMQ 0.28 (S) 0.16 (S) 0.09 (N)
Camel 0.04 (N) -0.53 (L)*** 0.19 (S)
Derby 0.05 (N) 0.01 (N) 0.25 (S)

Geronimo 0.45 (M) -0.99 (L)*** 0.27 (S)
Hadoop C. 0.92 (L) -0.66 (L)*** 0.53 (L)

HBase 0.93 (L) -0.14 (N)*** 0.61 (L)
Mahout 0.10 (N) -0.22 (S)*** 0.07 (N)

OpenJPA 0.17 (S) -0.33 (S)*** 0.01 (N)
Pig 0.06 (N) -0.05 (N)*** 0.02 (N)

Tuscany -0.73 (L)*** -0.67 (L)*** 0.08 (N)

OneWay

ActiveMQ 0.00 (N) 0.00 (N) 0.00 (N)
Camel -0.03 (N)*** 0.03 (N) 0.01 (N)
Derby 0.27 (S) 0.25 (S) 0.15 (N)

Geronimo 0.00 (N) -0.02 (N)** 0.00 (N)
Hadoop C. -0.01 (N)* 0.01 (N) -0.01 (N)

HBase 0.00 (N) 0.00 (N) 0.00 (N)
Mahout 0.02 (N) -0.04 (N)*** -0.01 (N)

OpenJPA 0.00 (N) 0.01 (N) 0.01 (N)
Pig 0.00 (N) 0.00 (N) 0.00 (N)

Tuscany 0.00 (N) -0.01 (N) 0.00 (N)
***p<0.001, **p<0.01, *p<0.05

B model and MA model are not performing worse
than the RA model in terms of Recall@20%. On
the other hand, the Recall@20% score of the AG
model is 87%–102% of that of the RA model. On
average across the ten projects, the AG model shows

21

2% performance reduction. The AG model shows a
statistically significant performance reduction with a
non-negligible effect size on six projects.

• For the models built using the OneWay technique, the
B, AG and MA models are not performing worse than
the RA model in terms of Recall@20%.

In summary, for the effort-aware JIT models using the CBS
technique, the mislabeled changes by B-SZZ and MA-SZZ are
not likely to cause a considerable performance reduction in terms
of Recall@20%. And the mislabeled changes by AG-SZZ cause a
statistically significant performance reduction with an average
difference of 2%. For the effort-aware JIT models using the
OneWay technique, mislabeled changes by SZZ are unlikely to
impact the performance of these models in terms of Recall@20%.

4.5 RQ5: How do mislabeled changes by SZZ impact
the interpretation of JIT defect prediction models?

Motivation: In addition to predicting bug-introducing
changes, prior studies also used JIT models to understand
the impact of various metrics on the defect-proneness of
changes [37], [38]. By understanding the most important
metrics for identifying bug-introducing changes, developers
can avoid the pitfalls that show high association with
the appearance of bugs. In this research question, we
investigate whether mislabeled changes by SZZ lead to
conflicting conclusions about the most important metrics for
identifying bug-introducing changes.
Approach: For each project, we calculate the importance
ranks of the change metrics for the B, AG, MA and RA
models. Then, we compare the top-3 ranked important
metrics of the B, AG and MA models with those of the RA
model (i.e., the baseline model). By doing so, we investigate
the impact of the mislabeled changes by B-SZZ, AG-SZZ
and MA-SZZ on the most important metrics for identifying
bug-introducing changes.

First, in each bootstrap iteration, we take the seven steps
described in Figure 5 to calculate metric importance scores
for the B, AG, MA and RA models. The bootstrap iterates
1,000 times.

Next, following prior studies [19], [73], [79], we apply
the Scott-Knott Effect Size Difference (SK-ESD) test [73]
on the metric importance scores from the 1,000 iterations
of bootstrap. The SK-ESD test is an enhancement of the
Scott-Knott test [61]. Differently from the Scott-Knott test,
the SK-ESD test mitigates the skewness of input data to
relax the assumption of normally distributed data (which
is required by Scott-Knott test) [73]. Moreover, the SK-ESD
test considers the effect size of input data and merges any
two statistically distinct groups with a negligible effect size
into one group.

Finally, we compare the top-3 ranked important metrics
of the B, AG and MA models with those the RA model. To
do so, we apply Rajbahadur et al.’s rank shift [60].

