
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2019

Assessing the generalizability of code2vec token embeddings Assessing the generalizability of code2vec token embeddings

Hong Jin KANG
Singapore Management University, hjkang.2018@phdcs.smu.edu.sg

Tegawende F. BISSYANDE
University of Luxembourg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
KANG, Hong Jin; BISSYANDE, Tegawende F.; and LO, David. Assessing the generalizability of code2vec
token embeddings. (2019). 2019 34th ACM/IEEE International Conference on Automated Software
Engineering: San Diego, November 11-15: Proceedings. 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4493

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Assessing the Generalizability of
code2vec Token Embeddings

Hong Jin Kang
Singapore Management University
hjkang.2018@phdis.smu.edu.sg

Tegawendé F. Bissyandé
University of Luxembourg, Luxembourg

tegawende.bissyande@uni.lu

David Lo
Singapore Management University

davidlo@smu.edu.sg

Abstract—Many Natural Language Processing (NLP) tasks,
such as sentiment analysis or syntactic parsing, have benefited
from the development of word embedding models. In particular,
regardless of the training algorithms, the learned embeddings
have often been shown to be generalizable to different NLP tasks.
In contrast, despite recent momentum on word embeddings for
source code, the literature lacks evidence of their generalizability
beyond the example task they have been trained for.
In this experience paper, we identify 3 potential downstream
tasks, namely code comments generation, code authorship identi-
fication, and code clones detection, that source code token embed-
ding models can be applied to. We empirically assess a recently
proposed code token embedding model, namely code2vec’s token
embeddings. Code2vec was trained on the task of predicting
method names, and while there is potential for using the vectors
it learns on other tasks, it has not been explored in literature.
Therefore, we fill this gap by focusing on its generalizability
for the tasks we have identified. Eventually, we show that
source code token embeddings cannot be readily leveraged for
the downstream tasks. Our experiments even show that our
attempts to use them do not result in any improvements over less
sophisticated methods. We call for more research into effective
and general use of code embeddings.

Index Terms—Code Embeddings, Distributed Representations,
Big Code

I. INTRODUCTION

In recent years, there have been many works [1], [2]
proposing new techniques to construct representations of text.
The representation of a word by “embedding” it onto a vector
space is known as “word embeddings”. Embedding techniques,
such as word2vec [1], output vectors of real numbers which
are successfully leveraged in a variety of Natural Language
Processing (NLP) tasks. Indeed, embedding models attempt to
represent words that are semantically similar as vectors which
are close in the vector space.

While the NLP literature provides several methods to train
word embeddings, a number of applications have successfully
demonstrated that most word embedding models generalize to
various NLP tasks, beyond the ones the embeddings have been
initially trained on. For example, word embeddings, which are
often trained over predicting the next word in a sentence given
its previous words, have been used for many downstream tasks
such as sentiment analysis, word sense disambiguation, named
entity recognition, and part-of-speech tagging [1], [3]–[6].

Besides embeddings for natural language words, various
embedding models have been proposed for object represen-
tations in other domains, including graphs, knowledge bases,

or even source code. For example, in recent years, inspired
by the advances in word embeddings, many researchers have
used embedding models for software engineering tasks. On the
one hand, the naturalness hypothesis [7], which suggests that,
like natural language, software is also likely to be statistically
repetitive and predictable, has encouraged the use of natural
language processing techniques on source code. The increase
of publicly-available source code, such as open-source projects
data on Github, facilitates research on big code [8] analysis.
In this context, several code embeddings approaches [9]–[11]
have been proposed where source code tokens are treated
similarly to text.

Apart from the direct application of word embedding
techniques to source code, other researchers have proposed
specialized methods for source code. For example, there
have been attempts to include more structural information of
the program. Among recent advances, code2vec [12], which
stands as a state-of-the-art, traverses paths in the Abstract
Syntax Tree (AST) to train embeddings for predicting method
names. The authors’ study shows that accounting for such
structural information improves the performance in method
name predictions.

Many research directions in the software engineering do-
main have proposed new methods of training code embed-
dings. However, they are often only evaluated on the single
task that they were trained for [13]–[19]. In contrast to
the plentiful evidence that word embeddings are useful in
downstream tasks, there is little evidence to suggest that
the code embeddings can be useful in a variety of software
engineering tasks. Given the promise of code embeddings, our
work is motivated by this need to fill the gap in confirming the
generalizability of code embedding models. Treating code2vec
as representative of code embeddings, our study investigates
whether it can be successfully used in a variety of software
engineering tasks beyond predicting method names.

In this paper, we assess the token embeddings proposed by
code2vec in terms of providing appropriate representations of
source code in several different software engineering down-
stream tasks, i.e. tasks in which the learned code embeddings
may be helpful on. These tasks are not directly related to its
original training task of predicting method names. Concretely,
we propose to use source code token embeddings to enhance
existing models for tasks of code comment generation, code
authorship identification and code clones detection. Then, we

evaluate the performance of these models against baseline
models [20]–[22] originally designed for the considered tasks.
We make a replication package of our work available.1 This
paper makes the following contributions:

• We investigate the generalizability of tokens embeddings
learned by code2vec for downstream software engineer-
ing tasks. To the best of our knowledge, this is the first
effort in this direction in the literature.

• We experimentally demonstrate that code2vec’s token
embeddings may not be generalizable: they do not always
contribute to a significant increase in the performance of
models for each of the software engineering tasks.

• We provide a comprehensive discussion on the general-
izability of code embeddings, and motivate the need for
further research on novel embedding models for source
code that can generalize to various downstream tasks.

The remainder of this paper is organized as follows. In
Section II, we provide details for the context of this study.
In Section III, we introduce the three software engineering
downstream tasks that we have identified for evaluating code
embeddings, evaluate code2vec on the 3 tasks and discuss
the results. In Section IV, we discuss the threats to validity
of our work. In Section V, we present related work. Finally,
in Section VI, we conclude the paper with a call for further
research.

II. PRELIMINARIES

Our study aims to answer a single research question: Are
embeddings of source code tokens generalizable for use in
tasks that they are not trained for?

The main components of our study are as follows:

• Code embedding model. Structural information from
ASTs has been widely leveraged for building models in
the literature [23]–[27]. In particular, it has been used
to train representations of source code for predicting
method names, a common task in software engineering
literature [8], [28]–[30]. As code2vec [12] is located in
the intersection of these two trends in code representation
research, we select it as a representative state-of-the-art
among embedding models. Code2vec embeds entire code
snippets into a single vector during training. However, our
work focuses on the token embeddings that result from its
training due to its similar granularity to word tokens used
in word embeddings and its broader vocabulary, which we
believe allows it to be more generalizable.

