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Abstract Reachability computation is a fundamental

graph functionality with a wide range of applications. In

spite of this, little work has as yet been done on efficient

reachability queries over temporal graphs, which are

used extensively to model time-varying networks, such

as communication networks, social networks, and trans-

portation schedule networks. Moreover, we are faced

with increasingly large real-world temporal networks

that may be distributed across multiple data centers.

This state of affairs motivates the paper’s study of effi-

cient reachability queries on distributed temporal graphs.

We propose an efficient index, called Temporal Vertex

Labeling (TVL), which is a labeling scheme for dis-

tributed temporal graphs. We also present algorithms

that exploit TVL to achieve efficient support for dis-

tributed reachability querying over temporal graphs in
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Pregel-like systems. The algorithms exploit several op-

timizations that hinge upon non-trivial lemmas. Ex-

tensive experiments using massive real and synthetic

temporal graphs are conducted to provide detailed in-

sight into the efficiency and scalability of the proposed

methods, covering both index construction and query

processing. Compared with the state-of-the-art meth-

ods, the TVL based query algorithms are capable of

up to an order of magnitude speedup with lower index

construction overhead.

Keywords Graph · Reachability · Distributed

processing · Query processing · Algorithm

1 Introduction

Graphs are often employed to represent relationships

between entities. The literature contains many stud-

ies of general graphs [9], where no temporal dimen-

sion is considered. Yet, temporal information is im-

portant in existing and emerging real-life applications,

where the relationships between entries are intermittent

(i.e., a relationship is established at a specific moment

and persists only for some time). Such relationships

can be captured by temporal graphs (e.g., transporta-

tion schedule networks, telephone or email networks, so-

cial networks). This paper concerns efficient temporal-

graph reachability querying, which constitutes funda-

mental graph functionality, and has many important

applications such as path computation, query process-

ing, and graph analysis and mining. In the following,

we consider two representative examples.

Example 1 (Email network). In an email network,

vertices represent senders and recipients of emails. A
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Fig. 1 Example of temporal networks

directed temporal edge from vertex u to vertex v, de-

noted as (u, v, st, at), indicates that u sends v an email

at time st and that v receives the email at time at.

Then, an email transaction has a duration I = at − st.
It is worth mentioning that, email exchanges in most

email networks are instantaneous, i.e., st = at and

I = 0. Fig. 1(a) illustrates an example. For each edge,

we omit u and v but represent st and at in the form of

(st, at). In the email network, reachability queries can

be employed to determine how a group of persons share

information over time, or study how computer viruses

spread through a community.

Example 2 (Social network). In a social network, each

vertex denotes a person. Temporal edges can represent

multiple types of interactions. For instance, a directed

temporal edge e = (u, v, st, at) might mean that u initi-

ates a face-to-face meeting with v from time st to time

at, indicating that the interaction lasts for a period of

time I = at − st. Fig. 1(b) shows a simple network.

Reachability queries in social networks can help people

understand how information flows or how opinions form

over time.

Although reachability queries have been investigated

extensively, there remain challenges. First, most exist-

ing studies are designed for general graphs and do not

extend to temporal graphs, where traversals are not

transitive. In the above two examples, if we disregard

the temporal information and treat the graphs as gen-

eral graphs, results of reachability queries can be mis-

leading. In Example 2, suppose A is infected with in-

fluenza and a doctor wants to determine whether D is

potentially infected by A in order to decide whether D

should be quarantined. If we ignore the temporal infor-

mation, we conclude that D is potentially infected by

A since there is a path from A to D via B. However,

D cannot be infected by A because the interaction be-

tween A and B (from 10 a.m. to 11 a.m.) only occurs

after B interacts with D (from 8 a.m. to 9 a.m.), mean-

ing that the virus carried by A cannot have been trans-

mitted to D. Second, as the scale of real-world tempo-

ral graphs keeps increasing rapidly (e.g., the number of

phone calls recorded each day), it is increasingly im-

portant to study how the operations on graphs can be

distributed across data centers for higher efficiency and

scalability. To this end, we aim to enable efficient dis-

tributed reachability queries over temporal graphs.

To handle reachability queries on temporal graphs,

a straightforward approach is to perform breadth-first

search (BFS ) directly, which has time complexity O(|V |
+|E|), where |V | and |E| are the number of vertices

and edges, respectively. This is prohibitive for massive

graphs. Considering that reachability queries over gen-

eral graphs can be supported by existing approaches [8,

11,47,48], another näıve solution is to transform tempo-

ral graphs into general graphs without loss of reachabil-

ity information, and then apply existing indexing meth-

ods (such as the state-of-the-art distributed approaches

DRQ [8] and DSR [11]) to answer reachability queries.

As a representative example, TopChain [41] first trans-

forms a temporal graph into a directed acyclic graph

(DAG) and then makes use of properties of temporal

graphs to design indexes and query algorithms on the

transformed graph. Nonetheless, a transformed graph

can be tens of times larger and much denser than the

original temporal graph, incurring very high index con-

struction overhead and poor query performance, as will

be seen in our experiments.

We propose a new indexing technique called TVL

that is a labeling scheme. The basic idea is to maintain

two sets of temporal labels for each vertex v, namely

Lin(v) and Lout(v). Lin(v) records the vertices u that

can reach v, together with the time starting at u and

the time ending at v. Lout(v) records the vertices w

that v can reach, together with the time starting at

v and the time ending at w. To reduce the index size

and to construct the index efficiently, TVL only main-

tains canonical temporal labels instead of all temporal
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labels, and it adopts a message propagation technique

to efficiently construct the index without graph transfor-

mation. Several query processing algorithms are devel-

oped on top of TVL to support distributed reachability

queries on temporal graphs, and a suite of non-trivial

lemmas state properties that are exploited to improve

query performance. As a result, compared with existing

techniques, TVL has much lower query cost and lower

index construction overhead.

In a nutshell, the key contributions are as follows.

– We present a new scalable index structure, TVL,

which does not rely on graph transformation and

that can be constructed efficiently by adopting mes-

sage propagation techniques. Furthermore, TVL sup-

ports efficient insertion operations.

– We provide several search algorithms using TVL to

answer distributed reachability queries on temporal

graphs, and we develop several non-trivial lemmas

that enable improved performance.

– We report extensive experiments using seven real

and synthetic datasets that offer detailed insight

into the efficiency and scalability of the proposed

techniques. Compared with the state-of-the-art dis-

tributed reachability methods [8,11,41], TVL is from

several times to an order of magnitude faster in

terms of query efficiency, with much smaller index

size and lower index construction cost.

The rest of the paper is organized as follows. Sec-

tion 2 reviews related work. Section 3 formalizes the

paper’s problem. Section 4 details baselines. Section 5

covers the TVL based method. Section 6 reports exper-

imental results and our findings. Finally, Section 7 con-

cludes the paper and offers directions for future work.

2 Related work

In this section, we review previous related studies on

reachability queries on general graphs, temporal graphs,

and distributed graph processing systems.

2.1 Reachability queries on general graphs

Existing efforts on reachability queries on general graphs

in the literature [1,4,5,6,15,16,17,18,19,29,30,32,34,

35,36,38,46,47,48,51,52] mostly focus on developing

centralized algorithms, and only a few studies [8,11] aim

at designing distributed algorithms. Cheng et al. [49] of-

fer a comprehensive survey on reachability querying. In

summary, existing efforts are all devoted to attaining

less online reachability query time as well as construct-

ing an offline index that can significantly reduce the

space consumption. Specifically, approaches to reacha-

bility queries mainly fall into three categories: transitive

closure based querying, hop labeling based retrieval, and

depth-first based search with pruning.

Given a graph G = (V,E), the transitive closure of

a vertex v ∈ V consists of the set of vertices in G that

can be reached from v. Transitive closure based query-

ing methods [1,5,15,17,19,29,36] first precompute the

transitive closures of all vertices in G. Then, for a reach-

ability query that asks whether a source vertex s can

reach a target vertex t in G, those methods first retrieve

the transitive closure of s and then check whether t is

contained in the transitive closure of s. It is observed

that a query can be answered in O(1) time, while pre-

computing the transitive closures of all vertices takes

O(|V ||E|) time. Thus, transitive closure based querying

methods trade index construction and storage overhead

for query efficiency.

Hop labeling based retrival methods [6,16,18,46,52]

precompute an offline index by constructing an out-

label set Lout(v) and an in-label set Lin(v) for each

vertex v in G. Lout(v) records a list of intermediate

vertices that v can reach, and Lin(v) records the set

of vertices that can reach v. Then, a reachability query

can be answered by finding a common vertex in the

intersection of the source vertex’s out-label set and the

target vertex’s in-label set. Overall, hop labeling based

retrival methods can answer reachability queries with

high query efficiency when label sets are small.

Depth-first based search with pruning methods [4,

30,32,34,38,47,48] are designed to reduce the offline in-

dex construction time. The basic idea is to utilize depth-

first search (DFS ) on a graph G to answer reachability
queries and to rely on auxiliary labeling information to

prune the search space. The index construction time

and index size of this class of methods are both small,

enabling these methods to scale to sizable graphs.

Since centralized approaches are limited to the main

memory of a single machine, a few techniques aim to en-

able distributed reachability querying. We are aware of

two techniques [8,11] that specifically tackle the prob-

lem of distributed reachability querying. One [8] is for

single-source, single-target reachability querying, and

the other [11] is for set reachability querying, which is

a generalized form of reachability queries.

Fan et al. [8] propose a distributed algorithm called

disReach. It first precomputes the local reachability be-

tween in-boundaries and out-boundaries in graph par-

titions in parallel. A reachability query can then be an-

swered by DFS on a dependency graph that is con-

structed based on the precomputed reachability infor-

mation. Gurajada and Theobald [11] develop a graph-

based index structure called compound graph, which is
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obtained by merging local partitions with partition-

specific boundary graphs. Based on the precomputed

compound graphs, reachability queries can be answered

locally or by using a single step of message exchange.

It is worth mentioning that, the aforementioned al-

gorithms are designed for general graphs and cannot be

applied to temporal graphs directly, since temporal in-

formation is ignored and traversal in temporal graph is

not transitive. If temporal graphs are transformed into

general graphs, existing distributed approaches can be

used. Nonetheless, they are inefficient, as to be verified

in our experiments.

In this paper, we propose TVL index, which is more

scalable than 2-hop labeling. As pointed out in GRAIL

[47], 2-hop labeling suffers from poor scalability, espe-

cially for large graphs. Consequently, we do take scala-

bility into consideration when we design TVL. For ex-

ample, in order to reduce the storage overhead of 2-hop

labeling, TVL introduces the new concepts of vertex sig-

nificance value and canonical temporal labels, and sorts

the canonical temporal labels of TVL in ascending or-

der of vertex significance values. It strategically stores

canonical temporal labels with the top-k smallest sig-

nificance values to effectively reduce the index storage

overhead. As to be verified in the scalability experi-

ments of TVL, TVL has smaller construction time and

is more scalable than Grail, while the construction cost

and the storage size complexities of Grail are theoreti-

cally less than 2-hop labeling.

2.2 Temporal graphs

Temporal graphs have garnered substantial research in-

terest. Several comprehensive surveys [3,12,20] are avail-

able in the literature.

Existing studies on temporal graphs are related to

topics such as connected components [25], temporal

graph traversals [13], subgraph isomorphism [27], tem-

poral paths [26,37,39], temporal subgraph mining [45],

minimum spanning trees [14], and the traveling sales-

man problem [24]. These studies generally aim at the-

oretical analysis of concepts, formalisms, models, and

metrics for temporal graphs.

Recently, TopChain [41], a centralized algorithm for

reachability queries on temporal graphs was proposed.

The algorithm first transforms the original temporal

graph into a directed acyclic graph (DAG) and then

decomposes the DAG into a set of ranked chains. Next,

based on the top-k chains, for every vertex v in the

DAG, TopChain constructs two sets of labels, Lin(v)

and Lout(v), which record the last and first vertices in

a top-k chain that can reach v and that is reachable

from v, respectively. Reachability queries can be an-

swered using the vertex labels together with DFS. We

extend this algorithm to a distributed algorithm called

PTopChain, implemented in Blogel, in order to sup-

port distributed reachability queries over massive tem-

poral graphs. It turns out that PTopChain has high

index construction overhead. This is because the trans-

formed graphs are much larger than the original tempo-

ral graphs. To reduce index construction cost and speed

up online search, we present a novel indexing technique

called Temporal Vertex Labeling (TVL) that offers bet-

ter query performance with smaller index size, to cov-

ered in detail in experiments.

2.3 Distributed graph processing systems

Batarfi et al. [2] provide a comprehensive survey of

state-of-the-art distributed graph processing platforms.

Representatives include MapReduce [7], Pregel [23], Gi-

raph++ [33], Blogel [42], GraphLab [22], Trinity [31],

Spark [50], and GraphX [10].

MapReduce [7] is adopted by corporations for big

data processing. Nevertheless, it is ill-suited for itera-

tive algorithms. In contrast, Pregel-like systems, which

include also Giraph++ and Blogel, are proposed for

supporting iterative graph computations. Pregel [23],

which is based on a bulk synchronous parallel model,

is introduced by Google for graph applications. Apache

Giraph1 and Apache Hama2 are open-source implemen-

tations of Pregel. Giraph++ [33], which is built on top

of Giraph, represents a shift from a node-centric to a

graph-centric computing system. Blogel [42], which is

implemented in C++, provides vertex-centric, block-

centric, and global interfaces for programming algo-

rithms. It supports three types of jobs: (i) vertex-centric

graph computing; (ii) graph partitioning; and (iii) block-

centric graph computing. GraphLab [22] is an open-

source project that encompasses a family of related

systems. Trinity [31] and Spark [50] are memory-based

distributed processing systems. GraphX [10] is built on

Spark for graph-parallel computation.

