
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2019 

Finding needles in a haystack: Leveraging co-change Finding needles in a haystack: Leveraging co-change 

dependencies to recommend refactorings dependencies to recommend refactorings 

Marcos César DE OLIVEIRA 
University of Brasilia 

Davi FREITAS 
University of Brasilia 

Rodrigo BONIFACIO 
University of Brasilia 

Gustavo PINTO 
Federal University of Parana, Brazil 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer Engineering Commons, and the Software Engineering Commons 

Citation Citation 
DE OLIVEIRA, Marcos César; FREITAS, Davi; BONIFACIO, Rodrigo; PINTO, Gustavo; and LO, David. Finding 
needles in a haystack: Leveraging co-change dependencies to recommend refactorings. (2019). Journal 
of Systems and Software. 158, 1-19. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4470 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Finding Needles in a Haystack:
Leveraging Co-change Dependencies to Recommend

Refactorings

Marcos César de Oliveiraa, Davi Freitasa, Rodrigo Bonifácioa,b,
Gustavo Pintoc, David Lod

aComputer Science Department, University of Brasília, Brasília, Brazil
bPaderborn University, Germany

cFaculty of Computing, Federal University of Pará, Belém, Brazil
dSchool of Information Systems, Singapore Management University, Singapore

Abstract

A fine-grained co-change dependency arises when two fine-grained source-code
entities, e.g., a method, change frequently together. This kind of dependency
is relevant when considering remodularization efforts (e.g., to keep methods
that change together in the same class). However, existing approaches for rec-
ommending refactorings that change software decomposition (such as a move
method) do not explore the use of fine-grained co-change dependencies. In
this paper we present a novel approach for recommending move method and
move field refactorings, which removes co-change dependencies and evolution-
ary smells, a particular type of dependency that arise when fine-grained entities
that belong to different classes frequently change together. First we evalu-
ate our approach using 49 open-source Java projects, finding 610 evolutionary
smells. Our approach automatically computes 56 refactoring recommendations
that remove these evolutionary smells, without introducing new static depen-
dencies. We also evaluate our approach by submitting pull-requests with the
recommendations of our technique, in the context of one large and two medium
size proprietary Java systems. Quantitative results show that our approach out-
performs existing approaches for recommending refactorings when dealing with
co-change dependencies. Qualitative results show that our approach is promis-
ing, not only for recommending refactorings but also to reveal opportunities of
design improvements.

Keywords: Refactoring, co-change dependencies, remodularization, software
clustering, design quality

1. Introduction

A modular software design should support the incremental development of a
system, and thus enabling seamless changes that often occur during a software
life cycle [1]. However, it is a non-trivial effort to maintain the characteristics

Preprint submitted to Elsevier August 24, 2019

Published in Journal of Systems and Software, 2019, Volume 158, article no. 110420.
https://doi.org/10.1016/j.jss.2019.110420



of a design throughout its evolution [2]. In practice, software design tends to
decay over time—independently of how elaborate the design of the software
is [3]. This challenge occurs due to different reasons, including (1) the lack of
knowledge of the current development team about the original design decisions
of the software [2]; (2) tight schedules that lead developers to take bad decisions,
introducing technical debt and hindering the redesign of a software [4]; or (3)
unanticipated requirements that do not fit in the original decomposition [3].
In the end, the lack of maintainability often leads to the problem of software
erosion [5], which occurs when the current design of a software does not reflect
the idealized design anymore. As a result, developers might have a harder time
to either introduce new features or to fix existing bugs [2, 5].

In order to ameliorate this problem, software engineers and architects might
improve the current modular decomposition of the systems by means of se-
quences of refactorings, such as move method/field and split/merge classes. For
this reason, several approaches have been proposed to either identify a soft-
ware decomposition that best fit the needs of a remodularization effort [6, 7]
or to suggest sequences of refactorings to improve the design of a software [8].
Existing approaches rely on source-code dependencies to recommend alternate
decompositions [6, 7], considering a set of specific goals (such as minimizing
coupling or maximizing cohesion) [9, 10]. The challenge here is that each time
we change a system, e.g., to fix a bug or to introduce a new feature, we can
change a set of source-code entities (classes, interfaces, methods, fields) that
are not statically dependent (that is, they do not call methods or access fields
from each other). This situation leads to a different notion of coupling based
on co-change dependencies, that are not explicit at the source code [11].

Several studies [12, 13, 14, 15] correlate co-change coupling with software
quality problems. For instance, Zhou et al. [12] claim that co-change dependency
analysis has the potential to provide early warnings of a potential design or
architectural flaw. Other authors report that co-change dependencies induce
defects [13, 14, 15]. Therefore, presenting refactoring recommendations, which
aim to reduce co-change dependencies, might improve the overall quality of
a system. Accordingly, recent works [11, 16, 17] explore the use of source-
code history to enrich the analysis of existing software modular decompositions,
recommending alternative decompositions that better fit the software evolution
history. The rationale is that, if a set of source-code entities frequently change
together, some opportunities to move source-code entities arise, in order to keep
co-changing entities together in the same class (if the entities are methods or
fields), or in the same package (if the entities are classes or interfaces).

Despite recent efforts, little is known about the benefits of using fine-
grained co-change dependencies when suggesting move method/field refactor-
ings, which aim to improve the design of a software when considering properties
such as coupling and cohesion. Fine-grained co-change dependency analysis
helps to find the sets of fine-grained entities (such as methods or fields) that
change together. That is, a co-change dependency between two source code
entities means that they had frequently changed together. In addition, if the
entities do not have any static dependency upon each other, the existing depen-

2



dency between them is hidden—and we can only reveal this dependency using
a co-change dependency analysis.

In this paper we present and evaluate a novel refactoring recommendation
approach (named Draco) that removes co-change dependencies between classes.
The motivation of this tool is to help to improve the software design, reducing
the co-change coupling of its entities, in the sense that this kind of coupling
might be correlated with design problems and defects, as seen before. One of
its relevant properties is that it does not recommend refactorings that introduce
new static dependencies between classes. Our interest is to detect and remove
evolutionary smells, which arise when methods or fields from different classes are
co-change dependent from each other, although they do not depend upon meth-
ods or fields from the same class where they are declared. Draco recommends
move method/field refactorings that remove evolutionary smells, by breaking
co-change dependencies (and possibly static dependencies too) between classes.
In addition, differently from related work, Draco only recommends refactorings
that present some guarantees that lead to an improvement on the design qual-
ity. In this way, our approach is quite conservative: it only applies a refactoring
when the transformation does not introduce new dependencies into the software.

We used a multi-method approach for evaluating Draco. We first conducted
a quantitative assessment using 49 well-known, well-used, and non-trivial open-
source Java projects. We found a total of 610 evolutionary smells in all projects
but one. We automatically computed 56 recommendations of move method/field
refactorings. All the recommendations lead to design improvements (according
to well-known metrics), without introducing any new static dependency. After
that, we conducted a qualitative assessment of Draco considering three Java
enterprise systems, two from the Brazilian Army and one from the Brazilian
Ministry of Economy. We also assessed other three refactoring recommenda-
tion tools using the two Brazilian Army Systems. In this second assessment,
we go beyond the typical evaluation of these tools (i.e., using metrics based on
source code dependencies), trying to identify the relevance of refactoring recom-
mendations tools by means of pull-requests submitted to the software projects.
Altogether, the main contributions of this paper are the following:

• A method for recommending move method/field refactorings that removes
“evolutionary smells” and improves design quality by reducing coupling in
terms of co-change dependencies.

• An extensive evaluation on over 49 non-trivial open-source projects show-
ing the benefits of the proposed approach. We also compared our our ap-
proach with a state of the art method for refactoring recommendation [10].

• A qualitative assessment of the application of Draco tool considering two
proprietary software systems from the Brazilian Army and one proprietary
system from the Brazilian Ministry of Economy. In this qualitative assess-
ment we also investigate the outcomes of the application of three different
refactoring recommendations tools (REsolution [10], JDeodorant [9], and
JMove [18]), considering the two Brazilian Army software systems. Based

3



on this assessment, we concluded that our approach is promising and re-
veals design problems of the systems.

• A publicly available tool and dataset that allows the reproduction of this
study and that might be useful for researchers and practitioners alike.

We argue that some design decisions of a system (including architectural con-
straints) should also be considered by refactoring recommendation approaches—
besides the typical information used for recommending refactorings (such as
static dependencies, semantic dependencies, or even co-change dependencies).
Not considering these decisions might actually hinder the acceptance of recom-
mendations from existing approaches.

2. Background and Related work

2.1. Software Decomposition and Remodularization
The concept of a software decomposition we use in this work is based on the

definition of Mitchell and Mancoridis [6], in which a software is represented as
a graph—typically named a Module Dependency Graph (MDG). The vertices
of an MDG represent source-code entities and the edges represent some kind
of dependency between these entities, such as method calls, field access, or
class inheritance. Thus, a software decomposition can be understood as a graph
partitioning problem, where a partition is a set of clusters of source-code entities.
The work from Ball et al. [19] was one of the first to propose the representation
of co-change dependencies as edges on an MDG, though only considering coarse-
grained entities (e.g., classes or files) as vertices. Later, Zimmermann et al. [20]
introduced the use of fine-grained co-change dependencies on MDGs. Building
on these previous works, in this paper, we work with MDGs whose vertices
are fine-grained entities (similar to the Zimmermann et al. approach [20]) and
whose edges represent both static and co-change dependencies of the software.
We also leverage the use of co-change clusters as a process for partitioning a
co-change graph—as Beyer and Noack suggest [21].

The use of software clustering as basis for software remodularization has
been discussed in the literature for almost 20 years [22]. The work of Anquetil
and Lethbridge [23], for instance, compares different strategies for software clus-
tering to this specific goal. More recently, Maqbool and Babri [24] investigate
the use of hierarchical clustering algorithms for architecture recovering. Differ-
ently from our work, the previous mentioned works only consider source-code
static dependencies as input for building software clusters. Silva et al. [7] esti-
mates software modularity using co-change clusters, and compares the resulting
decomposition with the actual Java software package organization. According
to their work, mismatches between the co-change clusters and the package de-
composition suggest new directions for restructuring the package hierarchy.

In a recent work, Candela et al. [25] investigated which properties develop-
ers consider relevant for a high-quality software remodularization. Their goal
was to provide insights on the design of techniques and tools to recommend

4



new software decompositions. After collecting responses from a survey with 29
developers, they reported that 52% of them consider the clear separation be-
tween application layers important, 38% consider package cohesion important,
28% consider low coupling important, and 21% consider grouping entities that
change together important. This result suggests the relevance of considering
co-changing when supporting software remodularization—as in a previous work
of Beck and Diehl [26].

Also regarding co-change dependencies, Oliveira et al.[11] discuss that adding
co-change dependencies to a coarse-grained MDG, based on static dependencies,
reveals several dependencies that were hidden by the assessments considering
only static dependencies. This result suggests that co-change dependencies can-
not be neglected when reasoning about the decomposition of a system. The
authors also report about the benefits they achieved after using coarse-grained
co-change dependencies as input to suggest a software decomposition improve-
ment, which tries to preserve almost the same number of modules (packages) of
the original decomposition.

2.2. Code Smells and Source Code Refactoring
Code smell (or bad smell) is a symptom of bad decisions about the sys-

tem design [27]. Research works discuss that code smells could hinder main-
tainability and increase fault-proneness [28], increasing the motivation to de-
velop methods to detect and remove bad smells using program refactorings.
Fowler [27] describes 22 code smells and the respective refactoring operations to
remove them. Several approaches were proposed to detect bad smells in source
code [29, 30, 31, 32]. Like our work, Ratiu et al. [33] and Palomba et al. [34]
also recommend the use of the source code history to detect code smells, how-
ever, the aim of their approaches is to detect well known code smells, while
our approach defines a new kind of code smell based on co-change dependencies
(evolutionary smell), and specifies how to detect them.

A refactoring is a program transformation that improves the internal qual-
ity of a software design while preserving its external behavior [27]. Several
Integrated Development Environments have tools that perform the mechanical
aspects of popular kinds of refactoring, such as extract method, rename method,
move method, etc. Refactoring has been a topic explored by many research
works, and for this study we are particularly interested in the research on au-
tomated refactoring recommendation approaches.