• Word embedding model. Aside from code2vec being
specialized for source code tokens, we also consider
generic NLP word embeddings to build a comparison
baseline. To that end, we consider GloVe [2] as a rep-
resentative word embedding technique, which we train
on a similar dataset as code2vec by considering source
code as natural language text.

1https://github.com/code2vec-critique/generalizability

• Downstream tasks. We identify three downstream tasks
of code comment generation, code authorship identifica-
tion and code clones detection. For each task, we select
an existing approach that uses source code tokens as part
of its input. We select models from recent work or use
well-known models. For code comment generation and
code authorship identification, we use recent work by
Hu et al. [20] and Abuhamad et al. [21] respectively.
For code clone detection, we use the well-documented
baseline model, SourcererCC [22]. We try to augment
these models using embeddings of source code tokens.
Finally, we compare the performance of the models using
embeddings against simpler models as a baseline. In the
same vein as the suggestions provided by Fu and Menzies
[31] in their comparative study of machines learning
approaches in software engineering, the first baseline
we use is the simpler basic model without the use of
code embeddings. Secondly, we compare our code2vec-
augmented model against a model that is augmented in
the same way, but this time using the GloVe vectors that
are trained over source code tokens.

A. Code2Vec

The code2vec deep representation learning technique was
initially proven effective through a demonstration of training
code embeddings for the following prediction task: a code
snippet was given as input, and a tag was predicted as output.
Code2vec was mainly used for method name prediction where
each input is a method body and the method name is used
as the associated output tag. Structural information from the
AST, notably paths between AST terminals, is extracted and
leveraged during training: each code snippet is represented
by a bag of path contexts. An attention mechanism is used to
learn the importance of each path context to the output tag.
A single path context comprises a tuple of the 2 terminal
nodes, and the path between them. From the path contexts, a
neural-network model is trained to predict the code snippet’s
method name. The following example of a path context for
the expression, x = 7, is given by Alon et al. [12]:

〈x, (NameExpr ↑ AssignExpr ↓ IntegerLiteralExpr), 7〉

Code2vec produces 2 sets of vectors. From its output layer,
a set of vectors for method names can be exported. From
its input layer, a set of vectors for token/identifiers can be
exported. Our work focuses on the token vectors due to its
more precise granularity, which we believe will make it more
generalizable and applicable to other tasks.

For our study, we use code2vec token vectors exported from
the trainable model downloaded from the code2vec repository.
These vectors are 128 dimensions wide, with a vocabulary size
of 1 300 852 words.

B. GloVe

To evaluate code2vec, we need a baseline set of vectors
that is simpler and easier to train. To this end, we treat source

2

code as text and we use the GloVe algorithm [2], that is used
to learn word embeddings, to train code embeddings. Due to
the naturalness hypothesis, embedding models designed for
natural language may be effective when directly applied to
source code. Unlike many word embedding algorithms, GloVe
is an unsupervised algorithm using token-token co-occurrence
statistics.

We trained GloVe vectors that are 128 dimensions, to have
the same dimensionality as the code2vec token embeddings.
We adjusted the parameters of GLoVe to have a similar number
of tokens in its vocabulary as code2vec. Thus, we set the
minimum number of occurrences to be 70. Other parameters
of GloVe are set to the default values; for example, we trained
GloVe for 15 iterations, with a window size of 15.

The dataset used to trained GloVe is the Java-Large dataset
provided by the authors of code2vec.2 It includes the 9500
most-starred Github Java projects, consisting of about 16
million methods, and amounts to 37GB of data. Eventually,
the GloVe vectors are 128 dimensions wide, with a vocabulary
size of 1 335 292 words. The original dataset used to trained
code2vec is only available in a processed form, and is not
appropriate for training GloVe embeddings. However, the Java-
Large dataset is comparable to the original dataset in terms of
size and its source. As such, we do not expect this difference
to be a threat to validity.

III. EVALUATION ON DOWNSTREAM TASKS

We consider in this study three downstream software en-
gineering tasks targeting different properties of source code
that may be encoded in embeddings: (1) code comment
generation, (2) code authorship identification and (3) code
clones detection. We now briefly describe the objective of
each task, the dataset that we use as well as the evaluation
procedure.

To evaluate code embeddings, we try to augment existing
models with the code embeddings and observe if the resulting
model leads to an improved performance. For each task, we
select a model from recent papers. Whenever it is not obvious
how to augment an existing model with embeddings, we
propose a new approach to incorporate embeddings into it.
We focus on using techniques that are token-based to make
it simple to augment the model with code embeddings. The
techniques we use in these tasks also vary. Two out of three
tasks use a neural-network-based approach, while the last task
utilizes vector space calculations to compare the similarity of
two vectors. In this study, we do not focus on the overall
effectiveness of the techniques. Instead, we evaluate if the
use of code embeddings can improve the performance of
these techniques. For each task, we select datasets and use
experiment settings similar to what was reported in literature.

A. Code Comment Generation

Our first task is code comment generation. As we focus
our work at the granularity of methods, this task involves the

2https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz

automatic generation of method-level comment from the body
of a method [11], [32], [33]. The generated method comment
should summarize the functionality provided by the method
in the form of a descriptive, high-level, natural language
sentence. The task has implications for software maintenance
and program comprehension. Techniques developed for this
task can produce a wide range of benefits for developers,
including helping in software reuse, re-documentation and
concept location [33]. Several recent works have used neural
networks to synthesize natural language from source code [11],
[20].

Approach: For this task, there have been several techniques
using a deep learning approach. We use the latest approach
proposed by Hu et al. [20]. In their approach, they treated
the problem as a machine translation task. Their approach
incorporates and retains structural information from the AST
when preprocessing the data from code snippets representing
method bodies into sequences of tokens representing the AST
nodes. A Recurrent Neural Network-based Seq2Seq language
model is used to translate these sequences to natural language
code comments. We selected this approach since it uses a
neural network approach and uses an embedding layer where
our code embeddings can be used. In addition, their model
gave state-of-the-art results. Thus, we follow the approach
described by Hu et al.

Similar to the preprocessing done by Hu et al., we took
only the first sentence of the Javadoc method comment, as
this first sentence is usually the description of the functionality
provided by a method based on Javadoc convention. Like Hu
et al., we filtered out simple cases from the dataset. We omitted
a pair of code snippet and comment if the comment is empty
or just contain a single word, Additionally, getters, setters,
constructors, and test methods are omitted.

We show a sample input for this task, taken from Table 5
in the work by Hu et al. in Listing 1. For this example, the
ground truth output will be the first (in this case, the only)
sentence of the Javadoc comment, summarizing the method.

