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Robust Tracking with Discriminative
Ranking Middle-level Patches

immediate
�

Abstract The appearance model has been shown to
be essential for robust visual tracking since it is the
basic criterion to locating targets in video sequences.
Though existing tracking-by-detection algorithms have
shown to be greatly promising, they still suffer from the
drift problem, which is caused by updating appearance
models. In this paper, we propose a new appearance
model composed of ranking middle-level patches to
capture more object distinctiveness than traditional
tracking-by-detection models. Targets and backgrounds
are represented by both low-level bottom-up features and
high-level top-down patches, which can compensate each
other. Bottom-up features are defined at the pixel level,
and each feature gets its discrimination score through
selective feature attention mechanism. In top-down feature
extraction, rectangular patches are ranked according
to their bottom-up discrimination scores, by which all
of them are clustered into irregular patches, named
ranking middle-level patches. In addition, at the stage of
classifier training, the online random forests algorithm is
specially refined to reduce drifting problems.Experiments
on challenging public datasets and our test videos
demonstrate that our approach can effectively prevent
the tracker drifting problem and obtain competitive
performance in visual tracking.

Keywords Middle-level Patches, Selective Feature
Attention, Random Forests, Tracking-by-detection

1. Introduction

Visual tracking plays a key role in a variety of practical
fields, such as autonomous robot systems, human-robot
interaction, driver assistance, security surveillance and
so on. Despite tracking having drawn much attention
in research, serious problems still exist in realistic
applications. Scale, pose and illumination changes confuse
the tracker, while background clutters and occlusion from
other objects distract the tracker. Most state-of-the-art
models of object tracking mainly focus on two aspects
[1], object representation (i.e., object model) and mode
seeking. Object representation describes the basic criteria
of mode seeking, hence helps to locate candidate targets
in videos. Recently, tracking-by-detection models, which
formulate tracking as a binary classification between
targets and background, have shown great promise in
state-of-the-art frameworks [2,3,4]. Such methods involve
the continuous detection in individual frames and the
association of detections across frames. In contrast to
background modelling-based trackers, they are generally
robust to changing background and moving cameras.
However, the existing challenge of such models when
applied to real-world scenarios is the unavoidable
drifting problem. That is, when learning a new model
to adapt to appearance change and to maintain model
plasticity, the model stability would be reduced. Hence, the
distinctiveness of an appearance model is very important
for improving tracking efficiency against the drifting
problem.
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Figure 1. Framework of our tracking-by-detection algorithm

Grabner proposed an online boosting algorithm to
generate strong classifiers as a tracker, in which bottom-up
features (e.g., colour, orientation, intensity, etc.) were
not considered in the appearance model [2]. Another
work, called Ensemble Tracking [3], proposed to embed
diverse feature vectors in an Adaboost framework to
formulate an object/background appearance model. Its
drawback was that several heterogeneous cues were
merged in the same subspace. Penne et al. improved a
modular version of Ensemble Tracking combined with
a Markov Chain Monte Carlo particle filter [5]. This
indicated the necessity to find the optimal combination of
feature configuration that improves the tracking process.
Grabner et al. [6,7] used semi-supervised online boosting
to alleviate the drifting problem. Babenko et al. introduced
multiple instance learning to describe and locate targets
in videos where a bounding box including the object was
considered as a positive bag and others as negative ones
[8]. Supancic et al. [9] used self-paced learning to select
reliable frames from which to extract additional training
data. In this way, they obtained a good appearance
model. They also proved that an appearance model is
more effective than a strong motion model. Tang et al.
proposed a discriminative ranking list tracker which
constructed a pair of different scale models, and alleviated
the distraction from backgrounds[10]. Their ranking lists
were gained according to K-NN with Euclidean distance
metrics. For comparison, our ranking middle-level
patches are based on a totally different mechanism where
our ranking metric is composed of discrimination scores.

In summary, aforesaid models mainly used top-down
cognitive attention (e.g., faces, humans, etc.) to represent
a target. They ignored the bottom-up features (e.g.,
colour, orientation, intensity, etc.) which are highly
discriminative for individual objects. Therefore, their
models are not discriminative enough and models drift
easily. In contrast, some works provided tracking models
based on salient bottom-up features [11-14]. Although
they obtained compelling results, they lagged behind
primates’ performance in real scenes. For example,
primates can recognize a person and track it when the
person isn’t salient but is meaningful from backgrounds,
while the above methods cannot realize that using only
bottom-up features. The reason for the gap largely lies
in the role of top-down features [15]. Hence, it will be
beneficial to combine top-down and bottom-up features

for constructing models and reach primates’ performance
on object tracking.

