
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

Selective discrete particle swarm optimization for the team Selective discrete particle swarm optimization for the team

orienteering problem with time windows and partial scores orienteering problem with time windows and partial scores

Vincent F. YU

Perwira A. A. N. REDI

Parida JEWPANYA

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Theory and Algorithms Commons

Citation Citation
YU, Vincent F.; REDI, Perwira A. A. N.; JEWPANYA, Parida; and GUNAWAN, Aldy. Selective discrete particle
swarm optimization for the team orienteering problem with time windows and partial scores. (2019).
Computers and Industrial Engineering. 138, 1-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4469

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Selective discrete particle swarm optimization for the team
orienteering problem with time windows and partial scores

Vincent F. Yua, A.A.N. Perwira Redia, Parida Jewpanyaa, Aldy Gunawan

Abstract

This paper introduces the Team Orienteering Problem with Time Windows and Partial Scores (TOPTW-

PS), which is an extension of the Team Orienteering Problem with Time Windows (TOPTW). In the

context of the TOPTW-PS, each node is associated with a set of scores with respect to a set of

attributes. The objective of TOPTW-PS is to find a set of routes that maximizes the total score collected

from a subset of attributes when visiting the nodes subject to the time budget and the time window

at each visited node. We develop a mathematical model and propose a discrete version of the Particle

Swarm Optimization (PSO), namely, the Selective-Discrete PSO (S-DPSO), to solve TOPTW-PS. The

proposed S-DPSO uses four different movement schemes to move a particle from its current position.

The best movement scheme is selected to determine the next position of the particle. To evaluate the

performance of the proposed S-DPSO algorithm, we first test S-DPSO on two variants of Orienteering

Problem, namely, Team Orienteering Problem (TOP) and TOPTW. Experimental results show that S-

DPSO performs well in solving benchmark instances of TOP and TOPTW. In general, S-DPSO is

comparable to the state-of-the-art algorithms for these problems. We also apply the S-DPSO to solve

168 newly generated TOPTW-PS instances and conclude that the proposed S-DPSO can produce high-

quality TOPTW-PS solutions.

Keywords Team orienteering problem, Time window, Partial score, Discrete particle swarm

optimization

1. Introduction

The Orienteering Problem (OP) was first introduced by Tsiligirides (1984). In OP, a set of vertices

associated with a location and a score is given. The time required to travel between each pair of

locations is known in advance. OP aims to find a route that visits a subset of vertices to maximize the

total collected score (Vansteenwegen, Souffriau, Vanden Berghe, & Van Oudheusden, 2009a).

Therefore, in OP, determining the selection of vertices and shortest path between selected vertices

are important factors. OP can be considered as a combination of the Knapsack Problem and the

Travelling Salesman Problem (TSP). In the classical TSP, the objective is to determine a path that visits

all vertices with the smallest travel distance. The Prize Collecting TSP (PCTSP) is a variant of TSP in

which all vertices do not need to be visited. PCTSP considers a reward/prize for every visited vertex

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0200
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0205

and a penalty to every vertex that is not visited (Balas, 1989). Meanwhile, a TSP variant with the

objective of finding a circuit that minimizes travel cost minus collected profit is known as the Profitable

Tour Problem (PTP) (Dell'Amico, Maffioli, & Värbrand, 1995). The three TSP variants (OP, PCTSP and

PTP) are considered as the generic forms of TSP with profits (Feillet, Dejax, & Gendreau, 2005). A well-

known OP extension is the Team OP (TOP), which incorporates multiple routes. Another extension

that is widely considered in OP and TOP is the TOP with Time Windows (TOPTW), which incorporates

the time window constraints. Vansteenwegen et al. (2011b) comprehensively surveyed about OP,

TOP, and TOPTW. Gunawan, Lau, and Vansteenwegen (2016) extended the survey by including the

latest variants of the OP, such as the proposed solution approaches and the most recent applications

of the OP.

OP and its variants have attracted attention because of the numerous real-life applications (Gedik et

al., 2017, Yu et al., 2017a). In this paper, we focus on the application of TOPTW to the Tourist Trip

Design Problem (TTDP). TTDP is a route-planning problem for tourists that are interested in visiting

multiple points of interest (POIs). Typically, most tourists visit as many POIs as possible during their

limited time (Vansteenwegen et al., 2009a). However, given the time limitations, they might not be

able to visit all POIs. Thus, tourists generally select those locations with high scores or valuable POIs

(Vansteenwegen et al., 2011a). TTDP aims to help tourists in determining tours when visiting POIs in

a customized trip.

In visiting each POI, the score is assumed to come from one type of activity. Nevertheless, in reality,

upon a visit to a POI, several activities can be selected. For example, when visiting a beach, tourists

can experience several leisure activities, such as taking photo of good views and doing some water

sports. Each activity requires a certain period of time and provides a different valuable score. In this

case, the problem is further complicated because the tourists should decide where they should visit

and what activities they should attend. Therefore, the present paper aims to present an extension of

TOPTW, namely, TOPTW and Partial Scores (TOPTW-PS). TOPTW-PS maximizes the total collected

scores based on the visited POIs and the combination of selected activities.

The proposed TOPTW-PS is explained with the following example. Tourists plan to visit a certain area

with several POIs. At each POI, several activities can be selected; each activity is associated with a

score and the amount of time needed to finish it. TOPTW-PS aims to maximize the total collected score

with several constraint limitations, such as the time budget and time windows. When considering the

nature of the TOPTW-PS, its application is not only limited to the trip design problem. TOPTW-PS can

also be applied in humanitarian logistic, where a volunteer selects the route to visit and the necessary

activities to be conducted in the shelter. The application of routing technicians or sales representatives

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0015
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0050
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0055
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0215
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0095
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0070
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0070
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0245
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0205
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0210

to serve customers with several optional requested services is also one possible application of the

TOPTW-PS.

TOPTW-PS is a new and challenging problem. It is an extension of TOPTW which belongs to the class

of non-polynomial-hard (NP-hard) problem (Golden, Levy, & Vohra, 1987). Hence, TOPTW-PS is also

NP-hard. Hence, TOPTW-PS is a NP-hard problem. To deal with this complex problem, we develop the

discrete version of the well-known Particle Swarm Optimization (PSO), namely, the Selective Discrete

Particle Swarm Optimization (S-DPSO). In summary, the contribution of this paper is threefold:

• We present a new variant of the TOPTW, namely, TOPTW-PS, in which each vertex is

associated with a set of scores with respect to a set of activities.

• We generate a new set of benchmark instances for TOPTW-PS by extending the

characteristics of the benchmark TOPTW instances.

• We propose a discrete version of the well-known PSO, namely, S-DPSO, to solve the TOPTW-

PS. S-DPSO introduces four different movement schemes: (1) following its own position, (2)

moving toward its personal best position, (3) moving toward the global best position, and (4)

moving toward the combination of the three above-mentioned schemes. The best movement

scheme in term of an objective function is selected for each particle to move to the next

position. The ability of the proposed S-DPSO to solve the TOP and the TOPTW is also tested.

The remainder of this paper is organized as follows. Section 2 reviews the literature related to the

proposed problem and the solution approach. Section 3 presents the problem definition, including the

mathematical model. Section 4 describes the original discrete PSO concept. Section 5 demonstrates

the proposed S-DPSO for solving the TOPTW-PS, including the solution representation and movement

schemes. Section 6 provides the experimental results. Finally, Section 7 concludes this study and

suggests some future research directions.

2. Related work

The topics on OP, TOP, and their applications have been studied for many years (Schilde et al.,

2009, Tsiligirides, 1984, Vansteenwegen and Van Oudheusden, 2007, Wang et al., 2008). The original

OP comes from the orienteering game (Chao, Golden, & Wasil, 1996), which is generally played in a

forested area. OP aims to determine which route maximizes the collecting point or score (Chao et al.,

1996). Vansteenwegen et al. (2011b) reviewed the OP, TOP, and its extensions. Tang and Miller-Hooks

(2005) provided a detailed review on the published solution approaches for OP and TOP.