Ouni et al. [17] proposed an approach to recommend sequences of refactoring
using the multi-objective genetic algorithm [35] NSGA-II [36]. Their approach
aims to find the best sequence of refactoring that (a) minimizes the number of
bad smells, (b) maximizes the use of development history, and (c) maximizes
the semantic coherence. To compute the use of development history, they use
three metrics: (1) similarity with previous refactorings applied to similar code
fragments, (2) number of changes applied in the past to the same code elements
to modify, and (3) a score that characterizes the co-change of elements that
will be refactored. The third metric uses as input the co-change dependencies

5



between the coarse-grained entities that contains the entities to be refactored—
i.e., if the recommended refactoring is a move method, then the score that
characterizes the co-change of this refactoring is the number of times the source
and destination class of the method was changed together in the past. While
Ouni et al. approach uses coarse-grained co-change dependencies as a source of
information to their refactoring recommendation algorithm, our approach uses
fine-grained co-change dependencies. In addition, they use co-change informa-
tion to complement other metrics, while our approach aims to remove co-change
dependencies.

Mkaouer et al. [16] also proposed an approach to recommend sequences of
refactorings using a multi-objective genetic algorithm. Differently from Ouni
et al., they use the newer NSGA-III [37] algorithm. They also use the source-
code change history as an input to their algorithm, but only to compute the
similarity of a candidate refactoring with past refactorings. In their algorithm,
a good refactoring recommendation must present a high similarity with past
refactorings. The work of Wang et al. [10] explores clustering algorithms on
MDGs containing fine-grained source-code entities as a basis for identifying
refactoring opportunities. Their approach is a system-level multiple refactoring
algorithm, which is able to automatically identify move method, move field, and
extract class refactoring opportunities, according to the “high cohesion and low
coupling” principle. Their algorithm works by merging and splitting related
classes to obtain the optimal functionality distribution from the system-level.
In their work, they present the REsolution as an publicly available automatic
refactoring tool that implements their approach. Although their work brings
empirical evidence about the potential of using fine-grained source-code entities
to improve a software decomposition, the authors do not take into account co-
change dependencies.

JDeodorant is a refactoring tool plugin for Eclipse that detects code smells in
Java software, and recommends the appropriate refactorings to correct them [9].
JDeodorant address five types of code smells, including Feature Envy, Long
Method, and God Class. It also supports several refactorings, including move
method and extract class. JDeodorant uses a metric that their authors call En-
tity Placement, which is used to sort the refactoring recommendations according
to their effect on design. JMove is also an Eclipse based plugin for recommend-
ing refactoring, though only deals with Feature Envy and Long Method code
smells—using the move method refactoring for Java projects [18]. The authors
of JMove argue that it is more efficient than JDeodorant, because it considers
not only the structural properties of the source code (e.g., size of methods and
static dependencies), but also semantic dependencies based on the source code
vocabulary.

Methodbook is an approach to recommend move method refactorings that
aims to remove feature envy bad smells [38]. It uses relational topic models to
discover the “friends” of the methods in a system, and the class that contains
the highest number of friends of the method under analysis is suggested as the
target class of the move method refactoring.

Differently, our approach does not aim to remove well-known code smells.

6



Instead, we leverage the knowledge about co-change dependencies to discover
evolutionary smells and to recommend refactorings that removes these smells
and reduce the total number of co-change dependencies between classes in a
system.

3. Draco Approach

In this section we present the major design decisions related to the Draco
approach for recommending move method and move field refactorings, which
relies on historical data available in Version Control Systems (VCS). Figure 1
shows an overview of the approach, and the following subsections detail its steps.

Figure 1: Overview of the Draco approach for recommending refactorings.

1 2

3

45

VCS Repository Fine-grained Change History

Co-change Dependencies

Co-change Clusters

Evolutionary SmellsRefactoring Recommendations

3.1. Producing Fine-grained Change History
Popular VCSs such as Git1 and Subversion2 help to maintain the evolution

source-code artifacts in a reliable way. An user of a VCS submit change sets
(involving one or more artifacts) in the form of a commit. Accordingly, the
history of changes submitted to a VCS can be described as a sequence of commits
H = (c1, c2, . . . , cn), where each commit contains a subset of artifacts in the form
ci ⊆ A. Since in this paper we are actually interested in the change history
of fine-grained source-code entities (e.g., methods or fields), instead of coarse-
grained entities (e.g., files or classes), here we first have to preprocess the original
change history to produce a more detailed one (which we call fine-grained change
history). This detailed change history can be described as a sequence H ′ =
(c′1, c

′
2, . . . , c

′
n), where each commit is a subset of fine-grained source-code entities

c′i ⊆ F that changed together. To transform a change history (H) into a fine-
grained change history (H ′), we analyze each source-code artifact of a commit
to discover which fine-grained entities have been modified. We take advantage
of Kenja3, a software utility that produces fine-grained change history from Git
repositories.

1https://git-scm.com/
2https://subversion.apache.org/
3https://github.com/niyaton/kenja

7



3.2. Computing Co-change Dependencies
As discussed before, two source-code entities are co-change dependent upon

each other when they frequently change together. Certainly, the precise defini-
tion of frequently depends upon how often these two entities changed together,
and we compute this information considering the fine-grained change history.
More specifically, we use two metrics to determine if two entities ea and eb
change frequently together: support count and confidence. The first counts the
number of commits in which both ea and eb appear together; while the second
corresponds to the ratio of the support count between ea and eb and the number
of commits containing ea. Note that, while the support count is commutative,
i.e., the support count between ea and eb is the same of the support count be-
tween eb and ea, the confidence is not, i.e., the confidence between ea and eb
can be different from the confidence between eb and ea. We consider that ea
and eb change frequently if their support count and confidence are above the
threshold for supporting count Smin and confidence Cmin at least in one direc-
tion. Several studies on co-change dependencies use the values Smin = 2 and
0.4 ≤ Cmin ≤ 0.5 (e.g., [26, 7, 39, 11, 40]). Although we relied on the literature
and employed these thresholds for our metrics, we present a discussion about
how these parameters influence the Draco approach in Section 5.8.

3.3. Computing the Co-change Clusters
We create a co-change graph G = (V,E) from a set of fine-grained source-

code entities V and a set of co-change dependencies E ⊆ V × V . A partition
of a co-change graph corresponds to a set of (co-change) clusters, whose quality
(high cohesion and low coupling) depends on the number of dependencies that
are internal or external to the cluster.

To measure the quality of a partition, in this study we use the Modularization
Quality (MQ) metric (see Eq. (1)), proposed by Mitchell and Mancoridis [6].

MQ =


(

1
k

∑k
i=1 Ai

)
−
(

1
k(k−1)

2

∑k
i,j=1 Ei,j

)
if k > 1

A1 if k = 1,
(1)

In this equation, k is the number of clusters, Ai is the number of edges
within the ith cluster, and Ei,j is the number of edges between the ith and the
jth clusters.

Due to the number of possible solutions (O(2|V |)), we use a genetic algo-
rithm (GA) [35] to compute an optimal partition. The goal of a GA is to find
acceptable solutions for optimization problems. In general, to use a genetic al-
gorithm, it is necessary to precisely define the concept of individuals and fitness
functions for the problem domain. A typical GA executes as follows:

1. It first generates an initial population (i.e., a set of individuals) randomly;

2. It repeatedly produces a new population, by (a) selecting individuals from
the previous population using the fitness values and (b) combining them
using the genetic operators crossover and mutation;

8



Figure 2: Individual representation

m1 m2

m3

m4 f1

Cluster 0 Cluster 1

(a) A simple example of co-change clusters

0 1 2 3 4
0 1 0 0 1

(b) Corresponding array representation.

3. It proceeds until a stop condition is met.

An extension for the traditional GAs is necessary when the problem has
several objectives to be optimized. In this case, each individual has not only
one fitness value, but instead a vector of values [35]. Accordingly, to compare
two individuals, we used the concept of Pareto Dominance: a vector v dominates
another vector u if no value vi is smaller than the value ui, and at least one vj
is greater than uj [35].

Similarly to a previous work [41], we used a multi-objective genetic algorithm
to compute the co-change clusters (in our case the Non-dominating Sorting
Genetic Algorithm—NSGA-II [36]), representing the individuals as a mapping
from a fine-grained source-code entity to the cluster it belongs to. Technically,
an individual is an array where each position corresponds to a source-code entity,
and each value corresponds to a co-change cluster. Two entities belong to the
same cluster when they appear at different positions and refer to the same value.
Figure 2-(a) illustrates this representation, showing four methods (m1, m2, m3,
and m4) and one field (f1). All methods belong to the cluster C0, except for m2
that belongs to the cluster C1 (together with field f1). In addition, as we can
see in Figure 2-(b), the array is codified as a binary string (i.e., as a sequence of
bits) and the maximum number of clusters is set to |V |2 . In this way, we set each

element of the array to occupy
⌈
log2

|V |−1
2

⌉
bits of the binary string—where V

is the set of vertices of the co-change graph.
There are several choices of selection operators, such as roulette wheel, whose

probability of selecting an individual is proportional to its fitness value, and
tournament selection, which selects the best individual according to a fitness
value [35]. Here we use the tournament selection operator. The genetic opera-
tors transform the population through successive generations, maintaining the
diversity and adaptation properties from previous generations. In more details,
we use the one-point crossover operator, which takes two binary strings (parents)
and a random index as input; and produces two new binary strings (offspring)
by swapping the parents’ bits after that index. For example, if we have the
parent binary strings p1 = 101010 and p2 = 001111, and an index i = 1, the off-
spring will be c1 = 101111 and c2 = 001010. We also used a mutation operator
that can flip any bit of the individual’s binary string at a specified probability.

9



That is, given a mutation probability p and a binary string s = b1b2 . . . bn, we
produce a random number 0 ≤ ri < 1 for each bit bi, flipping bi in the cases
where ri < p. For example, if we have a binary string s = 10011, a mutation
probability p = 0.1, and a sequence of random numbers r = (0.9, 0.3, 0, 0.6, 0.5),
the algorithm will produce a mutant binary string s′ = 10111.

Also relying on the Praditwong et al. work [41], we setup our GA to optimize
five objectives:

• maximize MQ ;

• maximize intra-edges;

• minimize inter-edges;

• maximize number of clusters;

• minimize the the difference between the maximum and minimum number
of source-code entities in a cluster.

We chose the parameters similarly to Candela et al [25]. As such, given a
co-change graph G = (V,E), and n = |V |, we defined the parameters population
size (PS ), maximum number of generations (MG), crossover probability (CP),
and mutation probability (MP) as follows:

• PS =


2n if n ≤ 300
n if 300 < n ≤ 3000
n/2 if 3000 < n ≤ 10000
n/4 if n > 10000

• MG =


50n if n ≤ 300
20n if 300 < n ≤ 3000
5n if 3000 < n ≤ 10000
n if n > 10000

• CP =

 0.8 if n ≤ 100
0.8 + 0.2(n− 100)/899 if 100 < n < 1000
1 if n ≥ 1000

• MP = 16
100
√
n

3.4. Discovering Evolutionary Smells
Building on Martin’s Common Closure Principle [42], an evolutionary smell

appears when fine-grained entities that frequently change together are not de-
clared within the same class. Note that, differently from other works (e.g.,
Palomba et al. [34]), we are not using co-change dependencies to detect well-
known bad smells [27]. Instead, we are describing a suspicious situation involv-
ing co-change dependencies between seemingly unrelated pieces of source-code,
which could lead to a reorganization of the code. We identify evolutionary

10



smells when a co-change cluster contains fine-grained entities from more than
one class, and at least one of the entities does not have any dependency (static
or co-change) upon another entity from the same class. Figure 3 illustrates an
instance of this smell.