In this paper, we propose a novel framework by
integrating high-level top-down and low-level bottom-up
features to boost the distinctiveness of the appearance
model. For high-level top-down features, large-scale
patch-wise features are extracted because they contain
more appearance information than pixel-wise features.
However, their sparser distribution and lower sensitivity
than pixel-wise features, result in their disadvantage
of lower location accuracy [16]. Therefore, low-level
pixel-wise features are extracted to compensate for these
drawbacks. More importantly, selective feature attention
is utilized to determine feature scores in bottom-up
spaces according to the discrimination ability that best
separates the target from backgrounds. These scores
are used to linearly weight corresponding top-down
patches. As a result, rectangular top-down patches are
clustered into irregular ranking middle-level patches. Our
discriminative appearance model is described by these
ranking middle-level patches, and treats tracking as a
three-class classification problem, as shown in Figure 1.

In tracking-by-detection methods, another key part
is how to train and maintain the classifier. Random
forests (RFs) [17] and their melioration [6] have attracted
considerable attention in computer vision for their
excellent characteristics, such as they are more robust
to noise than Adaboost [18], paralleled easily, not prone
to overfitting and so on [19]. Hence, online random
forests (ORFs) are adopted as our basic classifier for
their inherent multi-class property. Additionally, online
gradient boosted regression trees (GBRT) is novelly
utilized to reduce the current residuals in gradient
direction, in order to refine the training errors of RFs
classifier.

The remainder of this paper is organized as follows,
section 2 describes the proposed appearance model with
top-down and bottom-up features. The online refined
random forests classifier is presented in section 3. Section
4 details extensive experiments on challenging public
datasets and test videos recorded by us on a mobile robot.
Finally, we come to conclusions and discuss possible
extensions in section 5.
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2. Appearance Model with Top-down and Bottom-up
Features

Our goal is to obtain a discriminative target appearance
model. The whole framework of our method is shown
in Figure 1. Firstly, target tracking is determined by
hand in frame t, and bottom-up features and top-down
patches are based on this. Selective feature attention
calculates the scores of bottom-up feature spaces according
to discrimination ability of the features. Then, three kinds
of ranking middle-level patches are derived to be used to
train our refined random forests classifier as samples. To
adapt to appearance changes, an online learning algorithm
is adopted to update the refined random forests classifier.
The trained classification model recognizes the target
from backgrounds on frame t+1, updating the samples
of the target and its backgrounds at the same time.
Finally, we come to run mean-shift [20] to identify the
peek of the classification result (confidence map), i.e.,
location of the target. The tracking procedure repeats
frame-by-frame. The collaboration of three-class ranking
middle-level patches and online refined random forests is
the key technique of our proposed method.

2.1 Visual Feature Spaces

Bottom-up features

Traditionally, intensity, orientation and colour can be used
for saliency estimation [21]. In this paper, our bottom-up
features also include other features which have shown
correlation with bottom-up visual attention and have
underlying biological plausibility.
• Three channels of colour spaces (such as RGB, HSV, no

use for grey images)
• intensity, texture, orientation and colour (Red/Green

and Blue/Yellow) contrast channels as calculated by Itti
and Koch’s saliency method [21].

• Graph-based visual saliency (GBVS) [22] bottom-up
saliency models

Top-down features

For human-robot interaction and visual surveillance, faces
(human or animal) can easily draw primates’ attention.
Hence, two excellent goal-driven, top-down cognitive
features are adopted into our feature spaces.
• Haar-like features proposed by Viola and Jones [23].
• HOG (histogram of oriented gradients) features

proposed by Dalal [24].

Dalal, who proposed HOG, believes that an object can be
represented by the statistics of the local edge directions
[24]. In our method, edges are divided into eight
directions. Each patch is represented by a 40-dimension
vector composed of five 8-bin histograms. Haar-like
features are boosted by classifiers, as proposed in [2].

