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Abstract

Real-time Human action classification in complex scenes has applications in various domains such as visual surveillance, video retrieval and
human robot interaction. While, the task is challenging due to computation efficiency, cluttered backgrounds and intro-variability among same
type of actions. Spatio-temporal interest point (STIP) based methods have shown promising results to tackle human action classification in
complex scenes efficiently. However, the state-of-the-art works typically utilize bag-of-visual words (BoVW) model which only focuses on the
word distribution of STIPs and ignore the distinctive character of word structure. In this paper, the distribution of STIPs is organized into a
salient directed graph, which reflects salient motions and can be divided into a time salient directed graph and a space salient directed graph,
aiming at adding spatio-temporal discriminant to BoVW. Generally speaking, both salient directed graphs are constructed by labeled STIPs in
pairs. In detail, the “directional co-occurrence” property of different labeled pairwise STIPs in same frame is utilized to represent the time
saliency, and the space saliency is reflected by the “geometric relationships” between same labeled pairwise STIPs across different frames. Then,
new statistical features namely the Time Salient Pairwise feature (TSP) and the Space Salient Pairwise feature (SSP) are designed to describe
two salient directed graphs, respectively. Experiments are carried out with a homogeneous kernel SVM classifier, on four challenging datasets
KTH, ADL and UT-Interaction. Final results confirm the complementary of TSP and SSP, and our multi-cue representation
TSP + SSP + BoVW can properly describe human actions with large intro-variability in real-time.

Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Spatio-temporal interest point; Bag-of-visual words; Co-occurrence

1. Introduction

Recently, human action classification from video sequences
plays a significant role in human—computer interaction,
content-based video analysis and intelligent surveillance,
however it is still challenging due to cluttered backgrounds,
occlusion and other common difficulties in video analysis.
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What's worse, intro-variability among the same type of actions
also brings serious ambiguities. To tackle these problems,
many human action classification methods based on holistic
and local features have been proposed [1,2]. Holistic features
have been employed in Refs. [3—5], where actions were
treated as space—time pattern templates by Blank et al. [3] and
the task of human action classification was reduced to 3D
object recognition. Prest et al. [4] focused on the actions of
human—object interactions, and explicitly represented an ac-
tion as the tracking trajectories of both the object and the
person. Recently, traditional convolutional neural networks
(CNNSs) which are limited to handle 2D inputs were extended,
and a novel 3D CNN model was developed to act directly on
raw videos [5].
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Comparing with holistic features, local features are robust
to shelters which need no pre-processing such as segmentation
or tracking. Laptev [6] designed a detector which defines
space—time interest points (STIPs) as local structures where
the illumination values show big variations in both space and
time. Four later local feature detectors namely Harris3D de-
tector, Cuboid detector, Hessian detector and Dense sampling
were evaluated in Ref. [7]. Recently, dense trajectories sug-
gested by Wang et al. [8] and motion interchange patterns
proposed by Kliper-Gross et al. [9] have shown great
improvement to describe motions than traditional descriptors
though both need extra computing costs. Besides using content
of local features, researches only using geometrical distribu-
tion of local features also achieve impressive results for action
classification. Bregonzio et al. [10] described action using
clouds of Space—Time Interest Points, and extracted holistic
features from the extracted cloud. Ta et al. [11] concatenated
3D positions of pairwise codewords which are adjacent in
space and in time for clustering. A bag of 3D points was
employed by Li et al. [12] to characterize a set of salient
postures on depth maps. Yuan et al. [13] extended R transform
to an extended 3D discrete Radon transform to capture dis-
tribution of 3D points. These methods assume that each local
feature equals to a 3D point, and all local features have the
only difference of location.

Bag-of-visual words (BoVW) introduced from text recog-
nition by Schuldt et al. [14] and Dollar et al. [15] is a common
framework to extract action representation from local features.
STIPs are firstly extract from training videos and clustered into
visual words using clustering methods. BoVW is then adopted
to represent original action by a histogram of words distribu-
tion, and to train classifiers for classification. Despite its great
success, BoVW ignores the spatio-temporal structure infor-
mation among words and thus leads to misclassification for
actions sharing similar words distribution. To make up for
above problem of BoVW, the spatio-temporal distribution of
words is explored. Words are treated in groups to encode
spatio-temporal information in Refs. [16—18]. Latent topic
models such as the probabilistic Latent Semantic Analysis
(pLSA) model are utilized by Niebles et al. [16] to learn the
probability distributions of words. Cao et al. [17] applied PCA
to STIPs, and then model them with Gaussian Mixture Models
(GMMs). A novel spatio-temporal layout of actions, which
assigns a weight to each word by its spatio-temporal proba-
bility, was brought in Ref. [18]. Considering words in pairs is
an effective alternative to describe the distribution of words.
From one point of view, pairwise words which are adjacent in
space and in time were explored by Refs. [11,19,20]. Local
pairwise co-occurrence statistics of codewords were captured
by Banerjee et al. [19], and such relations were reduced using
Conditional Random Field (CRF) classifier. Savarese et al.
[20] utilized spatial-temporal correlograms to capture the co-
occurrences of pairwise words in local spatio-temporal re-
gions. To represent spatio-temporal relationships, Matikainen
et al. [21] formulated this problem in a Nave Bayes manner,
and augmented quantized local features with relative spatial-
temporal relationships between pairs of features. From

another point of view, both local and global relationships of
pairwise words were explored in Refs. [22,23]. A spatio-
temporal relationship matching method was proposed by
Ryoo et al. [22] which explored temporal relationships (e.g.
before and during) as well as spatial relationships (e.g. near
and far) among pairwise words. In Ref. [23], co-occurrence
relationships of pairwise words were encoded in correlo-
grams, which relied on the computation of normalized google-
like distances.