We design our algorithms within the setting of the

Pregel-like systems [44], because those systems are best

suited for iterative graph query processing. Pregel-like

systems first distribute vertices of the input graph to

different machines. To perform computational tasks,

a user-defined function compute() needs to be imple-

mented. Then, the tasks proceed as sequences of su-

persteps. In every superstep, each active vertex invokes

compute() to perform a user-specified task. A task ter-

1 Giraph is available at http://giraph.apache.org/.
2 Hama is available at http://hama.apache.org/.
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Table 1 Symbols and description

Annotation Description

G = (V,E) a temporal graph with a set V of vertices and a set E of temporal edges (see Definition 1)
G = (V , E ) the transformed directed acyclic graph of G
c = 〈v1, v2, · · · , vm〉 a chain that is an ordered sequence of m reachable vertices
C = {c1, c2, · · · , cl} a chain cover of G , which is a disjoint partition of V
|V | or |E| the number of vertices or edges
u,v,w,s or t a vertex
st,at,ws or wa a timestamp
(u, v, sti , ati) or e a temporal edge
p(u, v) a time-respecting path from u to v (see Definition 2)
Sp, Ep, Dp, dp the start time, end time, duration, and length of a path p, respectively
(minV, sig, st, at) a temporal in-label or out-label of a vertex (see Definition 7 or Definition 8)
Nin(u) or Nout(u) the set of u’s in-neighbors or out-neighbors
Din(u) or Dout(u) the in-degree or out-degree of a vertex u
n(v) the topological level number of a vertex v

ρ(v) the significance value ρ(v) of a vertex v

k a parameter for controlling the size of an index
TRPG (s, t, I = [ws, wa]) a function that returns all time-respecting paths p from s to t such that [Sp, Ep] ⊆ I
Lin(v) or Lout(v) the in-label or out-label set of a vertex v
TRQ(s, t, I) a temporal reachability query (see Definition 3)
EETQ(s, t, I) an earliest ending time query (see Definition 4)
MDQ(s, t, I) a minimum duration query (see Definition 5)
EXTRACT(C, x, con) a function that extracts all the labels la in a given label set C such that la.minV = x and

Boolean condition con is true

minates when all vertices vote to halt, and there is

no message in transmit. In addition, Pregel-like sys-

tems support message combiners. Users can implement

a combine() function to combine messages sent to the

same vertex, thus reducing the number of messages to

be buffered and transmitted. Pregel-like systems also

support aggregators that can be used for capturing the

global state of the graph.

In this paper, we implement our approaches on the

popular Pregel-like system Blogel [42], which has been

shown to be more efficient than other Pregel-like sys-

tems (such as Giraph and Giraph++). The main reason

is that Blogel is implemented in C++. In addition, we

choose Blogel [42] instead of Pregel+ [43]. This is be-

cause, Blogel has VB (Vertex&Block) computing model

and supports block level communication, which is more

suitable for reachability queries [42]. Moreover, it is

also proved by the experimental comparison that the

PageRank on Blogel (shown in Fig. 16 of Blogel [42])

is faster than that on Pregel+ (depicted in Fig. 12 of

Pregel+ [43]) on the same dataset WebUK.

3 Problem formulation

We first define the notions of temporal graph and time-

respecting path. Following Wu et al. [41], we assume

that graphs are directed; and an undirected edge can

be modeled by two directed edges. For ease of reference,

Table 1 summarizes notations used frequently in this

paper.

Definition 1 (Temporal Graph). A temporal graph

G = (V,E) consists of a set V of vertices and a set E of

temporal edges. In particular, a temporal edge ei ∈ E
from a vertex u ∈ V to another vertex v ∈ V − {u}, in

the form of a quadruple (u, v, sti , ati), indicates that an

event from u to v starts at time sti and ends at time

ati , thus having duration I = ati − sti .

Definition 2 (Time-respecting Path) [28]. A time-

respecting path p from u to v, denoted by p(u, v)= 〈u,

e1, w1, · · · , wm−1, em, v〉, is defined as a sequence of

contacts with non-decreasing times, where 〈u, w1, · · · ,
wm−1, v〉 and 〈e1, e2, · · · , em〉 are sequences of vertices

and temporal edges, respectively, with e1 = (u, w1, st1 ,

at1), em = (wm−1, v, stm , atm), and ei = (wi−1, wi,

sti , ati) for i ∈ (1,m), such that, for any i ∈ [1,m),

ati ≤ sti+1 . We refer to Sp = st1 as the start time of p,

and Ep =atm as the end time of p. Further, we refer to

Dp =atm−st1 as the duration of p, and to dp = m (i.e.,

the number of the edges in p) as the length of p.

Based on the definition of a temporal graph G and a

time-respecting path p, we introduce a function TRPG(s,

t, I=[ws, wa]) on a temporal graph G that returns all

directed time-respecting paths p from a vertex s to an-

other vertex t such that Sp≥ws and Ep≤wa. Then,

given a temporal graph G, a source vertex s, a target

vertex t, and a time interval I=[ws, wa], where ws and

wa are the user-specified start time and end time of a

query, we define three types of queries on G, namely,
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Fig. 2 Example of a temporal graph G, and G’s transformed graph G

temporal reachability query, earliest end time query, and

minimum duration query.

Definition 3 (Temporal Reachability Query). A

temporal reachability query from s to t within I on G,

denoted as TRQ(s, t, I), returns true if TRPG(s, t, I)

finds at least one path; otherwise, it returns false.

Definition 4 (Earliest End Time Query). An ear-

liest end time query from s to t within I on G, de-

noted as EETQ(s, t, I), retrieves the earliest end time

min(Ep) among all paths p returned by TRPG(s, t, I).

Definition 5 (Minimum Duration Query). A min-

imum duration query from s to t within I on G, denoted

as MDQ(s, t, I), finds the minimum duration min(Dp)

among all paths p returned by TRPG(s, t, I).

Example 3 Fig. 2(a) shows a temporal graph G, where

V = {v1, v2, · · · , v5} and E = {e1, e2, · · · , e11}. A tuple

of the form (st, at) associated with each temporal edge

e indicates the start and end times of e. The temporal

reachability query TRQ(v4, v3, [1, 4]) returns false since

no time-respecting path exists that connects v4 to v3 in

interval [1, 4], i.e., TRPG(v4, v3, [1, 4])=∅. On the other

hand, TRPG(v5, v2, [1, 10])={p1, p2} with p1 =〈v5, e2,

v3, e4, v2〉 and p2 = 〈v5, e3, v2〉. Therefore, the earliest

end time query EETQ(v5, v2, [1, 10]) returns min(Ep1
,

Ep2) = 8, and the minimum duration query MDQ(v5,

v2, [1, 10]) returns min(Dp1
, Dp2

) = 2.

4 Baseline methods

To compute distributed reachability queries on massive

temporal graphs, a simple approach is to perform a dis-

tributed breadth-first search (BFS ) on the temporal

graph starting from the source vertex and continuing

until either the target vertex is reached or it is deter-

mined that no such time-respecting path exists. This

approach requires no index, but requires O(|V | + |E|)
time for each query, which is prohibitively expensive for

massive graphs.

Another näıve approach is to transform temporal

graphs into general graphs without loss of reachability

information, and then apply existing indexing meth-

ods to answer reachability queries. The state-of-the-art

centralized method TopChain [41] is based on this idea.

TopChain first transforms the temporal graph G into a

directed acyclic graph (DAG) G = (V ,E ) and then de-

composes the transformed graph G into a set of chains

(i.e., a chain cover C). For each chain c in C, TopChain

assigns a unique rank randomly or in descending or-

der of the degrees of all the vertices in the chain c.

Then, TopChain computes an in-label set Lin(v) and

an out-label set Lout(v) for each vertex v ∈ V . Lin(v)

and Lout(v) maintain the last and first vertex in the

top-k smallest ranking chains that can reach v and

that is reachable from v, respectively. Here, a chain

c = 〈v1, v2, · · · , vm〉 is an ordered sequence of m reach-

able vertices such that vi can reach vi+1 for 1 ≤ i < m.

A chain cover C = {c1, c2, · · · , cl} of G is a disjoint

partition of V , where ci is a chain for 1 ≤ i ≤ l. Specif-

ically, the main steps of constructing TopChain index

are summarized as follows.

First, a temporal graph G = (V,E) is transformed

into a general graph G = (V ,E ), which is proven to be

a DAG in the full version [40] of the paper [41]. The

detailed transformation is provided below.

Vertex transformation. Each vertex w ∈ V is

transformed into two sets of vertices (i.e., Vin(w) and

Vout(w)) in V , where Vin(w) = {〈w, ati〉 | 1 ≤ i ≤ h}
and Vout(w) = {〈w, stj 〉 | 1 ≤ j ≤ m}. Here, ati is a

distinct arrival time instance at which edges from in-

neighbors of w arrive at w; and stj is a distinct start
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Algorithm 1: PTCA Algorithm

Input: a transformed graph G = (V , E ), a topological
level number n, an integer k, a chain cover
C={c1, · · · , cl} of G where ci is ranked before
cj for 1 ≤ i < j ≤ l

Output: Lin(v) for every vertex v ∈ V
1: foreach vertex v ∈ V do

2: if superstep = 0 then
3: Lin(v)← {(v.x, v.y)}
4: if n(v) = 0 then

5: foreach out-neighbor w ∈ Nout(v) do
6: send message Lin(v) to w

7: else if there is no message in transmit then

8: return Lin(v)

9: else
10: foreach message Lin(u) sent from u ∈ Nin(v)

do
11: L← Lin(v) ∪ Lin(u)

12: Let Lk be the top k labels with the smallest
chain rank from L such that if ∃(u.x,u.y)∈L
and (w.x,w.y)∈L satisfies u.x = w.x and
u.y<w.y, i.e., u and w are in the same chain,
then (u.x, u.y)/∈Lk

13: Lin(v)← Lk

14: if n(v) = superstep then
15: foreach out-neighbor w ∈ Nout(v) do

16: send message Lin(v) to w

time instance at which an edge starts from w to its out-

neighbors. h and m are the numbers of distinct arrival

time instances and start time instances, respectively.

Edge transformation. The edge transformation

involves three steps. (i) Each edge e (= (u,w, st, at)) ∈
E is transformed into an edge from the vertex 〈u, st〉∈
Vout(u) to the vertex 〈w, at〉∈Vin(w). (ii) Given Vin(w)

= {〈w, at1〉, 〈w, at2〉, · · · , 〈w, ath〉}, where ati < ati+1

for 1 ≤ i ≤ (h − 1), a new directed edge from vertex

〈w, ati〉 ∈ Vin(w) to vertex 〈w, ati+1
〉 ∈ Vin(w) is cre-

ated in E . For Vout(w), the edges are created in the

same way. (iii) For each vertex 〈w, atin〉 ∈ Vin(w), ac-

cording to its reverse order in Vin(w), a directed edge

from vertex 〈w, atin〉 to vertex 〈w, stout
〉 ∈ Vout(w) is

created, where stout =min{st′ | 〈w, st′〉∈Vout(w), st′ ≥
atin}, and no edges from other vertices 〈w, at′in〉∈Vin(w)

to 〈w, stout
〉 have been created.

Example 4 Fig. 2(b) shows the transformed graph G
of the temporal graph G depicted in Fig. 2(a). For in-

stance, v4 is transformed into Vin(v4) = {〈v4, 4〉, 〈v4, 7〉}
and Vout(v4) = {〈v4, 2〉, 〈v4, 4〉}, and (v4, v5, 2, 3) in E

is transformed into an edge from 〈v4, 2〉 ∈ Vout(v4) to

〈v5, 3〉∈Vin(v5) in E . For Vout(v4), an edge from 〈v4, 2〉
to 〈v4, 4〉 is created in E . For Vin(v4), an edge from

〈v4, 4〉 to 〈v4, 7〉 is created in E . Moreover, an edge from

〈v4, 4〉 ∈ Vin(v4) to 〈v4, 4〉 ∈ Vout(v4) is created in E .

Note that, 〈v4, 4〉 ∈ Vin(v4) and 〈v4, 4〉 ∈ Vout(v4) are

different vertices.

In the rest of this section, we use v instead of 〈w, st〉
to represent a vertex in G for brevity.

Second, the transformed graph G is decomposed

into a set C of ranked chains (i.e., the chain cover of

G ), and each vertex v ∈ V is assigned a chain code

(v.x, v.y). Here, a chain c ∈ C is an ordered sequence

of reachable vertices, and v.x is the rank of chain c

and v.y is the position of v in c. Note that, during the

process of graph transformation, each set of vertices

V in(w) or V out(w) appears as a chain due to the prop-

erties of temporal graphs; thus, a natural chain cover

C = {Vin(w) | w ∈ V } ∪ {Vout(w) | w ∈ V } of G and

chain code for every vertex are obtained.

Finally, based on the transformed graph G , the chain

cover, and the chain codes of all vertices, Lin(v) and

Lout(v) for each vertex v ∈ V are computed. Lin(v)

keeps the last vertex in top-k chains that can reach v,

and Lout(v) keeps the first vertex in top-k chains that is

reachable from v. Here, chains are ranked in descending

order of their φ values, which is the sum of out-edges

and in-edges of all vertices in a chain. The top-k chains

are those having top-k smallest chain ranks.

We parallelize TopChain to achieve PTopChain. To

enable parallelism, PTopChain is constructed using the

topological level number [6] of a vertex rather than the

topological order. The topological level number of a ver-

tex v, denoted as n(v), is defined below.

n(v) =

{
0 Nin(v) = ∅
maxu∈Nin(v)(n(u) + 1) otherwise

Here, Nin(v) = {u | (u, v) ∈ E } denotes the set

of v’s in-neighbors. The topological level number n(v)

can be calculated iteratively. To accelerate the com-

putation, each vertex first caches incoming messages,

and then, it computes the topological level number and

sends messages to neighbors until all needed messages

are received. Given a transformed graph G = (V ,E ), a

topological level number n, an integer k, and a chain

cover C = {c1, · · · , cl} of G , a PTopChain Construc-

tion Algorithm (PTCA) is developed. The pseudo-code

is shown in Algorithm 1.