OP and TOP with time windows are also introduced. In OPTW and TOPTW, the time window is

considered a constraint. Among practical situations, motivating the inclusion of time windows include

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0080
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0015
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0020
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0025
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0055
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0115
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0170
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0170
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0200
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0230
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0235
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0030
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0030
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0030
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0215
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0185
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0185

routing problem cases where each customer or location should be visited within a predetermined time

interval. For example, in TTDP, some attractive places may have a specific time they are open.

Therefore, tourists should plan their trip to visit during the opening period of each place.

Abbaspour and Samadzadegan (2011) introduced the tour planning extension of OPTW. The tour-

planning problem is modeled in the context of the time-dependent OPTW. The time-independent tour

planning in a large urban area considers multimodal transportations. This problem determines the

sequences for visiting the attractive points during a specific period via several modes of transportation

system. To solve the problem, an evolutionary strategy based on a genetic algorithm is proposed.

Garcia, Vansteenwegen, Arbelaitz, Souffriau, and Linaza (2013) introduced a personalized electronic

tourist guide to help tourists decide which places to visit and obtain transportation information. They

modeled the tourist planning problem by integrating public transportation as the time-dependent

TOPTW; they solved this problem using the algorithm based on Vansteenwegen, Souffriau, Vanden

Berghe, & Van Oudheusden (2009b). Souffriau, Vansteenwegen, Vanden Berghe, and Van

Oudheusden (2013) proposed the multiconstraint TOP with multiple time windows; in this problem,

each vertex is extended with additional knapsack constraints, which limit the selection of vertices,

together with the time windows and the time budget. In the tourist application, these additional

constraints will involve budget limitations for entrance fees for each day (e.g., a maximum number of

museums to visit on the first day). The hybrid solution mechanism, which integrates iterated local

search and a greedy randomized adaptive search procedure (GRASP), was proposed to solve this

problem.

In terms of solution methods, several algorithms, including the exact method (Boussier et al.,

2007, Fischetti et al., 1998) and heuristic methods, have been used to solve OP and its extensions. The

basic OP model uses the exact method to determine the optimal solution; however, this method is

considerably difficult and usually requires a long computational time. Therefore, heuristic and

evolutionary computing methods have been applied to determine a near-optimal solution in a

reasonable amount of time. Vansteenwegen et al. (2011b) provided a detailed published solution

approach for OP and its extensions. Metaheuristic approaches, such as tabu search (Tang & Miller-

Hooks, 2005), ant colony optimization (ACO) (Ke et al., 2008, Montemanni and Gambardella, 2009),

variable neighborhood search (VNS) (Campbell et al., 2011, Tricoire et al., 2010), iterated local search

heuristic (ILS) (Gunawan et al., 2015, Vansteenwegen et al., 2009b), simulated annealing (SA) (Lin &

Yu, 2012), artificial bee colony (ABC) (Cura, 2014), PSO (Dang et al., 2013, Muthuswamy and Lam,

2011, Yu et al., 2017a), and the hybrid approach (Labadie, Melechovský, & Wolfler Calvo, 2010),

deliver efficient results for some specified problems.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0005
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0065
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0225
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0225
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0180
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0180
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0020
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0020
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0060
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0215
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0185
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0185
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0110
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0025
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0190
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0090
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0225
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0135
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0135
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0040
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0045
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0150
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0150
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0245
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0130

3. Problem definition and model formulation

In TOPTW-PS, the fixed number of tours or paths is given. A set of attractive vertices associated with

multiple activities and time window is introduced. Each activity in the vertex is associated with a score

and a service time. The TOPTW-PS aims to determine the paths that maximize the total collected score

from visiting vertices and attending some activities without violating their time windows. For the

mathematical model formulation, we define the following:

• A set N={N0∪Nc} is a set of all vertices. N0 is a set of vertex 0 that is designated as the starting

and end vertices, that is, N0={0}. Nc is a set of vertices that represents the attractive vertices

(Nc={1,2,3,...,|N|}). P is a set of paths, that is, P={1,2,3,...,|P|}. A is a set of activities provided

in each vertex, that is, A={1,2,3,...,|A|}. All vertices are assumed to have the same set of

activities.

• A partial score Si,a is associated with vertex i∈Nc and activity a∈A. wi,a represents the service

time associated with vertex i in activity a.

• A travel time ti,jis the time for traveling from vertex i to j (i,j∈N).

• Each vertex i∈Nccan be visited at most once in the time interval [Oi,Ei]. Moreover, not all

vertices can be visited because of the limited given time Tmax.

Decision

variablesai,a=1Ifanactivityaisselectedbyavisittovertexi0Otherwisexi,j,p=1Ifinpathp,avisittovertexiisfol

lowedbyavisittovertexj0Otherwiseyi,p=1Ifinpathp,avertexiisvisited0Otherwise

vi = Total visiting time of a visit to vertex i

si,p = Starting time of a visit to vertex i in path p

Objective function(1)max∑p∈P∑i∈Nc∑a∈ASi,a·ai,a·yi,p

Constraints(2)∑∀p∈P∑∀j∈Ncx0,j,p=∑∀p∈P∑∀i∈Ncxi,0,p=|P|(3)∑∀i∈N,i≠kxi,k,p=∑∀j∈N,k≠jxk,j,p=yk,p

∀k∈Nc,∀p∈P(4)∑∀p∈Pyi,p⩽1∀i∈Nc(5)∑∀a∈Aai,a⩽A∀i∈Nc(6)∑∀a∈Awi,a·ai,a⩽vi∀i∈Nc(7)si,p+vi+ti,j-

sj,p⩽M(1-

xi,j,p)∀i∈N,∀j∈Nc,∀p∈P(8)Oi⩽si,p∀i∈Nc,∀p∈P(9)si,p⩽Ei∀i∈Nc,∀p∈P(10)si,p+ti,0·xi,0,p⩽Tmax∀i∈Nc

,∀p∈P(11)sj,p⩾t0,j,v·yj,p∀j∈Nc,∀p∈P(12)xi,j,p∈0,1∀i,j∈N,p∈P(13)ai,a∈0,1∀i∈N,p∈P(14)yi,p∈0,1∀i,j

∈N,p∈PObjective function (1) maximizes the total collected score. Constraint (2) guarantees that each

path starts and ends in Vertex 0. Constraint (3) ensures the path connectivity through flow

conservation equalities. Constraint (4) ensures that each vertex is visited at most one.

Constraint (5) ensures that most |A| activities can be selected in each vertex. Constraint (6) calculates

the total visiting time of each vertex. Constraint (7) determines the timeline of each path.

Constraints (8), (9) restrict the start of the service to the time window. The route is limited

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0020
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0025
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0030
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0035
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0040
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0045
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0050
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0055
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0060

by Tmax (Constraint (10)). In addition, the visiting time of the first visited vertex must be longer than

the travel time of arc (0, j) (Constraint (11)). Finally, constraints (12), (13), (14) are the integrality

constraints for the decision variables.

4. Particle swarm optimization (PSO)

PSO was proposed by Kennedy and Eberhart (1995). The standard PSO algorithm is initially designed

to solve continuous optimization problems. PSO imitates the physical movements of

individuals/particles in the swarm as a searching method. Each particle represents a solution to the

problem and its move directly relates to changes in the solution. The particles move through the

search space seeking the global optimum. However, there is no guarantee of reaching the global

optimum. Furthermore, particle moves are influenced by the information such as its own experience

and globally shared information from other particles in the swarm.