In this work, the directional relationships of pairwise fea-
tures are explored to make up the problems of BoVW. It is
observed that human actions make huge senses in the direc-
tional movement of body parts. From one aspect, the spatial
relationships among different parts, which are moving at the
same time, are directional. Besides, one part keeps direction-
ally moves from one place to another. Here, a “push” action in
Fig. 1 is used to illustrate observations, where green points
denote local features. As shown in Frame ¢ + 1, the pusher's
hands and the receiver's head are moving at the same; mean-
while, the vertical location of hands is lower than the head.
The relationship between this type of pairwise motions, which
is according to the first observation, is called directional co-
occurrence. Crossing from Frame ¢ — 1 to Frame ¢, the
pusher's hands keep moving forward. This type of pairwise
motions are also directional and reflect the second observation.
The observations both indicate the importance of directional
information for action representation. Hence the attribute of
mutual directions are assigned to pairwise STIPs to encode
structural information from directional pairwise motions,
generating new features called Time Salient Pairwise feature
(TSP) and Space Salient Pairwise feature (SSP).

1.1. Time Salient Pairwise feature

Time Salient Pairwise feature (TSP) is formed from a pair
of STIPs which shows “directional co-occurrence” property. In
our previous work, [24] and [25] have already employed this
property for action recognition. The TSP mentioned in this
paper is a refined and expanded version from the conference
proceedings paper [24]. TSP is compared with traditional

Frame t+1

Frame ¢

Frame 7-1

Fig. 1. A “push” action performed by a “pusher” and a “receiver”.
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BoVW and “Co-occur” based methods in Fig. 2, where action
1, action 2 are simplified as labeled points a, b and ¢
(i = 1,...,12) means time stamps. Here, “Co-occur” adopted
by Sun et al. [23] means only using co-occurrence feature of
pairwise words. BoVW fails in the second and third rows
when two actions share the same histogram of words. “Co-
occur” can distinguish actions in the second row but also fails
when two actions share the same co-occurrence features. TSP
adds extra directional information to co-occurrence features,
thereby avoiding two failing cases of both BoVW and “Co-
occur”. Comparing with [22], our novelty lies in the use of
direction instead of distance when describing the pairwise co-
occurrence. TSP also differs from Refs. [20] and [23] in the
use of both number and direction of pairwise words.

1.2. Space Salient Pairwise feature

Note that TSP only captures the directional information
between different labeled pairwise words and ignores the re-
lationships among same labeled words. To encode this rela-
tionship, geometrical distribution of local features need to be
involved. In this work, any pair of words sharing same labels
are linked into a vector, and all vectors are as input instead of
local descriptors like Histogram of Gradient (HoG) [26] or
Histogram of Flow (HoF) [27] for traditionally BoVW model.
This new feature is named Space Salient Pairwise feature
(SSP) which is different from Ref. [11] in capturing global
distribution of pairwise points. As shown in the fourth row of
Fig. 2, SSP provides spatial location information for TSP to
classify two actions with same co-occurrence properties.

2. Modeling human actions as directed graphs

In graph theory, a directed graph refers to a set of nodes
connected by edges, where edges have directions associated

Table 1

Tllustrating the meanings of symbols.

Symbol Meaning

Fy Number of frames for video V;
N Number of training videos

I, The t,, frame of a video

7o = {1}, A video containing an action
M Number of STIPs for 77,

70 STIPs from 77,

des A descriptor for one STIP

9 Dictionary for feature quantization

pli = (xyistilabel;) Y
o ={pti = (xi, yi, t;, label;) },_,
T =<P E >

=< & E >

= <P, >

T = <P A >

K

To T, T

va

K>

7" &
Hrsp, Hssp
H

One STIP with label label;
Labeled STIPs from 77

An undirected graph

Salient edges

A time salient directed graph
A space salient directed graph
Clusters for BoOVW
Threshold value for TSP
Distribution map for TSP
Clustering centers for SSP
All possible SSP in S,

TSP feature and SSP feature
Representation for 77,

with them. In this paper, directed graphs are employed to
represent the human action in a video 7", and the main work
lies in the determination of nodes, the choice of edges and the
assignment of directions between nodes. Some symbols used
in following sections are listed in Table 1 with their meanings.

An action sequence can be denoted by a cloud of Spatio-
temporal interest points (STIPs) in the field of action anal-
ysis using local features. By referring to a dictionary &7, STIPs
are clustered into different labels and each label stands for a
kind of movement. Here, all labeled STIPs are defined as
nodes of the directed graphs. To construct dictionary &, a set

TG 18 s e T8 BT o <
e AT TY TR [, -
el T NI R] ]
ezl | le g o BDETIL 8

Fig. 2. Comparing representations of similar actions by four methods, namely Bag of Visual Words (BoVW), Co-occurrence Feature (Co-occur), Time Salient

Pairwise feature (TSP) and Space Salient Pairwise feature (SSP).
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Testing
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Fig. 3. Representing a human action as a directed graph with salient edges.

of training videos { 77, = {I,}Ql}iv:l are needed, where 77,
is the nth  video with F, frames. STIPs
S ={(x,y,t,des)|(x,y)EL,t€(1,...,F,)} are detected
from video 77,, where x,y refer to horizontal and vertical
coordinates, ¢ is the index of frame, des €RY denotes the N-
dimensional feature vector of the STIP. Then, all des from

S ={Syes Sy, SN} are clustered into K clusters
Z = {des,...,des, ...,desg } using algorithms like k-means.