2.2 Selective Feature Attention Mechanism

The efficiency of tracking depends on the discriminative
ratio between the target and its backgrounds [13]. Tracking
a person in red cloth under the sun is very easy due to
its salient colour. However, it is very difficult to keep
tracking the person when he/she walks into a shadow.

Figure 2. Overview of training classifier with ranking
middle-level patches

At this time, red is no longer salient and we should shift
our attention from the red colour to the distinctive shape
in the feature spaces. Therefore, the attention mechanism
of feature selection [11,25] plays an important role in the
learning procedure to find the most discriminative feature
space.

In this paper, the contribution of each selected feature
is calculated by the variance ratio of the log likelihood
function [11] which has been proved effective in [13].
p(i) denotes the discrete probability distributions of one
stimulus feature in target and q(i) denotes the discrete
probability distributions of the feature in backgrounds.
They are separately estimated by normalizing their feature
histograms HT(i) and HB(i) over pixel numbers nT and nB
in them,

p(i) =
HT(i)

nT
, q(i) =

HB(i)
nB

(1)

where HT(i) and HB(i) are obtained from target and
background windows. Index i ranges from 1 to 2b

indicating patches, and b is the number of histogram
buckets.

The log likelihood of the feature i is then given as,

L(i) = log
max{p(i), σ}
max{q(i), σ} (2)

where σ is a small value like 0.001 that prevents dividing
by zero or taking the log of zero.

The variance ratio VR(L; p, q) of L(i) is calculated to
quantify the feature’s contribution and to distinguish the
target from backgrounds. Given a discrete probability
density function d(i), the variance of L(i) with respect to d
is calculated as follows,

var(L; d) = ∑
i
(d(i)L2(i))− [∑

i
(d(i)L(i))]2 (3)

The variance ratio of the log likelihood function L(i) can
now be defined as,

VR(L; p, q) =
var(L; (p + q)/2)

var(L; p) + var(L, q)
(4)
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A feature receives a high score if it renders the target more
salient than distracters in backgrounds, and vice versa.
Updating this score is shifting attention in bottom-up
feature spaces, while the appearances of target and
backgrounds are constantly changing. In our method,
the variance ratio of the log likelihood function for each
feature is calculated and normalized to determine the score
si,

si =
VRi

∑i=n(VRi)
(5)

2.3 Irregular Ranking Middle-level Patches

After discrimination scores of bottom-up features are
obtained, they are used to linearly weight corresponding
top-down patches. On one hand, if one patch is weighted
with different scores, it will be segmented into different
irregular patches. On the other hand, if different adjacent
patches are weighted with approximate scores, they
will be clustered into one irregular patch. Hence, the
rectangular top-down patches are clustered into irregular
ranking patches, which are in the form of a middle
level between high-level patches and low-level features.
These patches are called discriminative ranking middle-level
patches in this paper. Considering the fact that one
patch may contain both target and backgrounds since
their appearances are similar with nearby scores, this
paper models object tracking as a three-class classification
issue. Three classes correspond to three kinds of patches,
patches only containing the target, patches only containing
backgrounds and patches containing both target and
backgrounds. Target and backgrounds patches will
be adaptively tuned in each round of training. An
overview of the training classifier with irregular ranking
middle-level patches is depicted in Figure 2.

3. Online Refined Random Forests Classifier

In a tracking-by-detection algorithm, another key part
is how to train and maintain the classifier besides
object representation [26]. RFs [17] have piqued
researchers’ interest as they demonstrate better or at least
comparable performance to other state-of-the-art methods
in classification, keypoint recognition and clustering
applications [18,19,27,28]. More importantly, (1) inherent
multi-class classifiers RFs are adapted to our three-class
classification problem. (2) RFs can tell the importance
of features in training, thus our proposed ranking
patches with high weights can be judged by tree nodes
preferentially. Hence, online random forests classifiers
are used as basic classifiers. Taking the importance of
precision into consideration, the classification results of
RFs are refined by GBRT. The derived residual of the
loss function by training RFs is used to initialize GBRT.
Then GBRT corrects the residual in gradient directions. In
this way, learning of wrong information can be effectively
reduced, so that drifting problem can be alleviated. To
cope with continuous model changes in tracking, we
adopt online growing trees to constitute RFs and GBRT.
In the following subsections, RFs and GBRT will be briefly
introduced.