Initially, graph G is partitioned across a cluster of

workers; then computation tasks including a consecu-

tive of supersteps are performed iteratively. Let Nout(v)

= {w | (v, w) ∈ E } be the set of v’s out-neighbors and

Nin(v) = {u | (u, v)∈E } be the set of v’s in-neighbors.

First, we consider superstep = 0. For every vertex v∈V ,

PTCA assigns the chain code of each vertex v to Lin(v)

(line 3). Then, if n(v) = 0, PTCA sends Lin(v) to its

out-neighbor w ∈Nout(v) (lines 4–6). Next, if there is



8 Tianming Zhang et al.

no message to transmit, the in-label sets of all vertices

are computed, and PTCA terminates (lines 7–8). Oth-

erwise, for the vertex v that receives Lin(u) from its in-

neighbor u ∈ Nin(v), PTCA computes Lin(v). Lin(v)

keeps the top k labels with the smallest chain rank from

Lin(u) and the in-labels of v such that, for each chain,

Lin(v) only contains the chain code of the last ver-

tex that can reach v (lines 9–13). If n(v) = superstep,

meaning that Lin(v) has been computed, PTCA sends

Lin(v) to its out-neighbors for computing labels in the

following supersteps (lines 14–16).

Lout(v) can be computed similarly, and hence, we

omit its pseudo-code. The only difference between Lout(v)

computation and Lin(v) computation is that PTCA
needs to take the reverse graph of G as an input and

that n(v) is calculated by topological sorting of the re-

verse graph of G . Algorithm PTopChain can be used

for computing the three types of reachability queries

defined in Section 3. The detailed algorithm is similar

to Algorithm 2 presented by Wu et al. [41]. We note

that PTopChain based algorithms process all traversed

vertices in parallel, which accelerates search.

Discussion. Although PTopChain performs better

than bi-directional BFS and other existing indexing

methods in most cases, it still has shortcomings that

limit its efficiency.

First, PTopChain transforms an original temporal

graph into a DAG, which is probably tens of times

larger than the original temporal graph, incurring ex-

tra index construction cost. Second, as PTopChain is a

depth-first based search with pruning method, it per-

forms DFS on the transformed DAG to answer reach-

ability queries when index checks fail. This results in

long query time since the transformed DAG is much

larger than the original temporal graph.

To reduce the index construction overhead and im-

prove the query efficiency, we propose a new index struc-

ture, called Temporal Vertex Labeling (TVL), to be de-

tailed in the next section.

5 TVL based method

We first introduce a new index structure called Tempo-

ral Vertex Labeling (TVL). Compared with PTopChain,

TVL has lower index construction cost and is much

more compact. Then, we present the index construc-

tion algorithm and insertion scheme for TVL, and we

cover several query algorithms using TVL that aim to

efficiently support distributed reachability queries on

temporal graphs. In the following, we say that a ver-

tex u can reach another vertex v iff ∃I = [ws, wa] with

ws≤wa such that TRPG(u, v, I) 6=∅.

5.1 TVL

Baseline methods expand an original temporal graph

into a much larger directed acyclic graph (DAG), which

adversely affects query performance. In contrast, the

TVL index is built directly on an original temporal

graph without any graph transformation.

The basic idea of TVL is inspired by the typical

2-hop labeling scheme. Formally, both TVL and 2-hop

labeling maintain two sets, Lout(v) and Lin(v), for each

vertex v. However, they are different, and TVL is more

scalable. First, 2-hop labeling is a complete index, which

means that, for any vertex pair (u, v), u can reach v if

and only if Lout(u) ∩ Lin(v) 6= ∅. In other words, any

reachability query can be simply answered by taking

the intersection of the source vertex’s out-label set and

the target vertex’s in-label set. This leads to high query

efficiency when the label sets are small. Nonetheless, 2-

hop labeling is unable to scale to massive graphs as

label sets are often too large.

In contrast, TVL uses 2-hop labeling that attaches

temporal information. In particular, TVL maintains two

sets of temporal labels for every vertex v ∈ V , i.e.,

Lin(v) and Lout(v). Each temporal label in Lin(v)

records the vertices u that can reach v, together with

the time starting at u and the time ending at v. Simi-

larly, each temporal label in Lout(v) records the vertices

w that v can reach, together with the time starting at v

and the time ending at w. However, storing all tempo-

ral labels in Lin(v) and Lout(v) is not practical in the

case of massive graphs. Therefore, we use a parameter k

and define canonical temporal labels (to be formalized

in Definition 9) to control TVL size. We also define a

vertex significance function ρ that ensures temporal la-

bels in TVL maintain important vertices. TVL belongs

to the category of methods that use depth-first based

search with pruning. It incurs a small overhead in pre-

processing, offers better query performance at a smaller

index size, and is able to scale to large graphs.

Before we explain how to define ρ, we give defini-

tions of the out-degree Dout(u) and in-degree Nin(u) of

a vertex u in a temporal graph.

Definition 6 Given a temporal graphG = (V,E), there

may be multiple temporal edges from a vertex u to

another vertex v. Let S(u, v) be the set of temporal

edges from u to v, and |S(u, v)| be the cardinality.

Then, the out-degree of u is denoted by Dout(u) =∑
v∈Nout(u)

|S(u, v)|, whereNout(u) = {v | (u, v, sti , ati)
∈E}. The in-degree of u is defined asDin(u)=

∑
w∈Nin(u)

|S(w, u)|, where Nin(u) = {w | (w, u, sti , ati) ∈ E}.

Take the temporal graph G depicted in Fig. 2(a) as

an example. We have Dout(v1)=5 and Din(v1)=2.
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emphTVL is controlled by a vertex significance func-

tion ρ. Each vertex v ∈ V is assigned a unique signif-

icance value ρ(v) to indicate the relative importance

of v w.r.t. other vertices. Intuitively, the more time-

respecting paths that pass through v, the more im-

portant v is. However, computing this vertex signifi-

cance value requires us to compute the number of time-

respecting paths that contain v, which is prohibitively

expensive for massive graphs. Instead, we define ρ(v)

as the order of v after all the vertices are sorted in de-

scending order of their degrees (i.e., Din(v) +Dout(v)).

As a result, the vertex v with the largest degree has

ρ(v) = 1, the vertex u with the second largest degree

has ρ(u) = 2, and so on. When there is a tie, e.g., both

v1 and v2 have the n-th largest degree, v1 is assigned

ρ(v1) = n and v2 is assigned ρ(v2) = n+ 1.

Theoretically, the reason why we define vertex sig-

nificance values ρ(v) by vertex degrees is that the larger

the degree v has, the higher the possibility is that v

can reach or be reached by other vertices, and the more

important v is. We assign the value of ρ(v) in descend-

ing order of vertex degrees. This assignment ensures

that important vertices are maintained by TVL so that

many reachable vertex pairs can be answered by TVL.

We shall see in Section 6 that defining ρ(v) according to

vertex degrees results in more efficient querying, com-

pared with assigning ρ(v) randomly.

Based on the concept of vertex significance values

ρ(v), we define the temporal in-labels and temporal out-

labels of vertex v below.

Definition 7 Given a temporal graph G = (V,E), a

vertex v, a vertex significance function ρ, and a time-

respecting path p from another vertex u ( 6= v) to v,

a temporal in-label lin of vertex v is defined w.r.t.

p in the form of (minV, sig, st, at), where minV is a

vertex on p, sig = ρ(minV ), st is the start time from

minV , and at is the end time at v. Such an in-label

implies that there is a vertex minV passed by p (i.e.,

minV ∈ p ) such that (i) minV 6= v and (ii) @v′ ∈ p
having ρ(v′) < si.

Definition 8 Given a temporal graph G = (V,E), a

vertex v, a vertex significance function ρ, and a time-

respecting path p′ from vertex v to another vertex u

(6= v), a temporal out-label lout of vertex v is de-

fined w.r.t. p′ in the form of (minV ′, sig′, s′t, a
′
t), where

minV ′ is a vertex on p′, sig′ = ρ(minV ′), s′t is the

start time from vertex v, and a′t is the end time at ver-

tex minV ′. Such an out-label implies that there is a

vertex minV ′ passed by p′ (i.e., minV ′ ∈ p′ ) such that

(i) minV ′ 6= v and (ii) @v′ ∈ p′ having ρ(v′) < sig′.

Note that, each temporal label of vertex v indicates

the existence of a vertex ( 6= v) with the smallest signif-

icance value in a time-respecting path to or from v.

Example 5 Consider vertex v2 in Fig. 2(a). The ver-

tex significance value ρ(v) of vertices v in Fig. 2(a)

are given in the column entitled ρ(vi) of Fig. 4(e). Ac-

cording to the time-respecting path p= 〈v1, e9, v2〉, v2
has an in-label lin = (v1, 1, 5, 6). According to an-

other time-respecting path p′ = 〈 v4, e8, v1, e10, v2〉,
v2 has another in-label lin = (v1, 1, 5, 7). Also notice

that not all time-respecting paths generate temporal in-

labels or out-labels. For instance, the time-respecting

path p′′ = 〈 v5, e3, v2〉 from v5 to v2 generates no tem-

poral in-label for v2, but it does generate a temporal

out-label for v5.

Based on the temporal in-labels and temporal out-

labels of vertex v, we define the notions of canonical

temporal in-label and out-label as follows.

Definition 9 Given a temporal in-label (resp. out-label)

la of vertex v, if there is no other temporal in-label

(resp. out-label) la′ of v such that la′.minV = la.minV

and [la′.st, la
′.at] ⊆ [la.st, la.at] (i.e., (la′.st ≥ la.st) ∧

(la′.at ≤ la.at)), la is defined as a canonical temporal
in-label (resp. canonical temporal out-label).

For example, in the temporal graph in Fig. 2(a), ac-

cording to Definition 7, v2 has two temporal in-labels,

i.e., lin1 = (v1, 1, 5, 6) and lin2 = (v1, 1, 5, 7). Here, lin1,

not lin2, is a canonical temporal in-label of v2 by Defini-

tion 9 because lin1.st = lin2.st = 5 and lin1.at (= 6) <

lin2.at (= 7). For each vertex v, maintaining all canoni-

cal temporal in-labels (resp. out-labels) of v is sufficient

to be able to correctly answer temporal reachability

queries. Temporal labels like lin2 are redundant, and

hence are excluded from TVL. Even with this reduc-

tion, an index is still too large to build when a graph

is large. Consequently, we propose a lightweight index

TVL with a parameter k that controls its size.

Definition 10 (TVL Index). Given a temporal graph

G = (V,E) and an integer k, a TVL index is a labeling

scheme, where each vertex v ∈ V is associated with

two sets, Lin(v) and Lout(v). Canonical temporal in-

labels (resp. out-labels) la are maintained by Lin(v)

(resp. Lout(v) ) if la.sig is one of the top-k smallest

significance values among those of canonical temporal

in-labels (resp. out-labels) of v.

Example 6 Given k = 2, the TVL index of the temporal

graph depicted in Fig. 2(a) is shown in the two columns

entitled Lin(vi) and Lout(vi) in Fig. 4(e).
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Algorithm 2: TVL Construction Algorithm

(LCA)

Input: a temporal graph G = (V,E), an integer k, a
vertex significance function ρ

Output: Lin(v) and Lout(v) for every vertex v ∈ V
1: foreach vertex v ∈ V do

2: if superstep = 0 then
3: foreach eout =(v, w, st, at) with ρ(v)<ρ(w) do

4: tag ← 0; send (v, ρ(v), st, at, tag) to w

5: foreach ein = (u, v, st, at) with ρ(v) < ρ(u) do
6: tag ← 1; send (v, ρ(v), st, at, tag) to u

7: else if there is no messages in transmit then

8: return Lin(v) and Lout(v)

9: else

10: foreach msg = (minV, sig, st, at, tag) do

11: flag = true
12: if msg.tag = 0 then // compute Lin(v)
13: if the number of unique minV in

Lin(v) < k or msg.sig ≤ the largest
significance value in Lin(v) then

14: flag← updateLabel(msg, Lin(v), k)

15: if flag = true then // send message

16: foreach edge eout = (v, w, st, at)
with msg.sig < ρ(w) do

17: if msg.at≤eout.st∧Ho.size<k then

18: msg.at←eout.at; send msg tow

19: else if msg.at ≤ eout.st and
msg.sig ≤ Ho.peek() then

20: msg.at←eout.at; send msg tow

21: update Ho with msg.sig

22: else if msg.tag = 1 then//compute Lout (v)
23: if the number of unique minV in

Lout(v) < k or msg.sig ≤ the largest
significance value in Lout(v) then

24: flag← updateLabel(msg,Lout(v), k)

25: if flag = true then // send message

26: foreach ein = (u,v,st,at) with
msg.sig < ρ(u) do

27: if msg.st≥ein.at∧Hi.size<k then
28: msg.st←ein.st; sendmsg to u

29: else if msg.st≥ein.at and
msg.sig ≤ Hi.peek() then

30: msg.st←ein.st; sendmsg to u

31: update Hi with msg.sig

For instance, v5 has three canonical temporal out-

labels: (v2, 2, 1, 8), (v2, 2, 7, 9), and (v3, 3, 7, 8), which

are maintained by TVL when capturing the top-2 small-

est significance values. Also note that the corresponding

Lin(v) (resp. Lout(v)) sets for some vertices may con-

tain fewer than k canonical temporal in-labels (resp.

out-labels), e.g., Lin(v2) = {(v1, 1, 5, 6)}, Lin(v3) =

{(v1, 1, 3, 4)} and Lout(v1) = ∅.