Rajbahadur et al. define a rank shift as the amount
that a metric shifts its importance rank between two
models regarding the total number of metrics in the
dataset [60]. Suppose V1(k) = {v1, v2, ..., vm} and V2(k) =
{v1, v2, ..., vn} are the metrics that appear at rank k for
the first and second model, respectively. Let us denote the

MA

AG

B

A
ct

iv
eM

Q

C
am

el

D
er

by

G
er

on
im

o

H
ad

oo
p

C
.

H
B

as
e

M
ah

ou
t

O
pe

nJ
PA P
ig

Tu
sc

an
y

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

R
an

k
S

hi
fts

Rank1 Rank2 Rank3

(a) Random Forest

MA

AG

B

A
ct

iv
eM

Q

C
am

el

D
er

by

G
er

on
im

o

H
ad

oo
p

C
.

H
B

as
e

M
ah

ou
t

O
pe

nJ
PA P
ig

Tu
sc

an
y

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

R
an

k
S

hi
fts

(b) Logistic Regression

MA

AG

B

A
ct

iv
eM

Q

C
am

el

D
er

by

G
er

on
im

o

H
ad

oo
p

C
.

H
B

as
e

M
ah

ou
t

O
pe

nJ
PA P
ig

Tu
sc

an
y

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

R
an

k
S

hi
fts

(c) Naive Bayes

Fig. 6: Rank shifts of the top-3 ranked metrics between each
of the B, AG and MA models and the RA model

22

TABLE 19: Average rank shifts in top-3 ranked metrics comparing the B, AG and MA models with the RA model across
the ten projects. We also show the P-values for comparing the rank shifts with the ideal no shift case in which all shifts are
0. The significant rank shifts are in bold.

Cls Rank Model B Model AG Model MA
Avg. Shifts P-value Avg. Shifts P-value Avg. Shifts P-value

RF
1 0.02 >0.05 0.02 >0.05 0.02 >0.05
2 0.08 <0.01 0.07 <0.05 0.09 <0.01
3 0.18 <0.001 0.17 <0.001 0.12 <0.01

LR
1 0.01 >0.05 0.07 <0.05 0.07 >0.05
2 0.11 <0.05 0.20 <0.01 0.05 >0.05
3 0.24 <0.001 0.33 <0.01 0.15 <0.01

NB
1 0.04 >0.05 0.01 >0.05 0.00 >0.05
2 0.10 <0.05 0.22 <0.01 0.09 <0.01
3 0.25 <0.001 0.30 <0.001 0.29 <0.001

TABLE 20: Number of projects where a metric is ranked as the top-1 and one of the top-3 important metrics.

Features Random Forest Logistic Regression Naive Bayes
B AG MA RA B AG MA RA B AG MA RA

Top-1 important metrics
NS 0 0 0 0 0 0 0 0 0 0 0 0
NF 8 9 9 9 5 4 5 5 8 8 7 7
LA 1 0 1 0 0 1 0 0 1 1 1 1
LD 0 0 0 0 0 0 0 0 1 1 1 1
LT 1 0 1 0 3 2 3 3 0 0 0 0

NDEV 1 1 1 1 1 2 1 1 0 1 1 1
AGE 0 0 0 0 0 0 0 0 0 0 0 0
NUC 0 0 0 0 0 1 1 0 0 0 0 0
EXP 0 0 0 0 1 1 1 1 0 0 0 0

SEXP 0 1 0 0 1 0 1 0 0 0 0 0
Top-3 important metrics

NS 1 2 1 1 1 2 2 2 3 3 3 2
NF 10 10 10 10 8 7 9 7 10 9 10 10
LA 9 8 10 9 3 6 3 2 8 6 6 7
LD 0 1 2 2 0 0 0 0 2 9 9 7
LT 8 7 8 7 6 6 6 7 4 4 2 5

NDEV 2 2 2 2 5 4 4 5 1 2 1 1
AGE 2 2 4 1 1 1 0 0 0 3 3 2
NUC 0 1 2 1 1 3 3 4 1 3 1 2
EXP 1 2 3 1 3 2 4 5 6 5 6 5

SEXP 1 2 3 2 4 4 5 5 1 0 2 0

number of metrics in the given dataset as Nmetric. The rank
shifts of the metrics that appear at rank k between the two
models are calculated as:

Shifts(k) =(
∑

v∈V1(k)

|k −Rank2(v)|+∑
v∈V2(k)

|k −Rank1(v)|)/Nmetric.
(3)

In the formula, Rank1(v) and Rank2(v) refer to the rank
of the metric v calculated from the first and second model,
respectively. The rank shifts can quantify the difference
in the important metrics between the two models for
identifying bug-introducing changes.