Figure 3: Example of evolutionary smell. Method m2 and field f1 are from different classes
but belong to the same co-change cluster and method m2 does not have any dependency on
any other method or field from its own class (Class1).

m1 m2

m3

m4 f1

Class1

Class2

Legend

mi

fi

Method

Field

Static dependency

Class

Co-change cluster

Co-change dependency

Intuitively, when we find a situation similar to the aforementioned, we can
suppose that the fine-grained source-code entity (e.g., m2 in Figure 3) might have
been declared at the wrong place. Nonetheless, we only characterize an evolu-
tionary smell when the fine-grained entity has at least one static dependency
with another class. Therefore, besides computing co-change dependencies, to
find an evolutionary smell we also have to calculate the static dependencies of
a project. For this reason, our tooling suite includes a static dependency finder
that we implemented using two existing libraries: JavaParser4 and JavaSym-
bolSolver.5

While this definition of evolutionary smell bear a resemblance to the “shotgun
surgery” [27] bad smell, it is a stricter definition that brings focus on detecting
methods or fields that could have more affinity with another class than with the
class where it is declared.

3.5. Recommending Refactorings to Remove Evolutionary Smells
A naive solution to remove an evolutionary smell is to move the correspond-

ing fine-grained source-code entity to one of the classes that belong to the co-

4https://github.com/javaparser/javaparser
5https://github.com/javaparser/javasymbolsolver

11



change cluster. Unfortunately, this is not always possible because when we move
the source-code entity we also move the dependencies (static or co-change) from
the source class to the destination class, and this might actually introduce new
dependencies as a side effect. Our decision was to design a quite conservative
approach. Accordingly, given the entity source-code e from class C1, which
belongs to a co-change cluster that contains entities from a class C2, we only
recommend to move the entity e to class C2 when:

• (Constraint #1) the total number of dependencies (edges) of the MDG
representing the software after applying the refactoring must be smaller
than the number of dependencies of the MDG representing the software
before applying the refactoring. Bellow we present some situations where
this constraint is not satisfied:

– There is at least one dependency (static or co-change) between C1

and C2 not involving the entity e. In this case, it is useless to move
entity e to C2 because, after that, C1 will still depend on C2 .

– There is at least two dependencies between another class, say C3, and
C1, one of them involving the entity e and the another not involving e.
Moreover, there is no dependency between C2 and C3. In this case, if
we move entity e to C2, we will increase the number of dependencies—
since C3 will depend on both C1 and C2 after moving the entity e
from C1 to C2.

• (Constraint #2) if C1 has subclasses, we cannot move entities from C1,
since this could change the behavior of the system unpredictably. This
is a general constraint for the move method/field refactoring that we also
have to consider to implement a behavior-preserving transformation.

If all these constraints are satisfied, we can recommend to move a fine-
grained source-code entity e to another class belonging to the same cluster while
reducing the number of dependencies of the system. This is possible because
the moved method does not use the implicit parameter (this); otherwise the
method would have a static dependency with the source class, and therefore the
definition of “evolutionary smell” would not be fulfilled.

Furthermore, there is nothing particularly special about circular dependen-
cies. For example, consider that we have four classes with each one having on
static dependency on another, such that C1.m1 → C2.m2 → C3.m3 → C4.m4→
C1.m1, where Cx.my means “the method my from class Cx”, and x→ y means
that x depends on y. If we move the method m1 from class C1 to class C2, then
we will remove the dependency between the two classes, and the dependency
C4.m4 → C1.m1 will become C4.m4 → C2.m1. Therefore, the constraints will
be fulfilled and the refactoring will be recommended. Differently, if we also have
a dependency C4.m4 → C1.m5, it will remain even after the move method, and
therefore the dependencies will be moved, but the number of dependencies will
be the same. In this case, Draco does not recommend a refactoring.

12



According to our decisions, if the element to be moved e has dependencies
with two or more classes in a co-change cluster, we choose as the destination class
of the refactoring the class that have the highest number of dependencies (static
or co-change) with the original class of e that will be removed after applying
the refactoring. If there are two or more target classes that will result in the
same number of reduced dependencies, the Draco tool presents these classes as
alternative recommendations.

4. Evaluation

We conducted two empirical studies to analyze the outcomes of applying a
set of refactorings based on the recommendations of our approach. The general
goal of this assessment is to understand whether or not the use of co-change
dependencies to recommend refactorings leads to an improvement on software
design.

4.1. Research Questions
Based on the general goal of our empirical studies, we organized this inves-

tigation with the aim of answering the following research questions:

(RQ1) How does the Draco approach behave when improving the design quality
of a system?

(RQ2) How does the Draco approach compare to a state of the art approach for
refactoring recommendation?

(RQ3) What is the impact of the different thresholds when extracting co-change
dependencies on the results?

(RQ4) How effective are Draco and other refactoring recommendation tools?

To answer RQ1 we first collected a set of design quality metrics of open-
source systems in their original form, executed our approach on them, and then
collected the same metrics again, though considering the effect of the recom-
mended refactorings. We also carried out statistical tests to better understand
the result of applying our proposed approach. To answer RQ2 we executed
a state of the art approach [10] for recommending refactorings, and used it as
a baseline when comparing it with our approach, using the same metrics they
used in their original published work [10]. To answer RQ3, we executed our
approach with several combinations of the support count and confidence param-
eters, and compared the resulting number of evolutionary smells and refactoring
recommendations that Draco found.

To answerRQ4, we asked software developers and architects to qualitatively
analyze refactoring recommendations from Draco, considering three proprietary
enterprise Java systems, two from the Brazilian Army (SISDOT and SISBOL)
and one from the Brazilian Ministry of Economy (SIOP). For the two Brazilian
Army Systems, we sent pull-requests and requested the contributors of these

13



systems to analyze a set of refactoring recommendations—which came not only
from Draco, but also from other three different tools (REsolution, JDeodorant,
and JMove). Considering the SIOP case, we conducted a survey with a list of
recommendations, to collect the opinion of the developers that are responsible
for maintaining the code involved in refactorings. Convenience was the main
reason for using these systems to answer RQ4. First, the source code reposi-
tories of these systems were available to our research. Second, we had access
to the architects and developers that were developing these software systems.
Accordingly, we could discuss with the original architects of these systems the
reasons for accepting or rejecting a contribution, and alternative solutions for
the problems that were spotted by the recommendations tools. This is the main
reason we did not use pull-request to open-source projects to answer RQ4,
since in this kind of project, pull-requests might have to wait an excessive time
to be reviewed [43, 44], or the recommendations might be rejected without an
insightful explanation.

Figure 4 shows a more concrete example of a recommended refactoring
computed using our approach. In this example (from the SIOP project), our
approach detected an evolutionary smell involving the getFields method of
the ReportParameters class. This method has co-change dependencies with
the generateModule and getJasperPrint methods and static dependencies with
the generateModule and transformDataIntoDataSource methods, all from the
ReportGenerator class. The methods getFields and generateModule belong to
the same co-change cluster. Our approach then recommended to move the
method getFields to the ReportGenerator class, and thus it removes four de-
pendencies between ReportParameters and ReportGenerator classes.

5. First Study: Quantitative Assessment

The goal of the quantitative assessment is to answer the first three research
questions (RQ1, RQ2, and RQ3), introduced in the previous section. We
made an analysis based on metrics and compared the results after applying the
recommendations from Draco and from REsolution.

5.1. Studied Systems
We considered a number of representative open-source Java systems to in-

vestigate questions RQ1, RQ2, and RQ3. To this end, we first used GitHub to
search for popular candidate projects, according to their number of stars. Star
is known as a proxy for project popularity, as it reflects the project’s activity
level and developer interest [45]. This is also a common approach for selecting
open source projects to investigate [46, 47]. In order to filter out small (to avoid
toy projects) or very large projects (to avoid spending an excessive processing
time and to keep the experiment in a reasonable time frame), we only consid-
ered projects whose change history size was in the interval between 5,000 and
50,000 commits, and a minimum code size of 10MB. To get the list of projects
we used a query from the GitHub GraphQL API. The number of stars and the

14



Figure 4: Real example of a successful refactoring using our approach.

package br.gov.siop.service.report;

public class ReportParameters {

public static Map<String, String> getFields(int reportType) {

Map<String, String> map = new LinkedHashMap<String, String>();

switch (reportType) {

case IReportGenerator.REPORT_GENERATOR_PROGRAM:

map.put("program_name", "Program");

map.put("program_agency_name", "Agency");

// long method...

}

return map;

}

}

(a) Excerpt from SIOP source-code before refactoring

ReportParameters

getFields

. . .

ReportGenerator

generateModule

getJasperPrint

transformDataIn. . .

. . .

ReportParameters

. . .

ReportGenerator

generateModule

getJasperPrint

transformDataIn. . .

getFields

. . .

before after

Legend

Class

Co-change cluster

Static dependency

Co-change dependency

(b) Graphical representation of the dependencies before and after refactoring

number of commits appear in the results of a query, allowing us to select only
the projects that satisfy our criteria. The minimum code size was passed as an
argument to the query. After applying all these filters, we selected the first 49
Java software systems, sorted according with their number of stars (we do not
used a threshold for the stars, we select this number of projects according to the
available time we had for the experiment). The set of selected systems include
popular projects, such as Cassandra, Gradle, and React Native. Table 2 presents
additional information about the systems we considered in this assessment.

5.2. Software Mining Procedures
Regarding the first assessment, we converted each project repository un-

der study from GitHub to a fine-grained repository. We ignored both automatic

15



generated and testing code from our analysis (for example, we ignored all source-
code within the src/test folders in Maven and Gradle projects). The resulting
repositories are publicly available at the companion websites6. After that, we
extracted the co-change dependencies from each fine-grained repository using
the thresholds 2 for minimum support count and 0.5 for minimum confidence.
Still, to reduce noise, as suggested by Beck and Diehl [26], we also discarded
commits that affect more than 50 fine-grained entities. Whenever we found a
commit on the fine-grained change history that removes a previously included
(and maybe updated) entity, we do not include that entity in the co-change
graph (and the corresponding edges). After that, we computed the co-change
clusters for all projects using a genetic algorithm (NSGA-II), configured as de-
tailed in Section 3.3. Due to the intrinsic randomness nature of the NSGA-II
algorithm, we repeated the clustering process 30 times for each project, and
consider the highest MQ value on all executions to select the best partition for
the individuals.

The clustering process is particularly resource-intensive. Table 1 shows the
time and space taken by a single execution of the clustering algorithm — and
for the sake of comparison, a execution of the REsolution tool — for a sample
which we consider in our research. We selected this sample according to their
properties (both largest and smallest codebase, and largest and smallest num-
ber of commits.) As we have to run the clustering algorithm 30 times for each
system, we often allocate multiple CPU cores such that we can run multiple
clustering processes in parallel, one for each core. However, the memory con-
sumption increases linearly in relation to the number of cores used, i.e., if we
use eight cores in parallel, we will consume eight times more memory than using
only one core. To collect these measures, we ran the tools in a machine with an
eight-core i7 Intel CPU with 3.4 GHz and 16GB of memory.

Table 1: Time and space requirements for a representative sample of studied systems.

System KLOC Commits Draco REsolution ObservationsTime Space Time Space
Hadoop 1,211 14,528 9h 5GB 14h 4GB Largest codebase
OsmAnd 230 34,278 6h 4GB 15min 2GB Largest number of commits
Drools 16 10,395 2h 2GB 1.5h 2GB Smallest codebase
jOOQ 133 5,022 19min 0.5GB 8min 1.8GB Smallest number of commits

5.3. Metrics
In order to evaluate the effect of applying the recommended refactorings on

the design quality, we used several metrics such as Propagation Cost (PC) [48],
Coupling Between Objects (CBO) [49], and the set of QMOOD (Quality Model
for Object Oriented Design) metrics [50]. We chose these metrics because they
have been used in a number of studies, including a recent research work that

6https://github.com/project-draco and https://github.com/project-draco-hr

16



evaluates a state of the art approach for recommending refactorings [10]. In this
way, we actually evaluate three quality attributes (Reusability, Flexibility, and
Understandability) that are defined in terms of these design metrics. In what
follows, we present the set of metrics and quality attributes considered in this
paper.

• Coupling Between Objects (CBO) Indicates if there is a dependency
between two classes. That is, CBO is zero when there is no dependency;
and one if there is least one dependency (such as a method call or a field
access).

• Message Passing Coupling (MPC ) Total of method calls and field
access between classes. In this paper we also sum up the number of the
co-change dependencies between classes.

• Propagation Cost (PC ) Number of direct and indirect dependencies
between classes. If the classes and dependencies between them are repre-
sented by a graph, the PC metric is the number of edges of the transitive
closure of that graph.