We denote the most suitable solution of particle k at iteration t (the personal best position) as pk-

bestt and the global best solution taken from all particles at iteration t (the particle swarm’s global

best position) as gbestt. At iteration t, particle k updates its next position xkt+1 by using

Eqs. (15), (16) (Muthuswamy & Lam, 2011):(15)vkt+1=w·vkt+c1·r1(pk-bestt-xkt)+c2·r2(gbestt-

xkt);(16)xkt+1=xkt+vkt+1;where vkt and xkt represent the velocity and the position of particle k at

iteration t, respectively; w is a constant value that controls the impact of the previous velocity; c1 is

the cognitive parameter for remembering the most suitable particle position that has been

reached; c2 is the social parameter controlling the communication among particles to converge

toward the global best position; and r1 and r2 are uniformly distributed random variables in [0,1].

There are two versions of PSO which are commonly used to solve discrete optimization problems such

as VRP. The first version is the real-valued version of PSO. In this version, the particle position is

represented as a string of arrays that consists of real numbers. The solution to the problem is

generated through a decoding procedure which normally involves a mechanism to transform real

values in the solution to integers or binary numbers. Examples of real-valued PSO can be found in Ai

and Kachitvichyanukul (2009). Moreover, Yu, Jewpanya, and Kachitvichyanukul (2016) used the same

concept to solve the transshipment problem. The discrete-valued PSO represents the solution by a

string of integers or binary numbers. In the discrete-valued PSO, the solution can be directly obtained

by decoding the particle position. An illustration between these versions is illustrated in Fig. 1.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0065
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0070
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0075
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0080
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0085
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0115
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0090
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0095
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0150
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0240
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0005

Fig. 1. Illustration of (a) real-valued PSO by Ai and Kachitvichyanukul (2009) and (b) discrete-valued

PSO by Goksal et al. (2013).

The example of real-valued PSO can be seen in Yu et al. (2017a). This study applied a variant of PSO

called 2L-GLNPSO for solving the Multi-Modal Team Orienteering Problem with Time Windows (MM-

TOPTW). This approach is the closest implementation of PSO to our proposed S-DPSO. However,

because the decision variables of MM-TOPTW are discrete, 2L-GLNPSO needs a decoding process to

convert the real-valued solution representation to the discrete-valued one. Instead of using real-

valued solution representation similar to 2L-GLNPSO, our proposed S-DPSO are based on the discrete-

valued PSO (DPSO).

The decoding process is a process to convert the encoded solution from a form of real-valued solution

representation to a discrete-valued solution representation. At the end of the process, the goal is to

simplify the calculation of the objective function value. In general, the setup of a real-valued solution

representation is similar for most problems. In the solution representation, elements of the solution

length and the value range are defined. Takes example of the 2L-GLNPSO implemented for solving

MM-TOPTW by Yu et al. (2017a), the solution representation is divided into two levels of real-valued

solution. The first level is to represent the priority list of vertices that shows the sequence of vertices

being visited. It is decoded by using a sorting function of the real-valued number in the solution, and

then taking the index as the new representation of the solution. The second level represents the type

of transportation being selected. This solution is decoded by assigning the real-valued solution

representation to the representative integer value defined by a function explained in the paper. Then,

this process takes information regarding how the objective function value is calculated to obtain the

objective value. However, our proposed algorithm is extended from DPSO which does not need

decoding process since the form of solution representation is already discrete. Some of the

optimization problems solved using DPSO include TSP (Pang, Wang, Zhou, Dong, Liu, & Zhang, 2004),

VRP (Goksal et al., 2013, Gong et al., 2012), scheduling problem (Kashan and Karimi, 2009, Pan et al.,

2008, Tseng and Liao, 2008), and OP (Dang et al., 2013, Muthuswamy and Lam, 2011).

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0075
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0245
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0245
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0160
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0075
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0085
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0105
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0155
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0155
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0195
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0045
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0150

PSO has been reported to be an algorithm of fast convergence and easy implementation. Therefore,

in the present research, we propose the S-DPSO for TOPTW-PS. S-DPSO is a DPSO extension with

several mechanisms to improve the particle movement. The mechanism that provides the best

solution is used for particle movement. Therefore, in this research, we propose the S-DPSO with

several mechanisms to improve the particle movement. The mechanism that provides the most

suitable solution is used for particle movement. The use of S-DPSO in solving TOPTW-PS is explained

in the following section.

5. Proposed S-DPSO algorithm for TOPTW-PS

This section introduces the use of S-DPSO in solving TOPTW-PS. S-DPSO is a discrete version of PSO

that implements a discrete permutation-based solution. The structure of this discrete-valued solution

representation and the path construction procedure are explained in Section 5.1. The parameters

used in this proposed algorithm is described in Section 5.2. In the process of moving a particle from

its initial position to another position, S-DPSO uses four mechanisms to generate four candidate

solutions which are explained in Section 5.3. Each solution consists of the position and the associated

objective value. The mechanism on how S-DPSO solves TOPTW-PS is explained in 5.4 Local search, 5.5

S-DPSO procedure.

5.1. Solution representation and path construction procedure

The solution representation for TOPTW-PS is derived from the solution representation for TOPTW

by Lin and Yu (2012). It consists of two parts. The first part is represented by a permutation

of |Nc|vertices, followed by |P|-1 zeros for separating paths. Therefore, the total dimension of the

first part is |Nc|+|P|-1. The second part of the solution representation is used to represent the

selected activity when visiting each vertex, and it consists of |Nc| dimensions. The value in each

dimension is an integer number, which is generated randomly from 1 to (2|A|-1). Each integer number

in [1, (2|A|-1)] represents one specific type of selection from all possible (2|A|-1) types. Each integer

number is subsequently encoded to a binary variable aci, that is, i∈A, to obtain the selected activities.

If the activity i is selected, then aci is 1; otherwise, it is 0. The integers in dimension 1 to |Nc| represent

the activity selection of visiting vertex 1 to vertex |Nc|. This approach can help reduce the dimension

of the solution representation and enable multiple activity selections.

Table 1 provides a TOPTW-PS instance with 25 vertices. Each vertex shows three activities (|A|=3). In

this example, the vertex’s coordinate (X, Y), a service time (Wa), and a partial score (Sa) associated with

activity a∈A, earliest time (Oi), and latest time (Ei) are also listed. When we consider two paths (p = 2),

the total number of dimensions is 51 (total dimensions consist of decisions for activity (|Nc|) and

visited vertices (|Nc|+|P|-1)).

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0030
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0035
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0040
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0045
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0050
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0050
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0135
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0005

Table 1. TOPTW-PS instance with 25 locations and one, two, or three activities at each

location.

No. X Y W1 W2 W3 O E S1 S2 S3

0 40 50 0 0 0 0 1236 0 0 0

1 45 68 0 5 5 912 967 0 45 45

2 45 70 3 21 6 825 870 9 63 18

3 42 66 5 2 3 65 146 45 18 27

4 42 68 3 6 1 727 782 27 54 9

5 42 65 8 0 2 15 67 72 0 18

6 40 69 2 14 4 621 702 9 63 18

7 40 66 14 2 4 170 225 63 9 18

8 38 68 6 0 14 255 324 27 0 63

9 38 70 0 3 7 534 605 0 27 63

10 35 66 1 1 8 357 410 9 9 72

11 35 69 9 0 1 448 505 81 0 9

12 25 85 2 0 18 652 721 9 0 81

13 22 75 0 9 21 30 92 0 27 63

14 22 85 5 2 3 567 620 45 18 27

15 20 80 24 4 12 384 429 54 9 27

16 20 85 4 20 16 475 528 9 45 36

17 18 75 8 4 8 99 148 36 18 36

18 15 75 0 12 8 179 254 0 54 36

19 15 80 7 2 1 278 345 63 18 9

20 30 50 5 1 4 10 73 45 9 36

No. X Y W1 W2 W3 O E S1 S2 S3

21 30 52 16 0 4 914 965 72 0 18

22 28 52 18 0 2 812 883 81 0 9

23 28 55 5 0 5 732 777 45 0 45

24 25 50 4 1 5 65 144 36 9 45

25 25 52 32 0 8 169 224 72 0 18

In TOPTW-PS, visitors visiting a vertex can select more than one activity. Table 2 illustrates the activity

selection from three activities (|A| = 3) at each vertex. In this case, there are seven possible activity

combinations denoted by the integers 1–7. Each number is encoded into binary variables that

represent the selected activity, as shown in Table 2. For example, the first dimension of the second

part of solution representation is 6 (see Fig. 2). This number represents the activity selection of vertex

1 and it is encoded into binary variables ac1 = 0, ac2 = 1 and ac3 = 1. The interpretation is that when

visiting vertex 1, the selected activities are activities 2 and 3, and the total service time and the total

score collected at this vertex are 10 and 90, respectively.