To label STIPs .y = {(x,y,t,des)|(x,y)EL,tE(1,....,F)}
from the video 779 = {,}",, each des in .7 is labeled by
finding the nearest center in dictionary &. If the nearest
cluster is desy, then des is labeled k. Till now, the video 77 is
represented by M labeled points
So = A{pti = (xi,yi, i, label;)|(x;, yi)) €L, ;€ (1, ..., Fy), labe
LE(l, ., K},

To describe the spatio-temporal distribution of Zo 0, points
are considered in pairs for simplicity and efficiency. By con-
necting any pair of points from .7, an undirected graph & =
<P, &> is defined to model video 7, where .2 = {pt;}¥',
and & = {edge(pt;,pt;)|(Vi,jE€1, ..., M)A(i#}))}. It is noting
that edge(pt;,pt;) is the edge between pf; and pt;. Since
directly using  to represent 7 is not time efficient, a new
undirected graph £° = <.%, &° > with less edges is defined
by splitting & into salient edges &” and non-salient edges &".
Moreover, salient edges is split into time salient edges &* and
space salient edges &*. The time saliency refers to two
different labeled nodes appearing at the same time, which is
also called co-occurrence, and the space saliency denotes two
same labeled nodes appearing cross different frames. The sa-
liency of an edge edge(pt;, pt;) € &* is formulated as follows,

edge (pthptj e &ot, = tiNlabel; # label; (1)
edge(pt;, pt;) € &t # t;Nlabel; = label,

An example of &° is shown in Fig. 3, where gray edges
belongs to &** and black edges pertain to &*'. In order to give
edges in &° quantitative descriptions, different direction
assignment methods are respectively applied on & and &* ,

generating in two directional edge sets ./* and ./*" (Fig. 3).
Then, the undirected graph Z° is changed to time salient
directed graph 2% = <.2,./* > and space salient directed
graph O = <2, .7/% >

3. Time salient directed graph

It is observed that pairwise different movements appearing
at the same time are a good feature to distinguish an action.
For example, an action “Blow Dry Hair” from UCF101 dataset
[28] usually refers one person moves his hand and hair
simultaneously. When an action is denoted as a cloud of
labeled STIPs, this observation can be represented by the co-
occurrence of different labeled pairs, which is captured by
time salient graph 2. To describe %, directions are
assigned to all edges and a directed graph %7 is formed. In
this part, a simple direction assignment criteria is established
to convert £* to 2. Then, a new descriptor called Time
Salient Pairwise feature (TSP) is introduced, involving not
only nodes but also the directional edges in 7. Finally, the
statistics of TSP is utilized to represent .

3.1. Time Salient Pairwise feature

The criteria of direction assignment between STIPs are
introduced before defining TSP. Suppose STIPs of a given
sequence are clustered into K words. Sketch in Fig. 4 shows
how to assign direction for word A and word B. Although the
vector formed by A and B provides exact spatial information,
it considers little about the noise tolerance. Instead, whether
the direction is from A to B or B to A is a more robust feature.
Vertical or horizontal relationship is utilized to figure out the
direction between A and B with two reference directions
defined from up to down and left to right respectively. It is
noted that human actions like waving right hand and waving
left hand are usually symmetric. Their directions are opposite
in horizontal direction but same in vertical direction. Thus, we
consider the vertical relationship priority to the horizontal one
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o®

discard

ignore

true

Ax<Ty, Ay<T,

false

Fig. 4. Direction assignment criterion for pairwise STIPs in the same frame.

to eliminate the ambiguities of symmetric actions. Let Ax and
Ay represent projector distances and T, T, stand for threshold
values (in Fig. 4). If A and B are far in vertical direction
(Ax > T,), the reference direction is set from up to down. In
contrast (Ax < T,), the relationship in the vertical direction is
not stable and thus discarded. The horizontal relationship is
checked in the same way. As for A and B in Fig. 4, since
Ax > T, and B is on the top of A, the vertical relationship is
selected and the direction is assigned from B to A, which is in
accordance with the reference direction. This criteria ignores
same labeled pairs like E and F in Fig. 4, and also discards any
pair of points like C and D that are too close to each other.
Summarily speaking, the criteria to assign direction for points
pti = (Xpyntplabel;) and pt; = (x;,y;,t;,label;) are as follows,

0, otherwise

(p(pt,-,pl‘j) _ {C(pti,ptj), if (}Ax| > TX/\xi<xj) V(’Ax| <TX/\’Ay|

if t; = tiNlabel; + label; (th,-,ptjega)
ifabs(x,— — xj) >T,
if x;<x; theni—j elsej—i (2)
elseif abs(y; — y;) > T,
if yi<y; theni—j elsej—i

where i — j indicates the direction.

After direction assignment, the reserved directions are
discriminative to represent directional co-occurrent move-
ments. Each direction with two linked nodes construct a new
descriptor called Time Salient Pairwise feature (TSP). Taking
A and B in Fig. 4 as an example, two assumptions are made. a)
A and B satisfy the direction assignment criteria in Formula
(2); b) the direction is from B to A. Then a TSP
TSPZubelB,labelA = (labelB, labelA, labelB g labelA) is

established, which records both labels and the direction in-
formation between two labels.

3.2. Time salient directed graph

For a given video 77, M labeled STIPs are detected and
stored in .o = {pt; = (x5, i, t;, label;)|(x;, yi)) €L, t; (1,
..., Fo), label; € (1, 7K)}£1 Let pt; = (Xps;, Ypi,, ;) Tepre-
sent a word labeled i appearing on frame f,,. Horizontal and
vertical coordinates are x,;, and y,,. Then, the time salient
directed graph g =<P,7" >, where
A" = {TSPiave, save; |1,/ E (1, ..., M)}

To describe ?f} o(pt;,pt)) is firstly used to record whether
there exists TSPiabel, label; between pt; and pt;,

> TyAyi<y)), (3)

where Ax = x; — x;, Ay = y; — x;, threshold T, T, are
empirical values. It is worth noting that the function of
Formula (3) is equal to that of Formula (2). In Formula (3),
C(pti,pt)) is defined as,

|1, if label;# label;At; = t;
L(ptispy) = { 0, otherwise @

Co-occurrence literally means happening on the same
frame. While, in an action sequence, movements constituting
the whole action last several sequential frames. To encode this
temporal relationship, we treat adjacent several frames as a
whole to extract co-occurrence features. Thus, {(pt;,pt) is
reformulated as,
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1, if label; # labeA|t; — 1;| < T,
t,pt) =19 ) / 5
<(pript) {O, otherwise )

If {(pt;,pt;) in Formula (5) equals one, a co-occurrence
feature is defined between pt; and pt;. Threshold 7, is an
empirical value determining the number of adjacent frames.