• Cohesion Among Methods of Class (CAM ) Average length of the
intersection of parameters types of a method with all parameters types in
a class.

• Class Interface Size (CIS) Number of public methods in a class.

• Design Size in Classes (DSC ) Total number of classes in a system.

• Data Access Metric (DAM ) Ratio between the number of non-public
fields and the total number of field in a class.

• Measure of Aggregation (MOA) Number of fields of user defined
types.

• Number of Polymorphic Methods (NOP) Number of overridden
methods.

• Average Number of Ancestors (ANA) Average number of classes
from which a class inherits.

• Number of Methods (NOM ) Number of methods defined in a class.

• Reusability Ability of a design to be reapplied to a new problem without
significant effort. It is defined by Bansiya and Davis [50] as:

Reusability = −0.25×MPC + 0.25× CAM + 0.5× CIS + 0.5×DSC

• Flexibility Ability of a design to incorporate changes. It is by Bansiya
and Davis [50] defined as:

Flexibility = 0.25×DAM − 0.25×MPC + 0.5×MOA+ 0.5×NOP

17



• Understandability Property of a design that enables it to be easily to
learn and comprehend. It is defined by Bansiya and Davis [50] as:

Understandability = −0.33×ANA+ 0.33×DAM
−0.33×MPC + 0.33× CAM
−0.33×NOP − 0.33×NOM − 0.33×DSC

5.4. Performing the Refactorings
In this first assessment we followed the approach of Tsantalis and Chatzigeor-

giou [9] to simulate and evaluate the application of recommended refactorings.
That is, instead of applying the refactorings on the original source-code, we
first build a graph G = (V,E), where V is the set of classes of a system and
E ⊆ V ×V is the set o dependencies between them. After that, we virtually ap-
ply the refactorings in this graph, changing the edges of the graph G according
to the move method/field recommendations.

In more details, one class C1 depends upon another class C2 if there is either
a static or co-change dependency from any fine-grained source-code entity of C1

to any entity of C2. After (virtually) applying the recommended refactorings on
G, we obtain a new graph G′ = (V,E′), where E′ ⊆ V × V is possibly different
from E. There is also a weight function w : V × V → N that represents the
number of dependencies (static or co-change) from the entities in the source class
to the entities in destination class of the edge. If a method m1 makes n calls
to a method m2, the result of applying the weight function is n. We simulate a
move method/field in three steps. First, we move a fine-grained entity from the
source to the destination class. After that, we recompute all edges involving the
source and destination classes. Finally, we recompute all weights of the affected
edges.

5.5. Results
After running Draco according to the previous sections on the 49 selected

systems, we were able to identify 610 evolutionary smells on 48 systems, leading
to 56 recommendations of move method/field refactorings that resolve evolu-
tionary smells from 18 systems. All these refactorings satisfy the constraints
discussed in Section 3.

We compared Draco with the existing Wang et al. work [10], that also
recommends move method/field refactorings. This related work is particularly
relevant because it outperforms several earlier research techniques for refactoring
recommendation (e.g., [51, 52, 53, 54]).

We manually executed the REsolution tool, provided by Wang et al. [10], and
collected the move method/field refactoring recommendations for the same 18
systems. However, REsolution recommended refactorings for 14 systems only.
Table 2 summarizes these results.

We then virtually applied the recommended refactorings in three different
ways:

18



Table 2: Studied systems.

System KLOC Commits # Evol. Smells # Ref. Recomm.
Actor Messaging platform 157 8,772 5 2
The ownCloud Android App 36 5,329 3
Atmosphere Event Driven Framework 41 5,748 2
Bazel build system 375 7,258 21
BigBlueButton web conferencing system 82 13,420 2 1
Broadleaf Commerce – Enterprise eCommerce 168 9,784 22
Buck build system 412 7,726 5 1
CAS - Enterprise Single Sign On 87 6,268 3 1
Cassandra partitioned row store 385 21,710 19 1
c:geo Android geocaching app 75 10,183 21
Closure Compiler 303 8,293 5
CoreNLP suite of core NLP tools 552 11,963 51
Deeplearning4j deep learning & linear algebra for Java 121 5,645 1
Drools rule engine 16 10,395 12 1
Druid analytics data store 297 7,452 12
Elasticsearch Engine 611 24,491 11
Fabric8 microservices platform 45 13,130 3
FBReaderJ e-book reader 68 9,012 11
Flink stream processing framework 419 9,565 5
Gradle build tool 283 38,756 41 4
Grails Web Application Framework 71 17,315 7
Groovy core language 156 12,379 10
Groovy language 161 13,465 15
H2O-2 Machine Learning Platform 95 16,172 4
H2O-3 Machine Learning Platform 143 19,336 13 2
Hadoop distributed computing 1,211 14,528 18
Hazelcast In-Memory Data Grid 531 21,136 32 4
Hibernate Object-Relational Mapping 628 7,302 2
Hive data warehouse facilities 1,025 9,201 40
Jitsi communicator 326 12,420 20 3
jMonkeyEngine game development suite 183 5,966 2
jOOQ SQL generator 133 5,022 2
Kill Bill Billing & Payment Platform 139 5,361 4 2
LanguageTool Style and Grammar Checker 75 19,121 8 1
libGDX game development framework 257 12,562 7
Liquibase database source control 77 5,360 23 17
Minecraft Forge 72 5,498 7
Openfire XMPP server 196 7,436 6
openHAB home automation platform add-ons 331 8,868 2 1
OpenTripPlanner multi-modal trip planner 90 8,698 6
OrientDB Multi-Model DBMS 390 14,118 16
OsmAnd navigation application 230 34,278 30
Pinpoint Application Performance Management 245 8,565 8 2
Presto distributed SQL query engine for big data 400 8,597 13 6
Processing Core and Development Environment 97 12,171 3
React Native framework for building native apps 48 7,842 3 2
Spring Framework 548 13,312 23 5
Storm distributed realtime computation system 213 7,451 0
VoltDB in-memory SQL RDBMS 573 23,131 31
Total 610 56

• first, we applied the refactoring recommendations to all 18 systems that
Draco found a recommendation;

• second, we applied the refactoring recommendations to the 14 systems
that REsolution found a recommendation;

• third, we applied the refactoring recommendations from both approaches
to the 14 systems that both REsolution and Draco at least one recom-
mendation.

Figure 5 shows the impact on the metrics CBO, MPC, PC (that measure
coupling), Reusability, Flexibility, and Understandability (that measure quality
attributes), for the 18 systems. The values represent the impact on the metrics

19



Figure 5: Improvement on design metrics after applying recommended refactorings from both
tools. Symbols mean: •=Draco, ?=REsolution,�=Draco and REsolution combined. The cor-
respondences between index and system are: 1-Actor, 2-BigBlueButton, 3-Buck, 4-CAS, 5-
Cassandra, 6-Drools, 7-Gradle, 8-H2O-3, 9-Hazelcast, 10-Jitsi, 11-Kill Bill, 12-LanguageTool,
13-Liquibase, 14-openHAB, 15-Pinpoint, 16-Presto DB, 17-React Native, 18-Spring Frame-
work.

0

2.28%

−0.98%

Im
p
ro
ve
m
en
t

1 2 3 4 5 6 7 8 9 101112131415161718
System index

•

?

�
• •

?

�
• •

?�
• •?� •

?� •
?�

•

?

�

•
?

�

•

?

�

•

?

�

• •?�
•

?

�

•

?

�

•
?
�

(a) CBO

0

0.19%

−0.46%

Im
p
ro
ve
m
en
t

1 2 3 4 5 6 7 8 9 101112131415161718
System index

•

?�

• •

?�

• •
?
�

•

•

?

�

•
?� •

?
�

•

?
�

•
?

�

•
?
� •

?
�

• •
?�

•

?
�

•

?

�

•
?
�

(b) MPC

0

13.81%

−5.14%

Im
p
ro
ve
m
en
t

1 2 3 4 5 6 7 8 9 101112131415161718
System index

•
?�

•

•

?
�

•

•?� • •

?�

•

?�

•?�
•

?
�

•
?
�

•
?�

•

?

� • •
?� •

?�
•?� •?�

(c) PC

0

0.07%

−0.13%

Im
p
ro
ve
m
en
t

1 2 3 4 5 6 7 8 9 101112131415161718
System index

•?
�

• •

?�

•

•

?

�

•

•

?

�
•

?� •

?

�

•

?
�

•

?

�

•
?
�

•

?

�

• •
?
�

•

?
�

•

?

�
•
?
�

(d) Reusability

0

0.19%

−0.22%

Im
p
ro
ve
m
en
t

1 2 3 4 5 6 7 8 9 101112131415161718
System index

•

?

�

• •

?�
•

•

?�

• •?� •

?�

•
?

�

•

?�

•

?

�

•?�

•
?

�

•

•
?

�

•

?

�

•

?

�

•?�

(e) Flexibility

0

0.13%

−0.20%

Im
p
ro
ve
m
en
t

1 2 3 4 5 6 7 8 9 101112131415161718

System index

•

?

�

• •

?�

•

•

?

�

•

•

?

�

•

?�

•

?

�
•

?
�

•

?

�

•

?
� •

?
�

• •
?
�

•

?
�

•?

�

•
?
�

(f) Understandability

after applying the refactorings. We normalized the metrics in all figures, and
thus the better values correspond to the greater values. The results for each
approach are denoted by different symbols, as follows. A “•” symbol represents
the Draco approach (ours). A “?” symbol represents REsolution (Wang et al.)
approach. A “�” symbol represents the combination of Draco + REsolution.
Based on these results, it is possible to realize that Draco outperforms the
REsolution approach, in the majority of the cases. Also, the combination of the
two approaches frequently is beneficial w.r.t. the improvement of the quality
metrics measured.

20



Table 3: Mann-Whitney U test p-values of Draco when compared with Wang et al. and the
original system metrics (with Benjamini-Yekutieli correction). Note that the Draco approach
improves the majority of the metrics with a statistical significance at least 95% (p-value<
0.05).

Metric Wang et al. Original System
CBO 0.0031403 0.0020175
MPC 0.0008967 0.0020175
PC 0.0031402 0.0059976

Reusability 0.2537220 0.4706940
Flexibility 0.0031402 0.0329610

Understandability 0.4380600 0.7791000

Table 4: Cohen’s d effect size statistics of Draco when compared with Wang et al. and the
original system metrics. Note that the Draco approach leads to a non-negligible improvement
on all metrics when compared with Wang et al. approach, and on the majority of the metrics
when compared with the original system.

Metric Wang et al. Original System
CBO 0.8733506 (large) 0.6618745 (medium)
MPC 0.9090697 (large) 0.9057448 (large)
PC 0.9323233 (large) 0.4244010 (small)

Reusability 0.4381047 (small) 0.2465364 (small)
Flexibility 0.9200228 (large) 0.1503500 (negligible)

Understandability 0.3255604 (small) 0.1307608 (negligible)

5.6. (RQ1) How does the Draco approach behave when improving the design
quality of a system?

We executed the Mann-Whitney U statistical significance test and the Co-
hen’s d effect size test for these six metrics. Specifically, we tested if Draco
performs significantly better than the Wang et al. approach and if the improve-
ment is significant upon the original system metrics. Table 3 shows the results
of the significance tests. Considering CBO, MPC, PC, and Flexibility, Draco
leads to a significant improvement when compared with the original system de-
composition and the resulting decomposition computed using the Wang et al.
approach (at a 0.05 significance level). Considering Reusability and Understand-
ability, the improvement was not statistically significant. However, considering
the results of the Cohen’s d effect size test (Table 4), it is possible to realize that
Draco leads to a non-negligible improvement for all metrics when compared with
the Wang et al. approach, and also a non-negligible improvement for all metrics
when compared with the original system decomposition, except for Flexibility
and Understandability.

We also measured how the systems’ attributes relates to the improvement
on the quality metrics presented in Section 4. We considered the following at-
tributes: (1) refactoring recommendations count; (2) co-change clusters mean
density; (3) fine-grained source-code entities count; (4) static graph density;
and (5) co-change graph density. We employed a multiple regression analysis

21



model to determine if these attributes have a statistically significant effect on
the quality metrics improvement. Table 5 shows the results, revealing that the
most effective attribute on quality metric improvement is refactoring recommen-
dations count, since it has a statistical significance of 99% (p-value< 0.01).