For each of the B, AG and MA models, we calculate the
rank shifts of the top-3 ranked metrics of the model and the
RA model, respectively. Furthermore, to investigate whether
the importance ranks of two given models are statistically
significantly different, we apply the Wilcoxon signed-rank
test to compare the rank shifts between the two models with
the ideal no shift case in which all shifts are 0.

Using the rank shifts, we can compare the difference
of metric importance between two models on each studied
project. In addition, we compare the most important metrics
of the four models across all studied projects. We calculate
number of projects where a metric is ranked as top-1

and one of the top-3 important metrics. By comparing the
numbers for each of the B, AG and MA models with the
RA model, we investigate whether the mislabeled changes
by B-SZZ, AG-SZZ and MA-SZZ affect the conclusions on
the top-1 and top-3 important metrics for identifying bug-
introducing changes.

Results: Figure 6 presents the rank difference computed
by comparing top-3 important metrics of the B, AG and
MA models with those of the RA model. Table 19 shows
the average rank shifts for each rank and the p-values
for comparing the rank shifts with the ideal no shift case.
And Table 20 shows the number of projects where each
of the metrics is ranked as the top-most and one of the
top-3 important ones, respectively. The REXP, ND, Entropy
and FIX metrics are correlated with the other ones in each
project, and thus, they are dropped.

From Figure 6 and Table 19, we have the following
findings:

• For top-ranked metrics, the B, AG and MA models
show difference from the RA models on only 0–3
projects. The average shifts between the B, AG or
MA model and the RA model range from 0 to 0.07.
Moreover, statistical tests show that the top-ranked
metrics are not significantly different between the B,
AG or MA model and the RA model in most cases.

• For second-ranked metrics, the B, AG and MA models

23

show difference from the RA models on 2–6 projects.
The average shifts between the B, AG or MA model and
the RA model range from 0.07 to 0.22. Statistical tests
show that the second-ranked metrics are significantly
different between the B, AG or MA model and the RA
model in most cases.

• For third-ranked metrics, the B, AG and MA models
show difference from the RA models on 6–9 projects.
The average rank shifts between the B, AG or MA
model and the RA model range from 0.12 to 0.33.
Moreover, statistical tests show that the third-ranked
metrics are significantly different between the B, AG or
MA model and the RA model in all cases.

From Table 20, we find that considering the top-1 most
important metrics, NF (i.e., number of files modified by
a change) is the dominant one. Hence, NF is the most
important metric in identifying bug-introducing changes
for all of the four models. Also, we notice that the top-
3 important metrics for the B, AG, MA and RA models
are consistent when JIT models use random forest as the
underlying classifier (i.e., NF, LA and LT). However, when
JIT models use logistic regression or naive Bayes as the
underlying classifier, we notice that the B, AG and MA
models are impacted by different important metrics as
compared to the RA model. For example, when using naive
Bayes as the underlying classifier, the number of projects
where LD is ranked in top-3 important ones is drastically
different between the B and RA models (2 vs 7).

In summary, the mislabeled changes by B-SZZ, AG-SZZ
and MA-SZZ do not impact the most important metric for
identifying bug-introducing changes (i.e., NF). However, metrics
in the second and third ranks are more likely to be impacted
by the mislabeled changes, unless random forest is used as the
underlying classifier.

5 DISCUSSION

In this section, we further discuss our experimental results
and threats to the validity of our study.

5.1 Why is the performance of the B and MA models
similar to that of the RA model? And why does the AG
model show a significant performance reduction?
In RQ1 and RQ2 we notice that in terms of AUC, F1-score
and G-mean, the performance of the B or MA model is
not lower that of the RA model, whereas the AG model
shows a significant performance reduction compared to the
RA model. In RQ3, we have the same findings in terms of
Recall@20% when the B, AG, MA and AG models use the
CBS technique. In this section, we discuss the reasons as to
why the two phenomena occur: 1) why is the performance
of the B and MA models similar to that of the RA model?
2) why does the AG model show a significant performance
reduction?