Algorithm 3: Function updateLabel (msg,

C(v), k)

Input: a message msg : (minV,sig,st,at,tag), an
in-label or out-label set C(v) of v, an integer k

Output: a Boolean flag indicating whether msg needs
to be sent

1: flag ← true; S ← {la ∈ C(v) | la.minV = msg.minV }
//S is sorted in ascending order of the start time la.st

2: if S 6= ∅ then
3: foreach label la ∈ S do

4: if msg.st < la.st and msg.at < la.at then
5: break;

6: else if msg.st ≤ la.st and msg.at ≥ la.at then

7: flag ← false; break;

8: else if msg.st = la.st and msg.at < la.at then

9: remove la from C(v); break;

10: else if msg.st > la.st and msg.at ≤ la.at then
11: remove la from C(v);

12: else if msg.st > la.st and msg.at > la.at then

13: continue;

14: if flag = true then
15: insert (msg.minV,msg.sig,msg.st,msg.at) into

C(v)

16: else
17: insert (msg.minV,msg.sig,msg.st,msg.at) into C(v)
18: remove label la ∈ C(v) with la.sig > k-th largest

significance value

19: return flag

5.2 TVL construction

To construct the above-defined TVL index, we present

LCA algorithm. The pseudo-code is shown in Algorithm 2.

LCA takes as inputs a temporal graph G = (V,E), an

integer k, and a vertex significance function ρ, and it

outputs Lin(v) and Lout(v) for every vertex v ∈ V .

First, we consider superstep = 0, where all ver-

tices take the following actions. For each temporal edge

eout = (v, w, st, at) from v or ein = (u, v, st, at) to v,

LCA sends a message msg = (v, ρ(v), st, at, tag) to v’s

out-neighbor w with ρ(v) < ρ(w) or in-neighbor u with

ρ(v) < ρ(u) (lines 3–6). Here, tag is used to differentiate

messages. It has two possible values, with value 0 indi-

cating that msg is used for computing Lin(v) and value

1 meaning that msg is employed to compute Lout(v).

The execution of the following supersteps proceeds until

there is no message to transmit.

The arrival of a message msg with tag = 0 at ver-

tex v triggers the re-examination of Lin(v) (lines 9–

21). The update is triggered if Lin(v) is not full or

msg contains a vertex minV with significance value

no larger than that of at least one label maintained

by Lin(v). Function updateLabel, with its pseudo-code

shown in Algorithm 3, performs the update action, and



Efficient Distributed Reachability Querying of Massive Temporal Graphs 11

returns a Boolean where value true indicates that msg

represents a potential canonical temporal in-label of v.

Consequently, msg needs to be propagated to v’s out-

neighbors w. To reduce the communication cost, we

only send messages having sig value smaller than ρ(w)

as no other messages can create new temporal in-labels

of w, according to Definition 7.

Similarly, the arrival of a message msg with tag = 1

at v triggers the re-examination of Lout(v) (lines 22–

31). The update is triggered if Lout(v) is not full or

msg contains a vertex minV with significance value no

larger than at least that of one label in Lout(v). up-
dateLabel performs the update action, and returns a

Boolean, where value true means that msg represents

a potential canonical temporal out-label of v. There-

fore, msg needs to be propagated to v’s in-neighbors u

having ρ(u) > msg.sig. To further reduce the number

of messages, Ho (resp. Hi), a priority queue contain-

ing at most k msg.sig sent through eout (resp. ein) in

descending order, is maintained by eout (resp. ein).

Function updateLabel, i.e., Algorithm 3, takes as in-

puts a message msg = (minV, sig, st, at, tag), an in-

label or out-label set C(v) of vertex v, and an integer

k, and it outputs a Boolean indicating whether or not

msg needs to be transmitted.

First, updateLabel initializes the Boolean variable

flag to true and lets S be a label set to be used for

maintaining temporal labels la having la.minV = msg.

minV . Note that S is sorted in ascending order of the

start time la.st (line 1).

Next, if S is not empty, then updateLabel updates

the content of C(v) to ensure that C(v) only maintains

the current canonical temporal labels with top-k signifi-

cance values (lines 2–15). Specifically, there are 5 cases,

which are covered below.

Case (i): as illustrated in Fig. 3(a), if msg.st < la.st
and msg.at < la.at (line 4), then [msg.st,msg.at] is

not a subset or a superset of any intervals [la.st, la.at]

of temporal labels la in S, because S is sorted in ascend-

ing order of the start time la.st. Therefore, the current

(msg.minV , msg.sig, msg.st, msg.at ) is a canonical

temporal label according to Definition 9. Then update-
Label breaks from the for-loop (line 5), jumps to line

14, and inserts (msg.minV, msg.sig, msg.st, msg.at)

into the set C(v) (line 15).

Case (ii): as depicted in Fig. 3(b), if msg.st ≤ la.st
and msg.at ≥ la.at (line 6), this means that [msg.st,

msg.at]⊇ [la.st, la.at]. Therefore, (msg.minV, msg.sig,

msg.st, msg.at) cannot be a canonical temporal in-label

or out-label of v according to Definition 9. Thus, msg

is discarded, and updateLabel sets flag to false (line 7).

Case (iii): as shown in Fig. 3(c), if msg.st = la.st
andmsg.at < la.at (line 8), then [la.st, la.at] ⊃ [msg.st,

msg.at], and any interval of the remaining temporal la-

bels in S is not a superset of [msg.st,msg.at]. This

indicates that, instead of la, the current (msg.minV,

msg.sig, msg.st, msg.at ) is a canonical temporal label.

Therefore, updateLabel removes la from C(v) (line 9)

and then inserts (msg.minV, msg.sig, msg.st, msg.at
) into C(v) (line 15).

Case (iv): as plotted in Fig. 3(d), if msg.st > la.st
andmsg.at ≤ la.at (line 10), then [la.st, la.at] ⊃ [msg.st,

msg.at], and there may be other temporal labels (e.g.,

la′ shown in Fig. 3(d)) whose intervals are supersets of

[msg.st,msg.at]. Hence, la is removed from C(v) (line

11), and the for-loop proceeds until all temporal labels

whose intervals are supersets of [msg.st,msg.at] are re-

moved from C(v).

Case (v): as illustrated in Fig. 3(e), if msg.st>la.st
and msg.at>la.at(line 12), then [la.st, la.at] 6⊃ [msg.st,

msg.at]. Thus, la should be retained. Since updateLabel
is not sure whether or not (msg.minV, msg.sig, msg.st,

msg.at ) is a canonical temporal label, the for-loop con-

tinues (line 13).

Otherwise, S is empty, updateLabel first inserts a

temporal label (msg.minV, msg.sig, msg.st, msg.at)

into C(v) (line 17), and then removes labels la from

C(v) if la.sig exceeds the current k-th largest signifi-

cance value in C(v) (line 18).

Finally, updateLabel returns flag (line 19).

In the following, we illustrate how LCA computes

TVL below.

Example 7 Take Fig. 2(a) as an example. Let k = 2.

First, we consider superstep = 0. For each vertex vi (1 ≤
i ≤ 5), messages are sent to out-neighbors and in-

neighbors whose significance values are larger than ρ(vi),

as illustrated in Fig. 4(a).

At superstep = 1, each vi updates Lin(vi) and Lout(vi)

based on the incoming messages, and then sends mes-

sages selectively, as depicted in Fig. 4(b). We show how

v3 updates labels and sends messages. Vertex v3 re-

ceives three messages. For (v1, 1, 3, 4, 0), LCA inserts

(v1, 1, 3, 4) into Lin(v3) by invoking function update-
Label. It then sends message (v1, 1, 3, 9, 0) to its out-

neighbor v2 because ρ(v1) < ρ(v2) and the end time

(= 4) of (v1, 1, 3, 4, 0) is less than the start time (= 8) of

edge e4. For (v1, 1, 4, 6, 1) and (v2, 2, 8, 9, 1), LCA adds

(v1, 1, 4, 6) and (v2, 2, 8, 9) to Lout(v3), and sends mes-

sage (v2, 2, 7, 9, 1) to its in-neighbor v5, since ρ(v2) <

ρ(v5) and the start time (= 8) of (v2, 2, 8, 9, 1) is equal

to the end time (= 8) of e2.

At superstep = 2, v2, v4, and v5 receive messages. At

v2, message (v1, 1, 3, 9, 0) has no effect on Lin(v2), be-

cause an in-label (v1, 1, 5, 6) exists with 5 > 3 and 6 < 9.

At v4, message (v3, 3, 2, 8) is inserted into Lout(v4). At

v5, message (v2, 2, 7, 9) is inserted into Lout(v5), since
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Fig. 3 Illustration of updateLabel

it is a canonical temporal out-label and ρ(v2) is the sec-

ond smallest significance value. Moreover, v5 sends mes-

sage (v2, 2, 2, 9, 1) to its in-neighbor v4, as ρ(v2) (= 2)

is smaller than the second largest significance value

ρ(v3) (= 3) in Lin(v4) and the start time (= 7) of mes-
sage (v2, 2, 7, 9, 1) exceeds the end time (= 3) of edge

e1. The result is shown in Fig. 4(c).

At superstep = 3, v4 receives a message (v2, 2, 2, 9, 1),

and LCA removes (v3, 3, 2, 8) from Lout(v4) and in-

serts (v2, 2, 2, 9) into Lout(v4). The result is depicted

in Fig. 4(d). Thereafter, since there are no more mes-

sages in transmit, LCA stops.

The final TVL index of the temporal graph illus-

trated in Fig. 2(a) is shown in the two columns entitled

Lin(vi) and Lout(vi) in Fig. 4(e).

Next, we analyze the correctness and the computa-

tion and communication costs of LCA, as well as the

size of TVL.

Correctness. We first prove that LCA (i.e., Algo-

rithm 2) correctly computes the temporal in-label set

Lin(v) for each vertex v ∈ V . As stated in lines 3–

4 of Algorithm 2, for a vertex v ∈ V , a message (v,

ρ(v), st, at, 0) is initialized for each outgoing edge

eout = (v, w, st, at), and then is sent to w, one of v′s

out-neighbors. Here, if ρ(v) > ρ(w), LCA will not initial-

ize or send the message. This is because (v, ρ(v), st, at)

cannot be contained in Lin(w) and it is useless for com-

puting Lin sets of w′s descendants according to Defini-

tion 7. Then, as stated in lines 10–21 of Algorithm 2,

each vertex v computes Lin(v) iteratively and we need

to guarantee that the computation process detailed in

lines 10–21 of Algorithm 2 correctly computes Lin(v)

in the TVL index. To be more specific, Lin(v) is com-

puted according to the messages sent from (i) v′s 1-hop

in-neighbors; and (ii) v′s multiple-hop in-neighbors.

For the messages sent from v′s 1-hop in-neighbors

(i.e., case (i)), all the needed messages (i.e., (u, ρ(u),

st, at, 0) with ρ(u) < ρ(v) from 1-hop in-neighbors)

are sent according to Definition 7, as stated in lines 3–4

of Algorithm 2. The messages are processed by Algo-

rithm 3. Lines 3-17 of Algorithm 3 ensure that current

canonical temporal in-labels are maintained by Lin(v)

according to Definition 9. Line 18 of Algorithm 3 guar-

antees that the current canonical temporal in-labels

with top-k smallest significance values are maintained

by Lin(v) according to Definition 10.

For the messages propagated from v′s multiple-hop

in-neighbors (i.e., case (ii)), multiple-hop in-neighbors
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Fig. 4 Illustration of LCA

propagate two types of messages to v. To ease the dis-

cussion, we assume that the messagemsg = (minV, sig,

st, at, 0) carried by v1, v’s multiple-hop in-neighbor, is

propagated to v via a time-respecting path 〈v1, e1, v2,
· · · , vn, en, v〉. Here, v1 first propagates msg to v2.

The first type of message satisfies the property that

the largest significance value falls in Lin(v2) < msg.sig

< ρ(v2) and |Lin(v2)| = k. For this type of message,

msg is not processed by Algorithm 3 since it is use-

less for computing Lin(v2). However, msg can be use-

ful for updating Lin sets of v1’s 2-hop out-neighbors v3
with msg.sig < ρ(v3), v1’s 3-hop out neighbors v4 with

msg.sig < ρ(v4) and so on. Consequently, LCA propa-

gates msg to v′1s 2-hop out-neighbors, as stated in lines

16–21 of Algorithm 2. The second type of message satis-

fies the property that the largest significance value falls

in Lin(v2) ≥ msg.sig or |Lin(v2)| < k. For this type of

message, msg is useful for updating Lin(v2), and hence

it is processed by Algorithm 3, as stated in lines 13–14

of Algorithm 2. If there exists a canonical temporal in-

label lin in Lin(v2) satisfying lin.minV = msg.minV

and [lin.st, lin.at] ⊆ [msg.st,msg.at], msg is identified

as a redundant message because all the subsequent la-

bels created by msg can be created by lin. Therefore,

algorithm 3 does not propagate msg. In summary, both

the first and second types of useful messages are prop-

agated to v after n-hop propagation, and thus, Lin(v)

is updated correctly by Algorithm 3.

Hence, Lin(v) is computed correctly. Similarly, we

can prove that Algorithm 2 computes Lout(v) correctly

for every v ∈ V . As the proof is similar, it is omitted.
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Computation cost. Given a temporal graph G =

(V,E), let ]superstep be the total number of super-

steps, and |ni| be the number of vertices that are ac-

tive (i.e., executing computing tasks) at superstep = i.

Then, the computation cost of LCA is
∑]superstep−1

i=0 |ni|,
which is the inevitable cost incurred due to the comput-

ing model of Pregel-like systems. It is worth mentioning

that, ]superstep is bounded by [ddpmax

2 e, dpmax ], where

pmax is one of the longest time-respecting paths in G,

and dpmax
is the length of pmax. The reason is that in

the worst case, the source vertex of pmax propagates the

messages to the target vertex of pmax with dpmax
super-

steps, if the significance value of the source vertex is the

smallest among those of vertices in pmax. In the best

case, the middle vertex of pmax propagates the mes-

sages to the source/target vertex of pmax with ddpmax

2 e
supersteps, which occurs if the significance value of the

middle vertex is the smallest among those of the ver-

tices in pmax.

Communication cost. Let |npi | be the number

of time-respecting paths (denoted as pi) whose lengths

are all i+ 1 at superstep = i. Then, in the worst case,

the communication cost of LCA is
∑]superstep−1

i=0 |npi |,
if the significance values of the sequenced vertices in pi
are sorted in ascending or descending order.