The 2] contains K- K types of TSP by choosing K kinds of
labels as start point or end point. Matrix ./ in Formula (6)
records the number distribution of all types of TSP in £,

N (m,n) = > o (pti,pt)
VpreZy Npres, (6)
sit. mne(1,...,K)

The distribution map ./ is most related to the co-occurrent
map [23] which records the number of co-occurrence between
STIPs labeled m and n for location (m,n). In order to intui-
tively show the difference, a simple action “eating a banana” is
used. Two result maps namely distribution map and co-
occurrent map are shown in Fig. 5. It is shown that element
values in (m,n) and (n,m) are the same in co-occurrent map
while different in the distribution map, and element value in
(m,n) from co-occurrent map equals the average value between
element values in (m,n) and (n,m) from distribution map.
Therefore, distribution map encodes more information than
co-occurrent map.

Till now, the directed graph 27 is reduced to a distribution
map /" with K- K dimension which is still high. What's worse,
element ./"(m,n) in ./" is related to the number of m and n.
Directly using ./" as video representation should be at slow
speed and is sensitive to the effected by number of STIPs.
Therefore a dimension reduction method which also handles
the number of STIPs is needed. As shown in Fig. 6, Z% is
convert to a new directed graph .7 ¥ by merging same labeled
nodes. The in-degree and out-degree are introduced as statis-
tics for each node in .7 Zf In mathematics, and more specif-
ically in graph theory, the number of head endpoints adjacent
to a node is called the in-degree of the node and the number of

Visual words

10 15 20 25 30
Visual words

0

(a) distribution map (asymmetry)

tail endpoints adjacent to a node is its out-degree. In Formula
(7), P(TSP3" |./V , C) represents the probability of appearing m
as a start point, where ./"(m, n) refers to the number of TSP

and C(m) is the number of m.

S A (non) )
> {C(m)-C(n)}

Similarly, P(TSP™|.#",C) in Formula (8) represents the
probability of m being the end point.

Zf:l ./V(l’l, m) (8)
> {C(m)-C(n)}

Above two probability values are combined in Formula (9)
to construct video representation Hysp with K x 2 dimension.
Using Hygp instead of histogram N, the video representation is
compressed at a ratio of K/2.

P(TSP."

N, C) =

P(TSP|.17,C) =

K

= {Pser Ol PSP QLY O

m=1

In this section, we focus on pairwise features and extracting
directional information from them to reflect the natural
structure of human actions that our motion parts are direc-
tional. Time Salient Pairwise feature (TSP) is proposed to
describe the relationships between pairwise STIPs on the same
frame, and only the pairs with different labels are considered.
Obviously, TSP ignores the relationships between pairwise
STIPs with same labels in %7, and brings ambiguous to
distinguish actions with similar 7. Thus, this paper proposes
another descriptor called Space Salient Pairwise feature (SSP)
to describe £

4. Space salient directed graph
To describe an action sequence, a cloud of STIPs are

extracted and organized in a directional graph
g ={%% 29}, A feature called TSP is proposed to

30

N
w

Visual words
» )
o

10 15 20 25 30
Visual words

w

(b) co-occurrent map (symmetry)

Fig. 5. Distribution map of TSP and co-occurrent map are respectively shown in (a) (b). To facilitate observation, STIPs are extracted and clustered to 30 labels.
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Fig. 6. Extracting statistics from distribution map N of TSP.

captures directional information in Z%. As for £, another
feature called Space Salient Pairwise feature (SSP) is intro-
duced to encode the relationships between pairwise STIPs
sharing same labels. And the histogram of quantized SSP is
simply utilized as the representation of Z7. For an action
constructed by some main movements, labeled STIPs are
dominated by a minor group of labels. Therefore, relationships
among same labeled STIPs are important to describe this kind
of actions. Take action “boxing” from KTH dataset [14] as an
example, which means stretch out a hand and then withdraw it
rapidly and periodicity. This action is dominated by the
“clenched fist” which appears repeatedly. Obviously, the dis-
tribution of the “clenched fist” encoded by SSP is vital to
represent “boxing”.

4.1. Space Salient Pairwise feature
For same labeled STIPs appearing on different frames,

Space Salient Pairwise feature is defined. Given two labeled
STIPs  pt; = (Xpt, Yprs tor,)  and  pti = (Xp, Vpi;s tpr;)» @SSP

SSP[,;“[,[/ = ()C,‘ —Xj,Yi — Yj, ti — tj) ’(5(ti — tj) is established if
t;#t;, where

o 1, lfl‘l‘<tj;
5(t,-—tj)_{_l7 >0 (10)

Intuitively speaking, SSPy;, ,,; indicates the vector with the
point which appears earlier to be a start point.

4.2. Space salient directed graph

For a given video 77y, M labeled STIPs are detected and

stored in % = {pl‘,‘ = (xi,yi,ti,label,-)|(x,-,y,~)€1t,tiE(l,
Fy), label; E( N ¢ L Note that
{/0, N7 ?OK}, and f/ﬁ stores all STIPs

labeled k. The dlrected graph 7% = <.2,.%/* >, where

/O/sS:{SSP,,,,,pt/V,jE(l M)}. Let 7°&, involve all

possible SSP in S‘o, which is defined as follows,

7 &= U SSPyi i (11)
me(l,....k) Vpl,‘ptjE—?::

And 7°&, is clustered into K, centers, namely

(7 &}, ..., 7" &8}, Then, £ is represented by Hssp, which

simply tallies K, clusters of 77 &.