Table 2. Possible activity combinations for a vertex with three activities.

Activity combination aci

i = 3 i = 2 i = 1

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0010

Fig. 2. Example of solution representation for a problem with 25 vertices and 2 paths.

Fig. 2 illustrates an example of the solution representation of the data displayed in Table 1. The

complete visual illustration of solution to this instance is shown in Fig. 3. In this example, the first path

starts by visiting the vertex 5 and subsequently vertices 19, 11, 10, 20, and 1, and it ends with a zero.

The vertices 7, 2, 16, 18, 24, 6, and 17 are excluded from the first path because visiting these vertices

violates the time window, maximum travel time, or budget constraint. In the first path, when visitors

visit the first four vertices (vertices 5, 19, 11, and 10), the integer value in the 5th, 19th, 11th, and 10th

dimensions of the second representation is 7. Therefore, all activities are selected. For the last two

visited vertices (vertices 1 and 20), the values of the 1st and 2nd dimensions are 5 and 6, respectively,

that is, the visitors only select activities 1 and 3 in vertex 20, and activities 2 and 3 in vertex 1. The

procedure is repeated in the second path.

Fig. 3. Visual illustration of the example solution given in Fig. 1.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0005
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0015
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0005

5.2. Parameters used

The discrete S-DPSO uses six parameters, namely, I, T, w, c1, c2, and L. I denotes the number of

particles, and T is the number of iterations. The number of particles and iterations are important

parameters of PSO because they affect the fitness value and computational time. Furthermore, the

increasing size of the population increases computational time, but it might not improve the fitness

value. w denotes inertia weight, a parameter that controls the search behavior of the swarm. This

vector shows the same direction of the current velocity. c1 and c2 are acceleration constants of the

personal and global best positions, respectively. Each acceleration constant controls the maximum

distance that a particle is allowed to move from the current position to each best position. A number

of local search improvements (L) is also introduced.

5.3. Position updating rule

The position updating rule in S-DPSO is developed based on the discrete domain. S-DPSO allows

particles to evaluate each independent move (its current position, its Pbest and Gbest). Particles may

have a chance to select a better position to move than that with moving only toward all of them by

comparing several position choices.

In S-DPSO, the position of a particle k at iteration t is updated by four possible constructive updating

mechanisms: (1) following its own position (Xkt), (2) going toward its Pbest (Pit), (3) going

toward Gbest (Pgt), and (4) going toward its own position, namely, Pbest and Gbest. These

mechanisms generate four candidate solutions. Each solution consists of the position and the

associated objective value. The v1kt,v2kt,v3kt,andv4ktare the updated positions generated by

mechanisms (1), (2), (3), and (4), respectively. Correspondingly, the objective values associated with

these positions aref(v1kt),f(v2kt),f(v3kt),andf(v4kt), respectively. The most suitable candidate solution

in terms of the objective value is selected and updated as the next position of the particle k. The

process of generating a new position for a selected particle is depicted in the following

equations:(17)v1kt+1=(w⊗Xkt)⊕Rkt;(18)v2kt+1=(c1⊗Pkt)⊕Xkt;(19)v3kt+1=(c2⊗Pgt)⊕Xkt;(20)v4k

t+1=(c2⊗Pgt)⊕((c1⊗Pkt)⊕((w⊗Xkt)⊕Rkt)));and(21)Xkt+1=argmaxf(v),v∈{v1kt+1,v2kt+1,v3kt+1,v

4kt+1}The definitions of the operators used in Eqs. (17), (18), (19), (20), (21) are as follows. Eq. (17) is

the position construction function for (1)’s constructive updating rule. In this rule, the new position is

formulated following the previous position (Xkt) with w acceleration. In Eq. (17), Rktdenotes the

duplication of Xkt. This approach can update the particle using its own position.

Eqs. (18), (19) formulate the position following the personal best (Pkt) and the global best (Pgt)

with c1 and c2, respectively. Eq. (20) is utilized to update the position toward own, personal best, and

global best positions. The definitions of the operators used in Eqs. (17), (18), (19), (20) are as follows.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0100
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0105
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0110
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0115
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0120
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0100
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0100
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0105
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0110
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0115
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0100
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0105
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0110
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0115

Eq. (21) is used to select the position with the maximum objective value to be the new position for

particle k in the next iteration (t + 1).

The multiply operator(⊗) is used to select the dimensions of customers fromXkt,Pkt, andPgt. For the

first |Nc|+|P|-1 dimensions, the process starts with determining the number of selected dimensions

of Xkt,Pkt, and Pgt, which are denoted as sw,s1, and s2, respectively. These numbers are calculated

from acceleration numbers w, c1, and c2 multiplied by a number of particle dimensions, which

represent the vertices, that is, |Nc|+|P|-1. Afterward, the process randomly selectssw, s1,

and s2dimensions from Xkt,Pkt, and Pgt, respectively. The numbers of selected dimensions are

calculated as follows.(22)sw=(|Nc|+|P|-1)·w;(23)s1=(|Nc|+|P|-1)·c1;(24)s2=(|Nc|+|P|-

1)·c2;where · denotes the smallest integer that is larger than or equal to the enclosed number. For the

second part of the solution representation, the dimensions of the particle are maintained.

For example, in Fig. 4, five vertices (|Nc|=5) are considered with three types of activity (|A|=3) in one

path (|P|=1). Thus, the particle represents the vertices with five dimensions. The example of

generating new position in Eq. (17) starts at determining swby using Eq. (22). We assume that the

acceleration number w is 0.5. Therefore, the number of selected dimensions is 3, that is, sw=5∗0.5=3.

The process then randomly selects three dimensions from Xkt, as shown in Fig. 4.

Fig. 4. Example of multiply operator (⊗).

The add operator (⊕) is used to construct the solution after the multiply operator. In the

first |Nc|+|P|-1 dimensions, the non-duplicated dimensions from the added particle are inserted into

the empty dimension of multiply operator result. For the activity selection dimension, the process

randomly selects the dimension from the operated particle or the dimension of the multiply operator

result.

Fig. 5 displays the add operator process between the multiply operator result (X′kt) and the added

particle (Rkt). The Rkt dimension is added into the sequence of X′kt. The Rkt dimension that is

duplicated with X′kt is not considered. Hence, in this section, 5 and 4 are added toX′kt.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0120
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0020
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0100
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0125
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0020
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0025

Fig. 5. Example of add operator (⊕).

5.4. Local search

Local search is implemented to determine the best activity selection of each vertex whenever a

new Gbest is found. The local search is executed L times at each iteration in the second part of the

solution representation, which consists of Nc dimensions. The local search steps are as follows.