We answer these two questions by comparing the
characteristics of the mislabeled changes by B-SZZ, AG-SZZ
and MA-SZZ as shown in Table 4.

First, we find that the labeled data by MA-SZZ has a
smaller false positive rate and false negative rate compared
to the labeled data by B-SZZ and AG-SZZ. On average

across the ten projects, the labeled data by MA-SZZ has
a false positive rate and false negative rate of 3% and
4%, i.e., only 3% of truly clean changes and 4% of truly
bug-introducing changes are mislabeled by MA-SZZ. The
mislabeled changes introduced by MA-SZZ are not likely to
impact the performance of the MA model.

Secondly, we find that the labeled data by AG-SZZ
shows a visible difference from the labeled data by B-SZZ,
which is: AG-SZZ generates much more false negatives
than B-SZZ. On average across the ten studied projects, the
labeled data by AG-SZZ has a false negative rate of 30%—
indicating that the AG model is learned from only 70% of
truly bug-introducing changes. In contrast, the labeled data
by B-SZZ has a false negative rate of 15%, i.e., the B model
is learned from 85% of truly bug-introducing changes. In
addition, we notice that the labeled data by B-SZZ and AG-
SZZ has a small false positive rate on average across the
projects (6% and 4%, respectively). Hence, false negatives
have more impact on the B and AG models than false
positives. And the AG model is more likely to be impacted
by false negatives in comparison with the B model. For the
B model, the mislabeled 15% bug-introducing changes may
not have a considerable impact on the performance of the
model. On the other hand, for the AG model, the mislabeled
30% bug-introducing changes are likely to introduce a bias
on the prediction of the AG model, which results in a
significant performance reduction.

In summary, the labeled data by B-SZZ and MA-SZZ has
a relatively low false positive rate and false negative rate,
which may not considerably impact the prediction of the B
and MA models. On the other hand, the labeled data by AG-
SZZ contains a much larger number of false negatives which
pertain to 30% of truly bug-introducing changes. These false
negatives may have a considerably negative impact on the
performance of the AG model.

5.2 Threats to validity

Internal Validity. Threats to internal validity are concerned
with potential errors in our code implementation and study
settings. Our code has been double-checked, but there may
still exist errors that we did not note.

It is very challenging to retrieve the truly clean data
containing no false positives and false negatives. Among the
four studied SZZ variants, RA-SZZ is less likely to generate
wrong labels compared to the other SZZ variants. Hence, in
this study, we evaluate all JIT models on the labeled data by
RA-SZZ. We use the model trained using the labeled data by
RA-SZZ as the baseline model and compare it with models
trained using the labeled data by B-SZZ, AG-SZZ and MA-
SZZ. Nevertheless, RA-SZZ may still mislabel changes. For
example, Neto et al. noted that RA-SZZ can only detect
13 types of refactorings due to the limitations of RefDiff
tool [56], [64]. The undetected refactorings may lead to false
positives and false negatives. Neto et al. studied the same
datasets. They manually analyzed 365 buggy lines detected
by RA-SZZ and found that 8.49% of the analyzed lines are
related to undetected refactorings of RefDiff. Nevertheless,
our manual analysis of the refactorings detected by RefDiff
shows that RefDiff achieves nearly perfect precision (98.1%).
Therefore, although the undetected refactorings may limit

24

the results of RA-SZZ, RA-SZZ still shows an advantage
over the other three SZZ variants by dealing with the
detected refactorings.

In addition, Soares et al. observed that in specific
situations, refactoring attempts may be defective [66],
[67]. Bavota et al. also observed that refactorings such
as those involving hierarchies (e.g., pull up method) can
induce faults [5]. RA-SZZ cannot handle such defective
refactorings, since it assumes that refactoring changes
should not introduce bugs (as defined by Fowler et al. [20]).
Still, Soares et al. observed that less than 1% of refactoring
attempts introduce bugs [66]. Hence, defective refactorings
are not likely to heavily impact the labels generated by RA-
SZZ.