Using Hggp to describe 2% is inspired by traditional BoVW
model, which utilizes the number histogram of STIPs and has
achieved markable results in human action recognition. Spe-
cifically, this method refers to obey the BoVW model and to use
pairwise features instead of traditional HOG-HOF features for
clustering and quantization. Detailed steps for computing Hggp
are illustrated in Fig. 7. STIPs are firstly extracted from an input
action sequence and assigned labels. All STIPs are divided into
different channels by their labels. In each channel, a vector is
formed between any pair of STIPs from different frames. Then
vectors are collected from all channels to construct a vectors
bank, which refers to the edges of & 2; Finally, vectors in the
bank are clustered and a histogram is formed to represent £

A human action video 77 is descrlbed using salient directed
graph in Algorithm 1. { 77, = {I,},”l}n , are N videos con-
taining various of labeled actions for training, and two thresholds
K, K, are pre-defined for k-means clustering method. STIPs are
extracted and clustered into labels from line 1 to line 7. A vector
set 77 &, is also formed for video 77, in line 8. To extract
representation Hrgp from video 77y = {It}fil, the procedure is
detailed in Algorithm 1 from line 10 to line 23. Symbol pt,, in line
13 denotes any point labeled m. Function {( pt;,pt;) is shown in
Formula (5), which is a part of Formula (6) in line 17.
P TSP"”’M/’ C) in line 20 means the probability of label m
appearing as a start point. P(TS ”’|J/ C) in line 21 means the
probability of label m appearing as an end point. It should be
noted that P( TSP”‘”|% C) plus P(TS ’”’/% C) is no more than

m

one, since the relationships between some pairs are discarded
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taking word pair (C, D) in the sketch of Fig. 4 as an example. If
relationships between points labeled m and all other points are
considered, the value P(TSPo M/ ,C) plus P(TSP|.1",C)
should equal one. Using space salient pairwise feature to extract
action representation named Hggp from testing video 77, the
procedure is illustrated in Algorithm 1 from line 24 to line 26.

Algorithm 1 Modeling by Salient Directed Graph

Require: {V, = {L}/2 01, Vo, K, K2, Ty, T
Ensure: H, I’ITSP7 Hssp

: for n =0to N do

extract STIPs S, = {(z,y,t,des) | (z,y) € Lt €
(1,..., Fn)} from video V,

3: end for

4: compute the visual dictionary D = {desu, ..., desk }
5: forn =0to N do

6:  label STIPs in S,,_using dictionary D

7

8

N —

Sn = {S)} =1, Sk stores all STIPs labeled k from S,
o VE, = {VEFLIE | VEE: vectors formed by STIPs from S,
9: end for
10: C(k): the number of STIPs labeled k (k= 1,..., K) in So
11: T <~ T,T) T
12: for m=1to K,n=1to K do
13:  for Vpt,, € S¢",ptn € Si do

14: get ¢(ptm, ptn) by Formula 5

15: calculate ¢(pt,, ptn) by Formula 3
16:  end for

17 get N'(m,n) by Formula 6

18: end for

19: for m =1 to K do

20:  compute P(TSP**|N,C) by Formula 7

21:  similarly get P(T'SP;'|N,C) by Formula 8

22: end for

23: calculate Hrsp by Formula 9

24: cluster VE = {V&1,...,VEn, ..., VEN} into K clusters

25: label VE&( using KNN method and K5 centers from step 25
26: Hgsp is the histogram of labeled vectors in V&,

27: return H = {HTSP,HSSP}

Labeled Vectors

Fig. 7. Flowchart of extracting SSP feature from pairwise points.

TSP and SSP are naturally combined for their ability of
capturing structural relationships of different kinds of STIPs.
On one hand, TSP only focus on different labeled pairwise
STIPs, while it ignores the spatial temporal constraints which
are brought in by same labeled pairs. Additionally, SSP pro-
vides extra relationships among same labeled pairs, and thus is
compatible with TSP. Let H = {HpspHgsp} stand for the
combination form of both methods. Moreover, The combina-
tion form of H and traditional BoVW, which provides general
statistical information of STIPs, is also constructed.

For a given video 77, let M denote the number of STIPs
extracted from 77 with F, frames, and these STIPs are
clustered into K clusters. Suppose that there are equal number
of STIPs in each cluster, and that the number of STIPs are
equal for each frame. In this case, the number of pairwise
feature for calculating TSP and SSP are respectively

2 2
c2- (KLFO) -Fo and C%O- (KLFU) K. The time complexity

for calculating final representation H is

o(c,%- (K,LFO)Z-Fo) +O(K) + O(C%O- (K%O)Z-K) =

O(M ?), where O(K) denotes the time complexity of the
dimension reduction method for TSP. Since the main time cost
is to calculate TSP and SSP, reducing the number of pairwise
feature will improve the efficiency of Algorithm 1. To this end,
feature selection methods like [29,30] can be applied.

To improve the speed of calculating TSP and SSP, we
convert main calculation into several matrix operations which
is suitable for MATLAB in the experiments. The main
computation shared by TSP and SSP is to compute all pairwise
distances among a set of points {x;}",, where x; denotes the
coordinate of point i. Let X;u equals [xi,...,x)], which
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denotes a matrix with one row and M columns. We form a
matrix Zy p = Ap1X1m where all elements in A, ; equals
one. Then the distance matrix equals Z—Z/, whose element in
i, row and in j,, column records the distance between point x;
and x;. Comparing with Algorithm 1 which directly compares
any pair of points and thus cost C,%,I times of computation, only
three matrix operations are needed here to obtain the distance
matrix by AX — (AX)'.