Algorithm 1 Online Refined Random Forests
1: INPUT: Sequential training sample < xi, yi >, the

minimum number α, the minimum gain β, learning
rate γ, the size of RFs N, the size of GBRT M

2: OUTPUT: T
3: BEGIN:
4: // Random Forests
5: for t = 1 → N do
6: ft(xi, θt) = DecisionTree((xi, yi), α, β)
7: update OOBEt
8: if OOBEt > rand() then
9: // Discard the tree

10: f (xi, θt) = newDecisionTree((xi, yi), α, β)
11: end if
12: end for
13: return F = { f1, ..., fN}
14: // Initialization GBRT
15: ri = yi −F (xi)
16: for t = 1 → M do
17: Tt(xi) = DecisionTree((xi, ri), α, β)
18: // Update the residual of sample xi when the

number of samples is larger than α
19: ri ← ri − γTt(xi)
20: end for
21: // Combine the regression trees T1, ..., TM with RF F
22: T = F + γ ∑M

t=1 Tt
23: return T
24: END

3.1 Random Forests

RFs are an ensemble of decision trees [17]. For each
sample, its classification result is the weighted sum of all
trees. Trees in RFs gain random samples with bagging for
training, and select random features to evaluate finding
the best spitting point at each node. RFs are an inherently
parallel algorithm in that every single tree is independent
from earlier trees. Another advantage of RFs is that
they can provide extra information about the training
dataset. Out-Of-Bag (OOB) samples of a tree which are
not included during the training can be used to estimate
the generalization error, called Out-Of-Bag-Error (OOBE)
[17].

3.2 Gradient Boosted Regression Trees

Similar to RFs, GBRT is a machine learning technique
which is based on tree averaging. GBRT sequentially
adds a new tree in each iteration. The new tree focuses
on samples that are responsible for the current remaining
residual. In each iteration, GBRT uses boosting to reduce
the current residual and improve the last results in the
gradient direction [29], as illustrated in the gradient
boosted regression trees of Figure 2.

Let T(xi) denote the current classification result of sample
(xi, yi), where xi denotes the values of the ith feature
vector, and yi is the label of the sample. Furthermore,
assume that L = (T(x1), ..., T(xn)) denotes a continuous,
convex and differentiable loss function which reaches its
minimum when T(xi) = yi. In this paper, the loss function
is equal to square loss function, just as follows,
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L =
1
2

n

∑
i=1

(T(xi)− yi)
2 (6)

GBRT performs a gradient descent in the sample space,
that is, during each iteration the classification T(xi) is
updated with a gradient step, as follows,

T(xi) ← T(xi)− γ
L

T(xi)
(7)

where γ is the learning rate. In the case where L is the
squared loss, the gradient becomes the residual, i.e.,

ri = yi − T(xi) (8)

3.3 Online Refined Random Forests

Since RFs and GBRT are based on decision trees, we
adopt online tree growing strategy in [19] to train the
online RFs and online GBRT classifiers. For each tree, the
split principle of each node is that tests at node satisfy
g(x) > θ, where g(x) is a test function, and θ is a threshold
meaning quality measurement (e.g., information gain or
Gini index). In online mode, the test function is randomly
generated and the threshold θ is selected randomly,
which are also adopted in an extremely randomized
forest. Then the best tests and θ are determined by a
quality measurement. Moreover, a node splits according
to the statistics of samples falling in it. In online mode,
statistics are gathered over time. Therefore, a node decides
when to split depending on, (1) if there has been enough
samples in a node to give a robust statistics and (2) if the
splits are good enough for the classification purpose. In
order to get a more robust estimation of statistics, two
hyper-parameters are introduced which must be met, (1) α,
the minimum number of samples a node has to see before
splitting, (2) β, the minimum gain a node has to achieve
when splits. The grown tree based on these tree-growing
strategies is denoted as DecisionTree((x, y), α, β, ).

The proposed online refined random forests algorithm is
shown in Algorithm 1, Ft(xi) and Tt(xi) denote the tth

tree’s classification results of sample (xi, yi) in RFs and
GBRT respectively. Trees in RFs and GBRT are derived
by online DecisionTree((x, y), α, β, ) novelly instead of
the off-line classification and regression trees. Moreover,
the online classifier learns new information for model
updating, and forgets old information by discarding the
entire tree whose OOBE is larger than the threshold in RFs.