Size of TVL. Given a temporal graph G = (V,E),

the size of TVL is
∑

v∈V (|Lout(v)| + |Lin(v)|). Let

G = (V ,E ) be the transformed DAG of G. According

to Definition 10, |Lin(v)| ≤
∑k

i=1 |πi| and |Lout(v)| ≤∑k
i=1 |πi|, where |πi| denotes the number of intervals as-

sociated with the i-th smallest significance value. Hence,

the size of TVL is bounded by O((
∑k

i=1 |πi|)|V |). In

contrast, as found in [41], the index size of PTopChain
is bounded by O(k|V |), which exceeds the maximal size

of TVL. This is because |V | denotes the vertex set size

of the transformed graph (i.e., the total number of dis-

tinct start and arrival time instances of all edges in E),

which is much larger than |V | of the original graph.

5.3 Support for insertion

As the topology of a temporal graph G is likely to vary

over time (e.g., a telephone network is updated as new

conversations are initiated), it is attractive for an index-

ing technique to be able to support insertion operations.

Next, we consider the insertion of a new temporal edge

e = (x, y, s′t, a
′
t).

First, the value of ρ(x) (resp. ρ(y)) needs to be de-

termined if x (resp. y) is a newly inserted vertex. To

achieve an insertion overhead that is as small as pos-

sible, x (resp. y) is assigned the largest possible sig-

nificance value, i.e., ρ(x) (resp. ρ(y)) = |V | + 1. This

guarantees that all vertices have unique significance val-

ues. If x (resp. y) is an existing vertex, we do not change

its significance value. Although the value may no longer

satisfy the definition of significance values, this arrange-

ment is effective at reducing the insertion cost.

Second, let G′ = (V ′, E′) be the temporal graph ob-

tained after inserting a new temporal edge e = (x, y, s′t,

a′t) into G = (V,E). Then, we develop a TVL Inser-

tion Algorithm (LIA) to compute or update the label

sets Lin(v) and Lout(v) for the affected vertices v.

The pseudo-code of LIA is presented in Algorithm 4.

LIA takes as inputs an updated temporal graph G′ =

(V ′, E′), an integer k, a vertex significance function ρ,

Lin(v) and Lout(v) for every vertex v ∈ V , and a newly

inserted temporal edge e(x, y, s′t, a
′
t), and it outputs up-

dated Lin(v) and Lout(v) for every vertex v ∈ V ′.
LIA first computes Rin(y) and Rout(x), which are

potential labels used for updating the labels of affected

vertices (lines 1–8). Rin(y) contains all vertices u (6= y)

with the minimal significance value in a time-respecting

path from u to y via edge e, attached with (stu , a
′
t)

where stu is the start time from u to y. Similarly,Rout(x)

includes all vertices w ( 6= x) with the minimal signifi-

cance value in a time-respecting path from x to w via

edge e, attached with (s′t, atw), where atw is the end

time at w. Then, LIA sends Rin(y) (resp. Rout(x)) to

y (resp. x). The ensuing process is the same as that

detailed in lines 7–31 of Algorithm 2, i.e., computing

or updating the label sets Lin(v) and Lout(v) for the

affected vertices v. The insertion can be completed with

low computational and communication costs, to be stud-

ied in the experimental evaluation.

Discussions. The insertion algorithm LIA only sup-
ports vertex/edge and new temporal interval insertions

on TVL. This is because, in many real-world applica-

tions, edge insertions are more frequent than deletions

of edges and updates of temporal intervals [21]. When

an edge is deleted from the graph or a temporal interval

is updated, we need to re-construct TVL index in the

worst case. Theoretically, deletion operations are more

complicated than insertion operations because for inser-

tion operations, we can easily find the affected vertices.

While for deletion operations, it is hard to estimate the

number of the affected vertices and tell the affected re-

gion, we just have to say in the worst case, we need to

re-construct the entire index.

Also notice that, when a new vertex is inserted into

G = (V,E), we assign the new vertex the largest possi-

ble significance value (|V |+ 1). This assignment avoids

TVL index reconstruction. Since the new vertex has

the largest possible significance value, it is not main-

tained by the Lin or Lout sets of the original vertices,

according to Definitions 7 and 8. Hence, the original
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Algorithm 4: TVL Insertion Algorithm (LIA)

Input: an updated temporal graph G′ = (V ′, E′), an
integer k, a vertex significance function ρ,
Lin(v) and Lout(v) for every vertex v ∈ V , a
new temporal edge e = (x, y, s′t, a

′
t)

Output: Lin(v) and Lout(v) for every vertex v ∈ V ′

1: if processing vertex v = y then

2: compute Rin(y) containing all vertices u (6= y)
with the minimal significance value in a
time-respecting path from u to y via edge e,
attached with (stu, a′t). Here, stu is the start
time from u

3: foreach vertex u attached with (stu, a′t) in
Rin(y) do

4: send (u, ρ(u), stu, a′t, 0) to y

5: if processing vertex v = x then

6: compute Rout(x) containing all vertices w (6= x)
with the minimal significance value in a
time-respecting path from x to w via edge e,
attached with (s′t, atw). Here, atw is the end
time at w

7: foreach vertex w attached with (s′t, atw) in
Rout(x) do

8: send (w, ρ(w), s′t, atw, 1) to x

9: The remainder is the same as lines 7-31 inAlgorithm 2

Lin and Lout sets of each vertex remain valid and are

treated as the intermediate results during the new TVL

index update. When inserting a new edge between ex-

isting vertices, we do not change the vertex significance

values. Although the value may no longer satisfy the

definition of significance values, Algorithm 4 still cor-

rectly updates the TVL index, which follows from the

following analysis.

Correctness. After inserting a new edge e = (x, y,

s′t, a
′
t) into the temporal graph G, the Lin sets of ver-

tices y and y′s descendants as well as the Lout sets of

vertices x and x′s ancestors may be updated. Lines 2–4

of Algorithm 4 compute Rin(y) according to all time-

respecting paths to y via e and then send Rin(y) to y.

Here, according to Definition 7, Rin(y) contains all the

messages used for updating Lin sets of y and y′s de-

scendants. Similarly, lines 6–8 of Algorithm 4 compute

Rout(x) according to all time-respecting paths from x

via e and then send Rout(x) to x. Here, according to

Definition 8, Rout(x) contains all the messages used for

updating Lout sets of x and x′s ancestors. Hence, mes-

sages used for updating the Lin sets of vertices y and

y’s descendants as well as messages used for updating

the Lout sets of vertices x and x’s ancestors are sent

out. Since the newly inserted vertex with the largest

significance value will not be maintained by the Lin or

Lout sets of the original vertices according to Defini-

tions 7 and 8, the original Lin and Lout sets of each

vertex remain valid and are treated as the intermediate

results during the new TVL index update. Thus, Algo-

rithm 4 creates Lin and Lout sets for the newly inserted

vertices, adds new canonical temporal labels with top-

k smallest significance values to original TVL index or

updates the temporal intervals of the original canonical

temporal labels according to Algorithm 2, which has

been proven to correctly create a TVL index.

In the sequel, we analyze the time and space com-

plexities of LIA.

Time complexity. LIA computes or updates the

label sets for the affected vertices. Similar to the com-

plexity analysis of LCA, the computation cost of LIA is∑]superstep−1
i=0 |ni|. Here, |ni| is the number of vertices

that are active (i.e., executing computing tasks) at su-

perstep = i; ]superstep is bounded by [d
dp′max

2 e, dp′
max

],

where p′max is the longest time-respecting path between

all pairs of affected vertices. The communication cost of

LIA is
∑]superstep−1

i=0 |npi
|, where |npi

| is the number of

time-respecting paths (denoted as pi) whose lengths are

all i + 1 at superstep = i. Hence, the time complexity

of LIA is
∑]superstep−1

i=0 (|ni|+ |npi
|).

Space complexity. In the worst case, the space

complexity of LIA is O(
∑

v∈V (|Lin(v)| + |Lout(v)|) +

|V |+|E|+
∑]superstep−1

i=0 |npi
|), whereO(

∑
v∈V (|Lin(v)|

+ |Lout(v)|)) is the index size, O(|V |+ |E|) denotes the

size of the temporal graph G and O(
∑]superstep−1

i=0 |npi |)
is the message size as analyzed in Section 5.2. In con-

trast, for PTopChain, the space complexity is O(
∑

u∈V

(|Lin(u)|+|Lout(u)|)+|V |+|E |), whereO(
∑

u∈V (|Lin(u)|
+ |Lout(u)|)) denotes the size of PTopChain and mes-

sages, and O(|V | + |E |) is the size of the transformed

graph G .

5.4 TVL based query algorithms

We now detail how to use TVL together with BFS to

compute the three types of reachability queries defined

in Section 3. We first present three lemmas that aim to

enable improved efficiency.

Lemma 1 Given a TVL index built on a temporal graph

G and a temporal reachability query TRQ(u, v, I), where

I = [ws, wa], TRQ(u, v, I) is true if one of the following

three conditions holds: (i) ∃ label lu ∈ Lout(u) having

lu.minV = v and lu.st ≥ ws, lu.at ≤ wa. (ii) ∃ la-

bel lv ∈ Lin(v) having lv.minV = u and lv.st ≥ ws,

lv.at ≤ wa. (iii) ∃ label lu ∈ Lout(u) and label lv ∈
Lin(v) such that lu.st ≥ ws, lv.at ≤ wa, lu.minV =

lv.minV , and lu.at ≤ lv.st.

Proof If condition (i) or condition (ii) holds, TRQ(u, v, I)

is obviously true by Definition 3. Thus, we proceed to
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prove that TRQ(u, v, I) is also true if condition (iii)

holds. A label lu ∈ Lout(u) guarantees that u can reach

lu.minV within [lu.st, lu.at]. A label lv ∈ Lin(v) en-

sures that v can be reached by lv.minV within [lv.st, lv.at].

As lu.minV = lv.minV and lu.at ≤ lv.st, there is at

least one time-respecting path from u to v via lv.minV

within [lu.st, lv.at]. Since lu.st ≥ ws and lv.at ≤ wa,

TRQ(u, v, I) is true. This completes the proof. �

Example 8 Consider a query TRQ(v3, v4, [1, 7]) on the

temporal graph G shown in Fig. 2(a). There exists lu =

(v1, 1, 4, 6) ∈ Lout(v3) and lv = (v1, 1, 6, 7) ∈ Lin(v4)

having lu.minV = lv.minV = v1, lu.st (= 4) > ws (=

1), lv.at = wa = 7, and lu.at = lv.st = 6, mean-

ing that condition (iii) of Lemma 1 holds. Therefore,

TRQ(v3, v4, [1, 7]) is true.

Next, to facilitate the presentation of Lemma 2,

we introduce four sets So(u), Si(u), So(v), and Si(v).

These auxiliary structures are defined corresponding to

a reachability query TRQ(u, v, I) with I = [ws, wa] on a

given temporal graphG. Function EXTRACT (C, x, con)

extracts all labels la in a specified label set C such that

la.minV = x, and Boolean condition con is true.

For each set of labels in Lout(u) having the same

minV, So(u) maintains the label la with the minimal

la.st among those satisfying st ≥ ws (i.e., la is the label

having the minimal st value among those returned by

EXTRACT (Lout(u), minV, st ≥ ws)).

For each set of labels in Lin(u) having the same

minV, Si(u) stores the label la with the maximal la.at
among those satisfying at ≤ stmin (i.e., la is the label

having the maximal at value among those returned by

EXTRACT (Lin(u), minV , at ≤ stmin
)). Here, stmin

refers to the minimal start time from u satisfying stmin ∈
I. In particular, if no such stmin

exists, Si(u) = ∅.
For each set of labels in Lout(v) having the same

minV , So(v) maintains the label la with the minimal

la.st among those satisfying st ≥ atmax
(i.e., la is the

label having the minimal st value among those returned

by EXTRACT (Lout(v), minV, st≥atmax)). Here, atmax

denotes the maximal end time on v satisfying atmax
∈ I.

In particular, if no such atmax
exists, So(v) = ∅.

For each set of labels in Lin(v) having the same

minV, Si(v) stores the label la with the maximal la.at
among those satisfying at ≤ wa (i.e., la is the label

having the maximal at value among those returned by

EXTRACT (Lin(v),minV, at≤wa)).

Lemma 2 Given a TVL index built on a temporal graph

G and a temporal reachability query TRQ(u, v, I) with

I = [ws, wa], TRQ(u, v, I) is false if one of the fol-

lowing two conditions holds. (i) Let ρv and ρu be the

minimal significance value of any label in So(v) and

So(u), respectively, ρu > ρv holds. (ii) Let ρ′v and ρ′u be

the minimal significance value of any label in Si(v) and

Si(u), respectively, ρ′u < ρ′v holds.

Proof First, we prove by contradiction that our state-

ment is true if condition (i) holds. Assume that con-

dition (i) holds, then TRQ(u, v, I) is true, i.e., u can

reach v within I = [ws, wa]. Let lv ∈ So(v) be the label

with the minimal significance value (i.e., lv.sig = ρv).

Then v can reach lv.minV within [lv.st, lv.at], where

lv.st ≥ atmax (atmax is the maximal end time on v sat-

isfying atmax
∈ I). Hence, u can reach lv.minV within

[ws, lv.at]. Let lu ∈ So(u) be the label with the minimal

significance value (i.e., lu.sig = ρu). Then, as ρu > ρv,

lv ∈ So(u) by Definition 10. Consequently, the mini-

mal significance value among those of labels in So(u) is

ρv and not ρu, which is a contradiction. Therefore, if

condition (i) holds, TRQ(u, v, I) must be false.