Listing 1. Example of a code snippet
/**
* Convert Bitmap to byte array.
*/

public static byte[] bitmapToByte(Bitmap b){
ByteArrayOutputStream o = new

ByteArrayOutputStream();
b.compress(Bitmap.CompressFormat.PNG,100,o

);
return o.toByteArray();

}

The metric BLEU [34] is used to measure the quality of
generated comments. This is commonly used to evaluate the
performance of machine translation of natural language, and
measures how closely the translation is to a human translation.
BLEU takes the generated translation and reference transla-
tions as input and outputs a percentage value between 0 and
100, with scores closer to 100 indicating higher quality. It is
as computed as follows.

3

BLEU = BP · exp
(∑N

n=1
1
N log (pn)

)
BP =

{
1 if c > r

e(1−r/c) if c ≤ r
pn is the ratio of length n subsequences that are both in

the candidate and reference translation. N is the maximum
number of N-grams. BP is the brevity penalty. c is the length
of the candidate translation generated while r is the length of
the reference translation.

The BLEU metric has been shown to correlate well with hu-
man perception of the quality of translations [35]. In software
engineering literature, this has been used for the evaluation of
several tasks [15], [36]–[38], including comment generation.
There are a few variants of BLEU, depending on the value of
N. In this task, we use BLEU-4 (i.e. N=4) since it was used
by Hu et al. to evaluate the quality of the generated comment.
BLEU-4 is a measure of precision of 4-grams.

To accurately summarize a method using high-level natural
language, a technique will need to infer semantic properties of
the source code. Thus, this task may be sensitive to the ability
of code embeddings to encode semantic information.

Preprocessing: We used the dataset that was collected by Hu
et al., which involves 9714 Java projects from Github. Then,
we followed the same procedure as Hu et al. to convert the
AST of each method body into a sequence of tokens. A high-
level overview of the procedure to preprocess the dataset is
given in Figure 1.

The Eclipse JDT parser was used to construct the AST, and
we traversed the tree following the Structure-Based Traversal
(SBT) algorithm described by Hu et al. This preserves infor-
mation about the tree structure of the AST in the sequence, and
allows the reconstruction of the AST tree from the sequence of
tokens. Tokens in the sequence consist of the AST node type
and the value of the node (either a literal or identifier name).
For example, for a local variable x, its representation in the
sequence will be SimpleName_x. For a method invocation
of a method toLowerCase, this will be represented as
follows:

(MethodInvocation
(SimpleName_toLowerCase)

SimpleName_toLowerCase
) MethodInvocation

In machine translation for natural language, the vocabu-
lary is often restricted to the most common words. Words
out of the vocabulary are marked as <UNK>. Similarly, we
limited the vocabulary of both code tokens and comments
to the 30000 most common tokens. For code tokens outside
of the vocabulary, we convert them to to the AST node
type. Concretely, this means that rare identifier names will
not be represented in the dataset. For example, a variable
veryRareAndLongName will be converted into the token
SimpleName, while a common variable name such as x will
be converted as SimpleName_x. The rationale for doing
this was given by Hu et al.: this representation of out-of-
vocabulary tokens mitigate the problem caused by the fact

Source Code AST Code sequence

Method comment Seq2seq model

Fig. 1. Preprocessing data for comment generation

that the vocabulary of source code tokens is much greater
than natural language. Rather than losing all information
when we remove rare words from the dataset, some structural
information is retained.

We preprocessed the vocabulary in the embeddings simi-
larly, by prefixing AST node types to each word. Next, for any
word found in the training data that is not contained in the code
embeddings, we expanded the vocabulary of the embeddings
to include it and initialize it with a random vector. We found
that there are less than 200 such tokens in the dataset. This
indicates that the step of normalizing rare identifiers into their
AST node types is effective in minimizing the number of
out-of-vocabulary tokens seen during training of the machine
translator.

For the example about bitmapToByte in Listing 1,
the following sequence will be generated for the statement
return o.toByteArray();. We do not show the se-
quence for the entire method due to space constraints.

(ReturnStatement
(MethodInvocation
(SimpleName_o) SimpleName_o
(SimpleName_toByteArray)
SimpleName_toByteArray

) MethodInvocation
) ReturnStatement

Training: Next, we trained a Recurrent Neural Network-based
Seq2Seq language model using OpenNMT [39]. The model
consists of an encoder-decoder network. On both encoder and
decoder, we use a 2 Long Short-Term Memory (LSTM) [40]
layers with 500 hidden units in each layer. We set the learning
rate to 0.5, the dropout to 0.5, and we train it for 50 epochs.
In total, there are over 330,000 methods in the training data,
and we limit the validation and test data to 5000 methods.

The model consists of an embedding layer. When the
code2vec and GloVe embeddings are not used, randomly
initialized vectors are used instead, similar to the work in Hu
et al. There are 2 settings that we use for the experiments
on this task. As the tokens from code2vec are all lower-cased,
we lower-cased the identifiers from the AST trees we extracted
and also created a version of the GloVe vectors with its tokens
lowercased. For a more comprehensive evaluation, we trained
a new set of code2vec embeddings on the Java-Large dataset
described above. In this set of embeddings, the words are not
lowercased.

4

TABLE I
QUALITY OF COMMENTS GENERATED, WITH SBT PREPROCESSING

Preprocessing Embedding model BLEU-4
Lowercased GloVe 27.4
Lowercased code2vec 29.9
Lowercased No pretrained embeddings 28.1
Non-lowercased GloVe 28.1
Non-lowercased code2vec 29.3
Non-lowercased No pretrained embeddings 33.5

TABLE II
QUALITY OF COMMENTS GENERATED, WITHOUT SBT PREPROCESSING

Preprocessing Embedding model BLEU-4
Lowercased GloVe 29.7
Lowercased code2vec 29.3
Lowercased No pretrained embeddings 31.3
Non-lowercased GloVe 22.0
Non-lowercased code2vec 31.0
Non-lowercased No pretrained embeddings 26.7

Results: We report results in Table I. As the SBT traversal
adds structural information to the model, we wish to investi-
gate if not doing so will affect the performance of the model.
Thus, we present the results of running a seq2seq model
without performing proprocessing with the SBT traversal. In
this case, without the handling of rare tokens in the source
code, there are over 300,000 tokens that are unrepresented in
the code2vec vectors. The results of not using the AST node
information in comment generation are given in Table II

Findings: Based on the results, it appears that the use of pre-
trained embeddings do not improve the sequence-to-sequence
model. The best performing configuration does not use ei-
ther code2vec or GloVe. However, code2vec token vectors
outperforms GloVe vectors in each setting, indicating that
structural information may be valuable during the training of
code embeddings. These results suggest that this approach
of generating code comment cannot utilize any semantic
information encoded in either the GloVe or code2vec vectors
to boost performance.