Traditionally, GBRT is initialized with the all-zero function
T0(xi), then the residual is ri = yi, leading to the true
convergence of L not holding in practice. This is because
1) in each iteration, the gradient is only approximated, 2)
for true convergence, the learning-rate γ should be small,
requiring an unrealistically large number of iterations
M >> 0 [30]. In the online refined random forests
algorithm, the initial residual ri is set with the residual
of the RFs classification result, i.e., ri = yi − F (xi), the
15th line in Algorithm 1. In this way, errors derived from
training samples by RFs can be refined. At the same time,
the gradient descent procedure is conducted as the 19th

line in Algorithm 1, thus GBRT can converge to its global
minimum. The final boosted classifier is added with the
initial results of RFs. The whole procedure can be seen in
Figure 2.

4. Experiment and Analysis

To demonstrate performance of the proposed tracking
method, extensive experiments are conducted. In
order to show the effect of different pieces of our
method, self-comparison experiments are conducted. In
experiments without ranking middle-level patches, only
Haar-like features are used.
• Set 1, only RFs without GBRT and without ranking

middle-level patches.
• Set 2, RFs with GBRT and without ranking middle-level

patches.
• Set 3, only RFs with ranking middle-level patches,

without GBRT.
• Set 4, our tracker, RFs with GBRT and ranking

middle-level patches.

We also compare our method with five
state-of-the-art methods, online AdaBoost (OAB) [2],
tracking-learning-detection (TLD) [4], Parallet Robust
Online Simple Tracking (Prost) tracker [18], online
random forests (ORF) [19] and Hough-based tracking
(HT) [27].

For our tracker, 100 trees are used in RFs as in [18]
and 10 trees in GBRT as the common rule. For
DecisionTree((x, y), α, β, ), the maximum tree-depth is
set to five, each node with 10 random features, α = 100,
β = 0.1, γ = 0.1. All experiments are implemented with
fixed parameters. For compared trackers, we use tuned
parameters from their source codes for the best results.
Because the source code of the Prost tracker [18] is not
available, the results of the Prost tracker are gathered from
what is reported in [18]. Since all algorithms depend on
some randomness, we run them 10 times and average
the results for each sequence. For all trackers, Haar-like
features are extracted. But the difference is that features
of our tracker are selected by weights, while others are
selected by boosting. The performance of trackers is
measured by Recall - number of true positives divided
by the length of the sequence (true positive is considered
if the overlap with ground truth is larger than 50%) [4].
All experiments are carried out on an Intel Dual-Core
3.00 GHz CPU with 2GB memory. Our software relies on
Microsoft Visual Studio 2008. Taking into consideration of
real-time capability of the algorithm, we also compute the
frame per second (FPS). In order to guarantee robustness,
our method is about five FPS, which is also real-time.

4.1 Experiment Sequences

For quantitative analysis, we use the publicly available
tracking sequences and videos recorded with a mobile
robot in real scenes. David, Sylvster, Girl, Face Occ1,
Face Occ2 and Tiger 2 are basic test sequences. Box and
Lemming are from [18], while Moun bike and Cli-dive 1
are from [27]. Sequence 11 and 12 are recorded by us
in an indoor environment and an outdoor environment
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sequence frames challenges and difficulties
S1 David 462 scale and illumination changes
S2 Syl 1344 lighting and pose changes
S3 Girl 501 out-of-plane rotation
S4 Face Occ1 887 object occlusion
S5 Face Occ2 819 in-plane rotation and object occlusion
S6 Tiger 2 364 occluding clutter
S7 Box 1161 clutter and distraction
S8 Lemming 1161 motion blur and clutter
S9 Moun bike 228 non-rigid object deformation
S10 Cli-dive 1 75 large deformation
S11 In-door 187 lighting changes
S12 Out-door 120 dramatic distracters

Table 1. Challenges of experiment sequences

respectively. The challenges of all sequences are shown in
Table 1.