Furthermore, in this study, we use the data in the JIRA
ITS to deal with the missing link problem that is reported
in the Bugzilla ITS by Bird et al. and Bachmann et al. [4],
[6]. We may still find missing links in the JIRA ITS, e.g.,
due to developers’ occasional typo errors of entering bug
identifiers in the commit messages. The missing links in our
data may still induce a bias. However, Bissyande et al. have
shown that the quality of links in the JIRA ITS is much better
than that of Bugzilla ITS [7]. Thus, the bias induced by the
missing links is unlikely to have a considerable impact on
our models compared to the bias induced by the missing
links in the Bugzilla ITS.
External Validity. Threats to external validity are concerned
with the generality of our conclusions. In our study,
we conduct our experiments on ten Apache open source
projects which contains a total of 126,526 changes. The
ten projects are from different application domains. Also,
the projects have different sizes. We have investigated the
impact of mislabeled changes by SZZ when JIT models are
trained in different settings including models trained using
the original data and re-balanced data. We also investigate
the impact of the mislabeled changes on effort-aware JIT
models. We have consistent conclusions about the impact of
the mislabeled changes on the performance of JIT models in
different settings.

Nevertheless, we may still find that the impact of
mislabeled changes by SZZ can be higher or lower in
different projects with different programming languages.
Therefore, additional replication studies are needed to verify
our results on more projects.
Construct Validity. Threats to construct validity relate to
the suitability of our performance measures for evaluating
prediction performance of JIT defect prediction models. We
use AUC, F1-score and G-mean to evaluate the prediction
performance of JIT models. And we use Recall@20% to
evaluate the cost-effectiveness of effort-aware JIT models.
These performance measures are widely used in prior
studies [21], [34]–[37], [50], [68], [83]. Furthermore, we
leverage statistical tests to ensure that our conclusions are
robust.

6 CONCLUSION

In this paper, we investigate the impact of mislabeled
changes by SZZ variants on Just-in-Time defect prediction
models in terms of model performance and model
interpretation. We analyze four SZZ variants that are

proposed by prior studies, namely B-SZZ, AG-SZZ, MA-
SZZ and RA-SZZ. The evaluation of SZZ variants in prior
studies and our manual analysis of RefDiff indicate that
RA-SZZ generates the cleanest data compared the other
SZZ variants. To conduct our analysis, we evaluate all JIT
models on the labeled data by RA-SZZ. Furthermore, we
consider the model trained using the labeled data by RA-
SZZ as the baseline model. By comparing models trained
using the labeled data by B-SZZ, AG-SZZ and MA-SZZ
with the baseline model, we investigate the impact of the
mislabeled changes by B-SZZ, AG-SZZ and MA-SZZ on JIT
models. In terms of various performance measures (AUC,
F1-score, G-mean and Recall@20%), the mislabeled changes
by B-SZZ and MA-SZZ are unlikely to cause a considerable
performance reduction, while the mislabeled changes by
AG-SZZ cause a significant performance reduction with an
average difference ranging from 1%-5%. When considering
developers’ inspection effort (measured by LOC) in practice,
the mislabeled changes by B-SZZ and AG-SZZ lead to 9%–
10% and 1%–15% more wasted effort compared to using
RA-SZZ, respectively. The mislabeled changes by B-SZZ
significantly increase developers’ wasted effort. In terms
of model interpretation, the top-most important metric for
identifying bug-introducing changes (i.e., NF) is robust
towards the mislabeling noise generated by SZZ, but the
second- and third-most important metrics are likely to be
impacted by the mislabeling noise, unless random forest is
used as the underlying classifier.

Many existing JIT defect prediction studies have applied
the original SZZ (B-SZZ) to label data. In this study,
we show that the mislabeled changes by B-SZZ lead to
additional wasted inspection effort, and that they may
impact the interpretation of JIT models. Hence, prior
studies should be revisited to determine whether their JIT
models have wasted considerably more inspection effort in
practice and whether the interpretation of their models is
impacted. Future studies should avoid using AG-SZZ since
the mislabeled changes by AG-SZZ can cause a significant
performance reduction, and they may considerably increase
wasted inspection effort. In addition, using the labeled
data by MA-SZZ does not cause a significant performance
reduction or more wasted inspection effort. Hence, MA-
SZZ may be an alternative for RA-SZZ when refactoring
detection tools are not available (e.g., projects that are
written in programming languages other than Java). In this
case, practitioners can use a random forest classifier as the
underlying JIT classifier to deal with the impact of the
mislabeled changes by MA-SZZ on the interpretation of the
JIT models.