Table 5: Effect of attributes on metrics improvement. Note that we have only two attributes
influencing a metric with 99% of significance (p-value< 0.01, denoted by a ** suffix). While we
have three attributes influencing three metrics with 95% significance (p-value< 0.05, denoted
by a * suffix).

CBO MPC PC Reusab. Flexib. Understandab.
Intercept −0.0097 0.0001 0.1085 0.0001 −0.0010 0.0008

(0.0055) (0.0007) (0.0556) (0.0005) (0.0010) (0.0010)
Refactoring recommendations count 0.0007∗∗ 0.0001∗ −0.0018 0.0000 0.0001 0.0000

(0.0002) 0.0000 (0.0022) 0.0000 0.0000 0.0000
Co-change clusters density 0.0010 −0.0005 0.0465 −0.0008∗ −0.0008 −0.0005

(0.0040) (0.0005) (0.0403) (0.0003) (0.0007) (0.0007)
Entities count 0.0000 0.0000 0.0001∗ 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Static graph density 127.3095∗∗ 5.9265 −377.8864 1.1333 6.0888 −1.2924

(32.0436) (3.8240) (321.3327) (2.7005) (5.8045) (5.6753)
Co-change graph density −137.8211 −0.6133 −1320.5310 11.6540 14.1054 2.2192

(83.5465) (9.9701) (837.8044) (7.0409) (15.1339) (14.7971)
R2 0.801154 0.559688 0.403463 0.390744 0.328650 0.147522
Adj. R2 0.718302 0.376225 0.154906 0.136887 0.048920 −0.207677
Num. obs. 18 18 18 18 18 18
RMSE 0.003176 0.000379 0.031844 0.000268 0.000575 0.000562
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Actually, the static graph density also affect the CBO metric with 99% of
statistical significance (p-value< 0.01). The refactoring recommendations count
attribute also affects the MPC metric (in this case with 95% of significance).
The entities count negatively affects the PC metric (with 95% of significance),
suggesting that for smaller systems Draco tends to produce greater improve-
ments in the PC metric. Finally, the co-change clusters density negatively
affects the Reusability metric (with 95% of significance). A dense co-change
cluster might suggest that the entities belonging to a cluster tend to change
together. Based on the results of this analysis, we did not find any attribute
that significantly affect the remaining two metrics (Flexibility and Understand-
ability).

Answer to RQ1: The Draco approach reduces coupling when measured
by CBO, MPC, and PC metrics, considering both co-change and static
dependencies. The improvement is proportional to the number of identified
refactoring opportunities.

5.7. (RQ2) How does the Draco approach compare to a state of the art approach
for refactoring recommendation?

The results discussed in the last section leads to several findings. First,
Draco improved the CBO, MPC, or PC metrics for all 18 systems. However,
the Wang et al. approach improved CBO for only 5 out of 14 systems, MPC
for only 4 systems, and PC for only 2 systems. For these three metrics (CBO,
MPC, and PC ), in only two cases the Wang et al. approach outperforms Draco.

22



We also found that in the situations where both approaches improve a given
metric, the use of them in combination improves even further. That is, combin-
ing both approaches tends to lead to an improvement that is equivalent to the
sum of the improvements of the approaches taken individually, which suggest
that the two approaches are complementary. This occurs because no refactoring
recommended by Draco was also recommended by the Wang et al. approach.

Given the measures of quality attributes investigated here (Reusability, Flex-
ibility, and Understandability) for the 18 studied systems (54 measures), Draco
improved 36 (66.66%) measures, while the Wang et al. approach improved 17 of
42 measures (40%, for 14 systems). Besides that, Draco outperforms the Wang
et al. approach on 29 measures, while the opposite occurs on 13 measures. Like-
wise the other quality metrics, the improvement of the two approaches can be
summed together when we apply them together.

Answer to RQ2: these results suggest that the Draco approach outper-
forms a state of the art techniques for recommending move method/field
refactorings, when we consider both co-change and static dependencies.

5.8. (RQ3) What is the impact of the different thresholds when extracting co-
change dependencies on the results?

To choose the parameters used to compute co-change dependencies, namely
minimum support count (Smin) and minimum confidence (Cmin), we had to
consider several trade-offs. The values of Smin or Cmin are inversely propor-
tional to the number of co-change dependencies found, i.e., low values produce
a higher number of dependencies, and high values produce a lower number of
dependencies. Furthermore, low values leads to “weaker” co-change dependen-
cies, and since they produce a higher number of dependencies the computation
of co-change clusters takes more time. Also, since high threshold values produce
fewer dependencies, the likeability of find refactoring opportunities is lower.

Table 6: Effect of parameters combinations on results. The best combination in terms of
refactoring recommendations is in bold.

Parameter Smells detected Refactoring
recommendations Edges count

S2 C0.4 57 25 32,663
S2 C0.5 57 32 28,509
S2 C0.6 58 25 26,850
S2 C0.7 48 26 22,545
S2 C0.8 49 26 21,609
S3 C0.5 22 18 4,888
S4 C0.5 11 9 1,575
S5 C0.5 7 7 714

Sα means Smin = α, and Cβ means Cmin = β

23



To analyze how different parameters values affect the result of our exper-
iment, we computed evolutionary smells and refactoring recommendations for
8 different parameters combinations. We experimented the values 3, 4, 5 for
the parameter Smin while setting the parameter Cmin = 0.5, and the values
0.4, 0.6, 0.7, 0.8 for the parameter Cmin while setting the parameter Smin=2. As
the computation of co-change clusters is a time-consuming task (see Section 5.2),
in this analysis we used only the 10 smaller systems from the original set of 49
studied systems.

Table 6 shows the results of this analysis. Accordingly, the parameter com-
bination that produces more refactoring recommendations is Smin = 2 and
Cmin = 0.5, which is the combination we used in Section 5.2. We can see that
except for Cmin = 0.5 all other combinations with Smin = 2 are equivalent in
terms of refactoring recommendations, mainly because the number of the edges
of the co-change graphs reduces just a few when we increase the confidence
value. Also, we can see that lower confidence values does not necessarily in-
crease the number of refactoring recommendations, according to the results for
S2 C0.4 and S2 C0.5. This result suggests that weaker co-change dependencies
could not be good enough to produce refactoring recommendations. On the
other hand, increasing the support count parameter value significantly reduces
both the number of smells detected and the number of refactoring recommen-
dations, mainly because the number of edges of the co-change graphs is severely
reduced when the support count increases.

Answer to RQ3: confidence parameters ranging from 0.4 to 0.8 have little
impact on the number of evolutionary smells and refactoring recommen-
dations found. However, the use of support count values greater than 2
significantly reduces both the number of evolutionary smells and refactor-
ing recommendations.

5.9. Manual Verification of the Refactorings
To mitigate a possible threat related to the applicability of the Draco refac-

toring recommendations, we manually applied a sample of the Draco recom-
mendations. To this end, we randomly selected 10 refactoring recommendations
from 9 systems. Before applying the refactorings, we built the systems and ran
their unit test cases. Nonetheless, we were not able to successfully build or test
three projects, and thus we discarded three refactoring recommendations. From
the six remaining projects we were able to apply five refactorings without any
modification.

From the two remaining move method refactorings, we had to rename a
method before applying one of the recommendations, because the target class
already had a method with the same name. Although we could have introduced
a new constraint to avoid moving a method to a class that already declares a
method with the same name, we make the decision to recommend the refac-
toring, delegating the renaming of the method before moving it to the software
developers. The last recommendation involved the overriding of a method from
its superclass. We observed that the method had an empty implementation in

24



the superclass and only one of the subclasses in fact overrides that method.
Therefore, this is an instance of the Refused Bequest bad smell [27] (in addition
to the evolutionary smell, of course). Accordingly, we manually applied the Push
Down refactoring [27], which is the appropriate refactoring to remove the Re-
fused Bequest smell. Again, we could have introduced a new constraint to avoid
moving a method that overrides a method from an interface or superclass, but
we prefer to recommend the refactoring, delegating the necessary adjustments
before the refactoring to a software developer.

These two weak preconditions align to the argument that developers often
prefer tools that do not discard refactoring opportunities, even when some fixes
are necessary to perform the refactoring [55, 56]. In summary, after a few
adjustments, we successfully applied all Draco refactoring recommendations we
selected for manual verification.

5.10. Threats to Validity Related to the First Study
Although we applied the same approach to all studied systems, we cannot

ensure that a given combination of thresholds favor or disfavor a particular sys-
tem. To mitigate this effect, we chose the co-change dependencies thresholds
according to the procedure detailed at Section 5.8. For computing co-change
clusters, we did not compare the performance of the Genetic Algorithm with
other alternatives, like Hill Climbing or Random Search. While previous work
discusses that multi-objective GA’s usually outperforms other approaches for
software clustering [41], the results can be different when using a different clus-
tering algorithm.

We only found refactorings for 18 out of 48 systems. This may suggest that
part of our constraints are overly strong. Although we believe that weakening
these constraints would increase the number of refactorings recommendations, a
more detailed investigation is left for future work. To do that, we might accept
to move a method/field to another class even in the cases where some (static or
co-change) dependencies would remain. Nevertheless, the baseline technique we
used to compare with our approach found refactoring opportunities in a smaller
number of systems, even considering that our approach is rather conservative.

We selected a set of open-source Java systems for this study. This can
potentially limit the generalization of our results. However, we choose a wide
range of applications domains, that had a large code base with a long history of
maintenance tasks. Therefore we expect that our findings would be reproducible
in some other projects too. In the future, we plan to reduce these threat by
experimenting with systems written in different programming languages.

Finally, during the manual verification of the refactorings, we found that
some recommendations require a few adjustments before they could be applied.
In particular, the recommendations can involve methods that (a) collide with
methods in the target class that have the same name of the moving method, or
(b) override methods from superclasses or interfaces. We chose to keep these
recommendations in the study because it is possible to overcome this limitation,
for example, by (a) renaming the moving method before the refactoring, or (b)
letting the target class implement the interface that declares the method, or

25



(c) performing a Push Down refactoring as we have discussed in the previous
section.

Furthermore, these recommendations can spot design problems that might
lead to a redesign of the classes involved in the refactoring (see Section 6.2.1 for
a concrete example). Nevertheless, this might be also an option in the Draco
tool, which could allow the user to choose if the refactoring recommendations
can refer to methods that have names of methods already present in the target
class, and methods that override some interface or superclass method.

Since the goal of this first study was to quantitatively assess the effect of
the refactoring recommendations on design quality metrics, we did not analyze
if the recommendations (both from Draco and REsolution) introduce new ar-
chitectural issues. In particular we did not verify if the sequence of refactorings
lead to the creation of “god classes”, or even violate some architectural con-
straints or design quality attributes (such as separation of concerns). Our idea
is to investigate the feasibility of augmenting the Draco tool with additional
options, in order to avoid recommending refactorings that might either violate
architectural constraints or that could eventually produce “god classes”.

6. Second Study: Qualitative Assessment

The goal of this second study is to answer the fourth research question, and
therefore to understand how useful are the recommendations made by Draco,
as well as three other existing refactoring tools: REsolution, JDeodorant, and
JMove.

In this section, we use the term “useful” to indicate how suitable the rec-
ommendations from these tools are, considering the opinion of architects and
developers from three existing enterprise systems (SIOP, SISDOT, and SIS-
BOL). SIOP (Integrated Planning and Budget System) was developed by the
Brazilian Ministry of Economy, and is one of the most important Brazilian sys-
tems in the public finance domain. It supports the Federal Public Planning
and Budget process, where all agencies from all federal powers participate. It
is a large Java Enterprise Edition System with more than 600 KLOC (thou-
sand lines of code) of Java code, 30,000 commits, and is currently maintained
by a team with more than 15 developers. SISDOT and SISBOL systems have
been developed in a research cooperation project between the Brazilian Army
and the University of Brasília, and have been used in previous studies to ex-
plore development approaches and technical design decisions [57, 58]. The first
system (Material Endowment System, SISDOT) deals with the distribution of
materials and equipment to all organizational units of the Brazilian Army (con-
sidering well-defined rules of distribution). This is a Java Enterprise Edition
system with more than 15 contributors, 1800 commits, and 40 KLOC of Java
code. The second system (Bulletin System, SISBOL) manages the internal of-
ficial communication of events within the Brazilian Army. It is a configurable
system, which supports specific communication workflows for the individual or-
ganizational unities of the Brazilian Army. SISBOL is an enterprise system

26



based on a service-oriented architecture [59]. Its current implementation com-
prises almost 20 contributors, 1130 commits, 20 KLOC of Java code and 10
KLOC of JavaScript code using the AngularJS framework.