5. Experiments and discussions

The proposed descriptors are evaluated on four challenging
datasets: KTH dataset in Ref. [14], ADL dataset in Ref. [31]
and UT-Interaction dataset in Ref. [22]. KTH dataset con-
tains 600 videos of 25 persons performing 6 actions: “wal-
king”,“jogging”,“running”,“boxing”, “hand waving” and
“hand clapping”. Each action is repeated 4 times with homo-
geneous indoor/outdoor backgrounds. ADL dataset contains
150 videos of five actors performing ten actions: “answer a

LEIT3 CLINNT3

phone”, “chop a banana”, “dial a phone”, “drink water”, “eat a

LLINNY3

banana”, “eat snacks”, “look up a phone number in a phone
book”, “peel a banana”, “eat food with silverware” and “write
on a white board”. Each action is repeated three times in the
same scenario. Segmented version of UT-Interaction is utilized
which contains six categories: “hug”, “kick”, “point”,
“punch”, “push” and “shake-hands”. “Point” is performed by
single actor and other actions are performed by actors in pairs.
All actions are repeated ten times in two scenes resulting in
120 videos. Scene-1 is taken in a parking lot with little camera
jitter and slightly zoom rates. In scene-2, the backgrounds are
cluttered with moving trees, camera jitters and passers-by.
Several action snaps from above datasets are shown in
Fig. 8, where inter-similarity among different types of actions

are observed. Actions like “walking”,“jogging” and “running”
are similar in KTH dataset, and actions like “answer a phone”

‘?(‘

KTH

Boxing Clapping Waving

ADL

N =i

Chop a banana

Point

and “dial a phone” are alike in ADL dataset. Besides the
similarity between action “kick” and “punch” in UT-
Interaction dataset, the complex filming scenes in UT-
Interaction scene-2 also brings difficulty for classification. In
following, KTH, ADL and UT datasets are utilized to evaluate
our method against inter-similarity among different types of
actions, and to evaluate the efficiency of proposed algorithm.
“UT” involves both scenes in UT-Interaction dataset.

This work applies Laptev's detector in Ref. [14] obeying
original parameter setting to detect STIPs and uses HOG-HOF
in Ref. [32] to generate 162 dimension descriptors (90
dimension for HOG and 72 dimension for HOF). After
extracting 800 points from each video, k-means clustering is
applied to generate visual vocabularies. In order to obtain
maximum average recognition rates, the number of clusters for
DPF, BPF and BoVW on different datasets are set in Table 2.
Recognition was conducted using a non-linear SVM with a
homogeneous kernel in Ref. [33]. In order to keep the reported
results consistent with other works, we obey the same cross-
validation method with [14,31] and [22]. Since random
initialization is involved in clustering method, all confusion
matrices are average values over 10 times running results.

5.1. TSP evaluation

Different parameters 7, and T for TSP are tested on KTH,
ADL and UT datasets, with one parameter changing and the
other parameter in default values: 7, = 0, T = 0. Parameter 7,
is the number of adjacent frames. In other words, each frame
with its adjacent 7; frames are considered as a whole to extract
TSP for current frame. In Formula (3), T, and 7, are both set to
T, which is the threshold value both for the horizontal and
vertical directions.

As shown in Fig. 10, T, ranges from O to 4 at 2 intervals,
and T ranges from O to 10 at 5 intervals. Taking UT dataset

Running Walking

Jogging

.
'3

Drink water

Eat a banana

Shake-hands

Punch Push

Fig. 8. Human action snaps from four datasets: KTH, ADL and UT-Interaction.
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kick kick
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(c1) UT BovW

avgRate = 0.9283

(a2) KTH TSP

avgRate = 0.7400

(b2) ADL TSP
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(c2) UT TSP
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boxing
handclapping
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jogging
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avgRate = 0.9267

ans.
chop.
dial. |
drink.
eatB.
eatS.
lookup.
peel.
use.
write.
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avgRate = 0.8500
hug
kick
point
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Fig. 9. Comparing three methods namely BoVW (al, b1, cl), TSP (a2,b2,c2) and BoVW + TSP (a3, b3, c3) on different datasets.

which contains clustered backgrounds and moving disruptors
as an example, the recognition rate slightly improves when T;
grows, and keeps quite still when 7 changes. This phenome-
non shows that the performance of TSP is not sensitive to the
changes of parameters T}, T in a large range. In this work, all
following experiments are conducted with 7, = 0, T = 0.
Representation TSP and BoVW are separately compared on
KTH dataset (Fig. 9(a)), ADL dataset (Fig. 9(b)) and UT
dataset (Fig. 9(c)) using confusion matrices. Generally
speaking, TSP achieves less average recognition rates than
BoVW. Meanwhile, TSP + BoVW works better than both TSP

Table 2
Number of clusters for different datasets.
Method Dataset

KTH ADL uT
TSP 200 100 200
SSP 100 100 200
BoVW 900 500 1800

and BoVW, which shows the complementary property of TSP
to traditional BoVW. The method of TSP + BoVW shows
0.67% higher than BoVW on KTH dataset, 1.34% higher on
ADL dataset and 0.83% higher on UT dataset.

In Fig. 9(a3), TSP improves the discrimination between
“jogging” and “running” in KTH dataset. TSP also reduced the
errors among ‘“‘answer a phone” and “dial a phone” in
Rochester since extra spatial information is encoded. In UT
dataset, most errors happens between “kick” and “punch” in
Fig. 9(cl). These two actions appear similar to BoOVW which
focus on describing local features, since they share similar
basic movement “stretch out one part of body (hand or leg)
quickly towards others”. Seeing from human's view, “punch”
refers to leg and “kick” refers to hand. Thus, their spatial
distribution of movements, which are captured by spatial
temporal layout of STIPs, are different. Based on this obser-
vation, TSP improves the discrimination between these two
actions by adding directional spatial information to BoVW.
This may account for the better performance of distinguish
“punch” and “kick” in Fig. 9(c1, ¢3).
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Fig. 10. Classification precisions using TSP with different parameter settings.

As can be seen in Fig. 9(c3), the recognition rate of
“punch” drops when compared with BoVW. The reason lies in
that TSP brings some ambiguities to BoVW to distinguish
“punch” and “shake-hands”. To solve this problem, SSP is
utilized to make up the limitations of TSP. The effect of SSP to
improve the recognition precisions of “punch” and “shake-
hands” are detailed in next section.

5.2. SSP evaluation

Obeying procedures in Algorithm 1, we firstly set cluster
number K the same as Section 5.1 to cluster STIPs into labels.
After obtaining vectors from all channels, these vectors are
then clustered into K, clusters. The value of K, with best
recognition rates are shown in Table 2.