B. Code Authorship Identification

Our second task is to identify the authors of short programs.
While identifying authors of natural language documents have
been studied extensively [41], there are fewer works for doing
so on source code.

This task has many implications for privacy and security
concerns. For example, techniques on this task may be used
to violate the privacy of programmers. They may be used to
de-anonymize programmers who wish to hide their identities,
such as the creator of Bitcoin. Other uses of such techniques
include copyright infringement or plagiarism detection. The
process of identifying the author of a code fragment may also
be useful for identifying the authors of malware and other
malicious programs.

To identify authors successfully, approaches must be able
to distinguish between the coding styles of programmers in
their code. Techniques used in this task leverage features that
express the programming style of programmers, such as layout
and lexical features [42]. Previous works have found that
the use of machine learning using TF-IDF features covering
unigrams, bigrams and trigrams can be used to identify pro-
grammers at high accuracy [21].

Dataset: As we did not manage to find any of the datasets
used in prior work, we follow the same procedure described
by Abuhamad et al. [21] to build a similar dataset. This dataset
is collected from program submissions to the Google Code
Jam.3 The Google Code Jam is a programming competition
organized by Google over several years. Participants may
choose from several programming languages and have to solve
a small number of problems within a short time period. For
any problem, a participant may make multiple submissions.
Naturally, in this setting, a single program only has one author.

We obtain 9 programs written in Java from 250 authors
participating in Google Code Jam and train a model over the
dataset. In total, there are 2250 programs in our dataset. On
average, there are 106 lines in each Java program although the
number of lines varies from 1 to over 70000 lines. Existing
works on code authorship [21], [42] evaluate their approaches
using accuracy. The dataset is constructed such that each
author has the same number of programs in it. Thus, as a
classification task, the classes are balanced and accuracy is a
sufficient evaluation metric.

While the previous task of code comment generation eval-
uates techniques for capturing semantic properties of code,
we select this task for evaluation as it requires techniques
to encode features related to syntactic style. The ability of
code embeddings to improve basic models on this task may
indicate that it is able to distinguish between syntactic styles
of different authors.

Approach: Inspired by the work of Abuhamad et al. [21], we
propose a similar neural network. As baseline, we compare
our approach against a model using TF-IDF features, which
was shown to be effective by Abuhamad et al. [21]. This
network is comprised of 2 hidden fully-connected layers with
1024 nodes. We use dropout for regularization and set it to
0.6. We use the top 1000 TF-IDF features, determined by
feature selection using the ANOVA F-value between each
feature and the authors. While the work of Abuhamad et al.
[21] used a random forest classifier based on the intermediate
outputs of their neural network, we were not able to replicate
good results, without our own modifications, on a neural
network based on the architecture they described. As such, we
experimented with a neural network with some modifications
that allowed it to produce comparably accurate predictions.
As our goal was to evaluate the code embeddings and not to
have a state-of-the-art system, we did not use the second step

3https://code.google.com/codejam/past-contests

5

h1t

h21

h31

...

hn1

LSTM-1

x1

x2

x3

...

xn

h12

h22

h32

...

hn2

LSTM-2

h1t

h2t

h3t

...

hnt

Fully-connected

y1

y2

...

yn

Fig. 2. Neural Network for code authorship identification

of passing the neural network results through a random forest
classifier once we achieved good performance on our model.

While our objective is to evaluate code embeddings, we
were not able to successfully replace the TF-IDF features with
them. We attempted to use the average of the code vectors
in the program and replace each TF-IDF feature with one
dimension of the averaged code vectors. This will result in
128 features (each corresponding to one dimension of the
code vectors). However, we find that this results in poor
performance. Further tuning of the model’s hyperparameters
did not help to improve its performance.

As there are 1000 TF-IDF features and only 128 dimensions
in our code vectors, the number of input features decreased
from 1000 to 128 features. Hence, it may be possible that
the poor performance can be attributed to the decrease in the
number of features. We tried to train a new set of code2vec
vectors of 1000 dimensions. However, this did not improve
the performance of the model. Thus, to further evaluate the
potential of code embeddings on this task, we used another
neural network using LSTM layers. An LSTM neural network
provides the advantage of allowing variable length input, hence
we can input the entire code snippet into our model. This
neural network comprises of 2 hidden LSTM layers followed
by a fully-connected layer. We illustrate the neural network in
Figure 2.

We limited our study to programs written in Java, the same
language that code2vec and our GloVe vectors were trained
on. For the LSTM neural network, we use both pretrained
embeddings as well as randomly initialized embeddings. We
present the accuracy as a number between 0 to 100, with 100
indicating a perfect accuracy. For each model, we train to 50
epochs.

Results: From Table III, we see that initializing the LSTM
neural network using both code2vec and GloVe embeddings
underperforms a randomly initialized embedding layer. Fur-

TABLE III
ACCURACY FOR IDENTIFICATION OF CODE AUTHORSHIP

Setting Accuracy
LSTM, code2vec 39
LSTM, GloVe 50
LSTM, randomly initialized 69
Fully connected layers, TF-IDF 77

thermore, the use of the LSTM neural network using code
embeddings underperformed a fully-connected neural network
that used TF-IDF features. When using the code embeddings
with the neural network with only fully-connected layers, we
get accuracies of near 0.

Findings: Comparing code2vec vectors and GloVe vec-
tors, the GloVe vectors obtained a higher accuracy than
the code2vec vectors. This implies that GloVe embeddings
may encode syntactic relationships better than the code2vec
token embeddings. However, both GloVe and code2vec token
embeddings were outperformed by a randomly initialized set
of embeddings. This suggests that code2vec token embeddings
do not generalize to the task of code authorship identification.
Finally, the model with the TF-IDF features is the best
performing model in our experiments. The poor performance
of using code2vec token embeddings suggests that they are
unable to distinguish between the syntactic differences of code
authors as well as TF-IDF features.

C. Detecting Code Clones

Finally, our last task is to detect code clones. Code clones
detection is the task of determining if a pair of code fragments
are similar to each other. This task has received much attention
in the literature. Detecting code clones has numerous implica-
tions for software development and maintenance. For example,
code clones can potentially increase the cost of maintenance,
complicating the design of software and make it difficult to
introduce minor changes in the long run [43], [44]. Code
clones are also likely to cause bugs to be propagated through
copy-paste behaviour in a software system [45], [46].