ACKNOWLEDGMENT

This research was partially supported by the National
Key Research and Development Program of China
(2018YFB1003904) and NSFC Program (No. 61602403).

REFERENCES

[1] Activemq/amq-1381. https://issues.apache.org/jira/browse/
AMQ-1381. Accessed: 2018-09-18.

[2] H. Abdi. Bonferroni and šidák corrections for multiple
comparisons. Encyclopedia of measurement and statistics, 3:103–107,
2007.

25

[3] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc. Is it a bug or an enhancement?: a text-based approach
to classify change requests. In Proceedings of the 18th conference
of the center for advanced studies on collaborative research: meeting of
minds, page 23. ACM, 2008.

[4] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein.
The missing links: bugs and bug-fix commits. In Proceedings of
the 18th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 97–106. ACM, 2010.

[5] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,
and O. Strollo. When does a refactoring induce bugs? an empirical
study. In 2012 IEEE 12th International Working Conference on Source
Code Analysis and Manipulation, pages 104–113. IEEE, 2012.

[6] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu. Fair and balanced?: bias in bug-fix datasets. In
Proceedings of the the 7th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 121–130. ACM, 2009.

[7] T. F. Bissyande, F. Thung, S. Wang, D. Lo, L. Jiang, and
L. Reveillere. Empirical evaluation of bug linking. In Proceedings
of the 17th European Conference on Software Maintenance and
Reengineering, pages 89–98. IEEE, 2013.

[8] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[9] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,

and S. Panichella. Multi-objective cross-project defect prediction.
In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 252–261. IEEE, 2013.

[10] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and
S. Panichella. Defect prediction as a multiobjective optimization
problem. Software Testing, Verification and Reliability, 25(4):426–459,
2015.

[11] C. Catal. Software fault prediction: A literature review and current
trends. Expert systems with applications, 38(4):4626–4636, 2011.

[12] N. Cliff. Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[13] D. A. da Costa. Ma-szz implementation for svn repositories.
https://github.com/danielcalencar/ma-szz, 2019.

[14] D. A. da Costa. Refactoring-aware szz (ra-szz) implementation.
https://github.com/danielcalencar/ra-szz, 2019.

[15] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho,
and A. E. Hassan. A framework for evaluating the results of
the szz approach for identifying bug-introducing changes. IEEE
Transactions on Software Engineering, 43(7):641–657, 2017.

[16] S. Davies, M. Roper, and M. Wood. Comparing text-based
and dependence-based approaches for determining the origins of
bugs. Journal of Software: Evolution and Process, 26(1):107–139, 2014.

[17] P. Domingos and M. Pazzani. On the optimality of the simple
bayesian classifier under zero-one loss. Machine learning, 29(2-
3):103–130, 1997.

[18] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC
press, 1994.

[19] Y. Fan, X. Xia, D. Lo, and A. E. Hassan. Chaff from the
wheat: Characterizing and determining valid bug reports. IEEE
Transactions on Software Engineering, 2018.

[20] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: improving the design of existing code. Addison-Wesley
Professional, 1999.

[21] W. Fu and T. Menzies. Revisiting unsupervised learning for defect
prediction. In Proceedings of the 25th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 72–83.
ACM, 2017.

[22] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and
N. Ubayashi. An empirical study of just-in-time defect prediction
using cross-project models. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 172–181. ACM,
2014.

[23] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level
bug prediction. In Proceedings of the 6th international symposium
on Empirical software engineering and measurement, pages 171–180.
ACM, 2012.

[24] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy.
Characterizing and predicting which bugs get fixed: an empirical
study of microsoft windows. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 495–504.
ACM, 2010.

[25] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A
systematic literature review on fault prediction performance in
software engineering. IEEE Transactions on Software Engineering,
38(6):1276–1304, 2012.

[26] M. Hamill and K. Goseva-Popstojanova. Common trends in
software fault and failure data. IEEE Transactions on Software
Engineering, 35(4):484–496, 2009.

[27] F. E. Harrell. Regression modeling strategies: with applications to linear
models, logistic regression, and survival analysis. Springer, 2001.

[28] F. E. Harrell Jr. rms: Regression Modeling Strategies, 2019. R package
version 5.1-3.