Second, we again prove by contradiction that if con-

dition (ii) holds, TRQ(u,

v, I) is false. Assume that if condition (ii) holds, then

TRQ(u, v, I) is true, i.e., u can reach v within I =

[ws, wa]. Let lu′ ∈ Si(u) be the label with the minimal

significance value (i.e., lu′.sig = ρ′u). Then lu′.minV

can reach u within [lu′.st, lu
′.at], where lu′.at ≤ stmin

(stmin
is the minimal start time from u satisfying stmin

∈
I). Hence, we have that lu′.minV can reach v within

[lu′.st, wa]. Let lv′ ∈ Si(v) be the label with the min-

imal significance value (i.e., lv′.sig = ρ′v). Then lu′ ∈
Si(v) by Definition 10 due to ρ′u < ρ′v. Thus, the min-

imal significance value among those labels in Si(v) is

ρ′u and not ρ′v, which is a contradiction. This completes

the proof. �

Example 9 Consider the query TRQ(v5, v3, [1, 4]) on the

graph shown in Fig. 2(a). Since Lout(v5) = {(v2, 2, 1, 8),

(v2, 2, 7, 9), (v3, 3, 7, 8)}, EXTRACT (Lout(v5), v2, st≥
1)={(v2, 2, 1, 8), (v2, 2, 7, 9)}, and EXTRACT (Lout(v5),

v3, st≥1) = {(v3, 3, 7, 8)}. It can be seen that (v2, 2, 1, 8)

and (v3, 3, 7, 8) have the minimal st value among

those returned by EXTRACT (Lout(v5), v2, st ≥ 1) and

EXTRACT (Lout(v5), v3, st ≥ 1), respectively. Then,

So(v5) ={(v2, 2, 1, 8), (v3, 3, 7, 8)}. Therefore, the mini-

mal significance value w.r.t. So(v5) is 2 (i.e., ρu = 2).

Similarly, So(v3) = {(v1, 1, 4, 6), (v2, 2, 8, 9)}, as (v1,

1, 4, 6) and (v2, 2, 8, 9) have the minimal st value among

those returned by EXTRACT (Lout(v3), v1, st ≥ 4) and

EXTRACT (Lout(v3), v2, st ≥ 4), respectively. Conse-

quently, the minimal significance value w.r.t. So(v3) is

1 (i.e., ρv = 1). We have ρu (= 2) > ρv (= 1), in-

dicating that condition (i) of Lemma 2 holds. Hence,

TRQ(v5, v3, [1, 4]) is false.

Before detailing Lemma 3, we define an operator �.
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Algorithm 5: TRQ Algorithm (TRQA)

Input: a temporal graph G = (V,E),
TVL:{(Lout(v), Lin(v)): ∀v ∈ V }, TRQ(s, t, I)
with I = [ws, wa]

Output: a Boolean indicating whether s can reach t

within I
1: foreach vertex v ∈ V do

2: if superstep = 0 then
3: if the maximal start time from s < ws or the

minimal end time on t > wa then

4: return false

5: else if v = t then
6: aggregate Lin(t); send ws to s;

7: v.minT ← wa;

8: else if there is no message in transmit then
9: return false

10: else

11: select minimalw′
s (<v.minT) from messages

12: if such w′
s exists then

13: v.minT ← w′
s

14: if v = t then
15: return true

16: if ∃ label la ∈ Lout(v) having
la.minV = t and la.st ≥ w′

s and
la.at ≤ wa then //Lemma 1

17: return true

18: if ∃ label la′ ∈ Lin(t) having la.minV = t
and la′.st ≥ w′

s and la′.at ≤ wa then

//Lemma 1

19: return true

20: if ∃ labels la ∈ Lout(v) and la′ ∈ Lin(t)
having la.minV = la′.minV, la.st ≥ w′

s,
la′.at ≤ wa and la.at ≤ la′.st then

//Lemma 1

21: return true

22: compute Si(v), So(v), Si(t), and So(t)
23: if the cases of Lemma 2 do not hold then

24: if So(v) � So(t) then // Lemma 3
25: find all labels lv′∈So(v) in

Lemma 3 and send lv′.at to
lv′.minV

26: else //BFS

27: foreach edge eout ← (v, w, st, at)
with [st, at] ⊆ [w′

s, wa] do
28: send at to w

Given a reachability query TRQ(u, v, I) with I =

[ws, wa] and its corresponding label sets So(u) and So(v),

we say So(u) � So(v) if one of the following two con-

ditions holds: (i) ∃lu ∈ So(u) having lu.minV = v and

lu.at > wa; (ii) ∃lu ∈ So(u) and lv ∈ So(v) such that

lu.sig = lv.sig and lu.at > lv.at.

Lemma 3 Given a TVL index and a temporal reacha-

bility query TRQ(u, v, I) with I = [ws, wa], if So(u) �
So(v), TRQ(u, v, I) can be answered by TRQ(lu′.minV,

v, [lu′.at, wa]), where lu′∈So(u) having lu′.sig<lu.sig.

Here, lu is a label that makes operator � valid.

Proof If So(u) � So(v), then at least one of the two con-

ditions defined together with operator � needs to hold.

If condition (i) holds, u cannot reach v within I via ver-

tex w having ρ(w) ≥ lu.sig (= ρ(v)). This is because,

if u can reach v within I via w having ρ(w) ≥ lu.sig,

it must be that lu.at ≤ wa by Definition 10, which

contradicts condition (i). Therefore, u can only reach

v within I via w having ρ(w) < lu.sig, and such ver-

tices w are all maintained by So(u) according to Def-

inition 10. Thus, if So(u) � So(v), TRQ(u, v, I) can

be answered by TRQ(lu′.minV , v, [lu′.at, wa]), where

lu′ ∈ So(u) having lu′.sig < lu.sig. Similarly, we can

prove that the above statement is true if condition (ii)

holds. This completes the proof. �

Example 10 Consider the query TRQ(v5, v3, [6, 7]) on

the graph G depicted in Fig. 2(a). We have (lu = (v3,

3, 7, 8)) ∈ (So(v5) = {(v2, 2, 7, 9), (v3, 3, 7, 8)}) with

lu.minV = v3 and lu.at (= 8) > wa (= 7), i.e., condi-

tion (i) of So(v5) � So(v3) holds. According to Lemma 3,

we are certain that TRQ(v5, v3, [6, 7]) can be answered

by query TRQ(v2, v3, [9, 7]), which returns false. Next,

consider another query TRQ(v3, v4, [3, 4]). We have (lu =

(v1, 1, 4, 6)) ∈ (So(v3) = {(v1, 1, 4, 6), (v2, 2, 8, 9)}), and

(lv = (v1, 1, 4, 5)) ∈ (So(v4) = {(v1, 1, 4, 5)}) such that

lu.sig = lv.sig = 1 and lu.at (= 6) > lv.at (= 5), i.e.,

condition (ii) of So(v3) � So(v4) holds. Thus, TRQ(v3, v4,

[3, 4]) can be answered by TRQ(lu′.minV , v4, [lu′.at, 4]),

where lu′ ∈ So(v3) having lu′.sig < 1 by Lemma 3.

Since such lu′ does not exist, TRQ(v3, v4, [3, 4]) re-

turns false.

Using the above three lemmas, we present TRQA for

supporting temporal reachability queries using TVL.

The pseudo-code is shown in Algorithm 5. TRQA takes

as inputs a temporal graph G = (V,E), the TVL index

of G (i.e., {(Lout(v), Lin(v)): ∀v ∈ V }), and a temporal

reachability query TRQ(s, t, I) with I = [ws, wa], and

it outputs a Boolean indicating whether s can reach t

within I.

TRQA is implemented in the distributed graph pro-

cessing platform Blogel, which distributes vertices to

multiple workers that process vertices in parallel. TRQA
proceeds in iterations, i.e., supersteps. In each super-

step, the vertices at different workers execute the same

user-defined function compute() (i.e., Lines 2-28 of Al-

gorithm 5) in parallel. The compute() function performs

the user-specified tasks for each vertex v, including pro-

cessing v’s incoming messages sent from the previous

superstep, sending messages to other vertices for the

next superstep’s computation, and making v vote to
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halt. More specifically, first, we consider superstep =

0. If the maximal start time from s is less than ws or

the minimal end time on t is larger than wa, TRQA re-

turns false since there can be no time-respecting paths

between s and t within I (lines 3–4). Otherwise, TRQA
aggregates Lin(t) so that Lin(t) becomes available to

all vertices in the following supersteps, and it sends ws

to vertex s (lines 5–6). Then, for each vertex v, TRQA
initializes a parameter v.minT to wa (line 7). Note that

v.minT indicates the minimal end time sent to v, which

can be employed to avoid unnecessary search.

The execution of subsequent supersteps depends on

whether there are messages to transmit. If there is no

message to transmit, this means that s cannot reach t

within I. Thus, TRQA immediately returns false (lines

8–9). Otherwise, a new superstep is performed (lines

10–28). During the new superstep, each vertex v se-

lects the minimal w′s having w′s < v.minT from mes-

sages for processing (line 11). The reason is that, for

the messages w′s ≥ v.minT , TRQ(v, t, [w′s, wa]) can be

answered by TRQ(v, t, [v.minT,wa]), which has been

issued. If such a w′s exists, TRQA first updates v.minT

(lines 12–13). Then, if the traversed current vertex is t

or Lemma 1 applies, TRQA returns true (lines 14–21);

otherwise, it computes Si(v), So(v), Si(t), and So(t)

(line 22), and utilizes Lemma 2 to examine whether

TRQ(v, t, [w′s, wa]) is false (line 23). If not, Lemma 3

is employed for pruning search space (lines 24–25). If

Lemma 3 does not apply, TRQA processes the query

by checking if any of the descendants of v can reach t

within the corresponding time interval (lines 27–28).

Next, we analyze the correctness of TRQA.

Correctness. TRQA first uses Lemmas 1 and 2 to

determine the value of TRQ(s, t, I), which have proven

to be correct. Then, in order to find a time-respecting

path that connects s and t within I, TRQA searches the

whole graph following the Breadth-First-Search paradigm,

where Lemma 3 is used to prune the search space. Ac-

cording to Definitions 2 and 3, if a time-respecting path

p from s to t satisfying [Sp, Ep] ⊆ I exists, TRQ(s, t, I)

is true and TRQA returns true; otherwise, TRQ(s, t, I)

is false and TRQA returns false. Let’s assume there is a

time-respecting path p from s to t satisfying [Sp, Ep] ⊆
I but TRQA returns false. As we employ Lemma 3 to

prune paths and Lemma 3 is proved to only prune un-

qualified paths, the time-respecting path p from s to t

satisfying [Sp, Ep] ⊆ I will not be pruned. Thus, TRQA
will only return true, which contradicts our assumption.

Consequently, our assumption is invalid. Hence, TRQA
answers the temporal reachability query correctly.

In addition, when inserting new edges, we do not

change the significance values of existing vertices. Al-

though the values may be different from their ”true”

significance values, the update of TVL will not affect

the correctness of TRQA to answer the query TRQ(s, t, I).

In order to prove the correctness of the above state-

ment, we need to explain why we introduce significance

values and the role played by significance values during

index construction and query processing. 2-hop label-

ing maintains two entire sets Lin(v) and Lout(v) for

each vertex v ∈ V . By Lin(v) and Lout(v), we can

immediately find the vertices that can reach v or be

reached by v without visiting the whole graph. How-

ever, when the graph is big, it might not be possible to

maintain the entire Lin(v) and Lout(v) for every vertex

v in memory. Hence, significance values are introduced

to measure the importance of vertices, and TVL strate-

gically uses Lin(v) and Lout(v) to store only vertices

with the top-k smallest significance values, in order to

reduce the storage overhead and to improve the index

construction efficiency and scalability.

TVL trades query efficiency for the scalability. In

other words, TVL only keeps top-k vertices instead of

storing the entire Lin(v) and Lout(v), thus, the search

based on TVL might incur additional cost to traverse

the whole graph when we need to find the entries of

Lin(v) and Lout(v) that are not maintained by TVL.

More specifically, based on TVL (i.e., the reduced size

of Lin(v) and Lout(v)), TRQA uses Lemmas 1 and 2 to

directly determine the answer of TRQ(s, t, I). However,

for cases where TRQ(s, t, I) cannot be determined by

Lemmas 1 and 2, TRQA traverses the whole graph fol-

lowing the Breadth-First-Search paradigm, where Lemma

3 is used to prune the search space. The correctness of

TRQA (i.e., the correctness of Lemmas 1 to 3) after up-

dating TVL does not depend on the significance values

of vertices, but depends on whether the updated Lin(v)

and Lout(v) keep correct canonical temporal in-labels

and out-labels (i.e., whether the updated index is the

correct TVL index). The correctness of the updated in-

dex is proven in Section 5.3. Therefore, the vertex sig-

nificance values will not affect the correctness of TRQA.

We proceed to explain how to answer earliest end

time queries and minimum duration queries.

Earliest end time query. An Earliest End Time

Query Algorithm (E2TQA) is similar as TRQA. Here,

we only point out the differences and skip the detailed

pseudo-code of E2TQA. For TRQA, once TRQ(s, t, I)

is true, it returns true, and terminates. In contrast, for

E2TQA, the query needs to examine all time-respecting

paths from s to t within I, and then returns the ear-

liest end time. Hence, E2TQA initializes a persistent

aggregator ans that updates the earliest end time once

TRQ(s, t, I) is true, i.e., E2TQA replaces all statements

that return true with an update operation (i.e., updat-

ing the earliest end time). Specifically, E2TQA replaces
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Table 2 Datasets statistics

Graph |V | |E| |T (G)| |V | |E |

Wikipedia 1,870,709 39,953,145 2198 34,814,941 77,196,220
Youtube 3,223,589 9,375,374 203 8,901,388 15,381,556
Flickr 2,302,925 33,140,017 134 12,600,099 44,358,410
Deli-ui 34,611,268 203,597,734 1583 229,502,162 444,017,173
DBLP 46,624,231 463,779,274 207 181,160,598 774,983,634
Syngraph1 131,476,255 800,000,000 1000 1,582,357,528 2,454,205,328
Syngraph2 200,000,000 1,200,000,000 800 2,385,632,635 3,736,045,808

line 9 of Algorithm 5 with a statement that returns

ans, replaces line 15 of Algorithm 5 with the statement

ans ← min(ans, w′s), replaces lines 17 and 19 of Al-

gorithm 5 with the statement ans ← min(ans, la.at),

and replaces line 21 of Algorithm 5 with the statement

ans← min(ans, la′.at).