Dataset: We use 2 datasets for this task. Firstly, we use the
standard BigCloneBench [47]–[49], which is a benchmark of
known clones in the IJaDataset [50]. The IJaDataset is a large
repository of over 25000 open-source Java projects, with over
3 million source files. In BigCloneBench, a code fragment
is a single method and there are over 8 million validated
code clones in the dataset. As only a subset of code fragment
pairs in the entire IJaDataset is validated, the BigCloneBench
benchmark reports only the estimated recall of a model, but not
its precision. As such, we use a second dataset, OJClone [27],
[51]. OJClone is a dataset of 104 programming problems with
the student submissions to each problem. Each programming
problem has 500 submissions. For detecting code clones, two
submissions to the same problem are considered as code
clones. In total, there are 52000 code fragments in this dataset.
Between each pair of code fragments, we can determine

6

TABLE IV
RECALL ON BIGCLONEBENCH

Setting Type-1 Type-2 Strong Type-3 Moderately Type-3 Weak Type-3, Type-4
code2vec 0.99 0.81 0.50 0.28 0.16
GloVe 0.92 0.81 0.50 0.28 0.16
SourcererCC 0.98 0.93 0.43 0.01 0.00

whether a pair is code clones based on whether or not they
are submitted to the same programming problem. As such, we
can compute both recall and precision on this dataset.

Researchers have classified code clones into 4 types, based
on the level of syntactic similarity. Pairs of Type-1 clones
are syntactically the same, while pairs of Type-4 clones have
no syntactic similarity but implements the same functionality.
While BigCloneBench classifies each code clone from Type-
1 to Type-4, there is no classification of the code clones into
their types in the OJClone dataset although previous work have
considered them to be Type-3 and above [51].

For Type-1 and Type-2 clones, approaches that only use
syntactic information is sufficient for achieving high precision
and recall, but for Type-3 and Type-4 clones which are syntac-
tically different, approaches need to consider the semantics of
the program fragment. There has been documented difficulties
in detecting Type-3 and Type-4 clones at high precision and
recall [52].

Success at detecting code clones of Type-1 and Type-
2 indicates that syntactic information is encoded within an
approach, while successfully detecting Type-3 and Type-4
code clones may indicate that semantic information can be
encoded. Thus, this task measures both the ability of code
embeddings to capture syntactic and semantic information at
the same time.

Approach: Technique-wise, we used SourcererCC [22],
a token-based model that gives near state-of-the-art
performance for Type-1 to Type-3 clones, as basis for
our work. SourcererCC compares the tokens contained in
pairs of code fragments. To do so efficiently, SourcererCC
implements a sophisticated algorithm using several properties
and heuristics they identified to reduce the number of
comparisons to perform. However, the main criterion to
determine if two code fragments are code clones is based on
the number of tokens that are present in both code fragments.
Given 2 code fragments Bx and By , to determine if they are
code clones, it counts the number of tokens that overlap in
both code fragments, computing its overlap similarity, and
compare it against a configurable threshold, θ, to identify
if the fragments are code clones. The measure of overlap,
O(Bx, By), is computed as follows:

O (Bx, By) = |Bx ∩By|

To adapt SourcererCC to use vectors of source code tokens,
we changed the criteria to determine if a pair of code fragments
are code clones. Instead of a count-based measure of the

overlap between tokens, our criteria is based on the cosine
similarity of the average of the token vectors of the 2 code
fragments. Prior work has shown that averaging vectors for
both natural language and source code can be used to represent
larger fragments of tokens [6], [53], [54].

Thus, in our adaptation of SourcererCC, for two code
fragments, Bx and By , to be considered as code clones,
they must share at least one token, and the Cosine Similarity
between them should exceed a threshold, θ (in this work,
we use a default value of θ = 0.8). This requirement of
sharing at least one token is made for scalability reasons.
Without this additional criteria, all pairs of code fragments
need to be compared, which will be prohibitively large for
our experiments. For tokens in the code fragments that not
in the embeddings’ vocabulary, we use the zero vector. The
Cosine Similarity of two code fragments is computed based
on averaging all the vectors of tokens contained in Bx and
By . After averaging the token vectors, we have X and Y ,
the average of token vectors in the two code snippets, that
are vectors in an n-dimensional space. Let Xi refer to the
ith dimensional value of the vector X . Then, the Cosine
Similarity is computed as follows:

∑n
i=1 Xi×Yi√∑n

i=1 X2
i

√∑n
i=1 Y 2

i

Results: As described earlier, we evaluated our adaptations to
SourcererCC on two datasets, BigCloneBench and OJClone. In
our experiments on BigCloneBench, we only consider clones
that are greater than 6 lines and 50 tokens. This is the standard
configuration for measuring recall [52]. As described earlier,
BigCloneBench does not provide a process for evaluating
precision. Table IV shows the recall of our approach on each
clone type. For ease of interpretation, we provide the definition
of the classification of the clone types that are widely used in
literature:

• Type-1: Identical code fragments differing by whitespace,
comments

• Type-2: Identical code fragments differing by identifier
names or literal values

• Type-3: Code fragments that have statements added,
modified, or removed

• Type-4: Code fragments that semantically perform the
same computation with little syntactic similarity.

Type-3 clones can be split up further based on the level
of syntactic similarity. Strong Type-3 clones refer to Type-3
clones that are syntactically similar, while weak Type-3 clones

7

TABLE V
RECALL AND PRECISION ON THE OJCLONE DATASET

Setting Precision Recall F1
code2vec 0.03 0.45 0.06
GloVe 0.03 0.67 0.06
SourcererCC 0.87 0.01 0.01
Random 0.01 0.02 0.01

TABLE VI
COUNTS OF TOKENS IN THE CODE FRAGMENTS THAT ARE OUT OF THE

EMBEDDINGS’ VOCABULARY

Vectors Tokens found OOV tokens
Code2vec 15,172,900,000 250,200,000
GloVe 14,861,900,000 561,200,000

are syntactically dissimilar.
The results of evaluating SourcererCC on BigCloneBench

suggests that the use of code embeddings improve the recall of
the SourcererCC on the less syntactically-similar clone types
(Type-3 and Type-4), but may cause the recall on Type-1 and
Type-2 clones to drop. However, it is unclear what its effects
on precision are.

In order to evaluate our approach’s precision, we used
a second dataset, OJClone. We used all 104 programming
contest questions in the dataset and our results are shown
in Table V. As about 1% of pairs of code snippet in this
dataset are clone pairs, we introduce another baseline where
we randomly accept a pair of code fragments as code clones
1% of the time.

The clones in the OJClone dataset has been previously
considered to be of Type-3 and above [51]. The increase in
recall that we see is consistent with what we observe in the
BigCloneBench benchmark on Type-3 and Type-4 clones. On
the other hand, the results suggest that our approach causes
the precision of SourcererCC to decline. Due to the poor
recall of SourcererCC, the overall F1 of the approach using
code embeddings are slightly higher than the F1 when using
SourcererCC alone.