Algorithm 1

Step

1:

Select dimension i in Gbest randomly, i∈1,...,Nc

Step

2:

Randomly change the value of dimension i from the possible activity

Step

3:

Evaluate the feasibility of the modified activity and the score improvement

Step

4:

If feasibility is maintained, and the path score is improved, then keep the modified route; otherwise,

return the route to the condition prior to step 1

To ensure the feasibility of the solution, only new feasible solutions are accepted. Moreover, as

mentioned in Step 4, if a new feasible solution improves the objective value, it is used as the result of

the procedure. The feasibility checking mechanism examines if the newly selected activity is available

for the selected vertices.

5.5. S-DPSO procedure

In the proposed algorithm, Xkt is a position vector of a particle k at iteration t. At the beginning, the

iteration number (T) is zero, and an initial solution Xkt for all particle k is randomly generated.

The Pbest and Gbest are updated.

At each iteration, a new position Xkt+1 is updated from the four types of updating rules, which are

known as the particle velocities. The next particle position selected is that with the most objective

value. The Pbest of each particle is compared with the new Xkt+1; if the current Xkt+1 obtained a

better solution than Pbest, the Pbest is replaced by Xkt+1. Otherwise, the Pbest result is maintained.

When all particle positions are updated, the Gbest can be obtained. In addition, in the case of S-DPSO

algorithm, the Gbest found at each iteration is improved by the local search in Algorithm 1. The

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#n0005

algorithm is terminated when the number of iteration is satisfied. A S-DPSO procedure of solving

TOPTW-PS is given in Algorithm 2.

Algorithm 2

begin

t←0;

for all k∈Kdo

Xkt←Generate a particle at random;

Pkt←Xkt;

end for

Pgt←\{Plt|l=ergmax∀k{f(Xkt)\} \} ;

(t<T) do

for all k∈K do

v1kt+1←Update thekthparticle velocity vector using (17)

v2kt+1←Update thekthparticle velocity vector using (18)

v3kt+1←Update thekthparticle velocity vector using (19)

v4kt+1←Update thekthparticle velocity vector using (20)

Xkt+1←Update thekthparticle position vector using (21)

if f(Xkt+1)>f(Pkt)

Pkt+1←Xkt+1

else

Pkt+1←Pkt

end if

end for

if f(Pgt)<max∀k{f(Pkt+1)}>f(Pkt)

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#n0010

Pgt+1←\{Plt+1|l=argmax∀k{f(Pkt+1)\} \} ;

do Algorithm 1.

end if

t←t+1

end while

end

6. Computational study

The proposed S-DPSO algorithm is written in C++. All experiments are performed on a PC with a 3.4-

GHz processor and 20-GB RAM under the Windows 7 operating system. Each experiment of TOPTW-

PS is performed 10 times. The experiment for each TOPTW instance is performed five times. The best

and average results are presented. S-DPSO is first tested on TOP and TOPTW benchmark instances.

Results are compared with those obtained by state-of-the-art approaches. Moreover, three sets of

TOPTW-PS instances are generated: small scale (25 vertices), medium scale (50 vertices), and large–

scale problems (100 vertices). Each set consists of 56 instances. Results of small-scale and medium-

scale instances are compared with the CPLEX results. For large-scale problem, S-DPSO results are

compared with those obtained by the S-DPSO, which only implements the position updating rule (4)

in the searching process, namely, S-DPSO-(4). Finally, a statistical analysis is conducted to provide a

comprehensive discussion describing the statistical test of the algorithm performance.

6.1. Test problems

6.1.1. TOPTW instances

The benchmark TOPTW instances were designed by Montemanni and Gambardella (2009). The

instance used in Montemanni and Gambardella (2009) is based on their own OPTW instances and the

OPTW instances of Righini and Salani (2008). Righini and Salani (2008) designed test instances for

OPTW using 29 Solomon (1987) datasets of VRP with time windows (c10*, r10*, and rc10*), which are

denoted as Solomon 100, and 10 datasets of multidepot VRP of Cordeau, Gendreau, and Laporte

(1997)(pr1–pr10), which are denoted as Cordeau 1–10. Montemanni and Gambardella (2009) added

27 additional instances based on 10 Solomon (1987) (c20*, r20*, and rc20*), which are denoted as

Solomon 200, and 10 instances based on Cordeau et al. (1997) (pr11–pr20), which are denoted as

Cordeau 11–20. These benchmark instances can be downloaded

at http://www.mech.kuleuven.be/en/cib/op.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#n0005
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0165
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0165
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0175
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0035
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0035
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0175
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0035
http://www.mech.kuleuven.be/en/cib/op

6.1.2. TOPTW-PS instances

TOPTW-PS instances were designed based on Montemanni and Gambardella (2009) which derived

them from the Solomon (1987) datasets (c10*, c20*, r10*, r20*, rc10*, and rc20*). The Solomon

(1987) datasets consist of six different classes, namely, R1, R2, C1, C2, RC1, and RC2. These instances

are named according to the distribution of the vertex location in the Cartesian coordinates. The vertex

locations in classes R1 and R2 are randomly generated based on a uniform distribution. Classes C1 and

C2 locations are clustered. Finally, classes RC1 and RC2 contain semi clustered vertex locations that

combined both clustered and randomly distributed locations. In each instance, each vertex is

associated with a vertex location, a time window (starting and closing time), a service time, and

demand. The three categories consist of instances with 100, 50, and 25 vertices without the depot.

Each category consists of total 56 instances.

The vertex position and time windows in TOPTW-PS instances are the same as those in the original

TOPTW instances. In TOPTW-PS, each vertex i has several activities a that are associated with a partial

score Si,a and a service time wi,a. The number of activities at each vertex i, denoted as |Ai|, is randomly

generated from {1, …, n}, where n is the maximum number of activities at each vertex. The score and

service time of vertex i in the original TOPTW instances are Si′ and STi′, respectively. The new score of

each activity a at vertex i is generated by Si,a=U(1,Si′), where ∑i=1|Nc|Si,a=Si′. Using the same

approach, the new service time of each activity a at vertex i is generated by STi,a=U(1,STi′),

where ∑i=1|Nc|STi,a=STi′. When the new test sets are designed in this manner, this particular high-

quality TOPTW solution is also a feasible high-quality solution for the new TOPTW-PS problem.

Therefore, a considerably good solution to compare with is known. These TOPTW-PS instances can be

downloaded at http://web.ntust.edu.tw/~vincent/op/.

6.2. Parameter setting

To obtain a good performance of the proposed S-DPSO in terms of solution quality and computing

time, we conduct the experiment to determine the best parameter setting for each problem. The

experiment consists of two steps: first, we use one factor at time (OFAT) in which the levels for each

parameter, and second are changed sequentially by fixing the value of other parameter. Table 3 shows

combinations of parameter values being evaluated.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0175
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0175
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0175
http://web.ntust.edu.tw/~vincent/op/
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0015

Table 3. Parameter settings of S-DPSO for solving TOP, TOPTW, and TOPTW-PS.

Problem Candidate parameter Selected parameter

TOPTW I = {5, 10, 30}; T = {500,8000,1000}; w =

{0.3,0.6,0.9}; C1 = {0.3,0.6,0.9}; C2 = {0.3,0.6,0.9};

and L = {500, 1000, 2000}

I = 30; T = 800; w = 0.9; C1 = 0.6; C2 = 0.6;

and L = 1000

TOPTWPS I = 10; T = 1000; w = 0.9; C1 = 0.6; C2 = 0.6;

and L = 500

6.3. Statistical analysis

The algorithm’s performance is statistically evaluated using the equivalent nonparametric test of

ANOVA, which is the Kruskal–Wallis test statistics. Prior to the Kruskal–Wallis test statistic, the mean

rank of algorithm results relative to each other is calculated. The small mean rank value shows that

the algorithm result is good. To support the significance of other results, the Kruskal–Wallis test is

necessary. The Kruskal–Wallis procedure assumes no normal distribution for the residuals, and it could

be utilized to compare independent instances, which may present different sample sizes. These

statistical procedures are similar to those conducted by Yu et al. (2017b). This approach specifies

which method or group of methods significantly differs from each other by conducting post-test using

the Mann–Whitney U test.