Minimum duration query. Similar to E2TQA, a

Minimum Duration Query Algorithm (MDQA) needs

to inspect every time-respecting path p from s to t

within I. The difference between MDQA and E2TQA
is that, for every time-respecting path p from s to some

w that can reach t within I, MDQ(s, t, I) needs to send

(Dp, Ep) to w. An aggregator ans is thus initialized to

maintain the minimal duration.

Finally, we analyze the time and space complexities

of TRQA, E2TQA, and MDQA.

Time complexity. In TRQA, E2TQA, and MDQA,

we adopt a simple hash partitioning method to achieve

load balancing. Hence, given Bn workers, each worker

contains |V |Bn
vertices after hash partitioning. Based on

this, the computation time complexity of each super-

step is O( |V |Bn
), and thus, the computation time com-

plexity of TRQA is O(
∑]superstep−1

i=0
|V |
Bn

). Note that, the

total number of supersteps ]supersteps is not O(|V |+
|E|). In the worst case, ]supersteps equals the number

of edges in a longest time-respecting path that con-

nects vertices s and t. The worst case occurs when all

the vertices in the longest time-respecting path are all

in different workers. Suppose that NBi
workers need

to exchange messages at superstep i. The communica-

tion time complexity of TRQA is O(
∑]superstep−1

i=0 NBi
).

Hence, the time complexities of TRQA, E2TQA, and

MDQA are O(
∑]supersteps−1

i=0 ( |V |Bn
+NBi

)).

Space complexity. The space complexities of TRQA,

E2TQA, and MDQA are O(
∑

v∈V (|Lin(v)|+|Lout(v)|)+
|V |+|E|), in which O(

∑
v∈V (|Lin(v)|+ |Lout(v)|)) de-

notes the index size, and O(|V |+ |E|) is the size of the

temporal graph. The space complexity of PTopChain

is O(
∑

u∈V (|Lin(u)| + |Lout(u)|) + |V | + |E |), where

O(
∑

u∈V (|Lin(u)|+ |Lout(u)|)) denotes the index size,

O(|V | + |E |) is the size of the transformed graph, and

O(|V |) represents the size of a table that maps ver-

tices in G to those in the transformed graph G . Thus,

the space complexities of our query methods are much

smaller than that of the baseline.

6 Experimental evaluation

We conduct extensive experiments to evaluate the effi-

ciency and scalability of the proposed methods.

6.1 Experimental settings

Datasets. We use 5 real temporal graphs, in which 4

datasets (i.e., Wikipedia, Youtube, Flickr, Deli-ui) are

from the Koblenz Large Network Collection3 and DBLP

is extracted from the DBLP bibliography. We also use

2 synthetic graphs generated by JTGraph4. Statistics

for the graphs G = (V,E) and transformed graphs

G = (V ,E ) are summarized in Table 2, where |V | is

the number of vertices in G , |E | is the number of edges

in G , and T (G) is the number of temporal intervals

in the original temporal graph G. Wikipedia is a hyper-

link network of the English Wikipedia. It contains users

and pages connected by edit events. Each edge repre-

sents an edit associated with the edit time. Youtube

and Flickr are social networks, where vertices represent

users and edges capture friendships attached with con-

nect time. Deli-ui is a bipartite graph containing user-

tag relations and user-URL relations extracted from the

network “Delicious”. DBLP is a bibliography network

that provides a comprehensive list of research papers.

An Edge from a publication A to another publication

B represents that A is cited by B, and the edge is an-

notated with the publication date of B. Syngraph1 is a

random graph created by the Erdős-Rényi model, and

Syngraph2 is a synthetic graph with power-law degree

distributions. Edges in Syngraph1 and Syngraph2 are

randomly assigned time information.

Query sets. For every dataset, we generate 500

queries by selecting a pair of vertices uniformly at ran-

dom and a set I = [0,∞] for all queries so that query

3 KONECT is available at konect.uni-koblenz.de/.
4 JTGraph is available at http://www.cse.psu.edu/~kxm85/

software/GTgraph/.

konect.uni-koblenz.de/.
http://www.cse.psu.edu/~kxm85/software/GTgraph/
http://www.cse.psu.edu/~kxm85/software/GTgraph/
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processing can access the whole graph. The average

query time of each method is reported.

Methods. We compare TVL implemented in Blogel

with the following approaches:

(i) PTopChain (described in Section 4), which is

an optimized parallel version of the state-of-the-art ap-

proach TopChain [41].

(ii)GTopChain, which is another parallel version of

TopChain [41] implemented in GTimer5.

(iii) Two state-of-the-art distributed methods for

general graphs, namely, DSR [11] and disReach [8].

(iv) An optimized bi-directional breadth-first search

(BFS ) strategy (coined “Bi-BFS”) that works without

an index.

In addition, we also compare TVL with TOL [52]

for evaluating index insertion performance, and com-

pare TVL with TopChain and the representative cen-

tralized scalable method Grail for scalability test. All

approaches are applied after transforming a temporal

graph G into a general graph G , except in the cases of

TVL and Bi-BFS.

General setup. Our distributed algorithms are im-

plemented in Blogel, which is deployed with MPICH

3.2.1. All programs were compiled using GCC 5.4.0 with

option -O3 enabled. We conducted the experiments on

a 14-node Dell cluster, where one serves as a master and

the remaining nodes serve as workers. Cluster nodes are

connected via 10GBit LAN. Each node has two 12-core

processors, 128GB RAM, and 3TB disk space.

We first investigate index construction and inser-

tion costs and compare index sizes across all methods.

Then we consider the performance of three types of

reachability queries on top of TVL. We note that a

graph of certain size calls for a certain amount of com-

puting resources (i.e., workers) to achieve good perfor-

mance. Therefore, we fix the number of workers to 10

for the middle-scale datasets (i.e., Wikipedia, Youtube,

Flickr), and fix the number of workers to 80 for the

large-scale datasets (i.e., Deli-ui, DBLP, and the syn-

thetic graphs). We set k = 3 for TVL and PTopChain.

Also, we use bold values in the tables to highlight the

best results and “—” to indicate that an index cannot

be constructed within 48 hours or a method cannot run.

6.2 Index construction and insertion costs

Table 3 presents the index sizes. Note that Bi-BFS does

not require an index; thus, we compare TVL against

GTopChain, PTopChain, DSR, and disReach.

5 GTimer is available at http://www.cse.cuhk.edu.hk/

systems/graph/Gtimer/index.html.

Table 3 Index size (in GB)

Graph TVL PTopChain GTopChain DSR disReach

Wikipedia 0.484 1.127 1.127 — —
Youtube 0.142 0.262 0.262 28.610 8.145
Flickr 0.229 0.380 0.380 — 22.626
Deli-ui 4.180 7.160 7.160 — —
DBLP 3.606 5.269 5.269 — —
Syngraph1 9.230 49.873 49.873 — —
Syngraph2 15.984 75.527 75.527 — —

Table 4 Index construction time (in minutes)

Graph TVL PTopChain GTopChain DSR disReach

Wikipedia 1.252 7.944 11.850 — —
Youtube 0.231 0.520 0.829 10.754 11.317
Flickr 0.641 1.019 5.496 — 26.050
Deli-ui 9.614 36.922 37.262 — —
DBLP 11.100 12.585 45.020 — —
Syngraph1 20.744 63.470 61.729 — —
Syngraph2 15.295 29.020 23.854 — —

The first observation is that, for all temporal graphs,

the index sizes of TVL, GTopChain and PTopChain

are much smaller than those of DSR and disReach. The

reason is that, both disReach and DSR need to materi-

alize the pairwise reachability information among the

in-boundaries and out-boundaries for each partition,

which results inO(
∑k

j=1 |Ij ||Oj |) andO(
∑k

i=1

∑k
j=1,j 6=i

(|Ii||Oj |+|EC |)) space overhead, respectively. Here, |Ij |,
|Oj |, and |EC | are the cardinality of the in-boundaries,

out-boundaries, and cut edges, respectively. In contrast,

the index sizes of PTopChain, GTopChain and TVL are

linear to the graph size.

The second observation is that the index size of TVL
is up to 4 times smaller than that of PTopChain or

GTopChain. This is because PTopChain and GTopChain

are constructed based on the transformed graph G ;

thus, the total label size of PTopChain and GTopChain

are bounded by O(k|V |). While TVL is built based

on the original temporal graph G, as analyzed in Sec-

tion 5.2, the index size of TVL is bounded by O((
∑k

i=1

|πi|)|V |), which is smaller than O(k|V |).
The third observation is that DSR and disReach

construction algorithms cannot run on most of graphs,

which is due to two reasons. First, the transformed

graph is a directed acyclic graph, which is difficult to

condense using the optimization technique of DSR. Sec-

ond, the boundary graphs are too large to construct

even when the transformed graph is partitioned by METIS,

not to mention sending them to other partitions for con-

structing compound graphs.

Next, Table 4 reports the index construction time

of TVL, PTopChain, GTopChain, DSR, and disReach.

The first observation is that TVL has the smallest index

 http://www.cse.cuhk.edu.hk/systems/graph/Gtimer/index.html
 http://www.cse.cuhk.edu.hk/systems/graph/Gtimer/index.html
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Fig. 6 Query performance vs. the number of inserting edges

construction overheads on all datasets. This is because

TVL has smaller index size and is constructed based on

the original temporal graph instead of the transformed

graph, which is tens of times larger. The second ob-

servation is that, DSR and disReach have much larger

index construction costs than PTopChain, GTopChain

and TVL. The reason is that DSR and disReach need

to construct sizable boundary graphs.

In addition, we evaluate the average index inser-

tion performance when 500 temporal edges are inserted

into the input temporal graph. Fig. 5 shows the aver-

age insertion costs of TVL, GTopChain, PTopChain,

and TOL. The first observation is that the insertion

efficiency of GTopChain is the best in most cases, as

Gtimer is suitable for processing temporal graphs that

keep updating over time. The second observation is

that the insertions for TVL are faster than the in-

sertions for PTopChain. For example, on Flickr, inser-

tions for TVL are one order of magnitude faster than

for PTopChain. The reason is that inserting a tempo-

ral edge inevitably triggers update of the transformed

DAG, and thus PTopChain needs to recompute the

topological-sort-based labels, resulting in higher inser-

tion costs.

The third observation is that, on Youtube and Flickr,

the insertion cost for TOL is one order of magnitude

higher than that for TVL and PTopChain. Moreover,

the indexing time of TOL on Youtube and Flickr is

13069.56 seconds (i.e., 3h 37min 49.56s) and 13,193.20

seconds (i.e., 3h 39min 53.2s), respectively, which is

two orders of magnitude longer than that of TVL and

PTopChain. We omit TOL on the other 5 datasets be-

cause the index of TOL cannot be constructed within 2
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days. We conclude that TVL, PTopChain and GTopChain

are more scalable than TOL, and they can achieve much

higher insertion efficiency.

We also compare the query performance on the up-

dated index after a bunch of insertions with that on

the index built directly from the updated data. Fig. 6

plots the query performance when varying the number

of inserted edges. We use ∗ s to denote the query per-

formance on the index built directly from the updated

data. As can be seen, the query performance based on

updated TVL degrades only slightly. This is because

the significance values of part of the vertices after up-

dates are not real values as defined, which offers evi-

dence of the effectiveness of the significance definition.

In addition, the query cost increases with the number

of inserted edges because of the growing size of the tem-

poral graph.

The TVL index is governed by the vertex signifi-

cance function ρ, which is defined by vertex degrees. We

experimentally assess whether defining ρ(v) by vertex

degrees results in more efficient querying compared with

assigning ρ(v) randomly. The TVL index constructed

under randomly assigned vertex significance values is

coined TVL-R. As depicted in Fig. 7, TVL outperforms

TVL-R on all real datasets.

6.3 Search performance

Evaluating TRQ . The first set of experiments studies

the query efficiency of TRQ. The average query time

of each method is shown in Table 5. The percentage

of reachability queries that are effectively handled by

Lemmas 1 to 3 is reported in Table 6.
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Table 5 Query time of TRQ (in seconds)

Graph TVL PTopChain GTopChain Bi-BFS DSR disReach

Wikipedia 0.023 0.233 0.195 3.034 — —
Youtube 0.017 0.043 0.125 0.370 7.314 912
Flickr 0.022 0.080 0.126 1.841 — 7358
Deli-ui 0.211 0.602 0.191 19.658 — —
DBLP 0.347 0.546 0.362 13.559 — —
Syngraph1 0.796 5.431 0.533 4.200 — —
Syngraph2 3.001 9.280 0.604 4.915 — —

Table 6 Percentage of queries handled by Lemmas

Graph Lemma 1 Lemma 2 Lemma 3

Wikipedia 10.6% 8.4% 2%
Youtube 1.6% 6% 4%
Flickr 50% 6% 21%
Deli-ui 50% 4.4% 1.6%
DBLP 4.16% 10% 4.18%
Syngraph1 0% 13.8% 21.8%
Syngraph2 0% 83.2% 0%

The first observation is that TVL achieves the high-

est efficiency on small-size datasets (including Wikipedia,

Youtube, and Flickr), while GTopChain achieves the

highest efficiency on large-size datasets. This is because,

Gtimer is a distributed platform optimized for tem-

poral graphs, while Blogel is a distributed framework

targeting traditional graphs. The second observation is

that besides GTopChain, TVL outperforms the other

methods on all datasets due to the effective pruning

enabled by Lemmas 1 through 3, as depicted in Ta-

ble 6. In particular, on Flickr and Deli-ui, 50% of all

queries are effectively handled by Lemma 1, i.e., 50%

of all query results are directly returned by Lemma 1.