One hypothesis is that the poor precision of code embed-
dings is caused by a large number of tokens encountered in
the task’s dataset that are out-of-vocabulary (OOV) in the
embeddings. We count the number of times our approach tried
to retrieve a code vector, and the number of times it failed to
retrieve a token. The counts are presented in Table VI. We
see that over 95% of the time, our approach can successfully
retrieve the vectors of the tokens in the program fragments.
Therefore, out-of-vocabulary tokens are not the cause of poor
performance of our model.

Findings: While it appears that the approaches using embed-
dings improves the overall F1 score, the improvement is small.
It is unconvincing that the approaches using code embeddings
have encoded semantic qualities of code fragments necessary
to detect code clones. Overall, the recall of all approaches

are low and the embeddings-enhanced approaches suffer a
drastic loss of precision (0.87 to less than 0.1). Therefore, we
do not conclude that embeddings have successfully improved
SourcererCC’s ability to detect clones.

From a practical standpoint, our augmentation to Sourcer-
erCC also resulted in a large decline in speed, as we cannot use
the heuristics employed by SourcererCC to reduce the number
of clone pairs to compare. Scalability of detecting code clones
is a key concern for real-world usage, and we note that our
technique is only proposed to evaluate the code embeddings
and our technique may not be appropriate for real-world usage
due to its lack of scalability.

D. Lessons Learned

From the 3 tasks above, we see that code embeddings
cannot be used readily to improve simpler models. In
fact, in 2 out of 3 tasks, the use of embeddings lowers the
performance of the models they are added to. In the case of
the code authorship task, simpler approaches such as TF-IDF
outperforms models augmented with embeddings of source
code tokens. The only task where the code vectors do not
cause performance to deteriorate is the task of detecting code
clones. Even in this task, it appears that the use of embeddings
exchanges SourcererCC’s high precision for a higher recall
while maintaining a similar F1 score.

Our findings support the observations by Fu and
Menzies [31] that simpler baselines run faster and may
outperform complex techniques and they should be used
as baselines. We see that on the task of code authorship
identification, the use of code embeddings under-perform a
simpler approach that uses simple TF-IDF features. Likewise,
the use of code embeddings did not improve performance of
SourcererCC. In short, having a continuous representation of
code tokens may not necessarily perform better than simple
baselines that treat code tokens simply as symbols.

Code embeddings may not be a silver bullet to boost the
performance of deep learning models; other considerations
may have more impact. For example, we found that the
pre-processing on the data has large consequences on the
model’s performance. One hurdle to the effective use of neural
networks in the Software Engineering domain is the problem
of out-of-vocabulary tokens. Hellendoorn and Devanbu have
raised this issue before [55], and in their work, suggested that
deep learning techniques struggle with the large vocabulary
of source code. They demonstrated their point with a non-
deep learning model that can update and expand its vocabulary,
outperforming a deep learning model with a fixed vocabulary.
Our experiments validate the importance of pre-processing on
the code comment generation task, in which the technique of
converting rare tokens into the AST node type proposed by Hu
et al. result in improved performance. On the other hand, on
both the code clone detection and code authorship tasks, we
achieve poor performance although out-of-vocabulary tokens
did not appear to be an issue on those tasks. In the code
authorship identification task, the baseline features of just 1000
TF-IDF features were sufficient for good performance.

8

The composition of source code token embeddings
requires further investigation. In the domain of natural
language, it has been suggested that the composition of tokens
by summation, averaging or concatenation may be useful
for representing larger fragments of tokens [6], [53], [54].
However, in the code clones detection task, the composition
of source code tokens by these operators does not appear to
represent a body of tokens meaningfully enough to effectively
detect code clones. We believe that this result should motivate
research into other operators or methods of composing code
embeddings.

We find the lack of interpretability of code embeddings
to be a source of difficulty in this work. SourcererCC’s
criteria of measuring the overlap of code tokens is simple and
easy to interpret, on the other hand, our approach averaging
code vectors result in a representation that is hard to debug. In
additional, there are practical ramifications of our approach.
The original SourcererCC, with its heuristics based on its
count-based criteria, runs in a significantly shorter time and
achieves a comparable F-measure.

Finally, due to the lack of success we face trying to improve
models with code embeddings, it may indicate that token
embeddings learned over source code may not encode a
significant amount of either semantic or syntactic informa-
tion usable in different downstream tasks. We are unable
to use either the code2vec or GloVe embeddings effectively
in the 3 downstream tasks we identified, which may suggest
a lack of generalizability of token embeddings.

We believe our findings should motivate more work in the
area of finding good representations of code tokens, and that
future work on code representation should aim to address the
difficulties of using code embeddings on downstream tasks.

IV. THREATS TO VALIDITY

A. Threats to Internal Validity

Threats to internal validity concern factors that may influ-
ence our results. Our evaluation of code embeddings relies
on enhancing other techniques with the embeddings. One
limitation is that the techniques we have picked may not
be suitable for using a vector representation of source code.
Another limitation is that our integration of code2vec into
these techniques may be too naive. We have tried to mitigate
these limitations by selecting techniques that already use
code tokens in its input, and by using a variety of different
techniques in our evaluation. Both neural network-based ap-
proaches and techniques to use vector space calculations are
used, which will explore both the potential of code embeddings
to be used to initialize a neural network model and also
its ability to encode semantic and syntactic qualities through
vector space calculations.

Our experiments do not provide any insight about the code
embeddings’ lack of generalizability that we observed. They
suggest that code embeddings may not generalize beyond the
task it was trained on, but we were unable to find conclusive
reasons explaining why the code embeddings did not help

existing techniques. We leave further experiments and detailed
analysis that may provide these reasons for future work.

B. Threats to External Validity

Threats to external validity concern the generalizability of
our findings. While we have experimented on 3 downstream
tasks, there are other tasks that may benefit from the use of
pretrained token embeddings. It may also be possible that the
3 downstream tasks we have selected are not the best tasks for
applying code embeddings. For example, we only considered
downstream tasks where the input data is homogeneous.
We did not explore the effectiveness of code embeddings
in downstream tasks involving heterogenous inputs, such as
duplicate bug report detection [56] or duplicate StackOverflow
post detection [57]. The inputs to models may contain multiple
types of data (e.g. code snippets, stack traces, and text). To
use code embeddings, they will have to be used together
with other types of embeddings (e.g. word embeddings for
natural language text) and it will be interesting to observe if
code embeddings is helpful in these tasks. However, existing
literature does not suggest what common software engineering
tasks can benefit from token embeddings. To the best of our
knowledge, this is the first work that applies any model of code
embeddings to multiple downstream tasks. Indeed, the lack of
obvious software engineering tasks to apply code embeddings
on is motivation of our work. Moreover, in our work, we try to
cover a diversity of tasks that are different from one another.
For example, only code comment generation is closely related
to Natural Language Processing. Each task is likely to measure
different qualities that the code embeddings can encode. For
example, the code authorship tasks will require techniques to
distinguish between syntax preferences of different authors
while detecting Type-3 and Type-4 code clones will require
techniques that detect the same semantic functionality. In
addition, the tasks in this work involve both generative and
classification tasks.