6.4. Computational results and analysis

6.4.1. Comparison results on TOPTW instances

The S-DPSO is tested on available benchmark TOPTW instances. Results are compared with the results

obtained from ACO (Montemanni & Gambardella, 2009), ILS (Vansteenwegen et al., 2009b), VNS

(Tricoire et al., 2010), SSA (Lin & Yu, 2012), GRASP-ELS (Labadie, Melechovský, & Calvo, 2011), GVNS

(Labadie, Mansini, Melechovský, & Wolfler Calvo, 2012), I3CH (Hu & Lim, 2014), and ABC (Cura, 2014).

We could not obtain the original source codes of the algorithms. Thus, we prefer to present the

original results of those algorithms, which are also shown in the study of Cura (2014). Notably, the ILS

and SSA are executed only once; the ACO, GRASP-ELS, GVNS, I3CH, and ABC are executed five times;

and the VNS is executed for 10 times. The S-DPSO is executed five times follows the ABC

implementation. According to the preliminary testing, the previously mentioned parameter values

exhibit the best performance within a reasonable computational time.

Table 4 shows that the gap of average result for S-DPSO ranges from 0.00% to 2.72% for test problems

with m = 1, 2, 3, 4. The average CPU ranges from 0.18 s to 207.83 s. In term of the average gap, S-

DPSO is better than GVNS, VNS, SSA, GRASP-ELS, ILS, ACS and ABC. However, to obtain the solutions

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0250
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0225
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0190
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0135
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0125
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0120
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0100
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0040
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0040
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0020

it is slower than some of those algorithms, GVNS, GRASP-ELS, ILS and ABC. Furthermore, I3CH can

obtain the best average gap. The statistical analysis of these algorithms results are conducted further.

Table 4. Results for TOPTW benchmark instances.

Insta

nce

set

N GVNS VNS SSA GRASP

-ELS

ILS ACS ABC I3CH S-DPSO

G

ap

av

g.

CP

U

G

ap

av

g.

CPU G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

Ga

p

av

g.

CPU G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

(%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s)

p = m = 1

Solo

mon

100

2

9

2.

46

66.

54

0.

07

85.3

9

0.

05

22.

32

0.

20

9.0

1

1.

94

0.2

4

0.1

0

200.

13

0.

46

4.4

2

0.

69

26.

71

0.

19

20.

59

Solo

mon

200

2

7

2.

54

75.

53

0.

54

857.

80

0.

50

44.

67

1.

14

16.

52

2.

53

1.6

7

0.5

4

857.

80

0.

97

21.

35

1.

34

132

.14

0.

69

63.

43

Cord

eau

1–10

1

0

1.

44

12.

37

0.

92

822.

05

0.

80

112

.21

1.

28

5.0

3

4.

56

1.7

5

1.0

3

162

6.63

1.

30

78.

54

1.

05

109

.01

0.

33

98.

41

Cord

eau

11–

20

1

0

3.

51

24.

22

2.

61

104

5.94

2.

97

162

.40

2.

61

7.9

0

8.

88

1.9

8

11.

22

887.

65

2.

78

103

.67

4.

28

130

.23

2.

72

85.

42

p = m = 2

Solo

mon

100

2

9

1.

64

73.

88

0.

96

68.7

8

0.

04

34.

52

1.

28

26.

60

1.

85

0.8

9

0.6

3

127

8.64

0.

32

13.

00

0.

47

69.

31

0.

85

60.

37

Solo

mon

200

2

7

1.

16

19.

79

0.

70

813.

69

0.

65

76.

87

0.

38

20.

91

2.

80

2.6

0

2.8

8

222

2.72

0.

85

30.

65

0.

47

463

.80

1.

26

80.

19

Insta

nce

set

N GVNS VNS SSA GRASP

-ELS

ILS ACS ABC I3CH S-DPSO

G

ap

av

g.

CP

U

G

ap

av

g.

CPU G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

Ga

p

av

g.

CPU G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

(%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s)

Cord

eau

1–10

1

0

1.

18

39.

09

3.

30

524.

83

1.

86

173

.93

1.

61

19.

46

5.

64

4.7

6

2.9

8

188

9.66

2.

45

149

.69

1.

04

247

.06

1.

66

142

.09

Cord

eau

11–

20

1

0

1.

52

82.

44

2.

98

618.

79

3.

24

201

.63

2.

92

28.

77

7.

24

5.2

1

5.5

3

238

4.81

2.

99

221

.84

2.

70

304

.61

2.

41

142

.46

p = m = 3

Solo

mon

100

2

9

1.

83

91.

09

1.

18

68.8

6

0.

40

45.

95

1.

56

35.

04

2.

36

1.4

6

1.4

1

142

1.73

0.

59

22.

55

0.

20

135

.85

0.

10

93.

71

Solo

mon

200

2

7

0.

24

7.3

2

0.

11

322.

34

0.

45

52.

26

0.

06

3.5

0

1.

10

1.7

1

0.8

2

134

4.96

0.

32

12.

49

0.

02

89.

24

0.

36

16.

69

Cord

eau

1–10

1

0

0.

86

85.

90

3.

37

473.

21

2.

07

197

.01

1.

71

40.

55

6.

33

9.2

4

3.7

4

216

3.80

2.

64

228

.93

0.

36

424

.00

0.

75

178

.34

Cord

eau

11–

20

1

0

1.

39

150

.73

2.

95

517.

47

3.

42

251

.83

2.

86

42.

95

8.

82

9.6

9

6.2

3

222

8.16

3.

84

247

.64

1.

11

496

.95

1.

80

181

.32

p = m = 4

Solo

mon

100

2

9

1.

85

86.

59

1.

56

66.8

5

0.

48

58.

32

1.

53

39.

93

3.

12

2.4

2

1.6

7

152

3.01

0.

95

29.

54

0.

16

199

.54

0.

32

114

.25

Insta

nce

set

N GVNS VNS SSA GRASP

-ELS

ILS ACS ABC I3CH S-DPSO

G

ap

av

g.

CP

U

G

ap

av

g.

CPU G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

Ga

p

av

g.

CPU G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

G

ap

av

g.

CP

U

(%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s) (%

)

(s)

Solo

mon

200

2

7

0.

00

0.5

3

0.

00

141.

21

0.

00

40.

45

0.

00

0.0

2

0.

00

1.0

2

0.0

2

245.

42

0.

00

0.5

3

0.

00

0.1

7

0.

04

0.1

8

Cord

eau

1–10

1

0

1.

30

127

.33

3.

25

403.

17

1.

90

255

.57

2.

20

45.

75

6.

77

14.

07

3.2

7

244

7.70

3.

17

233

.28

0.

36

566

.51

1.

61

205

.14

Cord

eau

11–

20

1

0

2.

45

232

.64

3.

14

408.

00

3.

60

283

.98

3.

07

65.

33

8.

13

13.

74

6.0

0

258

3.50

3.

49

267

.58

0.

45

728

.62

1.

48

207

.83

Aver

age

1.

58

73.

50

1.

73

452.

40

1.

40

125

.87

1.

53

25.

46

4.

50

4.5

3

3.0

0

158

1.65

1.

69

104

.11

0.

92

257

.74

1.

04

105

.65

As shown in Table 5, the mean ranks for GVNS, VNS, SSA, GRASP-ELS, ILS, ACS, ABC, I3CH, and S-DPSO

are 73.09, 79.06, 62.63, 69.25, 110.94, 86.97, 72.44, 36.69, and 67.44, respectively. The Kruskal–Wallis

test results in Table 6 shows a significant difference from at least one algorithm with at least one of

other algorithms tested for TOPTW results.

Table 5. Mean ranks of TOPTW algorithms.