6.1. Study Settings
In this second assessment, we gathered the outcomes of Draco and three

other tools for recommending refactorings, all configured using their default
settings, to find refactoring opportunities in both SISDOT and SISBOL. We
then concretely applied the recommended refactorings. First, we got a copy
of the develop branch and then created a new branch for each recommended
refactoring (from the develop branch). After applying the recommended changes
in the source code, we sent a pull-request for each recommendation. In this
way, we could collect the perceptions of the architects and developers to each
individual recommendation. We also assessed the refactoring recommendations
from Draco for SIOP. However, instead of applying the refactorings, in this case
we actually sent lists of refactoring recommendations to the developers that are
responsible for the maintenance of the code involved in the recommendation.
After that, this developers performed the refactorings in their personal branches
and sent back to us their feedback about the recommendations.

6.2. Results
Table 7 summarizes the results of this second study. It is possible to realize

that JMove presents the higher acceptance rate, although it recommended a
smaller number of refactorings. The other tools recommended refactorings with
an acceptance rate around 30%. Curiously, none of the refactoring recommenda-
tions for SISBOL have been accepted. In addition, the results suggest that the
tools complement each other, in particular because there is almost no intersec-
tion between the refactoring recommendations from the different tools. In the
following sections we present more details about the results of each refactoring
recommendation tool.

Table 7: Summary of the analysis for the refactoring recommended from four different tools

Tool Draco REsolution JDeodorant JMove

SISDOT Recommendations 0 3 10 2
SISDOT Accepted 0 1 3 2
SISBOL Recommendations 2 0 1 0
SISBOL Accepted 0 0 0 0
SIOP Recommendations 4 – – –
SIOP Accepted 2 – – –
Total Recommended 6 3 11 2
Total Accepted 2 1 3 2
Acceptance rate 33% 33% 27% 100%

27



Figure 6: A rejected move method recommendation from Draco for SIOP. The recommen-
dation was to move the method groupRevenuesBySource from class ScenarioValue to class
SourceProcessing. It was rejected because it would cause a compilation error, since the imple-
mentation of the method is required by interface Revenue. (The classes and interfaces in this
figure has additional methods and attributes that were omitted because they are unrelated to
the refactoring recommendation)

SourceProcessing

~ process(): Collection<GroupedRevenue>

ScenarioValue

+ groupRevenuesBySource(Collection<GroupedRevenue> revenues)

CollectedRevenue

+ groupRevenuesBySource(Collection<GroupedRevenue> revenues)

Revenue
+ groupRevenuesBySource(Collection<GroupedRevenue> revenues)

move to

6.2.1. Draco Analysis
Draco recommend four SIOP refactorings and two were accepted. The first

accepted recommendation was to move a method (getFields) that returns a
list of report fields given a report type, from class ReportParameters to the
class ReportGenerator (see Figure 4 presented in Section 4). Both are ser-
vice classes. The recommendation spotted a misplaced responsibility allocation
at class ReportParameters, as the method getFields is unrelated with report
parameters. The recommended refactoring reduced the coupling between the
two classes and augmented the cohesion of the destination class. The second
accepted recommendation from Draco was to move a method (create) from
a service class (ScenarioService) to a presentation class (ScenarioPageBean).
The method create just initializes a Scenario object with default values for
use with an registration form. No class is interested in this method except
ScenarioPageBean. After the refactoring, the coupling between the two classes
decreased and the cohesion of the destination class ScenarioPageBean increased.

Draco also recommended two SIOP refactoring that were rejected. The first
one was to move a method (groupRevenuesBySource) that belongs to an inter-
face implemented by the source class (ScenarioValue) to the class that uses
the interface (SourceProcessing), as shown in Figure 6. The recommendation
was rejected, because if we apply this refactoring, the source-code would not
compile. However, after analyzing the recommendation with careful consider-
ation, we saw that the implementations of the method groupRevenuesBySource

have low cohesion with the classes where they are declared. The rationale for
the creation of this interface is that the logic of grouping revenues by source de-
pends on the kind of revenue. As each kind of revenue is implemented by a class,
the architects let these classes implement the logic of grouping. Thus, the caller
would have to know only the interface. However, in practice the implementation
classes do not have to know how to group revenues by source, as this logic is ex-

28



Figure 7: A better design for the classes and interfaces involved in the rejected refactoring
recommendation for SIOP as illustrated by Figure 6. The adoption of the visitor pattern
allowed to decouple the logic of grouping revenues by source from the Revenue implementors,
keeping the logic of process method generic. (The classes and interfaces in this figure has addi-
tional methods and attributes that were omitted because they are unrelated to the refactoring
recommendation)

SourceProcessing

~
+
+

process(): Collection<GroupedRevenue>
visit(ScenarioValue sv)
visit(CollectedRevenue cr)

ScenarioValue

+ accept(Visitor v)

CollectedRevenue

+ accept(Visitor v)

Revenue
+ accept(Visitor v)

Visitor
+
+

visit(ScenarioValue sv)
visit(CollectedRevenue cr

clusively handled by class SourceProcessing. Therefore, a better design would
be the use of the visitor pattern, as shown in Figure 7. This new design will
preserve the generic nature of the caller, while moving the “grouping by source
logic” to the class of the caller, and therefore increasing their cohesion. As this
alternative design must be manually implemented, the architects decided to keep
the original design for now. The second rejected refactoring recommendation
from Draco for SIOP was to move the method doFilter from class GZIPFilter

to class GZIPResponseStream, both are presentation classes. This method is
declared in the interface javax.servlet.Filter (which is part of the Java En-
terprise Edition specification), which is implemented by class GZIPFilter. If
we simply move the method from the current class, the resulting source code
would not compile. This is the reason for not accepting this recommendation.
However, the recommendation also revealed a design problem, that is the high
logical coupling between the classes GZIPFilter and GZIPResponseStream. The
architects agree that a better design would be merging the two classes and let
the resulting class implement the javax.servlet.Filter interface (in addition
to other interfaces that the two original classes implement). Again, since this
design change has to be manually implemented, the current design will be kept
for now.

Draco recommended two SISBOL refactorings. None of these recommenda-
tions were accepted. The recommendations made by Draco to SISBOL were
rejected due to a similar reason. PR-SISBOL-39 recommends to move a method
from a service class to a resource class. These types of classes follow a typi-

29



Figure 8: A move method recommendation from REsolution. This recommendation led to an
accepted pull-request

SiglaFracaoServico

+ validarSigla(Sigla s)
Sigla SiglaFracaoServico Sigla

+ validarSigla()

Before After

cal JavaEE service-oriented decomposition, and both should deal with different
responsibilities. For this reason, although this recommendation removes co-
change dependencies, moving methods between these types of classes violates
one architectural constraint of the system. PR-SISBOL-40 recommends moving a
static attribute from a class (that declares several strings for mapping keys into
user messages) to a service class. Again, although this recommendation reduces
co-change dependencies, it violates an architectural constraint that states that
all message keys should be kept in specific classes.

6.2.2. REsolution Analysis
Table 7 shows that REsolution found 3 refactoring opportunities for SISDOT

(and none for SISBOL). One of these pull-requests (PR-SISDOT-28) was accepted
by the architects and developers. PR-SISDOT-28 recommends to move a method
from a class that implements a business service (SiglaFracaoServico) to a class
that implements a domain model (Sigla) (see Figure 8). This recommenda-
tion improves cohesion and helps to avoid anemic domain objects [60]. Also
considering REsolution, two other pull-requests were rejected. PR-SISDOT-30

suggests to move a static method from an utility class (QuadroDeCargosUtil)
to a value object. This recommendation might improve some structural prop-
erty, though decreases the cohesion of both class and does not comply with the
SISDOT architectural constraint of keeping utility methods in utility classes.
Surprisingly, PR-SISDOT-29 recommends moving another static method from/to
the same classes. Considering that SISDOT has more than 400 Java classes,
we were not expecting a small number of move methods recommendations in-
volving the same classes. Moreover, we also discarded a REsolution refactoring.
In this case, this refactoring suggested to move the values() method from an
enumeration to another class. Since this method is generated by the compiler,
the refactoring is not possible. This qualitative assessment suggests that the
REsolution tool can be the subject of further studies.

6.2.3. JMove Analysis
As one can see from Table 7, the two recommendations proposed by JMove

were accepted by the software development team. As the name of the refac-
toring tool suggests, both recommendations are related to the move method
refactoring. In the first pull-request (PR-SISDOT-7), the intention was to move
a method from a business class to a model class. The rationale here is that
the method generateCode does not pertain to the business class because it
does not use any attribute from this class. In fact, this method does string

30



concatenation using solely the attributes from the model class (characteriz-
ing a feature envy smell). After moving this method to the appropriated
class, the client code changed from entity.setCodot(generateCode(entity)); to
entity.setCodot(entity.gerarCodot());. The other pull-request (PR-SISDOT-8)
goes along the same lines.

6.2.4. JDeodorant Analysis
According to Table 7, JDeodorant found 10 refactoring opportunities when

considering the SISDOT project. Three of these recommendations were accepted—
all based on the particular pattern we show in Listing 1. For this particular case
(PR-SISDOT-17), we replace an assignment in the form <var> = null; followed by
some particular logic for correctly initializing <var> (classes in the code of List-
ing 1). The original assignment and related correct initialization are factored
out using the factory method design pattern. All accepted recommendations
from JDeodorant are based on this refactoring template.

Listing 1: DIFF of the pull request PR-SISDOT-17

- HashMap<Integer, ClasseMaterial> classes = null;

-

- if(!consolidacao.equals(NivelDetalhamento.DETALHES)) {

- classes = vo.consolidarMateriais();

- }

- else {

- classes = vo.getClasses();

- }

-

+ HashMap<Integer, ClasseMaterial> classes = classes(vo, consolidacao);

// ...

+ private HashMap<Integer, ClasseMaterial> classes(FracaoQDMRelatorioVO vo,

+ NivelDetalhamento consolidacao) {

+ HashMap<Integer, ClasseMaterial> classes = null;

+ if(!consolidacao.equals(NivelDetalhamento.DETALHES)) {

+ classes = vo.consolidarMateriais();

+ } else {

+ classes = vo.getClasses();

+ }

+ return classes;

+ }

Table 7 also shows that the remaining recommendations from JDeodorant
were all rejected. For instance, Listing 2 shows a refactoring recommended (and
rejected) by JDeodorant. In this particular case (PR-SISDOT-22), the recom-
mendation tries to solve a long method bad smell (almost 50 lines of code) by
removing an assignment to a call to a new method. The result is that it does
not significantly reduce the number of lines of the original (long) method and
introduces a new method and a method call. In this case, JDeodorant correctly

31



identified the long method, but the proposed refactoring does not lead to a code
improvement (based on the opinion of the SISDOT development team).

Listing 2: DIFF of the pull request PR-SISDOT-22

//long method here....

boolean found = true;

while (found) {

- found = false;

+ found = found(paragraph, searchText, found);

int pos = paragraph.getText().indexOf(searchText);

if (pos >= 0) {

- found = true;

//... end of the long method.

}

// new method recommended by JDeodorant

+ private boolean found(XWPFParagraph paragraph, String searchText, boolean found) {

+ found = false;

+ int pos = paragraph.getText().indexOf(searchText);

+ if(pos >= 0) {

+ found = true;

+ }

+ return found;

+ }

Other refactoring recommendation from JDeodorant (PR-SISDOT-21) creates
a new method that is a clone of an existing method from the superclass. Sim-
ilarly to PR-SISDOT-22, PR-SISDOT-20 corresponds to an extract method recom-
mendation that reduces four lines of code of a long method by introducing a
new method and a method call.