Representation SSP and BoVW are separately compared on
KTH dataset (Fig. 11(a)), ADL dataset (Fig. 11(b)) and UT
dataset (Fig. 11(c)) using colored histograms. Generally
speaking, SSP achieves less average recognition rates than
BoVW. Meanwhile, SSP + BoVW works better than both SSP
and BoVW, which shows the complementary property of SSP
to traditional BoVW. The method of SSP + BoVW shows
1.84% higher than BoVW on KTH dataset, 3.34% higher on
ADL dataset and 5.00% higher on UT dataset.

As shown in the UT dataset of Fig. 11, the recognition
precisions of “punch” and “shake-hands” are improved when
comparing with traditional BoVW. The reason lies in that SSP
encodes the movements of same types of movements, which
are neglected by BoVW. In next section, SSP is combined with
TSP and BoVW, and the final representation outperforms SSP,
TSP and BoVW.

5.3. Comparison with related works

Tables 3—5 compares the performances of proposed
method with state-of-the-arts and cluster number K is marked
with classification rate. Since parameters like the number K of
k-means clustering method differs in different algorithms, the
accuracy refers the classification rate with optimal parameters.

KTH dataset is originally utilized by Ref. [14], and the
cited paper is marked in italic in Table 3. Our results on KTH
dataset are most directly comparable to the method in Refs.
[14] and [27], which both utilize the laptev's local feature
detector and the BoVW framework. Our BoVW shows much
higher than [14] since Laptev's HOG/HOF descriptor and a
non-linear SVM with a homogeneous kernel in Ref. [33] are
adopted. TSP + BoVW, SSP + BoVW achieves average ac-
curacies of 94.50% and 95.67%. Improvements of 2.70% and
3.87% are respectively achieved over [27], which can be
attributed to our addition of spatial temporal distribution in-
formation. TSP 4+ SSP + BoVW achieves average accuracy of
95.83%, which is respectively 1.03% and 0.83% higher than
state-of-the-art works [34] and [35].

ADL dataset is originally utilized by Ref. [31], which main
focus on people's interaction with objects in the kitchen. In the
dataset, actions like “answer a phone” and “dial a phone”
looks similar in motions, which leads to an average accuracy
of only 67.00% using “Velocity Histories” feature in Ref. [31].
It is noted that the background in ADL keeps still, and an
“Augmented Velocity Histories” is proposed in Ref. [31]
which achieves an average accuracy of 89.00%. Without
using structural information from the still background, our
methods all performs better than [31], shown in Table 4.
What's more, TSP + SSP + BoVW achieves average accuracy
of 95.33%, which is 3.33% higher than state-of-the-art work
[36]. Comparing with our previous work [25], additional
4.00% accuracy is gained, which shows the importance of SSP
to TSP and BoVW.

UT dataset is originally utilized by Ref. [22], which main
focus on people's interaction with others. Since moving trees
and not related persons are also included in the scenes, this
dataset can be used to evaluate method's robustness to clut-
tered backgrounds. As shown in Table 5, our best result ach-
ieves 92.50% accuracy, which is 4.9% higher than recent work
[38]. Since [39] mainly focus on the speed of the algorithm,
the local feature detector and clustering steps are implemented
using more fast method like V-FAST interest point detector
and semantic texton forests. To ensure a fair comparison with
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Fig. 11. Comparing BoVW, SSP and BoVW + SSP on different datasets.

our method, we compare the time cost of extracting features
with [39] in next section.

Recently, dense trajectory [8] are widely used in off-line
human action recognition, and achieves better accuracy than

HOG/HOF features. However, methods in Ref. [8] requires
longer time to extract dense trajectories and to form the
BoVW features, which are not suitable for real-time applica-
tions. Thus, we detect the sparse Harris3D points and extract
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Table 3

Comparing with related works on KTH.

Methods Accuracy (%) Details

LF 4+ SVM [14] 71.70 Schuldt et al. (2004)
LF + SP + non-linear SVM [27] 91.80 Laptev et al. (2008)
MBH + STP [8] 95.30 Wang et al. (2013)
RMD + Mode Finding [36] 92.10 Oshin et al. (2014)
RMD + Outlier Detection [36] 94.00 Oshin et al. (2014)
Multi-ch. Gabor + SOD [34] 94.80 Zhang et al. (2014)
STLPC [35] 95.00 Shao et al. (2014)
BoVW 93.83 K =900

BoVW + TSP 94.50 K = 900,200
BoVW + SSP 95.67 K = 900,100
BoVW + TSP + SSP 95.83 K = 900,200,100
Table 4

Comparing with related works on ADL.

Methods Accuracy (%)  Details

Velocity histories [31] 67.00 Messing et al. (2009)
Augmented velocity histories [31]  89.00 Messing et al. (2009)
PF-HCREF [37] 88.67 Banerjee et al. (2014)
RMD + Mode finding [36] 90.70 Oshin et al. (2014)
Weighted Pairwise STIPs [25] 91.33 Liu et al. (2014)
RMD + Outlier detection [36] 92.00 Oshin et al. (2014)
BoVW 91.33 K =500

BoVW + TSP 92.67 K = 500,100

BoVW + SSP 94.67 K = 500,100

BoVW + TSP + SSP 95.33 K = 500,100,100
Table 5

Comparing with related works on UT.

Methods Accuracy (%) Details

SRM [22] 70.80 Ryoo et al. (2009)
PSRM + BOST [39] 83.33 Yu et al. (2010)
FV(32) [38] 87.60 Kantorov et al. (2014)
BoVW 84.17 K = 1800

BoVW + TSP 85.00 K = 1800,200
BoVW + SSP 89.17 K = 1800,200
BoVW + TSP + SSP 92.50 K = 1800,200,200

avgRate = 0.9583
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chop.
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. eatS.
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running peel.
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Fig. 12. Recognition result on KTH (a), ADL (b), UT (c) combining three methods BoVW, TSP and SSP.

avgRate = 0.9533

HOG/HOF features using Laptev's detector and descriptor
instead of using dense trajectory. The computation efficiency
of proposed features TSP and SSP are evaluated in next part.