Problem Algorithm N Mean rank

TOPTW GVNS 16 74.16

VNS 16 73.28

SSA 16 63.78

GRASP-ELS 16 70.16

ILS 16 111.16

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0025
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0030

Problem Algorithm N Mean rank

ACS 16 87.41

ABC 16 72.72

I3CH 16 46.28

S-DPSO 16 53.56

Table 6. Kruskal–Wallis test statistics for results of TOPTW algorithms (GVNS, VNS, SSA,

GRASP-ELS, ILS, ACS, ABC, I3CH).

Average percentage gap

Chi-square 28.543

Df 8

Asymp. Sig. 0.000

Critical value (left-tailed, right-tailed) (2.73, 15.51)

We conduct the Mann–Whitney U test statistic on TOPTW results. The process starts with division of

the algorithms into three groups (A1, A2, and A3), as shown in Table 7. This grouping is based on a

preliminary Kruskal–Wallis test. Subsequently, the algorithm results in each group are tested by the

Kruskal–Wallis test. In this case, only group A1 is performed because it consists of more than one

member (see Table 8). Results in Table 9 show no significantly different result in the member of group

A1. Finally, the results of each group are tested using the Mann–Whitney U test with 95% confidence

interval (α is 0.05 and critical value is −1.64). Result in Table 9 shows that the average gap between

each group is significantly different. Based on this experiment, we can conclude that I3CH is the most

effective among the algorithms for TOPTW. Our proposed S-DPSO algorithm can generate results as

good as those of GVNS, VNS, SSA, GRASP-ELS, ACS, and ABC.

Table 7. Grouping of GVNS, VNS, SSA, GRASP-ELS, ILS, ACS, ABC, I3CH, and S-DPSO algorithm

for Mann–Whitney U test statistics.

Group Member

A1 GVNS, VNS, SSA, GRASP-ELS, ACS, ABC, and S-DPSO

A2 ILS

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0035
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0040
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0045
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0045

Group Member

A3 I3CH

Table 8. Kruskal–Wallis test statistics for A1 (GVNS, VNS, SSA, GRASP-ELS, ACS, ABC, and S-

DPSO) results.

Average percentage gap

Chi-square 6.443

Df 6

Asymp. Sig. 0.375

Critical value (left-tailed, right-tailed) (1.64, 12.59)

Table 9. Mann–Whitney U test statistics for TOPTW benchmark results.

Algorithm 1 Algorithm 2 Mann-Whitney U Z Asymp. Sig. (two-tailed)

A1 A2 376.000 −3.747 0.000

A1 A3 575.000 −2.313 0.021

A2 A3 29.500 −3.713 0.000

6.4.2. Comparison results on TOPTW-PS small- and medium-scale instances

The S-DPSO results are compared with those results obtained by CPLEX. The CPLEX solver is terminated

after 2 h when the optimal solution is not obtained. We use the same parameter setting for solving

these instances. The percentage of gap between the CPLEX and S-DPSO results is calculated as

follows.(25)Gap2=CPLEX-S_DPSOCPLEX×100%

Table 10 reports the computational results of small-scale and medium-scale instances. The

comparison between CPLEX and S-DPSO results showed that S-DPSO can obtain the optimal solutions.

For the medium-scale instances, out of 56 instances, CPLEX obtains the optimal solution for only two

instances. The proposed S-DPSO can reach the optimal solutions to those two instances. On average,

S-DPSO outperforms the CPLEX by 0.57% and 1.6% for the small and medium scale instances

respectively. S-DPSO can also provide the solutions in lower CPU time than that of CPLEX in some

instances.

Table 10. Summary of CPLEX and S-DPSO for small and medium size TOPTW-PS instances.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#n0005
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#n0010
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0050

Set CPLEX S-DPSO Gap 2

Small (S) Medium (M) Small (S) Medium (M) S (%) M (%)

p = m = 1

Solomon 100 205.52 237.76 210.38 243.93 −2.37% −2.60%

Solomon 200 429.30 655.93 429.30 674.93 0.00% −2.90%

p = m = 2

Solomon 100 342.17 423.21 346.28 436.97 −1.20% −3.25%

Solomon 200 431.56 825.48 431.56 833.70 0.00% −1.00%

p = m = 3

Solomon 100 408.97 570.97 412.93 580.41 −0.97% −1.65%

Solomon 200 431.56 835.89 431.56 835.96 0.00% −0.01%

Average 374.84 591.54 377.00 600.98 −0.57% −1.60%

6.4.3. Comparison results between S-DPSO and S-DPSO-(4) on TOPTW-PS large-scale instances

The large-scale instances are solved using two versions of the S-DPSO, the proposed S-DPSO and the

S-DPSO that only implements the position updating rule (4) in the search process, namely, S-DPSO-(4).

S-DPSO-(4) uses Eq. (26) to update particle positions. The percentage gap between the average S-

DPSO and average S-DPSO-(4) results is calculated as follows.(26)Gap3=(S_DPSO_(4))-

(S_DPSO)S_DPSO_(4)×100%The comparison results between S-DPSO and S-DPSO-(4) for the large-

scale instances of TOPTW-PS are summarized in Table 11. Results showed that the S-DPSO

outperforms the S-DPSO-(4). Moreover, the average computational time of S-DPSO is only slightly

slower than that of S-DPSO-(4). The average objective and computational time of S-DPSO-(4) are

914.01 and 219.58 s, respectively. The average objective and computational time of S-DPSO are

982.78 and 255.41 s, respectively. The average percentage gap between the S-DPSO-(4) and S-DPSO

objective values is − 8.68%.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#e0145
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0055

Table 11. Summary of S-DPSO-(4) and S-DPSO results for large TOPTW-PS instances.

Set S-DPSO-(4) S-DPSO Gap 3

Objective CPU (s) Objective CPU (s) (%)

p = m = 1

Solomon 100 268.07 137.24 298.55 142.67 −11.40

Solomon 200 804.89 138.12 886.85 140.43 −10.58

p = m = 2

Solomon 100 478.86 193.30 530.00 222.17 −11.58

Solomon 200 1239.96 185.85 1345.78 219.64 −8.86

p = m = 3

Solomon 100 669.62 233.24 715.48 277.72 −7.53

Solomon 200 1484.52 243.40 1566.52 293.86 −5.87

p = m = 4

Solomon 100 824.21 319.42 883.03 374.66 −7.23

Solomon 200 1541.96 306.05 1636.00 372.11 −6.39

Average 914.01 219.58 982.78 255.41 −8.68

A more detailed analysis of problem characteristics is shown in Fig. 6. The TOPTW-PS instances

characteristics are inherited from TOPTW where they are categorized into clustered (C), random (R),

and random-clustered (RC) based on the locations of the vertices. SDPSO outperforms SDPSO-(4) in

all categories in terms of objective value. However, it comes with the cost of higher computational

time. Both algorithms show an increasing computational time along with the increasing number of

days/paths. SDPSO-(4) requires less computational time for most of the instances except those having

random characteristics such as 1-R100, 1-R200, 1-RC200, and 3-RC200.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0030

Fig. 6. Illustration of SDPSO-4 and SDPSO results for TOPTW-PS large instances.

We use the S-DPSO and S-DPSO-(4) objective value results to conduct the statistical test analysis for

the TOPTW-PS large benchmark instances. The Wilcoxon signed-rank test statistics is conducted with

95% confidence interval (α is 0.05 and critical value is −1.64). Table 12 shows that the average

objective values between S-DPSO and S-DPSO-(4) results are significantly different. Therefore, can be

interpreted that S-DPSO outperforms S-DPSO-(4).

Table 12. Wilcoxon signed-rank test statistics for S-DPSO and S-DPSO-(4) on TOPTW-PS results.