[29] A. E. Hassan. Predicting faults using the complexity of code
changes. In Proceedings of the 31st International Conference on
Software Engineering, pages 78–88. IEEE, 2009.

[30] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the 35th
international conference on software engineering, pages 392–401. IEEE,
2013.

[31] K. Herzig, S. Just, and A. Zeller. The impact of tangled
code changes on defect prediction models. Empirical Software
Engineering, 21(2):303–336, 2016.

[32] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied
logistic regression, volume 398. John Wiley & Sons, 2013.

[33] J. Huang and C. X. Ling. Using auc and accuracy in evaluating
learning algorithms. IEEE Transactions on knowledge and Data
Engineering, 17(3):299–310, 2005.

[34] Q. Huang, X. Xia, and D. Lo. Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction.
In Proceedings of the 33rd International Conference on Software
Maintenance and Evolution, pages 159–170. IEEE, 2017.

[35] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In
Proceedings of the 28th International Conference on Automated Software
Engineering, pages 279–289. IEEE, 2013.

[36] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan. Studying just-in-time defect prediction using
cross-project models. Empirical Software Engineering, 21(5):2072–
2106, 2016.

[37] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering,
39(6):757–773, 2013.

[38] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software
Engineering, 34(2):181–196, 2008.

[39] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in
defect prediction. In Proceeding of the 33rd international conference
on Software engineering, pages 481–490. IEEE, 2011.

[40] S. Kim, T. Zimmermann, K. Pan, E. James Jr, et al. Automatic
identification of bug-introducing changes. In Proceedings of the
21st IEEE/ACM International Conference on Automated Software
Engineering, pages 81–90. IEEE, 2006.

[41] P. S. Kochhar, F. Thung, and D. Lo. Automatic fine-grained
issue report reclassification. In Proceedings of the 19th International
Conference on Engineering of Complex Computer Systems, pages 126–
135. IEEE, 2014.

[42] A. G. Koru, D. Zhang, K. El Emam, and H. Liu. An investigation
into the functional form of the size-defect relationship for software
modules. IEEE Transactions on Software Engineering, 35(2):293–304,
2009.

[43] M. Kubat, S. Matwin, et al. Addressing the curse of imbalanced
training sets: one-sided selection. In Icml, volume 97, pages 179–
186. Nashville, USA, 1997.

[44] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings. IEEE Transactions on Software
Engineering, 34(4):485–496, 2008.

[45] H. Li, W. Shang, Y. Zou, and A. E. Hassan. Towards just-in-
time suggestions for log changes. Empirical Software Engineering,
22(4):1831–1865, 2017.

[46] A. Liaw and M. Wiener. Classification and regression by
randomforest. R News, 2(3):18–22, 2002.

[47] M. Majka. naivebayes: High Performance Implementation of the Naive
Bayes Algorithm, 2019. R package version 0.9.3.

[48] H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals
of mathematical statistics, pages 50–60, 1947.

[49] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and
M. Nakamura. An analysis of developer metrics for fault
prediction. In Proceedings of the 6th International Conference on
Predictive Models in Software Engineering, page 18. ACM, 2010.

26

[50] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction.
IEEE Transactions on Software Engineering, 44(5):412–428, 2018.

[51] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann. Local versus global lessons
for defect prediction and effort estimation. IEEE Transactions on
software engineering, 39(6):822–834, 2013.

[52] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener.
Defect prediction from static code features: current results,
limitations, new approaches. Automated Software Engineering,
17(4):375–407, 2010.

[53] D. Meyer, A. Zeileis, and K. Hornik. vcd: Visualizing Categorical
Data, 2017. R package version 1.4-4.

[54] A. Mockus and D. M. Weiss. Predicting risk of software changes.
Bell Labs Technical Journal, 5(2):169–180, 2000.

[55] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th international conference on
Software engineering, pages 181–190. ACM, 2008.

[56] E. C. Neto, D. A. da Costa, and U. Kulesza. The impact of
refactoring changes on the szz algorithm: An empirical study.
In Proceedings of the 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering, pages 380–390. IEEE, 2018.

[57] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are.
In ACM SIGSOFT Software Engineering Notes, volume 29, pages
86–96. ACM, 2004.