Listing 3 shows the resulting diff of applying another recommended refac-
toring from JDeodorant (PR-SISDOT-19). In this case, a for loop was moved to
a new method (map), though without leading to a perceptive improvement in
the source code (in particular because the original method has only five lines
of code). PR-SISDOT-18 and PR-SISDOT-13 presents a similar structure, and for
this reason they were rejected, while PR-SISDOT-15 was considered hard to un-
derstand and bringing small benefit to the design.

Listing 3: DIFF of the pull request PR-SISDOT-18

void replace(XWPFDocument document, Map<String, V> map) {

List<XWPFParagraph> paragraphs = document.getParagraphs();

+ map(map, paragraphs);

+ }

+

+ void map(Map<String, V> map, List<XWPFParagraph> paragraphs) {

for (XWPFParagraph paragraph : paragraphs) {

replace(paragraph, map);

32



}

Regarding SISBOL, JDeodorant found one opportunity for applying the ex-
tract class refactoring. However, although the development team agree that the
existing class should be refactored, extracting part of its responsibilities to a
new class would not be the right decision—because this would lead to a design
that does not fit the architectural decomposition of SISBOL. For this reason,
the SISBOL development team decided to reject pull-request PR-SISBOL-37.

6.3. Discussion
Although we cannot generalize our findings (as discussed in the next section),

the results of our qualitative study reveal that, for one large and two typical
small to medium size Java Enterprise Systems, existing tools for recommending
refactorings identify a few opportunities to improve the design of a software,
and several recommendations do not bring concrete benefits to the design. In
particular, here we give evidence that refactoring recommendation tools should
be augmented with the architectural decisions of the projects, reducing the
number of recommendations that do not fit the design of the systems. This
might suggest future research development.

For SISDOT and SISBOL, the small number of recommendations might
have been motivated due to an “above of the average” quality of the systems.
For instance, their development leveraged agile practices like code inspection,
pair-programming and coding dojo, which in the end could mitigate design
problems. Perhaps even more importantly, the development teams of these two
systems are a mix of both experienced and novice developers. This leads to
another question: “How often the developers of SISDOT and SISBOL refactor
the design of the systems?” We used Refactoring Miner [61] to answer this
question and to identify the number of refactorings performed in both systems
during their development process. Table 8 shows the results.

In the case of SISDOT, Refactoring Miner identified 1,877 refactorings, in-
cluding 277 move methods, 176 extract methods, and 23 extract and move meth-
ods. These are the types of refactorings we are most interested in and that might
have been recommended by the tools we analyzed here. Therefore, state-of-the-
art refactoring tools may be missing potential refactoring opportunities. Unfor-
tunately, when performing with SISBOL, Refactoring Miner did not successfully
complete the analyses, and several exceptions of type CheckoutConflictException
were logged during its execution. For this reason, Refactoring Miner identified
only 88 refactorings performed at SISBOL.

Altogether, this study brings some evidence and other open questions. First,
state-of-the-art refactoring recommendation tools identify a small fraction of the
refactoring opportunities that are manually identified by developers during their
development activities. In this way, we believe that it is necessary to further
investigate how to improve these tools to make them more effective—at least
for the domain of Java enterprise systems. Second, it is necessary to comple-
ment refactoring recommendation tools to consider design constraints of the
systems, in order to avoid false-positive recommendations. Third, it might be

33



Table 8: Results of mining refactorings in both systems using Refactoring Miner

Refactoring SISDOT SISBOL

Change Package 4 0
Extract And Move Method 23 2

Extract Interface 13 9
Extract Method 176 4

Extract Superclass 20 4
Extract Variable 28 5

Inline Method 10 3
Inline Variable 5 0

Move And Rename Class 12 1
Move Attribute 94 12

Move Class 180 1
Move Method 277 13

Parameterize Variable 3 1
Pull Up Attribute 52 0
Pull Up Method 179 0

Push Down Method 4 0
Rename Attribute 45 3

Rename Class 111 3
Rename Method 423 9

Rename Parameter 85 6
Rename Variable 111 12

Replace Variable With Attribute 10 0
Total 1,877 88

worth to develop a product line of refactoring recommendation tools, so that we
could run these tools in different configurations of heuristics to identify refac-
toring opportunities. In particular, the evaluated tools recommended different
refactorings for both systems, and thus they might actually complement each
other. Fourth, existing studies that only use metrics to compare refactoring
recommendations tools are insufficient to explain the real consequences of using
a particular approach.

Answer toRQ4: The results of our second study suggests that state-of-the-
art tools for recommending refactoring are rather ineffective, because they
recommend a small fraction of the refactorings carried out by the develop-
ers during the development of the software and because they recommend
refactorings that do not consider the architectural decisions of the systems.
Nonetheless, although JMove recommended only 2 refactorings, both have
been accepted and integrated into SISDOT. The other tools recommend
refactorings with an acceptance rate around 30%.

Although most of the recommendations have been rejected, it is important

34



to notice that the additional analysis of the recommendations by the architects
and the comments to the pull requests suggest that the evaluated tools were able
to correctly identify classes and methods with design flaws. In some situations,
this information was relevant to at least start a discussion about future manual
refactoring efforts.

6.4. Threats to Validity Related to the Second Study
One threat to validity of this study is that the refactoring tools do not

recommend exactly the same kind of refactorings. For instance, JDeodorant
have an extensive catalog of refactoring recommendations, expanding our notion
of move method refactoring, covering other refactorings such as extract method
and extract class. Therefore, since JDeodorant is broader in essence, it would
be more likely to have more recommendations than, say, Draco. However, in our
qualitative study, the focus was not on the number of recommendations found
per se. Instead, we focused on whether the recommendations (wrapped within
pull-requests) made any sense.

Similarly, we cannot guarantee that all recommendations can be fully auto-
mated. For example, we can possibly produce refactorings involving methods
that override interface methods. On the other hand, other tools also produce
recommendations that are hardly possible to apply. As an example, REsolution
recommended a refactoring to move a method that is compiler-generated. We
discarded these cases.

Moreover, a reader might consider that Draco is an ineffective approach, pre-
senting an acceptance rate around 33%—although this rate is similar to other
tools. Specifically, we observed that the majority of accepted refactorings did
not affect the the design of the systems. However, since the Draco tool suggests
refactorings that aim to improve the design, it might face some resistance. In
fact, the requirement that refactoring tools must obey architectural constraints
was studied before [25]. Still, the relatively low number of recommendations
found by Draco could also be seen as a threat to validity. However, the recom-
mendations still can be used to provoke discussion about the suitability of the
design w.r.t. keeping co-changed source-code methods in the same class. Nev-
ertheless, in a future work we will explore if relaxing some constraints of Draco
approach—specifically allowing the introduction of new static dependencies after
a refactoring recommendation—would increase the number of recommendations
and acceptance rate, and consequently the effectiveness of the tool.

It is important to note that Draco does not blindly apply any refactoring,
but instead, it recommends transformations that the developers of a system
must ultimately review. As we present in Section 6.2, some of the Draco rec-
ommendations have not been integrated into the systems. The same is true
for other refactoring recommendation approaches. Draco, and the other tools
as well, could even recommend a refactoring that breaks either architectural
constraints or the building process of a system. We can mitigate this problem
by enforcing additional constraints, though we decide to weaken some of them,
according to the recommendations of a previous work [56]. This motivates an
additional question: what are the implications of using Draco in a well designed

35



system?. Trying to investigate this question, we used Draco to recommend
refactorings for JHotDraw (a system recognized by its architecture and design
decomposition). Even in this particular case, Draco recommended seven refac-
torings, which might somehow compromise the original design of the system.
An interesting research question, which we aim to explore as future work, is the
correlation between co-change dependencies and more specific design constraints
of a system (including the use of design patterns).

Another limitation is that we studied only three software projects. How-
ever, we believe that they are representative once they are written using the
same programming language that the studied refactoring tools work on. More
importantly, since we could have access to the development teams, we could
have better discussions regarding their rationale behind accepting or not the
recommendations, which is not always the case when dealing with open-source
projects (e.g., some pull-requests have to wait many months to be reviewed,
others are not reviewed at all [43, 44])

Finally, we must note that, for different systems, the architecture, and there-
fore the architectural constraints, can vary. Therefore, we may have constraints
in the studied systems that lead to rejection of refactoring recommendation
that otherwise would be accepted by another architect of another system. The
acceptance decision also depends on personal judgment of the architects, and
this might be a confounding factor. Nevertheless, the three studied systems of
this second study are based on the standard Java Enterprise Edition specifica-
tion, and thus its architectural constraints are common w.r.t another enterprise
systems that adopt the same architectural style.

7. Conclusion

In this paper we presented a novel approach that addresses the lack of refac-
toring recommendation tools that consider co-change dependencies. Developers
regard this kind of dependency as important, when reasoning about software
remodularization [25]. Accordingly, our approach remove co-change dependen-
cies (and eventually static dependencies) between classes, reducing the coupling
of the system and therefore improving its design. Our approach detect and re-
move evolutionary smells, which manifest when methods or fields from different
classes are co-change dependent but do not have any dependency on methods or
fields from the same class where they are declared. We evaluated our approach
using 49 open-source systems and found 610 evolutionary smells on 48 systems,
and 56 refactoring recommendations on 18 systems—even considering that our
approach is overly conservative. After applying the recommended refactorings,
we found that our approach improves the design of the system (considering cou-
pling metrics such as CBO, MPC, and PC ) and outperforms a state of the art
refactoring recommendation tool (REsolution) [10]. Still, we conducted a qual-
itative assessment to understand the effectiveness of the recommendations (i.e.,
if developers would be willing to accept the automated contributions). To this
end, in addition to the two refactoring tools (Draco and REsolution), we also

36



explored the refactorings recommended by other two state-to-the-art refactor-
ing tools (JMove and JDeodorant). In this analysis we perceived that, although
the overall number of recommendations was small, some of them were, indeed,
accepted by the software development team. Finally, the accepted recommen-
dations from Draco demonstrate its feasibility, and we also found that some of
the the rejected recommendations started discussions about design flaws and its
alternative solutions.

References

[1] D. L. Parnas, On the criteria to be used in decomposing systems into
modules, Commun. ACM 15 (1972) 1053–1058. URL: http://doi.acm.

org/10.1145/361598.361623. doi:10.1145/361598.361623.

[2] D. L. Parnas, Software aging, in: Proceedings of the 16th International
Conference on Software Engineering, ICSE ’94, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1994, pp. 279–287. URL: http://dl.acm.
org/citation.cfm?id=257734.257788.

[3] J. van Gurp, J. Bosch, Design erosion: problems and causes,
Journal of Systems and Software 61 (2002) 105 – 119. URL:
http://www.sciencedirect.com/science/article/pii/S0164121201001522.
doi:https://doi.org/10.1016/S0164-1212(01)00152-2.

[4] I. Ahmed, U. A. Mannan, R. Gopinath, C. Jensen, An empirical study
of design degradation: How software projects get worse over time, in:
2015 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2015, pp. 1–10. doi:10.1109/ESEM.2015.
7321186.

[5] L. de Silva, D. Balasubramaniam, Controlling software architecture
erosion: A survey, Journal of Systems and Software 85 (2012)
132 – 151. URL: http://www.sciencedirect.com/science/article/pii/

S0164121211002044. doi:https://doi.org/10.1016/j.jss.2011.07.036, dy-
namic Analysis and Testing of Embedded Software.

[6] B. S. Mitchell, S. Mancoridis, On the automatic modularization of software
systems using the bunch tool, IEEE Trans. Softw. Eng. 32 (2006) 193–208.

[7] L. L. Silva, M. T. Valente, M. de A. Maia, Co-change Clusters: Extraction
and Application on Assessing Software Modularity, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2015, pp. 96–131. URL: https://doi.org/10.
1007/978-3-662-46734-3_3. doi:10.1007/978-3-662-46734-3_3.

[8] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, W. Zhao, Interactive and guided
architectural refactoring with search-based recommendation, in: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE 2016, ACM, New York, NY, USA,

37



2016, pp. 535–546. URL: http://doi.acm.org/10.1145/2950290.2950317.
doi:10.1145/2950290.2950317.

[9] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, IEEE Transactions on Software Engineering 35 (2009) 347–
367. doi:10.1109/TSE.2009.1.