Our experiments also may not imply anything about em-
beddings of other granularity of source code. Embeddings
have been trained over execution traces [53] or sequences
of API method invocations [58]. These embeddings may be
generalizable to other downstream tasks that do not use token-
based approaches. We note that evaluating these embeddings
are out of the scope of our work, and we do not say anything
about their generalizability. In this work, we focus only on
embeddings of source code tokens and code2vec is selected to
be representative of these embedding techniques. Comparison
with other code embedding techniques is beyond the scope
of this paper and it is worth investigating them in future to
confirm or refute the findings of this work.

V. RELATED WORK

In this section, we discuss prior work on evaluation of
word embeddings done in the NLP domain and embeddings
of source code. Due to page limitations, the survey here is by
no means complete.

9

A. Evaluation of word embeddings

In Natural Language Processing, there has been identical
work on evaluating word embeddings. Evaluation of word em-
beddings can be categorized into intrinsic and extrinsic eval-
uation [4], [59]. Intrinsic evaluation involves the use of word
analogy or similarity tasks, while extrinsic evaluation refers to
the evaluation of embeddings when used on downstream tasks.
Research has also found that intrinsic evaluations of word
embeddings do not correlate with extrinsic performance [60].
We believe that these insights and conclusions are applicable to
code embeddings as well, thus our work performs an extrinsic
evaluation of code embeddings.

B. Embeddings for source code

Granularity of embeddings: Other than code2vec, there
have been many proposed embeddings for code. A survey of
existing code embeddings are presented by Chen and Mon-
perrus [61], where works on embeddings are into categories
depending on the granularity of source code that is embedded:
source code tokens, functions, sequences or sets of method
calls, and binary code are the granularities of source code that
have been considered.

For examples of models that embed granularities of pro-
gram elements other than source code tokens, consider the
work by Xu et al. [62] and Theetan et al. [18] Xu et al.
trained embeddings of binary instructions and Theetan et al.
trained embeddings of library imports. While in this work we
investigated only token-based code embeddings, future work
should investigate and evaluate other granularities of code
embeddings on downstream tasks.
Token-based embeddings: In our work, we focused on em-
bedding source code tokens, which we consider to be the
most specific granularity. Researchers have trained and used
embeddings in a diverse set of tasks.

There are several examples of models that trained em-
beddings from source code tokens into a vector space [13],
[14], [16], [63]. Azcona et al. [13] proposed user2code2vec,
which are embeddings trained for profiling students. These
embeddings are used to predict if a student’s submissions are
correct. White et al. [14] trained embeddings for automatic
program repair. They used embeddings to compute the sim-
ilarity between identifiers for use in their repair technique.
They used a recurrent neural network language model to learn
embeddings and used them to transform program repair ”ingre-
dients” by replacing identifiers based on identifier similarity.
For code search, Gu et al. [16] trained a joint-embedding space
representing both code snippets and method documentation.
They represented code snippets by their method names, API
sequences in the method bodies, and the tokens in the method
bodies. They are jointly trained such that the method and its
documentation are embedded near to each other in the vector
space. Hellendoorn et al. [63] used a deep neural network for
type inference for dynamically-typed languages. Their model
first embeds tokens into a vector space then learn type vectors
in order to annotate the types of variables.

Evaluation of embeddings: While there are many embed-
dings proposed on a large variety of tasks, many research
works, including the works discussed above, did not evaluate
their embeddings on downstream tasks or did so only on tasks
that are closely related to the training task [13]–[19]. We
found only few examples of works that evaluate their work
on downstream tasks.

Similar to code2vec, Alon et al. [29] trained embeddings
of AST paths. They evaluated it on predicting names of
variable and methods, and predicting types of local variables.
They compared it against a baseline trained using word2vec
[1]. Defreez et al. [64] proposed func2vec, which maps
synonymous functions to vectors grouped together and a
downstream task of mining error-handling specifications in the
Linux kernel. Their miner successfully detected 2 violations
of the specifications they mined.

Henkel et al. [53] proposed to embed traces of symbolic
execution into a vector space. They evaluated their code
embeddings on a downstream task of predicting error codes.
Their results indicate that their embeddings may be useful
for finding bugs or suggesting repairs. In their work, they
proposed a benchmark for the code analogy task. The code
analogy task is an intrinsic evaluation on code embeddings,
where the embeddings are evaluated on their ability to express
relationships between analogous words in the vector space,
such as the analogy that ”mutex lock is to mutex unlock as
spin lock is to spin unlock”. However, work on NLP [60] has
suggested that performance on the word analogy task does not
imply good performance on downstream tasks.

In these works, while the code embeddings are shown to be
useful, they are often not compared against simpler baselines
and the use of code embeddings is evaluated only in at most
one other task. One exception is the work by Ben-Nun et
al. [65], where the trained embeddings are evaluated on 3
downstream tasks. They trained statement embeddings over a
graph constructed from both the data and control-flow graph.
They evaluated their embeddings on 3 downstream tasks of
classifying algorithms, a prediction task to predict if a program
will run faster on a CPU or GPU, and another prediction task
of the amount of work done on each GPU thread while running
a given program. However, unlike our evaluation of code2vec,
the downstream tasks they use include uncommon software
engineering tasks and are similar to one another.

VI. CONCLUSION AND FUTURE WORK

To conclude, our experiments on source code embeddings
suggest that they do not generalize readily to other tasks.
We performed experiments using code embeddings on three
downstream tasks: code comment generation, code authorship
identification and code clones detection. In each task, the
code embeddings do not result in models with improved
overall performance. Furthermore, in two of the tasks, they
are outperformed by simpler models.

As a consequence of our work, we call for the community
to evaluate embedding models more carefully. Similar to the
work already done for NLP, we propose that the usefulness of

10

embeddings are more appropriately evaluated using a variety
of downstream tasks. While it may be interesting to have
distributed representations of program elements, it is far more
important that embeddings can help in downstream tasks.
Users of code embeddings should be careful in their choice of
code embeddings, keeping in mind that not all code embed-
dings will necessarily be helpful for their targeted downstream
task.