[58] R. L. Plackett. Karl pearson and the chi-squared test. International
Statistical Review/Revue Internationale de Statistique, pages 59–72,
1983.

[59] R. Purushothaman and D. E. Perry. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software
Engineering, 31(6):511–526, 2005.

[60] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan. The impact
of using regression models to build defect classifiers. In Proceedings
of the 14th International Conference on Mining Software Repositories,
pages 135–145. IEEE, 2017.

[61] A. J. Scott and M. Knott. A cluster analysis method for grouping
means in the analysis of variance. Biometrics, pages 507–512, 1974.

[62] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan.
Understanding the impact of code and process metrics on post-
release defects: a case study on the eclipse project. In Proceedings
of the 4th International Symposium on Empirical Software Engineering
and Measurement, page 4. ACM, 2010.

[63] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing
features to improve code change-based bug prediction. IEEE
Transactions on Software Engineering, 39(4):552–569, 2013.

[64] D. Silva and M. T. Valente. Refdiff: detecting refactorings in
version histories. In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 269–279. IEEE, 2017.

[65] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? In Proceedings of the 2nd international workshop on
Mining software repositories, volume 30, pages 1–5. ACM, 2005.

[66] G. Soares, R. Gheyi, and T. Massoni. Automated behavioral testing
of refactoring engines. IEEE Transactions on Software Engineering,
39(2):147–162, 2013.

[67] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program
refactoring safer. IEEE software, 27(4):52–57, 2010.

[68] Q. Song, Y. Guo, and M. Shepperd. A comprehensive investigation
of the role of imbalanced learning for software defect prediction.
IEEE Transactions on Software Engineering, 2018.

[69] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online defect prediction
for imbalanced data. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 99–108. IEEE,
2015.

[70] C. Tantithamthavorn and A. E. Hassan. An experience report on
defect modelling in practice: Pitfalls and challenges. In Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 286–295. ACM, 2018.

[71] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto. The
impact of class rebalancing techniques on the performance
and interpretation of defect prediction models. arXiv preprint
arXiv:1801.10269, 2018.

[72] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto. The impact of mislabelling on the performance
and interpretation of defect prediction models. In Proceedings of
the 37th International Conference on Software Engineering, pages 812–
823. IEEE, 2015.

[73] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto. An empirical comparison of model validation
techniques for defect prediction models. IEEE Transactions on
Software Engineering, 43(1):1–18, 2017.

[74] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto. The impact of automated parameter optimization
on defect prediction models. IEEE Transactions on Software
Engineering, 2018.

[75] S. Wang, D. Lo, and X. Jiang. Understanding widespread changes:
A taxonomic study. In Proceedings of the 17th European Conference
on Software Maintenance and Reengineering, pages 5–14. IEEE, 2013.

[76] F. Wilcoxon. Individual comparisons by ranking methods.
Biometrics bulletin, 1(6):80–83, 1945.

[77] C. Williams and J. Spacco. Szz revisited: verifying when changes
induce fixes. In Proceedings of the 2008 workshop on Defects in large
software systems, pages 32–36. ACM, 2008.

[78] C. C. Williams and J. W. Spacco. Branching and merging in the
repository. In Proceedings of the 5th international working conference
on Mining software repositories, pages 19–22. ACM, 2008.

[79] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing.
What do developers search for on the web? Empirical Software
Engineering, 22(6):3149–3185, 2017.

[80] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang. Hydra:
Massively compositional model for cross-project defect prediction.
IEEE Transactions on software Engineering, 42(10):977–998, 2016.

[81] X. Yang, D. Lo, X. Xia, and J. Sun. Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction. Information
and Software Technology, 87:206–220, 2017.

[82] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning
for just-in-time defect prediction. In Proceedings of the 2015 IEEE
International Conference on Software Quality, Reliability and Security,
pages 17–26. IEEE Computer Society, 2015.

[83] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung.
Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models. In Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 157–168. ACM, 2016.

[84] J. H. Zar. Spearman rank correlation. Encyclopedia of Biostatistics,
7, 2005.

[85] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead Jr. Mining
version archives for co-changed lines. In Proceedings of the 3rd
international workshop on Mining software repositories, pages 72–75.
ACM, 2006.

	The impact of changes mislabeled by SZZ on just-in-time defect prediction
	Citation
	Author

	tmp.1576736976.pdf.LgfOd