4.2 Experimental Results and Analysis of Self-comparison

Table 2 shows the results of the self-comparison
experiments. From the table, it can be found that
our tracker gains the best average performance in all
sequences. Figure 3 depicts the illustrative pixel error
plots for David sequences. Pixel error represents the mean
centre location error in pixels [18]. It can be seen that our
tracker is the most stable and the drifts smallest since its
mean errors are the smallest and it barely fluctuates. Near
frame 250, Set 1 fluctuates strongly, and at the last part of
sequences, Set 2 fluctuates frequently. Set 3 and Set 4 keep
relatively stable for all sequences, and the mean errors of
Set 4 are averagely smaller than for Set 3, which confirms
that the drifting problem is alleviated at different levels
with different pieces of our method.

The comparative results between Set 1 and Set 3
demonstrate the validity of ranking middle-level
patches. Set 3 achieves the second best performance
in self-comparison experiments, which shows the
effectiveness of ranking middle-level patches. Through
weighting top-down features by discrimination scores,
three-class irregular patches are obtained to describe the
target and its backgrounds, which avoids the distraction
of clutter or similar backgrounds. Therefore, Set 3 gains
much better results than Set 1, especially for Tiger 2, Face
Occ 2 and Lemming sequences. The comparative results
between Set 1 and Set 2 prove the validity of GBRT. Set 1 is
actually the ORF tracker, so its results are the same as the
ORF tracker. Set 2 is better than Set 1 in all sequences since
Set 2 uses GBRT to refine the errors of the RFs classifier.

Figure 3. Pixel error plots for sequence David

sequence Set 4 Set 1 Set 2 Set 3
David 100 95 100 100
Syl 78 73 75 73
Girl 100 99 100 100
Face Occ1 100 98 99 100
Face Occ2 84 72 75 82
Tiger 2 80 45 51 75
Box 45 38 42 77
Lemming 94 45 57 89
Moun bike 100 98 100 100
Cli-dive 1 100 100 100 100
In-door 98 87 93 92
Out-door 100 91 95 100
Average 93 78 82 91

Table 2. Recall(%) of Self-comparison

From Figure 3, it can be found that pixel errors of Set 2 are
smaller than for Set 1 for most frames, which illustrates
that Set 2 is more stable than Set 1. Set 4 shows the results
of our tracker, which stems from integrating top-down
and bottom-up features and the online refined random
forests classifier. Its superiority will be introduced in the
following experiment analysis.

4.3 Experimental Results and Analysis with State-of-the-art
methods

Table 3 shows that our method delivers competitive results
with other state-of-the-art trackers. From the table, it can
be found that our method outperforms all other trackers
in eight sequences. The recall of our tracker has been
improved by 11% compared with the second best tracker
HT [27]. Illustrative tracking results are shown in Figure
5, which depicts that our method can locate the tracking
target with higher recall. Taking the Lemming sequences
as examples, our method can track the target until the
end, while all the others drift away and lose the target.
For our tracker, the drifting problem is alleviated with
the collaboration of the discriminative appearance model
and online refined random frosts classifier, which avoids
incorrectly updating the appearance models. An analysis
of the comparative experiments will be shown on the basic
of challenges in tracking.

sequence Ours ORF OAB TLD Prost HT
David 100 95 23 99 80 100
Syl 78 73 51 94 73 78
Girl 100 99 24 58 89 85
Face Occ1 100 98 35 52 100 100
Face Occ2 84 72 45 47 82 89
Tiger 2 80 45 19 39 - 69
Box 79 38 14 90 91 45
Lemming 94 45 35 88 70 51
Moun bike 100 98 74 31 - 100
Cli-dive 1 100 100 78 28 - 100
In-door 98 87 69 93 - 99
Out-door 100 91 65 90 - 100
Average 93 78 44 68 - 85

Table 3. Recall(%) of our method in comparison with ORF [19],
OAB [2], TLD [4], Prost [18] and HT [27]
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Figure 4. Normalized weights variation (hue, saturation, value
for HSV)

Scale, illumination and pose changes. For the David
and Syl sequences, our tracker gains the best result
because our object model is highly robust to appearance
changes. The selective bottom-up features mechanism
utilized can maintain the discrimination between the
target and its backgrounds. Moreover, Haar-like features
are robust to scale and orientation changes, and the
online learning algorithm can update the classifier to
adapt to scale, illumination and pose changes. Although
colour features cannot be used as sequences are grey
images, other bottom-up features, such as intensity and
orientation are still discriminative enough. TLD and the
Hough tracker also perform well on these sequences.
TLD adopts P-N learning to make up the drawback of
tracking-by-detection and adopts a three layers cascaded
classifier to improve detection. Hence, it is effective in
dealing with appearance changes. The Hough tracker uses
target contours instead of bounding boxes to represent
targets. However, it is based on back-projection with
GrabCut, which is sophisticated image processing.