Objective value

Z −12.976

Asymp. Sig. 0.000

6.4.4. Comparative results between S-DPSO and S-DPSO-NoLocal on TOPTW-PS instances

The purpose of adding the local search into S-DPSO is to improve the performance of the algorithm.

This section shows the impact of the local search on solving large-scale benchmark instances. An

insight of the effectiveness of the local search is shown in Fig. 7. Both algorithms show results with

the trend of increasing objectives values and computational times as a result of increasing number of

days/paths being considered. This is expected as the more paths considered, the more vertices can be

visited, but more computational time is needed to reach the optimal solution. An interesting result is

shown in terms of objective value. It shows that the S-DPSO outperforms SDPSO-NoLocal. Although

local search requires more computational time, the increased computational time is acceptable

considering the improvement in the solutions quality.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0060
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0035

Fig. 7. Illustration of SDPSO-NoLocal and SDPSO results for selected TOPTW-PS large instances.

The results of S-DPSO without local search (S-DPSO-NoLocal) and S-DPSO with local search are

summarized in Table 13. The average objective value and computational time of S-DPSO-NoLocal are

943.68 and 227.83 s, respectively, and the average percentage gap between S-DPSO-NoLocal and S-

DPSO objective values is −3.68%. The percentage gap between the average S-DPSO and average S-

DPSO-NoLocal results is calculated as follows.(27)Gap4=(S_DPSO_NoLocal)-

(S_DPSO)S_DPSO_NoLocal×100%

Table 13. Summary of S-DPSO-NoLocal and S-DPSO results for large TOPTW-PS instances.

Set* S-DPSO-NoLocal S-DPSO Gap5

Objective CPU (s) Objective CPU (s) (%)

p = m = 1

Solomon 100 281.20 135.21 284.00 135.14 −0.93

Solomon 200 834.20 73.41 857.50 132.81 −2.75

p = m = 2

Solomon 100 503.40 231.29 514.00 257.28 −1.81

Solomon 200 1275.23 238.80 1339.17 261.52 −4.95

p = m = 3

Solomon 100 664.13 212.73 694.00 243.15 −4.60

Solomon 200 1538.83 316.83 1576.50 333.26 −2.54

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0065
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#tblfn1

Set* S-DPSO-NoLocal S-DPSO Gap5

Objective CPU (s) Objective CPU (s) (%)

p = m = 4

Solomon 100 815.60 320.66 866.00 342.99 −6.47

Solomon 200 1636.87 293.76 1649.17 302.80 −0.80

Average 943.68 227.84 972.54 251.12 −3.11

*

Conducted only on instances: c101, c109, r101, r112, rc101, rc108, c201, c208, r201, r211,

rc201, rc208.

6.4.5. Analysis of TOPTW-PS with randomized scores

The generation procedure for TOPTW-PS instances described in Section 6.1.2 assumes that an activity

with larger service time has a higher score. However, this assumption may not be always valid.

Moreover, in the TOPTW-PS instances, the proportion of score of each activity is equal to the

proportion of the service time of the activity. In this experiment, the dataset introduced earlier is

modified by randomly swapping the scores between two activities in each instance for a

predetermined number of times. The new dataset is denoted as TOPTW-PS-R instances.

The S-DPSO results for TOPTW-PS and TOPTW-PS-R are shown in Table 14. There is no clear difference

between TOPTW-PS and TOPTW-PS-R results. We cannot expect that the TOPTW-PS-R always gives

better results than TOPTW-PS does, as shown in Fig. 8. For m = 1, TOPTW-PS-R results are better than

TOPTW-PS ones. For m = 2, 3 and 4, the results of Solomon 100 and Solomon 200 instances show

different conclusions. TOPTW-PS gives better results for Solomon 200 instances compared to TOPTW-

PS-R. On the other hand, TOPTW-PS-R performs better for Solomon 100. The percentage gap between

the average TOPTW-PS and average TOPTW-PS-R results is calculated as

follows.(28)Gap5=(TOPTW_PS_R)-(TOPTW_PS)TOPTW_PS_R×100%

Table 14. Summary of S-DPSO results for large TOPTW-PS and TOPTW-PS-RS instances.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#tblfn1
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#s0070
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#t0070
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#f0040

Set* TOPTW-PS-R TOPTW-PS Gap 5

Objective CPU (s) Objective CPU (s) (%)

p = m = 1

Solomon 100 325.30 158.00 284.00 135.14 11.66

Solomon 200 861.13 133.32 857.50 132.81 0.30

p = m = 2

Solomon 100 867.60 233.01 514.00 257.28 24.63

Solomon 200 1013.57 252.25 1339.17 261.52 −57.18

p = m = 3

Solomon 100 733.17 223.88 694.00 243.15 4.63

Solomon 200 1567.67 316.81 1576.50 333.26 −0.66

p = m = 4

Solomon 100 879.37 325.81 866.00 342.99 0.75

Solomon 200 1641.73 306.71 1649.17 302.80 −0.48

Average 986.19 243.72 972.54 251.12 −2.04

*

Conducted only on instances: c101, c109, r101, r112, rc101, rc108, c201, c208, r201, r211,

rc201, rc208.

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#tblfn2

Fig. 8. Illustration of TOPTW-PS-R and TOPTW-PS.

7. Conclusions and further work

In this study, we introduce TOPTW-PS, which is an extension of TOPTW. In TOPTW-PS, each location

shows a set of activities. Each activity is associated with a score that is available for visitors to collect.

We formulate the mathematical model and propose the S-DPSO to solve the problem. The S-DPSO

uses the most suitable one among the four movement schemes for each particle to improve the

solution. The proposed S-DPSO is first tested on TOPTW benchmark problems. The computational

experiments showed that S-DPSO can produce a high-quality solution for TOPTW, the computational

results showed that the proposed S-DPSO can generate solutions as good as those of GVNS, VNS, SSA,

GRASP-ELS, ILS, ACS, and ABC. Subsequently, S-DPSO is implemented to solve the TOPTW-PS

instances. The computational experiment on TOPTW-PS problem showed that S-DPSO can determine

the optimal solution for small-scale instances, and results are similar to those obtained by CPLEX. For

large-scale instances, S-DPSO results are significantly better than those of S-DPSO-(4). Overall, S-DPSO

results indicated efficiency in solving TOPTW-PS problem. The computational time is reasonable with

respect to the size and difficulty of the tested instances. In addition, an analysis of the effect of local

search for S-DPSO is conducted. It is shown that the local search improves the S-DPSO algorithm

computational results. Moreover, we conduct an experiment to see the difference of TOPTW-PS

results if the score and service time is asymmetric.

Future research may consider the application of the proposed TOPTW-PS, especially for the tourism

sector (TTDP). Therefore, future research can apply the proposed algorithm in a practical application

on an actual mobile device. In terms of the problem, multiple objectives can also help determine a

considerably beneficial solution, such as setting an objective to maximize the total score and minimize

the total cost. The potential applications of TOPTW-PS to other areas also include humanitarian

logistic, personal medical service, and freelance workers. In addition, the option to randomize

movement options among the four trajectories in S-DPSO can be explored. Finally, in order to find the

best parameter values, automatic calibration tools, such as IRace (López-Ibáñez, Dubois-Lacoste,

Cáceres, Birattari, & Stützle, 2016), can be considered.

Acknowledgements

This research was partially supported by the Ministry of Science and Technology of the Republic of

China (Taiwan) under grant MOST 108-2221-E-011-051-MY3 and the Center for Cyber-physical System

Innovation from The Featured Areas Research Center Program within the framework of the Higher

Education Sprout Project by the Ministry of Education of the Republic of China (Taiwan).

https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0140
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#b0140
https://www-sciencedirect-com.libproxy.smu.edu.sg/science/article/pii/S0360835219305534#gp005

	Selective discrete particle swarm optimization for the team orienteering problem with time windows and partial scores
	Citation

	tmp.1574927112.pdf.lYrwO