On Syngraph2, 83.2% of all queries are effectively tack-
led by Lemma 2, i.e., 83.2% of all query results are di-

rectly returned by Lemma 2. On Flickr and Syngraph1,

21% and 21.8% of all queries are effectively handled

by Lemma 3, respectively, i.e., the search space of 21%

and 21.8% of all queries is pruned by Lemma 3, respec-

tively. The third observation is that Bi-BFS is able to

run on all datasets, but is one order of magnitude slower

than TVL on average. This is because it needs more su-

persteps to complete the search, resulting in increased

communication cost. as can be seen in Fig. 8. DSR and

disReach are several orders of magnitude slower than

TVL, which limits their scalability. Consequently, they

are unable to run on most of the datasets. Note that,

although the inter-machine communication cost of TVL

is much higher than that of PTopChain in most cases

(as plotted in Fig. 8), TVL still achieves better perfor-

mance than PTopChain (as shown in Table 5). The rea-

son is that, the input to PTopChain is the transformed

DAGs of the original graphs, which are tens of times

larger. Therefore, every worker is assigned a larger lo-

Table 7 Positive query time of TRQ (in seconds)

Graph TVL PTopChain Bi-BFS

Wikipedia 0.019 0.158 0.727
Youtube 0.040 0.094 0.464
Flickr 0.026 0.084 0.757
Deli-ui 0.164 0.416 7.367
DBLP 0.360 0.943 12.351
Syngraph1 2.282 20.814 1.607

Syngraph2 2.913 12.006 3.116

Table 8 Negtive query time of TRQ (in seconds)

Graph TVL PTopChain Bi-BFS

Wikipedia 0.028 0.309 5.436
Youtube 0.016 0.042 0.368
Flickr 0.020 0.079 1.978
Deli-ui 0.260 0.790 32.554
DBLP 0.344 0.520 13.644
Syngraph1 0.790 5.400 4.210
Syngraph2 3.024 8.794 4.972

Table 9 Query time of MDQ (in seconds)

Graph TVL PTopChain GTopChain Bi-BFS

Wikipedia 0.145 0.754 0.268 23.799
Youtube 0.021 0.048 0.120 0.677
Flickr 0.091 0.132 0.119 8.034
Deli-ui 0.646 0.636 0.131 96.703
DBLP 0.751 0.911 0.487 35.803
Syngraph1 1.101 6.293 0.462 5.506
Syngraph2 3.152 11.474 0.402 5.479

Table 10 Query time of EETQ (in seconds)

Graph TVL PTopChain GTopChain Bi-BFS

Wikipedia 0.102 0.440 0.246 12.463
Youtube 0.027 0.045 0.124 0.601
Flickr 0.038 0.117 0.122 6.597
Deli-ui 0.305 0.718 0.188 86.598
DBLP 0.417 0.702 0.465 23.728
Syngraph1 0.844 5.896 0.598 4.908
Syngraph2 3.024 9.883 0.653 5.187

cal subgraph, resulting in higher computational costs

that exceed the communication costs. These findings

indicate that TVL’s labeling scheme is an efficient and

scalable approach.

In addition, the query latency for both positive and

negative queries are reported in Table 7 and Table 8,

respectively. We see that TVL outperforms PTopChain

and Bi-BFS for both positive and negative queries on

most datasets. This is because some reachable pairs of

vertices are identified by Lemma 1. Some non-reachable

pairs of vertices are eliminated by Lemma 2. Others

that cannot be validated by Lemma 1 and Lemma 2

perform BFS efficiently since Lemma 3 helps shrink

the search space.
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Evaluating MDQ and EETQ . The second set of

experiments investigates the query efficiency of MDQ

and EETQ, with the results shown in Table 9 and Ta-

ble 10, respectively. The query time of DSR and dis-

Reach is omitted since DSR and disReach have been

shown to be very inefficient in the first set of exper-

iments. We first observe that TVL achieves the high-

est efficiency on small-size datasets, while GTopChain

achieves the highest efficiency on large-size datasets.

The reason is the same as that analysed in TRQ. Next,

we observe that TVL outperforms Bi-BFS on all datasets

and outperforms PTopChain on 6 out of 7 datasets. For

the remaining dataset, the query time of TVL is close

to that of PTopChain. PTopChain outperforms Bi-BFS

on 5 datasets. This is because TVL and PTopChain are

able to effectively prune the search space. Last, we ob-

serve that for our proposed algorithms, compared with

TRQ, both MDQ and EETQ take longer query time.

The reason is that both MDQ and EETQ need to in-

spect all time-respecting paths between a source vertex

s and a target vertex t within a time interval I to return

a result. In contrast, TRQ stops once a time-respecting

path between s and t within I is found.

Effect of time interval. The third set of exper-

iments explores the impact of the input time interval

I = [ws, wa] on query performance. Following Wu et

al. [41], we consider four different time intervals, Ii
(1 ≤ i ≤ 4), where I1 is the maximal time interval

of a dataset and Ii+1(1 ≤ i ≤ 3) is the first subinter-

val after dividing Ii into two equal sub-intervals. Fig. 9

plots the results on Youtube and Wikipedia. It is ob-

TVL PTopChain

(a) Syngraph1 (b) DBLP

Fig. 11 Communication cost vs. the number of workers

TVL PTopChain

(a) Wikipedia (b) DBLP

Fig. 12 Index construction cost vs. k

TVL PTopChain

(a) Wikipedia (b) DBLP

Fig. 13 Query time vs. k

served that the query time of TVL, PTopChain, and

Bi-BFS decreases as the interval shrinks. The reason

behind this is that when time interval becomes shorter,

queries can be answered in early supersteps via Lem-

mas 1 through 3 or PTopChain’s pruning strategies, re-

sulting in reduced query costs. Again, TVL consistently

outperforms the other methods.

Effect of the number of workers. The fourth

set of experiments studies the impact of the number of

workers on TVL and PTopChain. We vary the number

of workers from 5 to 100, and report the query perfor-

mance on DBLP and Syngraph1 in Fig. 10 and Fig. 11,

respectively. As expected, the query cost first drops and

then stays stable or increases when the number of work-

ers (denoted by ]workers) grows. The reason is that

with more workers, there is more parallelism and thus

more computational resources, but using more work-

ers may also incur more communication overhead (as

shown in Fig. 11(b)). At the beginning, the increased

computational resources outweigh the increased com-
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Table 11 Statistics of synthetic temporal graphs

Graph |V | E T (G) |V | |E |

G1 10,000,000 60,000,000 160 117,776,991 185,227,716
G2 20,000,000 120,000,000 160 235,550,803 370,455,493
G3 30,000,000 180,000,000 160 353,334,957 555,684,708
G4 40,000,000 240,000,000 160 471,109,498 740,920,588
G5 50,000,000 300,000,000 160 588,887,292 926,145,777

Table 12 Index size for TVL, TopChain, and Grail (in GB)

Methods G1 G2 G3 G4 G5

TVL 0.79 1.59 2.39 3.19 3.99

TopChain 3.73 7.45 11.18 14.90 —
Grail 1.76 3.51 — — —

Table 13 Indexing time for TVL,TopChain, and Grail (in sec-
onds)

Methods G1 G2 G3 G4 G5

TVL 61.68 128.04 198.34 232.61 276.58

TopChain 223.82 590.31 3781.1 300072.2 —
Grail 4597.09 57883.332 — — —

munication cost, but then the increased overhead of

inter-machine communication outweighs the increased

computational capability. Again, TVL still excels over

PTopChain. In addition, the query time reduced around

two times by increasing ]workers from 5 to 20 on DBLP,

indicating that the proposed algorithm benefits from

the distributed system.

Effect of k. The fifth set of experiments considers

the influence of parameter k on the indexing efficiency

and query performance, using Wikipedia and DBLP.

We change the value of k from 1 to 5 and report the

results in Fig. 12 and Fig. 13. It is observed that, in

Fig. 13, query costs of TVL and PTopChain first de-

crease and then tend to stabilize or increase slightly

as k increases, which is due to more reachable infor-

mation being maintained. Nevertheless, a larger k in-

curs higher index construction cost (as illustrated in

Fig. 12) and does not improve query efficiency. Specif-

ically, on Wikipedia, when k exceeds 4, the querying

times of TVL and PTopChain do not decrease as k in-

creases. On DBLP, when k exceeds 3, the querying time

of TVL does not decrease with the growth of k; and

the query performance of PTopChain does not improve

when k exceeds 4. As a result, a smaller k is sufficient

to enable the best query performance as well as index

construction performance.

Scalability of TVL. The last set of experiments

explores the scalability of TVL compared with TopChain

and the representative centralized scalable method Grail,

Table 14 Query time of TRQ for TVL,TopChain, and Grail

(in milliseconds)

Methods G1 G2 G3 G4 G5

TVL 568.88 692.92 908.64 1006.08 1022.02
TopChain 0.047 0.114 18 168 —
Grail 0.015 2.828 — — —

the source code of which was obtained from [47]6. We

generate five synthetic temporal graphs G1, G2, · · · ,
G5 of different sizes. Relevant statistics, including the

number |V | of vertices and the number |E | of edges in

transformed graphs G (1 ≤ i ≤ 5) are summarized in

Table 11. Specifically, we vary the number |V | of ver-

tices in these temporal graphs from 1× 107 to 5× 107,

keep the number |E| of edges at 6 times |V |, and fix

the value of |T (G)| at 160. Table 12, Table 13, and Ta-

ble 14 plot the index size, indexing time, and query time

of DRQ for TVL, TopChain and Grail, respectively.

The first observation is that the index size of TVL is

up to 4 times smaller than that of TopChain, and is 1.2

times smaller than that of Grail, as shown in Table 12.

The second observation is that, as depicted in Table 13,

the indexing cost of TVL is two orders of magnitude

lower than that of Grail and TopChain on average, and
TV L scales roughly linearly with the graph size. The

third observation is that as plotted in Table 14, Grail

is faster than TVL on G1 and G2; and TopChain is

faster than TVL on G1 to G4. Nevertheless, Grail is

unable to run on G3, G4, and G5, and TopChain is un-

able to run on G5. In contrast, TVL is able to run on

all 5 graphs. The reason behind is that when the input

graphs together with the indexes fit in the main mem-

ory of a machine and there is enough memory available

to run Grail and TopChain, Grail and TopChain must

be more efficient than TVL because there is no com-

munication overhead or other overhead (such as barrier

synchronization and task scheduling) of distributed pro-

cessing for Grail and TopChain. Nevertheless, for large

graphs, Grail and TopChain are unable to run because

of memory overflow, while TVL works and is efficient.

The result offers evidence that TVL is more scalable

6 Code of Grail is available at https://code.google.com/

archive/p/grail/.

https://code.google.com/archive/p/grail/.
https://code.google.com/archive/p/grail/.
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Table 15 Answers for a case study (A = Tech Ridge Bay, B = GUADALUPE/30TH STREET)

Queries TRQ(A,B, [6 p.m., 8 p.m.]) EERQ(A,B, [6 p.m., 8 p.m.]) MDQ(A,B, [6 p.m., 8 p.m.])

Answers true 18:49:18 40.25 minutes

than Grail and TopChain.

Case study. we conduct a simple case study to

assess the effectiveness of the three types of queries.

A public dataset Austin7, which records the timetable

of the public transportation network of a major city

Austin on a weekday, is used here. Each vertex in Austin

represents a station, and each directed edge (u, v, st, at)

is associated with a timetable I = [st, at] that records

the departure (resp. arrival) time of each vehicle at

station u (resp. v). If a group of travellers are to de-

part from station A (= Tech Ridge Bay) no sooner

than time st (= 6 p.m.) and arrive at station B (=

GUADALUPE/30TH STREET) no later than time at (

= 8 p.m.), consider three queries: (a) is there a route

from station Tech Ridge Bay to station GUADALUPE/

30TH STREET within [6 p.m., 8 p.m.]? (b) What is the

earliest time they can arrive at station GUADALUPE/

30TH STREET within [6 p.m., 8 p.m.]? (c) What is the

minimal duration of their trip from Tech Ridge Bay to

GUADALUPE/30TH STREET within [6 p.m., 8 p.m.]?

To answer queries (a), (b), and (c), TRQ(A,B,[6 p.m.,

8 p.m.]), EERQ(A,B,[6 p.m., 8 p.m.]) and MDQ(A, B,

[6 p.m., 8 p.m.]) are issued, respectively. Table 15 re-

ports answers returned by the three queries. There is a

route from Tech Ridge Bay to GUADALUPE/30TH

STREET within [6 p.m.,8 p.m.], the earliest arrival

time is 18 : 49 : 18, and the minimum duration is

40.25 minutes. This case study shows how reachabil-

ity queries defined on temporal graphs make sense in

real-life applications.

Summary. When faced with large temporal graphs,

the centralized method Grail and TopChain cannot run.

In contrast, on both medium-sized temporal graphs and

large temporal graphs, the query performance of the

TVL based methods is better than that of the PTopChain

based approaches, and the index construction cost of

TVL is lower than that of PTopChain. In addition, TVL

can scale to very large graphs without significant loss

of efficiency.

7 Conclusions

We propose an efficient index called Temporal Vertex

Labeling (TVL), which is a labeling scheme designed

for distributed temporal graphs. In addition, we present

7 Austin is available at https://code.google.com/archive/

p/googletransitdatafeed/wikis/PublicFeeds.wiki.

query algorithms that use TVL to support three types

of reachability queries (i.e., temporal reachability query,

earliest end time query, and minimum duration query)

on temporal graphs. We provide three non-trivial lem-

mas that enable improved efficiency. An extensive ex-

perimental evaluation on seven real and synthetic data

sets demonstrates that, compared with existing tech-

niques, TVL is a scalable index that has low query cost

and low index construction overhead. TVL also offers

efficient support for dynamic insertion operations. In

the future, it is of interest to investigate efficient dis-

tributed partitioning techniques for temporal graphs so

as to further improve the performance of TVL based

methods. It is also of interest to develop efficient indexes

for supporting fast vertex/edge deletion and temporal

interval update operations.
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