Final recognition rates using multi-cue representation are
shown in Fig. 12, and there still exists ambiguities among
similar actions. In ADL dataset, “answer a phone” and “dial a
phone” are similar naturally since they contains same move-
ments like picking up a phone and bring it to the ear. “Peel a
banana” and turning pages in “look up a phone a number” also
look similar in having same hand motions.

In Fig. 13(a), the detected STIPs are too sparse for same
actions, which also response for imperfect results. In
Fig. 13(b,c), cluster backgrounds and passers-by bring in extra
STIPs, which result in more ambiguities for representation and
classification. Despite these difficulties, our method obtains
remarkable results by adding extra spatial structural informa-
tion to traditionally BoVW method, e.g., better discriminative
results between “answer a phone” and “dial a phone” are
shown in Fig. 12(b).

5.4. Computation efficiency and potential applications

The efficiency of calculating TSP and SSP on different
datasets are evaluated in Fig. 14, where parameter K is in
default for both SSP and TSP. Meanwhile, TSP is evaluated
with different parameters F and 7. The computation time was
estimated with MATLAB R2011a (The MathWorks, Natick,
MA) on a PC laptop with a 3.00 GHz Intel Core 15-2320 CPU
and 4 GB of RAM. Two indicators namely 7, and T} are uti-
lized for evaluation, which mean the time cost of extracting
feature TSP or SSP for whole dataset and for each frame.

Since the values of T, and T are related to the number of
STIPs, the more STIPs cost the longer time. On KTH dataset,
T, nearly equals 12 s for extracting TSP and 60 s for calcu-
lating SSP. Since KTH contains more number of STIPs for
whole dataset, T,; on KTH is bigger than ADL and UT, which
is shown in Fig. 14(al, bl). On UT dataset, T nearly equals
0.3 ms for extracting TSP and 1.8 ms for calculating SSP. As
the complex background of UT brings more STIPs for each
frame, Ty on UT is larger than KTH and ADL, which is
illustrated in Fig. 14(a2, b2).

The TSP and SSP can be generated efficiently, thus expands
the usage of proposed algorithm in many applications like

avgRate = 0.9250
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kick
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push

shake.

(b) (c)
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Fig. 14. Comparing computation efficiency of TSP and SSP with different parameters.
realtime human action classification and video retrieval, ac- [14]. Then BoVW, TSP and SSP features are calculated in
tivity prediction and human robot interaction: real-time using offline trained models. Finally, non-linear

SVM with homogeneous kernel generates the type of ac-
e The pipeline of performing real-time human action clas- tion efficiently. Since the proposed algorithm are not
sification is as follows. Given a video containing an action, limited to human actions, it can be utilized to improve the

STIPs are extracted quickly using Laptev's detector in Ref. performance of content based video retrieval.
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Action Models
Trained on
KTH dataset

Preprocess

Send Command to Robot:

Fig. 15. Applying human action recognition method to interact with robot named “Pengpeng” in a noisy environment.

e Recently, many researches focus on the prediction of
ongoing activities [40—42], whose objective is to predict
potential actions and alarm person to prevent dangers like
“fighting” from happening. Treating an ongoing activity as
small segments of videos, our algorithm can be applied to
intelligent systems to predict some activities by trans-
forming the task of prediction to classify early video
segments. For example, when an early action named “one
person stretch out his fist quickly towards another person”
is observed, it's likely to be a later action named “fighting”
afterwards.

e A mobile robot designed by our lab with a camera and a
human—machine interface are shown in Fig. 15. We adopt
the PHILIPS SPC900NC/97 camera and place it on the
head of the robot with a height of 1.8 m. Additionally, a
curve mirror is utilized to change the camera into a 360
degree panoramic camera. The mobile robot works in a
hall, semi-door environment, with a size of 8 m x 8 m. We
defined three types of actions namely “Waving”, “Clap-
ping” and “Boxing”, which refer to three orders “moving
forward”, “circling” and “moving backward”. As shown in
the pipeline of Fig. 15, human actions are captured as
input for our real-time human action recognition system
after preprocessing. Action models are trained based on
the KTH dataset [14], and also as input for the system. The
output of the action type “Waving” serves as a command
“Moving forward” for the robot. Especially in noisy en-
vironments, our proposed action recognition method can
clearly deliver orders in real-time than using sounds or
traditional BoVW method.

6. Conclusions and future work

In this work, a video of human action is referred to a cloud
of STIPs, which are modeled by a saliet directed graph. To

describe the salient directed graph, a Time Salient Pairwise
feature (TSP) and a Space Salient Pairwise feature (SSP) are
proposed. Different from BoVW and related works in
capturing structural information, TSP involves the words' co-
occurrence statistic as well as their directional information.
Since richer information of spatial-temporal distribution is
involved, TSP outperforms baseline BoVW. Additionally, a
Space Salient Pairwise feature (SSP) is designed to describe
geometric distribution of STIPs which is ignored by TSP. The
SSP achieves compatible results with BoVW model on
different datasets which proves the effect of spatio-temporal
distribution for action classification without lying on content
of STIPs. Finallyy, a multi-cue representation called
“TSP 4 SSP + BoVW” is evaluated. This united form out-
performs the state-of-the-arts proving the inherent comple-
mentary nature of these three methods. Experimental results
on four challenging datasets show that salient motions are
robustness against distracted motions and efficient to distin-
guish similar actions. Future work focus on how to model
geometric distribution of STIPs more accurately. As only
STIPs are involved in current work, high level models and
features like explicit models of human-object [4] and dense
tracklets in Ref. [43] can be considered. Additionally, more
real-time applications will be designed to apply our algorithm.
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