For indoor sequences, despite the light changing,
ranking middle-level patches can render the target more
salient from its backgrounds, so our tracker can deal
with small fluctuations in illumination. Our method
outperforms ORF because that our method revised RFs’
classification result. When the target is almost out of
sight, OAB and ORF lose the target, while our tracker can
maintain long-term tracking. Figure 4 shows the feature
weight variation of HSV colour tuned by selective feature
attention for indoor sequences. When the target moves
into the region with the highest intensity, the importance
of hue and value for separating target and backgrounds
declines, while the weight of saturation accordingly
increases. When the target moves out of this region,
their weights will be restored. Hence, in this sequence,
the influences of hue and value in separating target and
backgrounds are the same, and they are contrary to the
influence of saturation.

Occlusion and motion blur. Face Occ 1 and 2 sequences
show that our tracker can handle occlusion more
preferably than OAB, ORF and TLD. Since our appearance
model is part-based, it is robust to occlusions. Moreover,
selective features attention can strengthen the scores of
target features while weakening backgrounds’ scores

when heavy occlusion occurs. Hence, our tracker can
tackle heavy occlusion better than others. Our tracker
is also more robust to outliers. It can be seen that our
method outperforms other methods in handling the heavy
occlusion and fast motion blur delivered from Tiger
2 and Lemming sequences (frame 361 and 553). This
is because our salient appearance model derived from
ranking patches can locate the target well according to
the contrast sensitivity between target and backgrounds.
Certainly, Prost performs well in dealing with occlusion,
since it combines the template model and other trackers to
compensate for the model drifting.

Background clutter and distracters. Moving across
dramatic distracters with similar appearance is a great
challenge for tracking. From Lemming sequences, we can
see that OAB and ORF lose the target in early tracking and
other methods track the wrong target in the later period.
Only a few trackers can handle this problem well due
to poor object model maintaining procedures and lack
of consideration of the relationship between target and
backgrounds. However, our tracker gains higher recall
owing to the effect of selective feature attention on the
tuning discrimination scores of features. Moreover, the
collaboration of three-class target/backgrounds model
and our multi-class refined random forests classifier
achieves a more accurate target/backgrounds model.
However, the box sequences show that TLD and Prost
perform better than our method in grey pictures when
background clutters. One reason is that TLD adopts
P-N experts learning and Prost uses a optical-flow-based
mean-shift tracker, in addition, colour features which are
discriminative cannot be used in grey images.

Large deformation. Furthermore, our method performs
much better than OAB and TLD for non-rigid objects
with large shape deformation, which can be seen from the
Moun bike and Cli-dive sequences. The tracking results
of the Hough tracker are appealing too. The reason for
this good performance is that random forests is tolerant
to noise, which is superior than boosting [27]. Moreover,
GBRT is applied to boost the random forests’ classification
results for higher precision, so our tracker can gain the
best performance in dealing with large deformation. TLD
gains poor results due to its poor involvement of only an
optical-flow tracker, which is not suitable for non-rigid
objects.

5. Conclusions

In this paper, a new appearance model composed of
ranking middle-level patches is proposed for robust object
tracking. This novel approach integrates top-down and
bottom-up features through linearly weighting low-level
feature scores and ranking high-level patches. As a
result, high-level top-down patches are clustered into
irregular ranking middle-level patches, which makes the
tracking procedure a three-class appearance model. The
collaboration of a three-class appearance model and a
multi-class refined random forests classifier enables us
to achieve more accurate target representation and to
avoid incorrect appearance model updates. Extensive
experiments demonstrate the superior performance of
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Figure 5. Illustration of tracking results. (Yellow-Ours, Red-OAB, Green-ORF, Purple-HT, Blue-PROST)

our tracker over several state-of-the-art tracking methods.
They also verify that the proposed method can alleviate
the drift problem well. Moreover, our method has been
applied to a smart surveillance system for schoolyard,
which realizes robust tracking in real scenes.
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