For future work, a more comprehensive evaluation of ex-
isting source code token embeddings can be done on the
three tasks we identified in this work. Deeper analysis of the
differences between embeddings may lead to deeper insights
into how to train and use token embeddings. Beyond token
embeddings, an evaluation of distributed representations of
other granularities, e.g. function embeddings, in downstream
tasks is a natural next step for future work.

We end with a call for further research beyond the in-
troduction of new models of training code embeddings, but
to describe how the embeddings can be used for a variety
of downstream tasks and to demonstrate that they can be
useful beyond the single task they were trained on. We believe
that the software engineering community should not view the
training of embeddings as an end to itself, but instead, as a
means to achieve better performance in other tasks.

REFERENCES

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[2] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[3] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[4] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims, “Evaluation
methods for unsupervised word embeddings,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 298–307.

[5] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple
and general method for semi-supervised learning,” in Proceedings of the
48th annual meeting of the association for computational linguistics.
Association for Computational Linguistics, 2010, pp. 384–394.

[6] I. Iacobacci, M. T. Pilehvar, and R. Navigli, “Embeddings for word sense
disambiguation: An evaluation study,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 2016, pp. 897–907.

[7] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 837–847.

[8] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from big code,” in ACM SIGPLAN Notices, vol. 50, no. 1. ACM, 2015,
pp. 111–124.

[9] V. Efstathiou and D. Spinellis, “Semantic source code models using
identifier embeddings,” in 16th International Conference on Mining
Software Repositories (MSR 2019), 2019.

[10] M. Pradel and K. Sen, “Deepbugs: a learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, p. 147, 2018.

[11] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 2016, pp. 2073–2083.

[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, p. 40, 2019.

[13] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton, “user2code2vec:
Embeddings for profiling students based on distributional representations
of source code,” in Proceedings of the 9th International Conference on
Learning Analytics & Knowledge. ACM, 2019, pp. 86–95.

[14] M. White, M. Tufano, M. Martı́nez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” in 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019,
pp. 479–490.

[15] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[16] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[17] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and
L. Guibas, “Learning program embeddings to propagate feedback on
student code,” in Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37. JMLR. org,
2015, pp. 1093–1102.

[18] B. Theeten, F. Vandeputte, and T. Van Cutsem, “Import2vec-learning
embeddings for software libraries,” 16th International Conference on
Mining Software Repositories (MSR 2019), 2019.

[19] C. S. Corley, K. Damevski, and N. A. Kraft, “Exploring the use of deep
learning for feature location,” in 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2015, pp.
556–560.

[20] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-
prehension. ACM, 2018, pp. 200–210.

[21] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang, “Large-scale
and language-oblivious code authorship identification,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2018, pp. 101–114.

[22] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: scaling code clone detection to big-code,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 2016,
pp. 1157–1168.

[23] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings, 2018.

[24] J. Devlin, J. Uesato, R. Singh, and P. Kohli, “Semantic code re-
pair using neuro-symbolic transformation networks,” arXiv preprint
arXiv:1710.11054, 2017.

[25] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 95–104.

[26] N. D. Bui, L. Jiang, and Y. Yu, “Cross-language learning for program
classification using bilateral tree-based convolutional neural networks,”
in Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[27] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[28] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ACM, 2015, pp. 38–49.

[29] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in ACM SIGPLAN
Notices, vol. 53, no. 4. ACM, 2018, pp. 404–419.

[30] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to sport and refactor inconsistent method
names,” in 41st ACM/IEEE International Conference on Software Engi-
neering (ICSE). IEEE, 2019.

[31] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 2017, pp. 49–60.

11

[32] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 2010, pp. 43–52.

[33] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-
hension with source code summarization,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
2. ACM, 2010, pp. 223–226.

[34] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[35] D. Coughlin, “Correlating automated and human assessments of machine
translation quality,” in Proceedings of MT summit IX., 2003, pp. 63–70.

[36] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 709–712.

[37] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 373–384.

[38] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2017, pp. 135–146.

[39] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Opennmt:
Open-source toolkit for neural machine translation,” in Proc. ACL,
2017. [Online]. Available: https://doi.org/10.18653/v1/P17-4012

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] E. Stamatatos, “A survey of modern authorship attribution methods,”
Journal of the American Society for information Science and Technology,
vol. 60, no. 3, pp. 538–556, 2009.

[42] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th {USENIX} Security Symposium ({USENIX} Secu-
rity 15), 2015, pp. 255–270.

[43] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
1996 International Conference on Software Maintenance (ICSM ’96),
4-8 November 1996, Monterey, CA, USA, Proceedings, 1996, p. 244.

[44] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in 2013 17th European Conference on Software Maintenance and
Reengineering. IEEE, 2013, pp. 25–34.

[45] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Software Engineering, vol. 15, no. 1, pp. 1–34, 2010.

[46] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software
clones,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM). IEEE, 2011, pp. 273–282.

[47] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 131–140.

[48] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[49] J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool
evaluation framework with bigclonebench,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 596–600.

[50] “Ambient software engineering group seclone project,”
https://sites.google.com/site/asegsecold/projects/seclone, accessed:
2019-05-13.

[51] H.-H. Wei and M. Li, “Positive and unlabeled learning for detecting
software functional clones with adversarial training,” in Proceedings of
the 27th International Joint Conference on Artificial Intelligence. AAAI
Press, 2018, pp. 2840–2846.

[52] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes, “Oreo:
Detection of clones in the twilight zone,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2018, pp. 354–365.

[53] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors: under-
standing programs through embedded abstracted symbolic traces,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 163–174.

[54] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014, pp.
1188–1196.

[55] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 763–773.

[56] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 45–54.

[57] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Mining duplicate questions in stack overflow,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 402–412.

[58] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deepam: migrate apis with
multi-modal sequence to sequence learning,” in Proceedings of the 26th
International Joint Conference on Artificial Intelligence. AAAI Press,
2017, pp. 3675–3681.

[59] M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer, “Problems with evalu-
ation of word embeddings using word similarity tasks,” in Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for
NLP, 2016, pp. 30–35.

[60] B. Chiu, A. Korhonen, and S. Pyysalo, “Intrinsic evaluation of word
vectors fails to predict extrinsic performance,” in Proceedings of the 1st
Workshop on Evaluating Vector-Space Representations for NLP, 2016,
pp. 1–6.

[61] Z. Chen and M. Monperrus, “A literature study of embeddings on source
code,” arXiv preprint arXiv:1904.03061, 2019.

[62] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 363–376.

[63] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 152–162.

[64] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-based function
embedding and its application to specification mining,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2018.

[65] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code compre-
hension: A learnable representation of code semantics,” in Advances in
Neural Information Processing Systems, 2018, pp. 3585–3597.

12

	Assessing the generalizability of code2vec token embeddings
	Citation

	tmp.1576736995.pdf.fx8fr