[10] Y. WANG, H. Yu, Z. l. Zhu, W. ZHANG, Y. l. ZHAO, Automatic soft-
ware refactoring via weighted clustering in method-level networks, IEEE
Transactions on Software Engineering PP (2017) 1–1. doi:10.1109/TSE.
2017.2679752.

[11] M. C. de Oliveira, R. Bonifácio, G. N. Ramos, M. Ribeiro, Unveiling
and reasoning about co-change dependencies, in: Proceedings of the 15th
International Conference on Modularity, MODULARITY 2016, ACM, New
York, NY, USA, 2016, pp. 25–36.

[12] D. Zhou, Y. Wu, L. Xiao, Y. Cai, X. Peng, J. Fan, L. Huang, H. Chen,
Understanding evolutionary coupling by fine-grained co-change relationship
analysis, in: Proceedings of the 27th International Conference on Program
Comprehension, ICPC ’19, IEEE Press, Piscataway, NJ, USA, 2019, pp.
271–282. URL: https://doi-org.ez54.periodicos.capes.gov.br/10.1109/
ICPC.2019.00046. doi:10.1109/ICPC.2019.00046.

[13] M. D’Ambros, M. Lanza, R. Robbes, On the relationship between change
coupling and software defects, in: 2009 16th Working Conference on Re-
verse Engineering, IEEE, 2009, pp. 135–144.

[14] I. S. Wiese, R. T. Kuroda, R. Re, G. A. Oliva, M. A. Gerosa, An empirical
study of the relation between strong change coupling and defects using
history and social metrics in the apache aries project, in: IFIP International
Conference on Open Source Systems, Springer, 2015, pp. 3–12.

[15] E. Kouroshfar, Studying the effect of co-change dispersion on software
quality, in: Proceedings of the 2013 International Conference on Software
Engineering, IEEE Press, 2013, pp. 1450–1452.

[16] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
A. Ouni, Many-objective software remodularization using nsga-iii, ACM
Trans. Softw. Eng. Methodol. 24 (2015) 17:1–17:45. URL: http://doi.acm.
org/10.1145/2729974. doi:10.1145/2729974.

[17] A. Ouni, M. Kessentini, H. Sahraoui, M. S. Hamdi, The use of develop-
ment history in software refactoring using a multi-objective evolutionary
algorithm, in: Proceedings of the 15th annual conference on Genetic and
evolutionary computation, ACM, 2013, pp. 1461–1468.

[18] R. Terra, M. T. Valente, S. Miranda, V. Sales, Jmove: A novel heuristic and
tool to detect move method refactoring opportunities, Journal of Systems
and Software 138 (2018) 19–36.

38



[19] T. Ball, J.-m. Kim, A. Porter, H. Siy, If your version control system could
talk ..., in: ICSE ’97 Workshop on Process Modeling and Empirical Studies
of Software Engineering, 1997.

[20] T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl, Mining version histo-
ries to guide software changes, IEEE Transactions on Software Engineering
31 (2005) 429–445. doi:10.1109/TSE.2005.72.

[21] D. Beyer, A. Noack, Clustering software artifacts based on frequent com-
mon changes, in: 13th International Workshop on Program Comprehension
(IWPC’05), 2005, pp. 259–268. doi:10.1109/WPC.2005.12.

[22] T. A. Wiggerts, Using clustering algorithms in legacy systems remodu-
larization, in: Proceedings of the Fourth Working Conference on Reverse
Engineering (WCRE ’97), WCRE ’97, IEEE Computer Society, Washing-
ton, DC, USA, 1997, pp. 33–.

[23] N. Anquetil, C. Fourrier, T. C. Lethbridge, Experiments with clustering as
a software remodularization method, in: Proceedings of the Sixth Working
Conference on Reverse Engineering, WCRE ’99, IEEE Computer Society,
Washington, DC, USA, 1999, pp. 235–.

[24] O. Maqbool, H. Babri, Hierarchical clustering for software architecture
recovery, IEEE Trans. Softw. Eng. 33 (2007) 759–780.

[25] I. Candela, G. Bavota, B. Russo, R. Oliveto, Using cohesion and cou-
pling for software remodularization: Is it enough?, ACM Trans. Softw.
Eng. Methodol. 25 (2016) 24:1–24:28. URL: http://doi.acm.org/10.1145/
2928268. doi:10.1145/2928268.

[26] F. Beck, S. Diehl, On the impact of software evolution on software clus-
tering, Empirical Software Engineering 18 (2013) 970–1004. URL: https:
//doi.org/10.1007/s10664-012-9225-9. doi:10.1007/s10664-012-9225-9.

[27] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: im-
proving the design of existing code, Addison-Wesley Professional, 1999.

[28] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory
study of the impact of antipatterns on class change-and fault-proneness,
Empirical Software Engineering 17 (2012) 243–275.

[29] R. Marinescu, Detection strategies: Metrics-based rules for detecting design
flaws, in: 20th IEEE International Conference on Software Maintenance,
2004. Proceedings., IEEE, 2004, pp. 350–359.

[30] E. Van Emden, L. Moonen, Java quality assurance by detecting code smells,
in: Ninth Working Conference on Reverse Engineering, 2002. Proceedings.,
IEEE, 2002, pp. 97–106.

39



[31] M. J. Munro, Product metrics for automatic identification of" bad smell"
design problems in java source-code, in: 11th IEEE International Software
Metrics Symposium (METRICS’05), IEEE, 2005, pp. 15–15.

[32] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. Sahraoui, A bayesian ap-
proach for the detection of code and design smells, in: 2009 Ninth Inter-
national Conference on Quality Software, IEEE, 2009, pp. 305–314.

[33] D. Rapu, S. Ducasse, T. Gîrba, R. Marinescu, Using history information
to improve design flaws detection, in: Eighth European Conference on
Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings.,
IEEE, 2004, pp. 223–232.

[34] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, A. D. Lu-
cia, Mining version histories for detecting code smells, IEEE Transactions
on Software Engineering 41 (2015) 462–489. doi:10.1109/TSE.2014.2372760.

[35] D. E. Goldberg, E. 1989. genetic algorithms in search, optimization, and
machine learning, Reading: Addison-Wesley (1990).

[36] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary
Computation 6 (2002) 182–197. doi:10.1109/4235.996017.

[37] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part i: solving
problems with box constraints, IEEE transactions on evolutionary compu-
tation 18 (2013) 577–601.

[38] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, A. De Lucia, Method-
book: Recommending move method refactorings via relational topic mod-
els, IEEE Transactions on Software Engineering 40 (2013) 671–694.

[39] M. C. d. Oliveira, R. Bonifácio, G. N. Ramos, M. Ribeiro, On the con-
ceptual cohesion of co-change clusters, in: Proceedings of the 2015 29th
Brazilian Symposium on Software Engineering, SBES ’15, IEEE Computer
Society, Washington, DC, USA, 2015, pp. 120–129.

[40] L. L. Silva, M. T. Valente, M. de A. Maia, N. Anquetil, Developers’ per-
ception of co-change patterns: An empirical study, in: 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), 2015,
pp. 21–30. doi:10.1109/ICSM.2015.7332448.

[41] K. Praditwong, M. Harman, X. Yao, Software module clustering as a multi-
objective search problem, IEEE Trans. Softw. Eng. 37 (2011) 264–282.

[42] R. C. Martin, Design principles and design patterns, 2000. URL: www.

objectmentor.com, online.

40



[43] L. F. Dias, I. Steinmacher, G. Pinto, D. A. da Costa, M. A. Gerosa, How
does the shift to github impact project collaboration?, in: 2016 IEEE
International Conference on Software Maintenance and Evolution, ICSME
2016, Raleigh, NC, USA, October 2-7, 2016, 2016, pp. 473–477.

[44] R. Dantas, A. Carvalho, D. Marcilio, L. Fantin, U. Silva, W. Lucas, R. Boni-
facio, Reconciling the past and the present: An empirical study on the ap-
plication of source code transformations to automatically rejuvenate java
programs, in: 2018 IEEE 25th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), IEEE Computer Society, 2018,
pp. 497–501. doi:10.1109/SANER.2018.8330247.

[45] H. Borges, A. C. Hora, M. T. Valente, Understanding the factors that
impact the popularity of github repositories, in: 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh,
NC, USA, October 2-7, 2016, 2016, pp. 334–344.

[46] G. Pinto, I. Steinmacher, M. A. Gerosa, More common than you think:
An in-depth study of casual contributors, in: IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, 2016, pp. 112–
123.

[47] B. Ray, D. Posnett, P. Devanbu, V. Filkov, A large-scale study of pro-
gramming languages and code quality in github, Commun. ACM 60 (2017)
91–100.

[48] A. MacCormack, J. Rusnak, C. Y. Baldwin, Exploring the structure of
complex software designs: An empirical study of open source and propri-
etary code, Manage. Sci. 52 (2006) 1015–1030.

[49] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design,
IEEE Trans. Softw. Eng. 20 (1994) 476–493.

[50] J. Bansiya, C. G. Davis, A hierarchical model for object-oriented design
quality assessment, IEEE Trans. Softw. Eng. 28 (2002) 4–17. URL: http:
//dx.doi.org/10.1109/32.979986. doi:10.1109/32.979986.

[51] G. Bavota, A. Lucia, A. Marcus, R. Oliveto, Automating extract class refac-
toring: An improved method and its evaluation, Empirical Softw. Engg. 19
(2014) 1617–1664. URL: http://dx.doi.org/10.1007/s10664-013-9256-x.
doi:10.1007/s10664-013-9256-x.

[52] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Identification
and application of extract class refactorings in object-oriented systems,
J. Syst. Softw. 85 (2012) 2241–2260. URL: http://dx.doi.org/10.1016/j.
jss.2012.04.013. doi:10.1016/j.jss.2012.04.013.

41



[53] I. Moore, Automatic inheritance hierarchy restructuring and method
refactoring, in: Proceedings of the 11th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’96, ACM, New York, NY, USA, 1996, pp. 235–250. URL:
http://doi.acm.org/10.1145/236337.236361. doi:10.1145/236337.236361.

[54] M. Streckenbach, G. Snelting, Refactoring class hierarchies with kaba, in:
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA
’04, ACM, New York, NY, USA, 2004, pp. 315–330. URL: http://doi.acm.
org/10.1145/1028976.1029003. doi:10.1145/1028976.1029003.

[55] M. Vakilian, R. E. Johnson, Alternate refactoring paths reveal usability
problems, in: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, 2014, pp. 1106–1116. URL: http://doi.acm.org/
10.1145/2568225.2568282. doi:10.1145/2568225.2568282.

[56] M. Mongiovi, R. Gheyi, G. Soares, M. Ribeiro, P. Borba, L. Teixeira, De-
tecting overly strong preconditions in refactoring engines, IEEE Transac-
tions on Software Engineering 44 (2018) 429–452. doi:10.1109/TSE.2017.
2693982.

[57] P. H. T. Costa, E. D. Canedo, R. Bonifácio, On the use of metaprogram-
ming and domain specific languages: An experience report in the logistics
domain, in: Proceedings of the VII Brazilian Symposium on Software
Components, Architectures, and Reuse, SBCARS ’18, ACM, New York,
NY, USA, 2018, pp. 102–111. URL: http://doi.acm.org/10.1145/3267183.
3267194. doi:10.1145/3267183.3267194.

[58] C. M. C. de Oliveira, E. D. Canedo, H. Faria, L. H. V. Amaral, R. Bonifácio,
Improving student’s learning and cooperation skills using coding dojos (in
the wild!), in: IEEE Frontiers in Education, IEEE Computer Society, 2018,
pp. 1–9.

[59] T. Erl, Soa: principles of service design, volume 1, Prentice Hall Upper
Saddle River, 2008.

[60] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R. Stafford, Patterns
of Enterprise Application Architecture, Addison-Wesley Professional, 2002.

[61] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Ac-
curate and efficient refactoring detection in commit history, in: Proceed-
ings of the 40th International Conference on Software Engineering, ICSE
’18, ACM, New York, NY, USA, 2018, pp. 483–494. doi:10.1145/3180155.
3180206.

42

View publication statsView publication stats

https://www.researchgate.net/publication/335784606

	Finding needles in a haystack: Leveraging co-change dependencies to recommend refactorings
	Citation

	tmp.1588054120.pdf.VwmmW

